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ABSTRACT

Turbulent combustion modeling often faces a trade-off between the so-called flamelet-like models and
PDF-like models. Flamelet-like models, are characterized by a choice of a limited set of prescribed mo-
ments, which are transported to represent the manifold of the composition space and its statistics. PDF-
like approaches are designed to directly evaluate the closure terms associated with the nonlinear chem-
ical source terms in the energy and species equations. They generate data on the fly, which can be used
to accelerate the simulation of PDF-like based models. Establishing key ingredients for implementing
acceleration schemes for PDF-like methods by constructing flamelet-like models on the fly can poten-
tially result in computational saving while maintaining the ability to resolve closure terms. These ingre-
dients are investigated in this study. They include a data-based dimensional reduction of the composition
space to a low-dimensional manifold using principal component analysis (PCA). The principal components
(PCs) serve as moments, which characterize the manifold; and conditional means of the thermo-chemical
scalars are evaluated in terms of these PCs. A second ingredient involves adapting a novel deep learning
framework, DeepONet, to construct joint PCs’ PDFs as alternative methods to presumed shapes common
in flamelet-like approaches. We also investigate whether the rotation of the PCs into independent com-
ponents (ICs) can improve their statistical independence. The combination of these ingredients is investi-
gated using experimental data based on the Sydney turbulent nonpremixed flames with inhomogeneous
inlets. The combination of constructed PDFs and conditional mean models are able to adequately repro-
duce unconditional statistics of thermo-chemical scalars, and establish acceptable statistical independence
between the PCs, which simplify further the modeling of the joint PCs’ PDFs.

© 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

the species and energy equations. Such approaches include trans-
ported PDF models [4] and coupled low-dimensional stochastic

State-of-the-art turbulent combustion models can be classified
under two common classes defined by Pope [1] as flamelet-like
[2,3] and PDF-like models [4]. Flamelet-like models such as the
flamelet [2] or the conditional moment closure (CMC) [5,6] models,
rely on the assumption that the combustion composition space lies
within a prescribed low-dimensional manifold that is characterized
by a reduced set of moments, such as the mixture fraction and the
progress variable. These parameters and their moments are trans-
ported. The shape of their probability density functions (PDFs) is
often assumed along with their statistical independence.

PDF-like approaches are designed to generate statistics to di-
rectly compute the key closure terms in turbulent combustion,
which pertain primarily to the chemical source closure terms in
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models with large-eddy simulations (LES). These coupled models
combine the linear-eddy model (LEM) with LES, the LEMLES ap-
proach, [7-10] or the one-dimensional turbulence (ODT) model
with LES, the LES-ODT approach [11-16].

These approaches invariably generate data on the fly, which can
be used to determine unconditional means for the reactive scalars
and their chemical source terms. This data also can be used to
construct a low-dimensional description of the accessed composi-
tion space in the simulation and key statistics needed to transport
the moments, which characterize the low-dimensional manifolds
of this space.

Given the stated trade-off between flamelet-like and PDF-like
models, can we construct, on the fly, flamelet-like models using
statistics generated from PDF-like simulations? And can we exploit
this capability to accelerate PDF-like model-based simulations with
a hybrid scheme that accommodates a PDF-like solution and its
generated flamelet-like solutions? Addressing these questions must

0010-2180/© 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.combustflame.2021.111814
http://www.ScienceDirect.com
http://www.elsevier.com/locate/combustflame
http://crossmark.crossref.org/dialog/?doi=10.1016/j.combustflame.2021.111814&domain=pdf
mailto:techekk@ncsu.edu
https://doi.org/10.1016/j.combustflame.2021.111814

K.M. Gitushi, R. Ranade and T. Echekki

Coarse-Grained Simulations
(LES, RANS)

Combustion and Flame 236 (2022) 111814

Coarse-Grained Simulations e
(LES, RANS)

Mean Continuity and
Momentum Equations

Mean Flow

Mean Scalars,

Fine-Grained Simulations  JEFPWTY

(Data)

Statistics Construction

Basic PDF-Like Model

Mean Continuity and
Momentum Equations

<
Mean PCs,
density

PC Transport
a

Closure for PCs

Mean Flow

PCs, Joint PDFs, Conditional
Means

PCA, Statistics
Construction

Mean Thermo-
Chemical

Fine-Grained Simulations

(Data) Scalars, density

Statistics Construction

Accelerated PDF-Like Model

Fig. 1. Schematic of the procedure to accelerate PDF-like simulations.

resolve the challenges that can be faced while implementing such
hierarchical schemes.

The first set of challenges is related to the PDF-like solution.
Beyond the choice of the PDF-like model, the quality of the gener-
ated statistics, including whether the data is sufficiently adequate
for constructing statistics and whether it is representative of all
scenarios encountered in the simulation, remains a key challenge.
Metrics to assess this quality as well as methods to accommo-
date potentially sparse data may be critical towards addressing this
challenge.

The second set of challenges is related to the on-the-fly con-
struction of the flamelet-like model. Recently, Lacey et al. [17] pro-
posed an in situ adaptive manifolds (ISAM) approach by enabling
on-the-fly calculation of the low-dimensional manifolds of the
composition space and the corresponding moments PDFs based on
the flamelet approach. By relying on a flamelet assumption or, in
general, a prescribed low-dimensional manifold for the composi-
tion space, there is an inherent risk that such assumptions may
not apply for a given problem. Therefore, a systematic approach for
constructing the low-dimensional manifold in which the moments
that characterize the manifold are not known a priori is desirable.
Much of the scope of the present study is related to addressing the
on-the-fly construction of the flamelet-like model.

The third set of challenges is related to the coupling of the PDF-
like and flamelet-like solutions. Therefore, they are related to how
this coupling is implemented, when a PDF-like solution is imple-
mented and when it is replaced by a flamelet-like solution in ei-
ther zones in the computational domain or at a time interval of
the solution.

The study by Wu et al. [18] provides an illustration of how a
hierarchy of models can be implemented within the same simula-
tion. Their approach relies on a Pareto-efficient framework to as-
sign submodels subject to metrics of accuracy. Within the frame-
work of combining PDF-like and flamelet-like simulations, such
metrics can set criteria for when the low-dimensional manifold
must be updated to accommodate additional conditions not ac-
cessed by the original data. More recently, Chung et al. [19] pro-
posed and demonstrated a data-assisted dynamic submodel assign-
ment approach using trained random forest classifiers. These clas-
sifiers identify the assignment of a particular submodel from a se-
lection of submodels based on the estimated error of quantities of

interest, which correspond to thermophysical quantities. The in situ
adaptive tabulation (ISAT) approach [20] for accelerating chemistry
provides another example of coupling a hierarchy of simulation ap-
proaches within the context of combustion.

Figure 1 illustrates how a PDF-like model-based simulation can
be augmented/accelerated with a flamelet-like solution. On the left
sub-figure is the basic set up for a PDF-like simulation. It involves
the coupling of a coarse-grained solution for continuity and mo-
mentum based on LES or Reynolds-averaged Navier-Stokes (RANS)
with fine-grained, low-dimensional stochastic solutions for reactive
scalars. In transported PDF models, the chemical state and associ-
ated statistics are tracked through notional particles from which
both joint scalar or scalar-velocity probability density functions
can be constructed. In LEMLES and LES-ODT approaches, the low-
dimensional 1D solutions embedded within or across the LES cells
also carry distinct chemical states along their 1D profiles. There-
fore, the fine-grained simulations can generate statistics on the fly.

In a coupled PDF-like and flamelet-like model-based frame-
work, which is shown on the right sub-figure in Fig. 1, the
flamelet-like model and associated low-dimensional manifold is
constructed and updated on the fly using statistics from the PDF-
like model-based simulation from the current and previous time
steps of the solution. We propose principal component analysis
(PCA) [21] as a viable approach for constructing this manifold. Ac-
cordingly, the thermo-chemical scalars (species and energy) are
replaced by a much smaller subset represented by the principal
components (PCs) from PCA. Adopting a low-dimensional mani-
fold also means that unconditional statistics of thermo-chemical
scalars can be constructed based on the retained moments of the
low-dimensional manifold, which correspond to the PCs. To evolve
the solution in a flamelet-like model-based simulation, the un-
conditional moments of the PCs are transported along with the
continuity and momentum equations as shown in Fig 1. The PC-
transport and momentum equations include closure terms, such as
the unconditional means for the density and the chemical source
terms for the PCs, which are modeled in terms of the uncon-
ditional means of the PCs [22,23]. Similar closure for the mean
molecular diffusion terms for PCs and momentum can also be con-
structed in terms of the PCs’ unconditional means. The solution of
PC-transport equations [22-26] is an alternative approach to the
transport of the traditional moments used in flamelet-like models,
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such as the mixture fraction and the progress variable and their
moments.

As the coarse-grained solution evolves, the range of accessed
states can be updated by fine-grained solutions and the corre-
sponding PCs can be adaptively updated, as well. It is important
to emphasize that fine-grained simulations within PDF-like models
can be used to generate both means for thermo-chemical scalars
conditioned upon the manifold variables as well as statistical dis-
tributions (PDFs) of the manifold variables. Within this strategy,
the solution of the PC-transport equations provide a mechanism
for evaluating unconditional thermo-chemical scalars’ statistics
(e.g. unconditional means of temperature or species). In flamelet-
like models, it is common to use a presumed PDF shape. How-
ever, the availability of statistics from PDF-like model-based solu-
tions results in additional, and potentially more effective, methods
to construct these PDFs.

In the present study, we investigate the key ingredients to con-
struct a flamelet-like model from PDF-like simulation data and ex-
tract important statistics for its closure. These ingredients include
the construction of low-dimensional manifolds, conditional means
and statistical distributions associated with the manifold parame-
ters. The use of PCA to construct a low-dimensional manifold for
the composition space provides a systematic method to accommo-
date complex problems, which may not be characterized by a sin-
gle combustion mode or regime or well-defined reference streams
or measures of the completion of reaction. We also rely on ma-
chine learning (ML) approaches as efficient tools to construct con-
ditional means for thermo-chemical scalars based on PCs using
deep neural networks and joint distributions for these PCs using
the kernel density estimation (KDE) [27] approach and the Deep-
ONet architecture [28].

In this study we also examine strategies to establish statisti-
cal independence of the PCs using independent component anal-
ysis (ICA) and the generation of independent components (ICs).
Establishing statistical independence can help further simplify the
description of the joint PCs/ICs PDFs and enable the use of more
sparse data for their construction. We use experimental data based
on the Sydney flames [29-31]. These flames provide a rich data
set that exhibits different dominant combustion modes and non-
equilibrium effects.

In Section 2, we outline the general implementation of PCA to
construct low-dimensional manifolds from PDF-like model-based
simulations. In Section 3 the various machine learning methods are
discussed. Next, results are presented and discussed in Section 4.

2. PCA and ICA-based low-dimensional manifolds for the
composition space

The identification of a data-based low-dimensional manifold for
the composition space is one of the key ingredients towards the
acceleration of PDF-like model simulations. The resulting moments
for this manifold replace the standard prescribed moments in tra-
ditional flamelet-like models. In this study, we propose the use of
PCA to identify the composition space low-dimensional manifold.

PCA has been used in combustion for chemistry reduction (see
for example Vajda et al. [32]) as well as for the parameterization
of the composition space [24,26,33-38]. Sutherland and Parente
[24] derived governing equations for PCs starting from the trans-
port equations for the thermo-chemical scalars (species and tem-
perature). This work has motivated a number of subsequent stud-
ies that explored PC-transport within the context of DNS [25], one-
dimensional turbulence (ODT) [38], LES [26] and RANS [22,23]. In
the work of Ranade et al. [22,23], a flamelet-like model based on
PC transport is constructed using experimental data. In this model,
the unconditional means of the thermo-chemical scalars and the
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PCs’ source terms are evaluated by constructing models for their
means conditioned on the retained PCs and the PCs’ joint PDFs.

When adopting PCA, the corresponding PCs’ transport equations
in a RANS or LES formulation are very similar in form to those of
passive/reactive scalars’ moments common in combustion model-
ing [22,23]. The most important advantage, of course, is in the re-
duced description of the composition space and the lower dimen-
sion of the statistical distributions for these PCs. These transport
equations require closure for the unconditional means of the PCs
source terms. These terms can be evaluated directly from the PDF-
like model-based simulation statistics, including means for the PCs
chemical source terms conditioned on the PCs as well as the joint
PCs PDFs or filtered density functions (FDFs) for LES.

PCA results from a linear transformation of the vector of
thermo-chemical scalars (e.g. temperature and species mass frac-
tions) to yield uncorrelated scalars, the PCs:

¢:AT W’ (l)

where ¥ is the vector of N thermo-chemical scalars normalized to
yield comparable magnitudes using maximum and minimum val-
ues of these scalars: ¥ = (T,Yq,Ys,...,Yy_1). The PCs vector ¢ in-
cludes Npc principal components, ¢ = (¢1, $3. ..., ¢n,.), which ac-
count for a threshold percentage of the data variance. For example,
the data from the Sandia flames [39] and the Sydney flames [29-
31] require 2 to 3 PCs to capture the entire range of flow condi-
tions and reaction scenarios (mixing, extinction and reignition) in
these flames. The matrix A includes the leading Nj eigenvectors
of the normalized thermo-chemical scalars covariance matrix.

Unconditional means for the kth thermo-chemical scalar’s
source term can be expressed using the joint thermo-chemical
scalars PDFs as follows:

o (¥) = [w o (¥)p(¥) . (2)

In this expression, p(rﬁ) is the joint thermo-chemical scalars’ PDF,
which can be highly dimensional, and the instantaneous thermo-
chemical scalars source is wy (¥).

Mapping the composition space into a low-dimensional man-
ifold based on the PCs yields a similar form for the thermo-
chemical scalars unconditional means:

(@) = f¢ < onld > p(¢)dg. (3)

In this expression, < wy|¢ > is the mean of the thermo-chemical
scalars conditioned on the PCs. Conditional means are constructed
from data; they can be viewed as generalizations of flamelet li-
braries where the parameterization is based on the PCs instead
of prescribed parameters (e.g. mixture fraction, progress variable).
The joint PCs’ PDF, p(¢), has a significantly reduced dimension
compared to the original joint thermo-chemical scalars’ PDF, p(y).

A similar expression to Eq. (3) for thermo-chemical scalars’ un-
conditional means can be written:

Vi#) = [ < vild > p(@)ig, (4)
where, the superscript “~” refers to a density-weighted or Favre

averaging. Again, < {/|¢ > represents the kth thermo-chemical
scalar’'s mean conditioned on the PCs. p(¢) is the density-weighted
PCs’ PDF, which may be expressed as:

b = =LD= pg). (5)
The next challenge is the representation of the thermo-chemical
scalars conditional means and the joint PCs’ PDF. Although we can
carry out subsequent analysis with an arbitrary number of retained
PCs, we will discuss primarily here the case where Njc = 2. This
choice is made to simplify the analysis and also because the data
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used for validating the proposed approach can adequately be rep-
resented by 2 PCs. In this scenario, the joint PCs’ PDF can be ex-
pressed as: (@) = p(P1, ¢2).

The resulting PCs are uncorrelated; yet, PCA does not guaran-
tee their statistical independence. A related approach, independent
component analysis (ICA) [40,41] determines a basis for the data in
which the new set, the independent components (ICs), are as sta-
tistically independent as possible. ICA yields a “rotation” of the PC
vector:

¢ =B"¢. (6)

In this expression, ¢ represents the vector of Np. independent
components and B is the rotation or mixing matrix. This rotation is
obtained through optimization algorithms that yields variables ¢,
$2. - Ny, that are as statistically independent as possible [41,42].
Transport equations for the ICs also can be derived similarly to
those of the PCs.

Representing the data in IC space results in a simplified expres-
sion for the ICs joint PDFs in terms of the product of the individ-
ual ICs’ marginal PDFs. The value of determining ICs in combustion
resides in this convenience where the assumption of statistical in-
dependence does not need to be invoked to model joint PDFs. Re-
gardless, both PCA [21] and ICA [41] seek to statistically project the
original data into a new space through a linear transformation of
the original variables.

The principal limitation of ICA is that it cannot be used for
model reduction. Instead, it has to be coupled with PCA as an ini-
tial step [43,44]. Within this procedure, PCA generates a reduced
set of parameters to represent the multi-dimensional composition
space; subsequently, the PCs are “rotated” to generate a more sta-
tistically independent set of parameters in terms of ICs.

3. Machine learning tools for the construction of statistics

The construction of flamelet-like model requires, in addition to
the choice of the transported moments, the development of ap-
proaches to construct conditional means and the PCs’ joint PDFs.
The statistics must be constructed on the fly and can be evalu-
ated incrementally as additional data from the PDF-solution be-
comes available. If this data corresponds to states and statistics
that have not been accessed previously, considerations for the cost
of ‘training’ a new flamelet-like model become important. Machine
learning approaches rely on complex neural networks whose pa-
rameters (e.g. the weights associated with neuron connections)
can be determined through an optimization process that maps re-
quired inputs to desired outputs. If the data is introduced incre-
mentally, the new network parameters may not significantly devi-
ate from the previous ones, and the cost of training can be sig-
nificantly reduced. This feature is perhaps one of the key motiva-
tions for adopting machine learning to construct in situ statistics
for flamelet-like models. Additional features are discussed for the
specific networks adopted for these statistics.

3.1. Computation of the conditional means

One of the principal ingredients for the construction of statis-
tics on the fly from PDF-like model-based simulations is the eval-
uation of the means of thermo-chemical scalars conditioned on
the PCs. Eq. (1) provides a direct expression of the PCs in terms
of the thermo-chemical scalars. This relation can be inverted to
convert from the full PCs’ vector to the original thermo-chemical
scalars. However, to recover the original thermo-chemical scalars
from a subset of the PCs, a nonlinear mapping relation is needed.
A nonlinear mapping is equally needed to express the conditional
means of the PCs’ chemical source terms. We propose to carry
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Fig. 2. Illustration of an ANN network for determining temperature conditional
means.

out this mapping using an ANN with a required input corre-
sponding to the retained Npc PCs and the output corresponding
to the thermo-chemical scalars or their derived quantities (e.g. the
thermo-chemical scalars’ source terms).

The data required for training the network is based on the raw
data in which the PCs are calculated along with the computed
or measured thermo-chemical scalars to yield conditional means
for these scalars, < v |¢ >. The choice of using ANN as a regres-
sion tool to construct conditional means is motivated by a few
attributes of ANN. First, the cost of implementing ANN training
can be significantly reduced if the training data is incrementally
added, such that the ANN optimization can be completed within
a few epochs. Second, ANN tabulation with proper clustering can
be a computationally efficient alternative to, and requires less stor-
age than, interpolation methods for relatively high-dimensional ta-
bles [45,46]. For low-dimensional tabulation, such as the case in
the present study, the advantage of ANN-based regression can be
associated with the ability to 1) generate smooth functions even
when the data is sparse across the composition space, and 2) in-
crementally add data by training primarily on the new data and a
subset of the old data.

A representative ANN architecture is shown in Fig. 2 for the cal-
culation of the temperature conditional means starting with 2 PCs.
Similar networks can be adopted for the other thermo-chemical
scalars. The input layer contains neurons associated with the input
variables, ¢; and ¢,, hidden layers (only one hidden layer with
4 neurons is shown in the figure), and an output layer, contain-
ing the temperature conditional mean. Although not shown on the
figure, additional bias neurons are added to the input and all hid-
den layers. Within the context of the present study, the network is
trained on the available measurements in the Sydney flame based
on all the available downstream distance and radial positions. The
training determines the strength of the connections between the
previous and subsequent layers from input to output as indicated
by the arrows in the figure.

To illustrate the relation between the input and the output lay-
ers, we use the network illustrated in Fig. 2. The output < T|¢ > is
expressed in terms of the hidden layer:

4

<Tl$p >=fOO_ wa® +bD), (7)
i=1

where the superscript (1) corresponds the first hidden layer with

weights wi(” and values al.(l) at the ith neuron in the hidden layer.

b is the bias value at the hidden layer and f is the activation

function. We use the sigmoid function for activation in the ANN

networks for the conditional means. The values of the ith neuron,

al.“), in the hidden layer can be related to the input values as fol-

lows:

a;" = fWP b1 +wy o + ). (8)
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Fig. 3. Illustration of a DeepONet for determining a PC’s generalized PDF.

Here wg?) and wg?) correspond to the weights of the connections

between the input layer and the ith neuron in the first hidden
layer associated with inputs ¢; and ¢,, respectively. The network
is trained to determine the weights of all connections from input
to output layers and the bias values.

3.2. Approximations of the PCs joint PDF

The use of fine-grained simulations to construct directly PDFs
of thermo-chemical scalars via tabulation have provided a viable
alternative to the presumed shape PDF assumption [47-50]. How-
ever, tabulation is not immune to the curse of dimensionality and
may present challenges for memory and storage in computations.

Machine learning methods offer an alternative to the approxi-
mation based on presumed shapes, the solution of the transport
equations or the tabulation of these PDFs. Although joint PDFs can
be readily available from the fine-grained simulations’ data, the
abundance of this data or the lack of it can limit the ability to
accurately reconstruct these distributions.

In their recent work, de Frahan et al. [51] investigated three
machine learning techniques to reconstruct PDFs for LES param-
eterized with the mixture fraction and the progress variable. These
techniques include the use of random forests, deep learning neu-
ral networks and conditional variational autoencoders. The differ-
ent techniques rely on a general strategy of single input channels
that yield an output, which represents the PDF. The implementa-
tions of de Frahan et al. [51] of the 3 machine learning techniques
showed that the predictions of the joint PDFs yield significant im-
provements on B-function based presumed PDFs using DNS data.

Kernel density estimation (KDE) [27] provides a strategy for es-
tablishing arbitrary shapes for a PDF given discrete data at a given
spatial position. In a KDE, a PDF can be expressed as a weighted
sum of discrete kernel functions, K (e.g. Gaussians) centered at dis-
crete values of the parameters, say the PCs:

PR IR Y )
P ) = o LK. (9)

In this expression, ¢ represents the vector of retained PCs, K is
the kernel function, h is the so-called bandwidth, which controls
the smoothing of the approximation, and qAﬁi is the ith sample of
¢ values out of a total of n samples. Such a distribution can be
evaluated at a specific spatial point, which can be parameterized
in terms of an unconditional mean for the PCs, ¢. Therefore, differ-
ent shapes can be evaluated at different spatial positions. However,
to determine a “generalized” PDF that can be adopted for a wide

range of unconditional means for the PCs or spatial positions, ad-
ditional steps are needed.

3.3. A generalized machine learning reconstruction of the PCs’ joint
PDF

Although ML-based methods to reconstruct parameterized PDFs
have been proposed in the past [51], there is still need to construct
PDF shapes that can accommodate different PDFs without resorting
to presumed shapes. The most recent work by Lu et al. [28] of-
fers a potentially more powerful strategy to reconstruct joint or
marginal PDFs from combustion data. The approach is based on
the so-called DeepONet network, which is designed to learn non-
linear functions and operators from data. Within the context of
the present work, DeepONet takes different functions, PDF shapes,
from different positions in the flame, which are labeled with the
corresponding PCs’ unconditional means; then, the network de-
termines other functions at prescribed PCs unconditional means.
Therefore, instead of training different networks for different PDFs
at prescribed PCs unconditional means, the DeepONet is used to
incorporate these means into a single network that accommodates
these PDFs. This attribute of learning operators can reduce network
complexity and require less training data to achieve the same pre-
dictions [28].

The DeepONet architecture that corresponds to the present im-
plementation is illustrated in Fig. 3. The network consists of 2 sep-
arate channels: the branch channel and the trunk channel. The in-
put to the branch channel corresponds to the PC vectors sampled
in PC space, identified in the figure with the pair (¢, ¢,). The in-
put to the trunk channel corresponds to the spatial unconditional
mean of the PCs, identified in the figure with the pair (¢q, ¢;).
For the present implementation of the DeepONet, the branch and
trunk networks consist of 2 dense hidden layers with 64 neu-
rons each. The outputs of these layers are concatenated and passed
through an additional dense layer of 64 neurons followed by an
output layer of 1 neuron. This output corresponds to the PCs’ PDF.

KDE is used to fit PDF shapes at individual measurement posi-
tions. These positions are labeled with the retained PCs uncondi-
tional means, ¢; and ¢,. For each position, 200 PC vectors (¢;, @)
are sampled, which span the entire range of the PC values. The set
of PC vectors and associated PCs’ unconditional means and output
PDF values constitute the training data for the DeepONet to predict
PDFs. As pointed out in our previous studies [22,23], the use of the
unconditional variances of the PCs does not alter, in any discern-
able way, the PDF predictions. We believe that the main reason for
this resides in the uncorrelated nature of the PCs. Pairs of PCs un-
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conditional means in the flame are reasonably unique and uncor-
related, like their instantaneous counterparts; and, thus, they tend
to generate unique distributions that can be described in terms of
these unconditional means.

As outlined earlier, PCs define a low-dimensional manifold of
the composition space. However, PCA generates a set of uncorre-
lated PCs, which may or may not be statistically independent. The
joint PCs’ PDFs are inherently multi-dimensional. Therefore, their
reconstruction requires an adequate amount of data to span the
distributions among different values of the PCs. It is desirable to
adopt an even lower dimensional representation for these PDFs,
such as in terms of marginal PDFs of the individual PCs. For this, 2
different strategies are considered:

 The simplest form is to assume that the PCs are statistically in-
dependent at least for a range of conditions where the shape
and magnitude of the PDFs matters. Within this assumption,
the joint PCs’ PDFs can be expressed for a 2-PC parameteriza-
tion as:

p(¢1. ¢2) = f(91) 8(¢2). (10)

where f and g are the marginal PDFs of ¢ and ¢,, respec-
tively. The idea of exploring the assumption of statistical inde-
pendence of the PCs is not an unreasonable one. Uncorrelated-
ness for PCs represents a weaker manifestation and an essen-
tial criteria of statistical independence. Although not pursued
in the present study, we have also investigated the use of cop-
ulas [52] as a way to “bind” the PCs marginal PDFs and account
for their potential statistical independence. However, we have
found that copulas do not provide any significant correction to
the relation provided in Eq. (10).

The second strategy is to construct independent components
from the PCs using ICA [40,41].

As stated earlier, PCA is a desirable step prior to ICA to en-
able a reduced parameterization of the combustion composition
space [42]. By using PCA in a pre-processing step ahead of ICA,
ICA still yields a lower-dimensional manifold description of this
space.

4. Results

In this section, we present results of the a priori validation of
the outlined data processing based on machine learning techniques
discussed in Section 3.

4.1. Experimental conditions

The dataset used in the following analysis is based on multi-
scalar measurements in the Sydney piloted jet flames by Meares
et al. [29-31]. The burner is configured to have 3 concentric tubes
in which the fuel flows through the most inner tube, surrounded
by co-flow air with a bulk velocity 15 m/s and outer tube con-
taining hot gases from a pilot flame. The 3 tube diameters are 4,
7.5 and 18 mm, respectively. The most prominent feature of the
burner configuration is the ability to control the recess distance
of the inner-most tube relative to the co-flow air. A fully recessed
fuel tube allows for maximum premixing of the fuel and air; while,
zero recess results in a purely pilot-stabilized nonpremixed flame.
The fuel is methane (CP grade) with 99% CH,4 at a temperature of
294 K. The pilot stream flame uses a 5-gas mixture of C,H,, Hs,
CO, and N, with a bulk inlet velocity of 3.7 m/s.

This flame is characterized by the presence of different dom-
inant combustion modes evolving from primarily premixed mode
near the jet inlet to a primarily non-premixed mode further down-
stream with a transition in between. Like the Sandia flames [39],
the flame is also characterized by the presence non-equilibrium
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effects, including extinction and reignition. These attributes asso-
ciated with evolving burning modes and burning stabilities result
in important variations in the joint and marginal PDFs of thermo-
chemical scalars as well as the PCs. Given all these features, the
composition space for the Sydney flames cannot be parameterized
in terms of the conventional mixture fraction/progress variable pa-
rameters alone across the various downstream conditions.

In the present study, the composition space associated with the
different multi-shot, multiscalar measurements is parameterized
with 2 PCs (i.e. Npc = 2) out of 7 PCs. This number is deemed suf-
ficient for the reconstruction of most statistics. However, it is likely
that an additional PC is needed to fully capture statistics near the
inlet. Adding more PCs can improve the accuracy of the flamelet-
like model. This comes at the cost of a higher dimensionality for
the manifold, the conditional means and the joint PDFs. The trade-
off between a higher dimensionality and model fidelity is an im-
portant consideration during the flamelet-like model construction.

Finally, PCA is carried out using a subset of the thermo-
chemical scalars’ vector. This subset corresponds to the measured
quantities, temperature and the following reported species mass
fractions for: CHy, O,, CO,, H,0, CO, H,. These scalars adequately
represent the evolution of mixing and chemistry, including events
of extinction and reignition. In the past, we have found it to
be more convenient to carry out PCA using a set of representa-
tive thermo-chemical scalars and reconstruct the remaining ones
through their correlations with the representative scalars [25,34-
38].

In the present study, we consider one flame condition corre-
sponding to recess distance L = 75 mm and a bulk jet velocity of
57 m/s (the so-called FJ200-5GP-Lr75-57 flame) [29-31]. In the
Sydney flames, the vector of PCs is related to the normalized mea-
sured thermo-chemical scalars as follows:

{on -059 057 0.12 -035 030 -001 -032\ [y
o 0.24 046  —0.83 0.10 0.11 -001 =017 | | y+2
&3 0.31 -013 022 -0.01 020 004 —090 || CHy
¢4 | =1 066 0.48 0.37 0.03 -0.42 0.00 012 || Y0
o 0.12 0.31 020 -048 076 004 022 |fys
%6 023 -036 -027 -080 -033 -002 0.01 v 2
&7 0.02 0.01 0.01 -004  0.03 010  -0.03 Hy
v+
co
(11)

w,n

The superscript “s” indicates a normalization of the thermo-
chemical scalars to yield values from -1 to 1. The weights in the
conversion matrix also measure the contribution of the thermo-
chemical scalars to the PCS. The first 2 PCs contribute 94% of the
data variance. Both temperature and the O, mass fractions consti-
tute the main contributions to the first PC; while the second PC’s
main contribution comes from the reactants, the O, and the CHy
mass fractions. The first and second PCs correlate reasonably well
with a progress variable and a mixture fraction at downstream dis-
tances beyond 10 diameters of the fuel jet where nonpremixed
burning is dominant. However, they deviate from these parameters
near the jet inlet where premixed burning is dominant. The inter-
mediates H, and CO exhibit the most influence on the seventh and
third PCs, respectively.

4.2. Determination of the conditional means

As stated earlier, the conditional means for all species and tem-
perature are recovered using an inversion of the relation in Eq. (1).
They are implemented using a neural network where the 2 in-
stantaneous PCs are prescribed as inputs and the various thermo-
chemical scalars are prescribed as output. The data used to con-
struct the conditional means is drawn from all downstream and
radial positions in the flame.

Table 1 summarizes information about the architecture of the
various networks used to train temperature and species O,, H,0,
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Fig. 4. Conditional means of temperature based on raw data (Left) and ANN regression (right).
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Fig. 5. Conditional means of the CO mass fraction based on raw data (Left) and ANN regression (right).

Table 1

ANN architectures for different output variables.
Output Layer 1 Layer 2 Layer 3 Layer 4  Weights
T 40 20 10 N/A 1090
H, 128 128 64 N/A 24,896
0, 40 20 10 N/A 1090
H,0 40 20 10 N/A 1090
CHy4 40 20 10 N/A 1090
Cco 128 128 64 10 25,482
CO, 40 20 10 N/A 1090
Density 40 20 10 N/A 1090

CHy4, CO, mass fractions conditional means. The training for the
different quantities has different requirements depending on the
complexity of the correlations between PCs and species and tem-
perature. For example, if a PC has a strong correlation with a
thermo-chemical scalar, then, the architecture tends to be simpler.
The number of hidden layers ranges from 3 to 4 with the num-
ber of neurons per hidden layer ranging from 10 to 128, result-
ing in a total number of trainable weights ranging from approx-
imately 1000 to more than 25,000. The average training time on
Google Colab ranges from approximately 20 sec to approximately
2 minutes (for H, and CO). The sigmoid activation function is used
for these networks. The number of epochs needed for convergence
ranges from 100 for the simpler architectures to 500 for CO and
H,.

Figures 4 and 5 show the conditional means for temperature
and the CO mass fractions, respectively, based on the raw data and
the ANN regression. The evaluation of the means conditioned on
the PCs based on the raw data is implemented by binning the PC

values across their entire range over different bins and calculating
averages in each bin. The number of bins adopted for each PC is 20.
The extent of the composition space is indicated in the raw data.
Although, ANN is able to provide regression outside these bound-
aries. While such a regression represents an extrapolation for ANN,
it is not explicitly used in determining the conditional means since
the corresponding PDFs are zero.

The results in Figs. 4 and 5 clearly show that the statistics based
the raw data and those based on the ANN regression exhibit both
qualitative and quantitative agreements. However, the ANN-based
regression can result in smoother profiles. Hence, it can accom-
modate more sparse data. Moreover, the resulting regression re-
quires less memory as only the trained parameters of the network
need to be retained instead of the storage of a multi-dimensional
data. From a computational perspective, lower memory require-
ments may enable the use of accelerated hardware, such as GPUs.

4.3. Statistical independence of PCs and ICs

In this section, we investigate the extent of statistical indepen-
dence between PCs and ICs using different correlations and inde-
pendence coefficients: 1) the Pearson correlation, Kpaargopn: 2) the
Kendall's 7, Kygapqqyr @nd 3) the Spearman’s p, KSpearman' e
Pearson correlation for the PCs can be evaluated using the ratio of
the covariance of the PCs or ICs and the products of the individual
PCs standard deviations:

cov(pr, ¢2)
04,09,

A similar expression may be written for the ICs. Based on its form,

the Pearson’s correlation is a measure of the linear relationship

Kpearson = (12)
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Fig. 6. Measures of correlations of the data parameters at different PCs uncondi-
tional means.

between the two variables ¢, and ¢,. Both the Kendall's 7 and
the Spearman’s p provide standard measures of statistical inde-
pendence. The Spearman’s p looks at the monotonic relationship
between the two variables ¢; and ¢,. To evaluate the correlation,
the pairs of variables are ranked (e.g. from smallest to highest) and
are assigned their rank (e.g. 1 for the lowest and 2 for the next
lowest), iy, and iy, respectively. The Spearman’s p is then calcu-
lated using the Pearson’s correlation on the ranks (and not on the
values of the PCs):

cov(ig, . ig,)

13
O','¢l 'Gi¢2 ( )

KSpearman =
The Kendall’s T measures the difference of the probabilities of con-
cordant pairs of PCs and discordant pairs of PCs. The criteria for
concordant and discordant pairs is based on the comparison of
two data pairs identified by their indices i and j: (¢1,¢,); and
(¢1,¢2); where 1< j<n. Here, n is the total number of data
points. Two conditions apply to make the pair concordant: ei-
ther (¢1); > (¢1); and (¢2); > (¢2); or (¢1); < (¢1); and (¢h); <
(¢2) . Otherwise, the pair is discordant. The Kendall’s 7 is then ex-
pressed as:

n — 1Ny
K _ _concordant — "“discordant 14
Kendall Tn(n—1) (14)
where Nconcordant and Ndiscordant 3¢ the numbers of concor-

dant and discordant pairs in the data, respectively. All correlation
coefficients range from -1 to 1. The value of 1 corresponds to a
maximum positive correlation while the value of -1 correspond to
a maximum negative correlation. A correlation of 0 or a low value
of the correlation is an indicator of statistical independence for the
Spearman’s p and Kendall’s 7.

Figure 6 shows scatter plots of the Pearson’s correlation, the
Kendall’s T and the Spearman’s p at different measurement po-
sitions in Sydney flame FJ200-5GP-Lr75-57. The different positions
are parameterized by the unconditional Favre means of the first
two PCs, ¢, and ¢,. The different subfigures are shown with the

Combustion and Flame 236 (2022) 111814

Pearson Correlation Kendall ©
1 1
B o9 B 09
08 . 0 0.6
“F 0.3 °r 03
\
0 * 0
06 0.3 o6\ 0.3
S 0.6 N ¥ . 06
04| —_-0.9 04| & -0.9
Jae S :
02| 02k
0 0 1
0 1 0 0.2 1
1
0.9
08 0.6
’ 03
0
06 03
a3 0.6
04 -0.9
0.2 F
0
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same range for the correlation values. The box drawn in dashed
lines on the Spearman’s p subfigure indicates a range of mean
mixture fractions between 0.05 and 0.1, which represents condi-
tions around the flame position.

The figure shows that all correlation parameters exhibit qual-
itatively similar trends indicating essentially where these corre-
lations exhibit the most statistical independence and where the
PCs are positively (red) or negatively (blue) correlated. The con-
ditions where the correlations are near zero correspond to regions
of flame crossings where the unconditional means for the mixture
fraction are near the stoichiometric value of 0.055. There are, how-
ever, some important quantitative differences, which may be at-
tributed to the definitions of the different correlations. The figure
also shows that neither the PCs nor the ICs exhibit statistical in-
dependence everywhere in the flame. Such a condition is not an
absolute requirement since the value of statistical independence is
most important when there is significantly variability (i.e. high val-
ues of the PDFs) at a given spatial position.

Finally, it is important to note that although PCA is established
to generate uncorrelated PCs, this process is implemented on the
entire set of data. This process does not guarantee that most mea-
surement conditions will also yield lower correlation values, in-
cluding the Pearson correlation. The same applies to the ICA results
discussed below.

Figure 7 shows the same coefficients shown in Fig. 6, but now
considering the statistics of the ICs. Also shown on the Spearman’s
p subfigure is the region of mean mixture fractions between 0.05
and 0.1, indicating conditions near the flame zone. Given the ro-
tation associated with ICA, the shape of the scatter is different
from that of the PCs. However, all figures exhibit similar quantita-
tive trends as seen in the PCs’ plots. The ICs are most statistically
independent around the flame zone. More importantly, there are
now more measurements points that exhibit low correlation values
compared to the PCs. The implementation of ICA has slightly im-
proved the statistical independence of the parameters of the low-
dimensional manifold.
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4.4. Parameterized marginal PDFs

In this section, we present results of the DeepONet-based
evaluation of general PDFs. The network is trained in Tensor-
Flow [53] using the Sydney flame experimental data. All the
hidden layers use a tanh activation function, except for the out-
put layer, which is linear. The training data set contains data re-
lated to marginal PDFs corresponding to only 50% of the spatial
locations and these are randomly selected. No data augmentation
is implemented. Additionally, a sampling strategy is used to main-
tain the balance of low and high probabilities in the training set.
The total number of parameters (weights and bias values) is ap-
proximately 25,000. A mean squared error (MSE) loss is used to
update the network weights and the training set is split such that
10% is reserved for validation and the remaining data is split al-
most evenly between training and testing. The network weights are
tuned for about 1000 epochs and the training is stopped when the
mean squared error loss on the validation set goes below 5 x 107,
However, to avoid over-fitting during training, early stopping is im-
plemented, such that training stops when the validation loss does
not improve for 10 consecutive epochs. We have also used the de-
fault Adam optimizer. The entire training procedure requires about
10 minutes using a NVIDIA Tesla V-100 GPU.
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In the present study, the analysis is carried out on the marginal
PDFs of the 2 PCs, which define the low-dimensional manifold of
the flame data. This is consistent with our attempt to implement
an approach that can be applied to as much sparse data as possi-
ble.

Figure 8 shows comparisons of different marginal PDFs for ¢
(left column) and ¢, (right column) at 4 different downstream x/d
and radial positions r/d within the flame. Here x is the down-
stream distance from the burner inlet, r is the radial distance
from the burner axis and d is the fuel jet diameter. The Deep-
ONet predictions are compared with the local approximations of
the marginal PDFs using KDE. The figure shows that the evolution
of the mixture from a primarily premixed combustion regime (at
x/d = 1) to a transitional combustion mode (at x/d = 5 and 10) and
a non-premixed combustion mode further downstream is charac-
terized by different marginal PDF shapes. These shapes are ade-
quately captured by the more generalized model that adopts as in-
puts their parameterization in terms of the unconditional means
for the 2 PCs. The two sets of profiles are indistinguishable at the
different flame positions.
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At this stage, it is noteworthy to state that KDE along with in-
terpolation functions between KDEs at different spatial positions
could have been adopted as an alternative to the present approach
employing DeepONet. However, the implementation of DeepONet
presents several advantages as compared to a KDE-interpolation
approach. First, the DeepONet is memory efficient. It encapsulates
a wide range of marginal PDF shapes with a network contain-
ing only 25,000 trainable weights. This approach requires a much
lower memory than keeping the parameters of the KDEs associated
with different spatial positions. Second, with the current imple-
mentation, the evaluation of DeepONet on the trained data is ap-
proximately 3 to 5 times faster than the corresponding KDE-based
evaluations. Further speed up may be achieved with neural net-
work parameter optimization using various tools available as open
source such as AutoML [54]; however, such optimizations have not
been investigated as part of this work.
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4.5. The reconstruction of unconditional means of thermo-chemical
scalars

Next, we present comparisons of Favre-averaged radial pro-
files of selected thermo-chemical scalars at different down-
stream distances. These profiles are generated from direct cal-
culations of the unconditional means from the data as well as
the profiles reconstructed using Eq. (4) based on the condi-
tional means, < ¥|¢ >, and the joint PCs or ICs PDFs. Again,
we consider comparisons for the Sydney flame FJ200-5GP-Lr75-
57. Given the similarity between the generalized PDF and the
local reconstructed PDFs using KDE, no additional comparisons
are carried out using these 2 approaches. Instead, we re-
port comparisons of radial profiles of unconditional means of
the measured quantities based on their direct measurements
from the data as well as by using Eq. (4) and the models
for the conditional means and the reconstructed PDFs using
KDE.
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Figures 9-14 compare the radial profiles of Favre-averaged tem-
perature, H,, O,, H,0, CO, and CO, mass fractions at x/d = 1,
5, 12, 15, 20 and 30, respectively, based on the available data
and using the assumption of statistical independence between ¢
and ¢,.

The figures show an excellent reconstruction of the uncondi-
tional means of temperature, O,, H,O and CO, at all shown down-
stream distances. The maximum percentage error for temperature,
0,, H,0, CH4 and CO, mass fractions ranges from approximately
1% to 4, 3, 6 and 13 and 7%, respectively. The figures also show
some discrepancies in the predictions of CO and H, unconditional
means at x/d = 1 and 5. The maximum percent error for H, and
CO mass fractions ranges from 5% and 6% to 15% and 10%, respec-
tively. The predictions for these 2 quantities is significantly im-
proved further downstream. Much of the difference, we believe,
can be attributed to the choice of the number of retained PCs. Dur-
ing PCA, we retained a number of PCs that represents 94% of the
data variance. Including more PCs, such as the third PC for CO and

1
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the seventh PC for H,, can improve these predictions with an in-
creased cost for the conditional means and the joint and marginal
PDFs.

The figures show that there is no real advantage to the use
of ICs as parameters for the composition space despite the fact
that we have established a broader range of conditions for sta-
tistical independence with ICA. However, this enhanced statisti-
cal independence did not alter the evaluation of the convolu-
tion relation (4). In fact, while ICA appears to perform better for
some of the radial profiles, it generally has a poorer performance
than PCA-based statistics for H, and CO. This may appear to be
counter-intuitive. However, the discrepancy between PCA and ICA-
based statistics can be related to the optimization algorithm for
determining the ICs. This algorithm yields a single rotation ma-
trix to convert from PCs to ICs and is based on all the avail-
able data. This rotation may not be optimum for all positions
considered.
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5. Conclusions and implications to turbulent combustion
modeling

In this paper, we investigate the key ingredients needed to con-
struct flamelet-like models from PDF-like model-based simulations.
A hybrid approach based on the implementation of flamelet-like
model simulations can be used to accelerate simulations based on
PDF-like models.

One of the key ingredients is the determination of low-
dimensional manifolds from the computational data using PCA,
which generates a significant reduction in the dimensionality of
the composition space. We also investigate a rotation of the PCs
using ICA to examine the assumption of statistical independence
of the low-dimensional manifold parameters. We show that both
sets of PCs and ICs parameters are reasonably independent, at least
within the reaction region where statistics matter the most. Invari-
ably, the assumption of statistical independence, while not appli-
cable everywhere in the flame, is most important where the PDF
magnitude is sufficiently high to impact statistics. Regardless, this
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independence enables a simplified expression for the joint PCs/ICs
PDFs in terms of their marginal PDFs.

The marginal PDFs are constructed at each spatial position from
the Sydney flame data [29,30] using the KDE approach [27]; then,
these regressions for the PCs’ marginal PDFs are combined to be
parameterized in terms of the unconditional means of the PCs us-
ing the novel DeepONet architecture. The a priori results show that
the KDE-DeepONet approach for the PCs’ marginal PDFs is able
to reconstruct these distributions under different conditions and
shapes. The use of machine learning also overcomes the curse of
dimensionality by retaining only the networks’ trainable param-
eters. Therefore, this potential saving in memory enables further
software and hardware acceleration within adaptive schemes for
PDF-like model simulations.

The above results establish a clear motivation to explore the dif-
ferent elements of this work within a framework that can be com-
bined with PDF-like models’ simulations to obtain efficient compu-
tations while maintaining the key advantages of these models.
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