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a b s t r a c t 

Turbulent combustion modeling often faces a trade-off between the so-called flamelet-like models and 

PDF-like models. Flamelet-like models, are characterized by a choice of a limited set of prescribed mo- 

ments, which are transported to represent the manifold of the composition space and its statistics. PDF- 

like approaches are designed to directly evaluate the closure terms associated with the nonlinear chem- 

ical source terms in the energy and species equations. They generate data on the fly, which can be used 

to accelerate the simulation of PDF-like based models. Establishing key ingredients for implementing 

acceleration schemes for PDF-like methods by constructing flamelet-like models on the fly can poten- 

tially result in computational saving while maintaining the ability to resolve closure terms. These ingre- 

dients are investigated in this study. They include a data-based dimensional reduction of the composition 

space to a low-dimensional manifold using principal component analysis (PCA). The principal components 

(PCs) serve as moments, which characterize the manifold; and conditional means of the thermo-chemical 

scalars are evaluated in terms of these PCs. A second ingredient involves adapting a novel deep learning 

framework, DeepONet, to construct joint PCs’ PDFs as alternative methods to presumed shapes common 

in flamelet-like approaches. We also investigate whether the rotation of the PCs into independent com- 

ponents (ICs) can improve their statistical independence. The combination of these ingredients is investi- 

gated using experimental data based on the Sydney turbulent nonpremixed flames with inhomogeneous 

inlets. The combination of constructed PDFs and conditional mean models are able to adequately repro- 

duce unconditional statistics of thermo-chemical scalars, and establish acceptable statistical independence 

between the PCs, which simplify further the modeling of the joint PCs’ PDFs. 

© 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

State-of-the-art turbulent combustion models can be classified 

nder two common classes defined by Pope [1] as flamelet-like 

2,3] and PDF-like models [4] . Flamelet-like models such as the 

amelet [2] or the conditional moment closure (CMC) [5,6] models, 

ely on the assumption that the combustion composition space lies 

ithin a prescribed low-dimensional manifold that is characterized 

y a reduced set of moments, such as the mixture fraction and the 

rogress variable. These parameters and their moments are trans- 

orted. The shape of their probability density functions (PDFs) is 

ften assumed along with their statistical independence. 

PDF-like approaches are designed to generate statistics to di- 

ectly compute the key closure terms in turbulent combustion, 

hich pertain primarily to the chemical source closure terms in 
∗ Corresponding author. 
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he species and energy equations. Such approaches include trans- 

orted PDF models [4] and coupled low-dimensional stochastic 

odels with large-eddy simulations (LES). These coupled models 

ombine the linear-eddy model (LEM) with LES, the LEMLES ap- 

roach, [7–10] or the one-dimensional turbulence (ODT) model 

ith LES, the LES-ODT approach [11–16] . 

These approaches invariably generate data on the fly, which can 

e used to determine unconditional means for the reactive scalars 

nd their chemical source terms. This data also can be used to 

onstruct a low-dimensional description of the accessed composi- 

ion space in the simulation and key statistics needed to transport 

he moments, which characterize the low-dimensional manifolds 

f this space. 

Given the stated trade-off between flamelet-like and PDF-like 

odels, can we construct, on the fly, flamelet-like models using 

tatistics generated from PDF-like simulations? And can we exploit 

his capability to accelerate PDF-like model-based simulations with 

 hybrid scheme that accommodates a PDF-like solution and its 

enerated flamelet-like solutions? Addressing these questions must 
. 

https://doi.org/10.1016/j.combustflame.2021.111814
http://www.ScienceDirect.com
http://www.elsevier.com/locate/combustflame
http://crossmark.crossref.org/dialog/?doi=10.1016/j.combustflame.2021.111814&domain=pdf
mailto:techekk@ncsu.edu
https://doi.org/10.1016/j.combustflame.2021.111814
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Fig. 1. Schematic of the procedure to accelerate PDF-like simulations. 
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esolve the challenges that can be faced while implementing such 

ierarchical schemes. 

The first set of challenges is related to the PDF-like solution. 

eyond the choice of the PDF-like model, the quality of the gener- 

ted statistics, including whether the data is sufficiently adequate 

or constructing statistics and whether it is representative of all 

cenarios encountered in the simulation, remains a key challenge. 

etrics to assess this quality as well as methods to accommo- 

ate potentially sparse data may be critical towards addressing this 

hallenge. 

The second set of challenges is related to the on-the-fly con- 

truction of the flamelet-like model. Recently, Lacey et al. [17] pro- 

osed an in situ adaptive manifolds (ISAM) approach by enabling 

n-the-fly calculation of the low-dimensional manifolds of the 

omposition space and the corresponding moments PDFs based on 

he flamelet approach. By relying on a flamelet assumption or, in 

eneral, a prescribed low-dimensional manifold for the composi- 

ion space, there is an inherent risk that such assumptions may 

ot apply for a given problem. Therefore, a systematic approach for 

onstructing the low-dimensional manifold in which the moments 

hat characterize the manifold are not known a priori is desirable. 

uch of the scope of the present study is related to addressing the 

n-the-fly construction of the flamelet-like model. 

The third set of challenges is related to the coupling of the PDF- 

ike and flamelet-like solutions. Therefore, they are related to how 

his coupling is implemented, when a PDF-like solution is imple- 

ented and when it is replaced by a flamelet-like solution in ei- 

her zones in the computational domain or at a time interval of 

he solution. 

The study by Wu et al. [18] provides an illustration of how a 

ierarchy of models can be implemented within the same simula- 

ion. Their approach relies on a Pareto-efficient framework to as- 

ign submodels subject to metrics of accuracy. Within the frame- 

ork of combining PDF-like and flamelet-like simulations, such 

etrics can set criteria for when the low-dimensional manifold 

ust be updated to accommodate additional conditions not ac- 

essed by the original data. More recently, Chung et al. [19] pro- 

osed and demonstrated a data-assisted dynamic submodel assign- 

ent approach using trained random forest classifiers. These clas- 

ifiers identify the assignment of a particular submodel from a se- 

ection of submodels based on the estimated error of quantities of 
2 
nterest, which correspond to thermophysical quantities. The in situ 

daptive tabulation (ISAT) approach [20] for accelerating chemistry 

rovides another example of coupling a hierarchy of simulation ap- 

roaches within the context of combustion. 

Figure 1 illustrates how a PDF-like model-based simulation can 

e augmented/accelerated with a flamelet-like solution. On the left 

ub-figure is the basic set up for a PDF-like simulation. It involves 

he coupling of a coarse-grained solution for continuity and mo- 

entum based on LES or Reynolds-averaged Navier-Stokes (RANS) 

ith fine-grained, low-dimensional stochastic solutions for reactive 

calars. In transported PDF models, the chemical state and associ- 

ted statistics are tracked through notional particles from which 

oth joint scalar or scalar-velocity probability density functions 

an be constructed. In LEMLES and LES-ODT approaches, the low- 

imensional 1D solutions embedded within or across the LES cells 

lso carry distinct chemical states along their 1D profiles. There- 

ore, the fine-grained simulations can generate statistics on the fly. 

In a coupled PDF-like and flamelet-like model-based frame- 

ork, which is shown on the right sub-figure in Fig. 1 , the 

amelet-like model and associated low-dimensional manifold is 

onstructed and updated on the fly using statistics from the PDF- 

ike model-based simulation from the current and previous time 

teps of the solution. We propose principal component analysis 

PCA) [21] as a viable approach for constructing this manifold. Ac- 

ordingly, the thermo-chemical scalars (species and energy) are 

eplaced by a much smaller subset represented by the principal 

omponents (PCs) from PCA. Adopting a low-dimensional mani- 

old also means that unconditional statistics of thermo-chemical 

calars can be constructed based on the retained moments of the 

ow-dimensional manifold, which correspond to the PCs. To evolve 

he solution in a flamelet-like model-based simulation, the un- 

onditional moments of the PCs are transported along with the 

ontinuity and momentum equations as shown in Fig 1 . The PC- 

ransport and momentum equations include closure terms, such as 

he unconditional means for the density and the chemical source 

erms for the PCs, which are modeled in terms of the uncon- 

itional means of the PCs [22,23] . Similar closure for the mean 

olecular diffusion terms for PCs and momentum can also be con- 

tructed in terms of the PCs’ unconditional means. The solution of 

C-transport equations [22–26] is an alternative approach to the 

ransport of the traditional moments used in flamelet-like models, 
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uch as the mixture fraction and the progress variable and their 

oments. 

As the coarse-grained solution evolves, the range of accessed 

tates can be updated by fine-grained solutions and the corre- 

ponding PCs can be adaptively updated, as well. It is important 

o emphasize that fine-grained simulations within PDF-like models 

an be used to generate both means for thermo-chemical scalars 

onditioned upon the manifold variables as well as statistical dis- 

ributions (PDFs) of the manifold variables. Within this strategy, 

he solution of the PC-transport equations provide a mechanism 

or evaluating unconditional thermo-chemical scalars’ statistics 

e.g. unconditional means of temperature or species). In flamelet- 

ike models, it is common to use a presumed PDF shape. How- 

ver, the availability of statistics from PDF-like model-based solu- 

ions results in additional, and potentially more effective, methods 

o construct these PDFs. 

In the present study, we investigate the key ingredients to con- 

truct a flamelet-like model from PDF-like simulation data and ex- 

ract important statistics for its closure. These ingredients include 

he construction of low-dimensional manifolds, conditional means 

nd statistical distributions associated with the manifold parame- 

ers. The use of PCA to construct a low-dimensional manifold for 

he composition space provides a systematic method to accommo- 

ate complex problems, which may not be characterized by a sin- 

le combustion mode or regime or well-defined reference streams 

r measures of the completion of reaction. We also rely on ma- 

hine learning (ML) approaches as efficient tools to construct con- 

itional means for thermo-chemical scalars based on PCs using 

eep neural networks and joint distributions for these PCs using 

he kernel density estimation (KDE) [27] approach and the Deep- 

Net architecture [28] . 

In this study we also examine strategies to establish statisti- 

al independence of the PCs using independent component anal- 

sis (ICA) and the generation of independent components (ICs). 

stablishing statistical independence can help further simplify the 

escription of the joint PCs/ICs PDFs and enable the use of more 

parse data for their construction. We use experimental data based 

n the Sydney flames [29–31] . These flames provide a rich data 

et that exhibits different dominant combustion modes and non- 

quilibrium effects. 

In Section 2 , we outline the general implementation of PCA to 

onstruct low-dimensional manifolds from PDF-like model-based 

imulations. In Section 3 the various machine learning methods are 

iscussed. Next, results are presented and discussed in Section 4 . 

. PCA and ICA-based low-dimensional manifolds for the 

omposition space 

The identification of a data-based low-dimensional manifold for 

he composition space is one of the key ingredients towards the 

cceleration of PDF-like model simulations. The resulting moments 

or this manifold replace the standard prescribed moments in tra- 

itional flamelet-like models. In this study, we propose the use of 

CA to identify the composition space low-dimensional manifold. 

PCA has been used in combustion for chemistry reduction (see 

or example Vajda et al. [32] ) as well as for the parameterization 

f the composition space [24,26,33–38] . Sutherland and Parente 

24] derived governing equations for PCs starting from the trans- 

ort equations for the thermo-chemical scalars (species and tem- 

erature). This work has motivated a number of subsequent stud- 

es that explored PC-transport within the context of DNS [25] , one- 

imensional turbulence (ODT) [38] , LES [26] and RANS [22,23] . In 

he work of Ranade et al. [22,23] , a flamelet-like model based on 

C transport is constructed using experimental data. In this model, 

he unconditional means of the thermo-chemical scalars and the 
3 
Cs’ source terms are evaluated by constructing models for their 

eans conditioned on the retained PCs and the PCs’ joint PDFs. 

When adopting PCA, the corresponding PCs’ transport equations 

n a RANS or LES formulation are very similar in form to those of 

assive/reactive scalars’ moments common in combustion model- 

ng [22,23] . The most important advantage, of course, is in the re- 

uced description of the composition space and the lower dimen- 

ion of the statistical distributions for these PCs. These transport 

quations require closure for the unconditional means of the PCs 

ource terms. These terms can be evaluated directly from the PDF- 

ike model-based simulation statistics, including means for the PCs 

hemical source terms conditioned on the PCs as well as the joint 

Cs PDFs or filtered density functions (FDFs) for LES. 

PCA results from a linear transformation of the vector of 

hermo-chemical scalars (e.g. temperature and species mass frac- 

ions) to yield uncorrelated scalars, the PCs: 

= A 
T ψ, (1) 

here ψ is the vector of N thermo-chemical scalars normalized to 

ield comparable magnitudes using maximum and minimum val- 

es of these scalars: ψ = ( T , Y 1 , Y 2 , . . . , Y N−1 ) . The PCs vector φ in- 

ludes N pc principal components, φ = 

(
φ1 , φ2 , . . . , φN pc 

)
, which ac- 

ount for a threshold percentage of the data variance. For example, 

he data from the Sandia flames [39] and the Sydney flames [29–

1] require 2 to 3 PCs to capture the entire range of flow condi- 

ions and reaction scenarios (mixing, extinction and reignition) in 

hese flames. The matrix A includes the leading N pc eigenvectors 

f the normalized thermo-chemical scalars covariance matrix. 

Unconditional means for the k th thermo-chemical scalar’s 

ource term can be expressed using the joint thermo-chemical 

calars PDFs as follows: 

 k 

(
ψ 

)
= 

∫ 
ψ 

ω k 

(
ψ 

)
p 
(
ψ 

)
d ψ . (2) 

n this expression, p 
(
ψ 

)
is the joint thermo-chemical scalars’ PDF, 

hich can be highly dimensional, and the instantaneous thermo- 

hemical scalars source is ω k 

(
ψ 

)
. 

Mapping the composition space into a low-dimensional man- 

fold based on the PCs yields a similar form for the thermo- 

hemical scalars unconditional means: 

 k ( φ) = 

∫ 
φ

< ω k | φ > p( φ) d φ. (3) 

n this expression, < ω k | φ > is the mean of the thermo-chemical 

calars conditioned on the PCs. Conditional means are constructed 

rom data; they can be viewed as generalizations of flamelet li- 

raries where the parameterization is based on the PCs instead 

f prescribed parameters (e.g. mixture fraction, progress variable). 

he joint PCs’ PDF, p( φ) , has a significantly reduced dimension 

ompared to the original joint thermo-chemical scalars’ PDF, p( ψ ) . 

A similar expression to Eq. (3) for thermo-chemical scalars’ un- 

onditional means can be written: 

˜ 
 k ( φ) = 

∫ 
φ

< ψ k | φ > ˜ p ( φ) d φ, (4) 

here, the superscript “~” refers to a density-weighted or Favre 

veraging. Again, < ψ k | φ > represents the k th thermo-chemical 

calar’s mean conditioned on the PCs. ˜ p ( φ) is the density-weighted 

Cs’ PDF, which may be expressed as: 

˜ p ( φ) = 

< ρ(φ) > 

ρ
p(φ) . (5) 

he next challenge is the representation of the thermo-chemical 

calars conditional means and the joint PCs’ PDF. Although we can 

arry out subsequent analysis with an arbitrary number of retained 

Cs, we will discuss primarily here the case where N pc = 2 . This

hoice is made to simplify the analysis and also because the data 
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Fig. 2. Illustration of an ANN network for determining temperature conditional 

means. 
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sed for validating the proposed approach can adequately be rep- 

esented by 2 PCs. In this scenario, the joint PCs’ PDF can be ex- 

ressed as: ˜ p ( φ) = ˜ p (φ1 , φ2 ) . 

The resulting PCs are uncorrelated; yet, PCA does not guaran- 

ee their statistical independence. A related approach, independent 

omponent analysis (ICA) [40,41] determines a basis for the data in 

hich the new set, the independent components (ICs), are as sta- 

istically independent as possible. ICA yields a “rotation” of the PC 

ector: 

= B 
T φ. (6) 

n this expression, ζ represents the vector of N pc independent 

omponents and B is the rotation or mixing matrix. This rotation is 

btained through optimization algorithms that yields variables ζ1 , 

2 , ..., ζN pc that are as statistically independent as possible [41,42] . 
ransport equations for the ICs also can be derived similarly to 

hose of the PCs. 

Representing the data in IC space results in a simplified expres- 

ion for the ICs joint PDFs in terms of the product of the individ-

al ICs’ marginal PDFs. The value of determining ICs in combustion 

esides in this convenience where the assumption of statistical in- 

ependence does not need to be invoked to model joint PDFs. Re- 

ardless, both PCA [21] and ICA [41] seek to statistically project the 

riginal data into a new space through a linear transformation of 

he original variables. 

The principal limitation of ICA is that it cannot be used for 

odel reduction. Instead, it has to be coupled with PCA as an ini- 

ial step [43,44] . Within this procedure, PCA generates a reduced 

et of parameters to represent the multi-dimensional composition 

pace; subsequently, the PCs are “rotated” to generate a more sta- 

istically independent set of parameters in terms of ICs. 

. Machine learning tools for the construction of statistics 

The construction of flamelet-like model requires, in addition to 

he choice of the transported moments, the development of ap- 

roaches to construct conditional means and the PCs’ joint PDFs. 

he statistics must be constructed on the fly and can be evalu- 

ted incrementally as additional data from the PDF-solution be- 

omes available. If this data corresponds to states and statistics 

hat have not been accessed previously, considerations for the cost 

f ‘training’ a new flamelet-like model become important. Machine 

earning approaches rely on complex neural networks whose pa- 

ameters (e.g. the weights associated with neuron connections) 

an be determined through an optimization process that maps re- 

uired inputs to desired outputs. If the data is introduced incre- 

entally, the new network parameters may not significantly devi- 

te from the previous ones, and the cost of training can be sig- 

ificantly reduced. This feature is perhaps one of the key motiva- 

ions for adopting machine learning to construct in situ statistics 

or flamelet-like models. Additional features are discussed for the 

pecific networks adopted for these statistics. 

.1. Computation of the conditional means 

One of the principal ingredients for the construction of statis- 

ics on the fly from PDF-like model-based simulations is the eval- 

ation of the means of thermo-chemical scalars conditioned on 

he PCs. Eq. (1) provides a direct expression of the PCs in terms 

f the thermo-chemical scalars. This relation can be inverted to 

onvert from the full PCs’ vector to the original thermo-chemical 

calars. However, to recover the original thermo-chemical scalars 

rom a subset of the PCs, a nonlinear mapping relation is needed. 

 nonlinear mapping is equally needed to express the conditional 

eans of the PCs’ chemical source terms. We propose to carry 
4 
ut this mapping using an ANN with a required input corre- 

ponding to the retained N pc PCs and the output corresponding 

o the thermo-chemical scalars or their derived quantities (e.g. the 

hermo-chemical scalars’ source terms). 

The data required for training the network is based on the raw 

ata in which the PCs are calculated along with the computed 

r measured thermo-chemical scalars to yield conditional means 

or these scalars, < ψ k | φ > . The choice of using ANN as a regres-

ion tool to construct conditional means is motivated by a few 

ttributes of ANN. First, the cost of implementing ANN training 

an be significantly reduced if the training data is incrementally 

dded, such that the ANN optimization can be completed within 

 few epochs. Second, ANN tabulation with proper clustering can 

e a computationally efficient alternative to, and requires less stor- 

ge than, interpolation methods for relatively high-dimensional ta- 

les [45,46] . For low-dimensional tabulation, such as the case in 

he present study, the advantage of ANN-based regression can be 

ssociated with the ability to 1) generate smooth functions even 

hen the data is sparse across the composition space, and 2) in- 

rementally add data by training primarily on the new data and a 

ubset of the old data. 

A representative ANN architecture is shown in Fig. 2 for the cal- 

ulation of the temperature conditional means starting with 2 PCs. 

imilar networks can be adopted for the other thermo-chemical 

calars. The input layer contains neurons associated with the input 

ariables, φ1 and φ2 , hidden layers (only one hidden layer with 

 neurons is shown in the figure), and an output layer, contain- 

ng the temperature conditional mean. Although not shown on the 

gure, additional bias neurons are added to the input and all hid- 

en layers. Within the context of the present study, the network is 

rained on the available measurements in the Sydney flame based 

n all the available downstream distance and radial positions. The 

raining determines the strength of the connections between the 

revious and subsequent layers from input to output as indicated 

y the arrows in the figure. 

To illustrate the relation between the input and the output lay- 

rs, we use the network illustrated in Fig. 2 . The output < T | φ > is

xpressed in terms of the hidden layer: 

 T | φ > = f ( 
4 ∑ 

i =1 

w 

(1) 
i 

a (1) 
i 

+ b (1) ) , (7) 

here the superscript (1) corresponds the first hidden layer with 

eights w 
(1) 
i 

and values a (1) 
i 

at the i th neuron in the hidden layer. 

 
(1) is the bias value at the hidden layer and f is the activation 

unction. We use the sigmoid function for activation in the ANN 

etworks for the conditional means. The values of the i th neuron, 

 
(1) 
i 

, in the hidden layer can be related to the input values as fol-

ows: 

 

(1) 
i 

= f (w 

(0) 
1 i 

φ1 + w 

(0) 
2 i 

φ2 + b (0) ) . (8) 
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Fig. 3. Illustration of a DeepONet for determining a PC’s generalized PDF. 
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ere w 
(0) 
1 i 

and w 
(0) 
2 i 

correspond to the weights of the connections 

etween the input layer and the i th neuron in the first hidden 

ayer associated with inputs φ1 and φ2 , respectively. The network 

s trained to determine the weights of all connections from input 

o output layers and the bias values. 

.2. Approximations of the PCs joint PDF 

The use of fine-grained simulations to construct directly PDFs 

f thermo-chemical scalars via tabulation have provided a viable 

lternative to the presumed shape PDF assumption [47–50] . How- 

ver, tabulation is not immune to the curse of dimensionality and 

ay present challenges for memory and storage in computations. 

Machine learning methods offer an alternative to the approxi- 

ation based on presumed shapes, the solution of the transport 

quations or the tabulation of these PDFs. Although joint PDFs can 

e readily available from the fine-grained simulations’ data, the 

bundance of this data or the lack of it can limit the ability to 

ccurately reconstruct these distributions. 

In their recent work, de Frahan et al. [51] investigated three 

achine learning techniques to reconstruct PDFs for LES param- 

terized with the mixture fraction and the progress variable. These 

echniques include the use of random forests, deep learning neu- 

al networks and conditional variational autoencoders. The differ- 

nt techniques rely on a general strategy of single input channels 

hat yield an output, which represents the PDF. The implementa- 

ions of de Frahan et al. [51] of the 3 machine learning techniques 

howed that the predictions of the joint PDFs yield significant im- 

rovements on β-function based presumed PDFs using DNS data. 

Kernel density estimation (KDE) [27] provides a strategy for es- 

ablishing arbitrary shapes for a PDF given discrete data at a given 

patial position. In a KDE, a PDF can be expressed as a weighted 

um of discrete kernel functions, K (e.g. Gaussians) centered at dis- 

rete values of the parameters, say the PCs: 

p( φ; ˜ φ) = 

1 

n h 

n ∑ 

i =1 

K( 
φ − ˆ φi 

h 
) . (9) 

n this expression, φ represents the vector of retained PCs, K is 

he kernel function, h is the so-called bandwidth, which controls 

he smoothing of the approximation, and ˆ φi is the i th sample of 

values out of a total of n samples. Such a distribution can be 

valuated at a specific spatial point, which can be parameterized 

n terms of an unconditional mean for the PCs, ˜ φ. Therefore, differ- 

nt shapes can be evaluated at different spatial positions. However, 

o determine a “generalized” PDF that can be adopted for a wide 
5 
ange of unconditional means for the PCs or spatial positions, ad- 

itional steps are needed. 

.3. A generalized machine learning reconstruction of the PCs’ joint 

DF 

Although ML-based methods to reconstruct parameterized PDFs 

ave been proposed in the past [51] , there is still need to construct 

DF shapes that can accommodate different PDFs without resorting 

o presumed shapes. The most recent work by Lu et al. [28] of- 

ers a potentially more powerful strategy to reconstruct joint or 

arginal PDFs from combustion data. The approach is based on 

he so-called DeepONet network, which is designed to learn non- 

inear functions and operators from data. Within the context of 

he present work, DeepONet takes different functions, PDF shapes, 

rom different positions in the flame, which are labeled with the 

orresponding PCs’ unconditional means; then, the network de- 

ermines other functions at prescribed PCs unconditional means. 

herefore, instead of training different networks for different PDFs 

t prescribed PCs unconditional means, the DeepONet is used to 

ncorporate these means into a single network that accommodates 

hese PDFs. This attribute of learning operators can reduce network 

omplexity and require less training data to achieve the same pre- 

ictions [28] . 

The DeepONet architecture that corresponds to the present im- 

lementation is illustrated in Fig. 3 . The network consists of 2 sep- 

rate channels: the branch channel and the trunk channel. The in- 

ut to the branch channel corresponds to the PC vectors sampled 

n PC space, identified in the figure with the pair (φ1 , φ2 ) . The in-

ut to the trunk channel corresponds to the spatial unconditional 

ean of the PCs, identified in the figure with the pair (φ1 , φ2 ) . 

or the present implementation of the DeepONet, the branch and 

runk networks consist of 2 dense hidden layers with 64 neu- 

ons each. The outputs of these layers are concatenated and passed 

hrough an additional dense layer of 64 neurons followed by an 

utput layer of 1 neuron. This output corresponds to the PCs’ PDF. 

KDE is used to fit PDF shapes at individual measurement posi- 

ions. These positions are labeled with the retained PCs uncondi- 

ional means, ˜ φ1 and ˜ φ2 . For each position, 200 PC vectors ( ̃  φ1 , 
˜ φ2 ) 

re sampled, which span the entire range of the PC values. The set 

f PC vectors and associated PCs’ unconditional means and output 

DF values constitute the training data for the DeepONet to predict 

DFs. As pointed out in our previous studies [22,23] , the use of the 

nconditional variances of the PCs does not alter, in any discern- 

ble way, the PDF predictions. We believe that the main reason for 

his resides in the uncorrelated nature of the PCs. Pairs of PCs un- 
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onditional means in the flame are reasonably unique and uncor- 

elated, like their instantaneous counterparts; and, thus, they tend 

o generate unique distributions that can be described in terms of 

hese unconditional means. 

As outlined earlier, PCs define a low-dimensional manifold of 

he composition space. However, PCA generates a set of uncorre- 

ated PCs, which may or may not be statistically independent. The 

oint PCs’ PDFs are inherently multi-dimensional. Therefore, their 

econstruction requires an adequate amount of data to span the 

istributions among different values of the PCs. It is desirable to 

dopt an even lower dimensional representation for these PDFs, 

uch as in terms of marginal PDFs of the individual PCs. For this, 2 

ifferent strategies are considered: 

• The simplest form is to assume that the PCs are statistically in- 

dependent at least for a range of conditions where the shape 

and magnitude of the PDFs matters. Within this assumption, 

the joint PCs’ PDFs can be expressed for a 2-PC parameteriza- 

tion as: 

p(φ1 , φ2 ) = f (φ1 ) g(φ2 ) , (10) 

where f and g are the marginal PDFs of φ1 and φ2 , respec- 

tively. The idea of exploring the assumption of statistical inde- 

pendence of the PCs is not an unreasonable one. Uncorrelated- 

ness for PCs represents a weaker manifestation and an essen- 

tial criteria of statistical independence. Although not pursued 

in the present study, we have also investigated the use of cop- 

ulas [52] as a way to “bind” the PCs marginal PDFs and account 

for their potential statistical independence. However, we have 

found that copulas do not provide any significant correction to 

the relation provided in Eq. (10) . 

• The second strategy is to construct independent components 

from the PCs using ICA [40,41] . 

As stated earlier, PCA is a desirable step prior to ICA to en- 

able a reduced parameterization of the combustion composition 

space [42] . By using PCA in a pre-processing step ahead of ICA, 

ICA still yields a lower-dimensional manifold description of this 

space. 

. Results 

In this section, we present results of the a priori validation of 

he outlined data processing based on machine learning techniques 

iscussed in Section 3 . 

.1. Experimental conditions 

The dataset used in the following analysis is based on multi- 

calar measurements in the Sydney piloted jet flames by Meares 

t al. [29–31] . The burner is configured to have 3 concentric tubes 

n which the fuel flows through the most inner tube, surrounded 

y co-flow air with a bulk velocity 15 m/s and outer tube con- 

aining hot gases from a pilot flame. The 3 tube diameters are 4, 

.5 and 18 mm, respectively. The most prominent feature of the 

urner configuration is the ability to control the recess distance 

f the inner-most tube relative to the co-flow air. A fully recessed 

uel tube allows for maximum premixing of the fuel and air; while, 

ero recess results in a purely pilot-stabilized nonpremixed flame. 

he fuel is methane (CP grade) with 99% CH 4 at a temperature of 

94 K. The pilot stream flame uses a 5-gas mixture of C 2 H 2 , H 2 ,

O 2 and N 2 with a bulk inlet velocity of 3.7 m/s. 

This flame is characterized by the presence of different dom- 

nant combustion modes evolving from primarily premixed mode 

ear the jet inlet to a primarily non-premixed mode further down- 

tream with a transition in between. Like the Sandia flames [39] , 

he flame is also characterized by the presence non-equilibrium 
6 
ffects, including extinction and reignition. These attributes asso- 

iated with evolving burning modes and burning stabilities result 

n important variations in the joint and marginal PDFs of thermo- 

hemical scalars as well as the PCs. Given all these features, the 

omposition space for the Sydney flames cannot be parameterized 

n terms of the conventional mixture fraction/progress variable pa- 

ameters alone across the various downstream conditions. 

In the present study, the composition space associated with the 

ifferent multi-shot, multiscalar measurements is parameterized 

ith 2 PCs (i.e. N pc = 2) out of 7 PCs. This number is deemed suf-

cient for the reconstruction of most statistics. However, it is likely 

hat an additional PC is needed to fully capture statistics near the 

nlet. Adding more PCs can improve the accuracy of the flamelet- 

ike model. This comes at the cost of a higher dimensionality for 

he manifold, the conditional means and the joint PDFs. The trade- 

ff between a higher dimensionality and model fidelity is an im- 

ortant consideration during the flamelet-like model construction. 

Finally, PCA is carried out using a subset of the thermo- 

hemical scalars’ vector. This subset corresponds to the measured 

uantities, temperature and the following reported species mass 

ractions for: CH 4 , O 2 , CO 2 , H 2 O, CO, H 2 . These scalars adequately

epresent the evolution of mixing and chemistry, including events 

f extinction and reignition. In the past, we have found it to 

e more convenient to carry out PCA using a set of representa- 

ive thermo-chemical scalars and reconstruct the remaining ones 

hrough their correlations with the representative scalars [25,34–

8] . 

In the present study, we consider one flame condition corre- 

ponding to recess distance L r = 75 mm and a bulk jet velocity of 

7 m/s (the so-called FJ200-5GP-Lr75-57 flame) [29–31] . In the 

ydney flames, the vector of PCs is related to the normalized mea- 

ured thermo-chemical scalars as follows: 
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CO 
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⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11) 

The superscript “∗” indicates a normalization of the thermo- 

hemical scalars to yield values from -1 to 1. The weights in the 

onversion matrix also measure the contribution of the thermo- 

hemical scalars to the PCS. The first 2 PCs contribute 94% of the 

ata variance. Both temperature and the O 2 mass fractions consti- 

ute the main contributions to the first PC; while the second PC’s 

ain contribution comes from the reactants, the O 2 and the CH 4 

ass fractions. The first and second PCs correlate reasonably well 

ith a progress variable and a mixture fraction at downstream dis- 

ances beyond 10 diameters of the fuel jet where nonpremixed 

urning is dominant. However, they deviate from these parameters 

ear the jet inlet where premixed burning is dominant. The inter- 

ediates H 2 and CO exhibit the most influence on the seventh and 

hird PCs, respectively. 

.2. Determination of the conditional means 

As stated earlier, the conditional means for all species and tem- 

erature are recovered using an inversion of the relation in Eq. (1) . 

hey are implemented using a neural network where the 2 in- 

tantaneous PCs are prescribed as inputs and the various thermo- 

hemical scalars are prescribed as output. The data used to con- 

truct the conditional means is drawn from all downstream and 

adial positions in the flame. 

Table 1 summarizes information about the architecture of the 

arious networks used to train temperature and species O , H O, 
2 2 
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Fig. 4. Conditional means of temperature based on raw data (Left) and ANN regression (right). 

Fig. 5. Conditional means of the CO mass fraction based on raw data (Left) and ANN regression (right). 

Table 1 

ANN architectures for different output variables. 

Output Layer 1 Layer 2 Layer 3 Layer 4 Weights 

T 40 20 10 N / A 1090 

H 2 128 128 64 N / A 24,896 

O 2 40 20 10 N / A 1090 

H 2 O 40 20 10 N / A 1090 

CH 4 40 20 10 N / A 1090 

CO 128 128 64 10 25,482 

CO 2 40 20 10 N / A 1090 

Density 40 20 10 N / A 1090 
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H 4 , CO 2 mass fractions conditional means. The training for the 

ifferent quantities has different requirements depending on the 

omplexity of the correlations between PCs and species and tem- 

erature. For example, if a PC has a strong correlation with a 

hermo-chemical scalar, then, the architecture tends to be simpler. 

he number of hidden layers ranges from 3 to 4 with the num- 

er of neurons per hidden layer ranging from 10 to 128, result- 

ng in a total number of trainable weights ranging from approx- 

mately 10 0 0 to more than 25,0 0 0. The average training time on

oogle Colab ranges from approximately 20 sec to approximately 

 minutes (for H 2 and CO). The sigmoid activation function is used 

or these networks. The number of epochs needed for convergence 

anges from 100 for the simpler architectures to 500 for CO and 

 2 . 

Figures 4 and 5 show the conditional means for temperature 

nd the CO mass fractions, respectively, based on the raw data and 

he ANN regression. The evaluation of the means conditioned on 

he PCs based on the raw data is implemented by binning the PC 
7 
alues across their entire range over different bins and calculating 

verages in each bin. The number of bins adopted for each PC is 20. 

he extent of the composition space is indicated in the raw data. 

lthough, ANN is able to provide regression outside these bound- 

ries. While such a regression represents an extrapolation for ANN, 

t is not explicitly used in determining the conditional means since 

he corresponding PDFs are zero. 

The results in Figs. 4 and 5 clearly show that the statistics based 

he raw data and those based on the ANN regression exhibit both 

ualitative and quantitative agreements. However, the ANN-based 

egression can result in smoother profiles. Hence, it can accom- 

odate more sparse data. Moreover, the resulting regression re- 

uires less memory as only the trained parameters of the network 

eed to be retained instead of the storage of a multi-dimensional 

ata. From a computational perspective, lower memory require- 

ents may enable the use of accelerated hardware, such as GPUs. 

.3. Statistical independence of PCs and ICs 

In this section, we investigate the extent of statistical indepen- 

ence between PCs and ICs using different correlations and inde- 

endence coefficients: 1) the Pearson correlation, K Pearson , 2) the 

endall’s τ , K Kendall , and 3) the Spearman’s ρ , K Spearman . The 

earson correlation for the PCs can be evaluated using the ratio of 

he covariance of the PCs or ICs and the products of the individual 

Cs standard deviations: 

 Pearson = 

cov (φ1 , φ2 ) 

σφ1 
σφ2 

. (12) 

 similar expression may be written for the ICs. Based on its form, 

he Pearson’s correlation is a measure of the linear relationship 
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Fig. 6. Measures of correlations of the data parameters at different PCs uncondi- 

tional means. 
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Fig. 7. Measures of correlations of the data parameters at different ICs uncondi- 

tional means. 
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etween the two variables φ1 and φ2 . Both the Kendall’s τ and 

he Spearman’s ρ provide standard measures of statistical inde- 

endence. The Spearman’s ρ looks at the monotonic relationship 

etween the two variables φ1 and φ2 . To evaluate the correlation, 

he pairs of variables are ranked (e.g. from smallest to highest) and 

re assigned their rank (e.g. 1 for the lowest and 2 for the next 

owest), i φ1 
and i φ2 

, respectively. The Spearman’s ρ is then calcu- 

ated using the Pearson’s correlation on the ranks (and not on the 

alues of the PCs): 

 Spearman = 

cov (i φ1 
, i φ2 

) 

σi φ1 
.σi φ2 

(13) 

he Kendall’s τ measures the difference of the probabilities of con- 

ordant pairs of PCs and discordant pairs of PCs. The criteria for 

oncordant and discordant pairs is based on the comparison of 

wo data pairs identified by their indices i and j: (φ1 , φ2 ) i and 

φ1 , φ2 ) j where 1 ≤ j ≤ n . Here, n is the total number of data

oints. Two conditions apply to make the pair concordant: ei- 

her (φ1 ) i > (φ1 ) j and (φ2 ) i > (φ2 ) j or (φ1 ) i < (φ1 ) j and (φ2 ) i <

φ2 ) j . Otherwise, the pair is discordant. The Kendall’s τ is then ex- 

ressed as: 

 Kendall = 

n concordant − n discordant 
1 
2 
n (n − 1) 

(14) 

here n concordant and n discordant are the numbers of concor- 

ant and discordant pairs in the data, respectively. All correlation 

oefficients range from -1 to 1. The value of 1 corresponds to a 

aximum positive correlation while the value of -1 correspond to 

 maximum negative correlation. A correlation of 0 or a low value 

f the correlation is an indicator of statistical independence for the 

pearman’s ρ and Kendall’s τ . 
Figure 6 shows scatter plots of the Pearson’s correlation, the 

endall’s τ and the Spearman’s ρ at different measurement po- 

itions in Sydney flame FJ200-5GP-Lr75-57. The different positions 

re parameterized by the unconditional Favre means of the first 

wo PCs, ˜ φ and ˜ φ . The different subfigures are shown with the 
1 2 

8 
ame range for the correlation values. The box drawn in dashed 

ines on the Spearman’s ρ subfigure indicates a range of mean 

ixture fractions between 0.05 and 0.1, which represents condi- 

ions around the flame position. 

The figure shows that all correlation parameters exhibit qual- 

tatively similar trends indicating essentially where these corre- 

ations exhibit the most statistical independence and where the 

Cs are positively (red) or negatively (blue) correlated. The con- 

itions where the correlations are near zero correspond to regions 

f flame crossings where the unconditional means for the mixture 

raction are near the stoichiometric value of 0.055. There are, how- 

ver, some important quantitative differences, which may be at- 

ributed to the definitions of the different correlations. The figure 

lso shows that neither the PCs nor the ICs exhibit statistical in- 

ependence everywhere in the flame. Such a condition is not an 

bsolute requirement since the value of statistical independence is 

ost important when there is significantly variability (i.e. high val- 

es of the PDFs) at a given spatial position. 

Finally, it is important to note that although PCA is established 

o generate uncorrelated PCs, this process is implemented on the 

ntire set of data. This process does not guarantee that most mea- 

urement conditions will also yield lower correlation values, in- 

luding the Pearson correlation. The same applies to the ICA results 

iscussed below. 

Figure 7 shows the same coefficients shown in Fig. 6 , but now 

onsidering the statistics of the ICs. Also shown on the Spearman’s 

subfigure is the region of mean mixture fractions between 0.05 

nd 0.1, indicating conditions near the flame zone. Given the ro- 

ation associated with ICA, the shape of the scatter is different 

rom that of the PCs. However, all figures exhibit similar quantita- 

ive trends as seen in the PCs’ plots. The ICs are most statistically 

ndependent around the flame zone. More importantly, there are 

ow more measurements points that exhibit low correlation values 

ompared to the PCs. The implementation of ICA has slightly im- 

roved the statistical independence of the parameters of the low- 

imensional manifold. 
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Fig. 8. Comparisons of marginal PDFs of φ1 and φ2 between individual KDE profiles 

at different spatial positions and the generalized DeepONet network parameterized 

with the unconditional means of φ1 and φ2 . Solid black: DeepONet network, red 

dashed: KDE. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 9. Favre-averaged radial profiles based on PCs statistical independence of tem- 

perature, H 2 , O 2 , H 2 O, CO, and CO 2 mass fractions at x/d = 1. Solid black line: ex- 

perimental data; Red dashed line: PCA-ML reconstruction. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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.4. Parameterized marginal PDFs 

In this section, we present results of the DeepONet-based 

valuation of general PDFs. The network is trained in Tensor- 

low [53] using the Sydney flame experimental data. All the 

idden layers use a tanh activation function, except for the out- 

ut layer, which is linear. The training data set contains data re- 

ated to marginal PDFs corresponding to only 50% of the spatial 

ocations and these are randomly selected. No data augmentation 

s implemented. Additionally, a sampling strategy is used to main- 

ain the balance of low and high probabilities in the training set. 

he total number of parameters (weights and bias values) is ap- 

roximately 25,0 0 0. A mean squared error (MSE) loss is used to 

pdate the network weights and the training set is split such that 

0% is reserved for validation and the remaining data is split al- 

ost evenly between training and testing. The network weights are 

uned for about 10 0 0 epochs and the training is stopped when the 

ean squared error loss on the validation set goes below 5 × 10 −7 . 

owever, to avoid over-fitting during training, early stopping is im- 

lemented, such that training stops when the validation loss does 

ot improve for 10 consecutive epochs. We have also used the de- 

ault Adam optimizer. The entire training procedure requires about 

0 minutes using a NVIDIA Tesla V-100 GPU. 
9 
In the present study, the analysis is carried out on the marginal 

DFs of the 2 PCs, which define the low-dimensional manifold of 

he flame data. This is consistent with our attempt to implement 

n approach that can be applied to as much sparse data as possi- 

le. 

Figure 8 shows comparisons of different mar ginal PDFs for φ1 

left column) and φ2 (right column) at 4 different downstream x/d

nd radial positions r/d within the flame. Here x is the down- 

tream distance from the burner inlet, r is the radial distance 

rom the burner axis and d is the fuel jet diameter. The Deep- 

Net predictions are compared with the local approximations of 

he marginal PDFs using KDE. The figure shows that the evolution 

f the mixture from a primarily premixed combustion regime (at 

/d = 1 ) to a transitional combustion mode (at x/d = 5 and 10) and

 non-premixed combustion mode further downstream is charac- 

erized by different marginal PDF shapes. These shapes are ade- 

uately captured by the more generalized model that adopts as in- 

uts their parameterization in terms of the unconditional means 

or the 2 PCs. The two sets of profiles are indistinguishable at the 

ifferent flame positions. 
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Fig. 10. Favre-averaged radial profiles based on PCs statistical independence of tem- 

perature, H 2 , O 2 , H 2 O, CO, and CO 2 mass fractions at x/d = 5. Solid black line: ex- 

perimental data; Red dashed line: PCA-ML reconstruction. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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Fig. 11. Favre-averaged radial profiles based on PCs statistical independence of tem- 

perature, H 2 , O 2 , H 2 O, CO, and CO 2 mass fractions at x/d = 10. Solid black line: ex- 

perimental data; Red dashed line: PCA-ML reconstruction. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

4

s

fi

s

c

t

t  

w

5

l

a

p

t

f

f

K

At this stage, it is noteworthy to state that KDE along with in- 

erpolation functions between KDEs at different spatial positions 

ould have been adopted as an alternative to the present approach 

mploying DeepONet. However, the implementation of DeepONet 

resents several advantages as compared to a KDE-interpolation 

pproach. First, the DeepONet is memory efficient. It encapsulates 

 wide range of marginal PDF shapes with a network contain- 

ng only 25,0 0 0 trainable weights. This approach requires a much 

ower memory than keeping the parameters of the KDEs associated 

ith different spatial positions. Second, with the current imple- 

entation, the evaluation of DeepONet on the trained data is ap- 

roximately 3 to 5 times faster than the corresponding KDE-based 

valuations. Further speed up may be achieved with neural net- 

ork parameter optimization using various tools available as open 

ource such as AutoML [54] ; however, such optimizations have not 

een investigated as part of this work. 
10 
.5. The reconstruction of unconditional means of thermo-chemical 

calars 

Next, we present comparisons of Favre-averaged radial pro- 

les of selected thermo-chemical scalars at different down- 

tream distances. These profiles are generated from direct cal- 

ulations of the unconditional means from the data as well as 

he profiles reconstructed using Eq. (4) based on the condi- 

ional means, < ψ k | φ > , and the joint PCs or ICs PDFs. Again,

e consider comparisons for the Sydney flame FJ200-5GP-Lr75- 

7. Given the similarity between the generalized PDF and the 

ocal reconstructed PDFs using KDE, no additional comparisons 

re carried out using these 2 approaches. Instead, we re- 

ort comparisons of radial profiles of unconditional means of 

he measured quantities based on their direct measurements 

rom the data as well as by using Eq. (4) and the models 

or the conditional means and the reconstructed PDFs using 

DE. 
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Fig. 12. Favre-averaged radial profiles based on PCs statistical independence of tem- 

perature, H 2 , O 2 , H 2 O, CO, and CO 2 mass fractions at x/d = 12. Solid black line: ex- 

perimental data; Red dashed line: PCA-ML reconstruction. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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Fig. 13. Favre-averaged radial profiles based on PCs statistical independence of tem- 

perature, H 2 , O 2 , H 2 O, CO, and CO 2 mass fractions at x/d = 20. Solid black line: ex- 

perimental data; Red dashed line: PCA-ML reconstruction. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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Figures 9–14 compare the radial profiles of Favre-averaged tem- 

erature, H 2 , O 2 , H 2 O, CO, and CO 2 mass fractions at x/d = 1,

, 12, 15, 20 and 30, respectively, based on the available data 

nd using the assumption of statistical independence between φ1 

nd φ2 . 

The figures show an excellent reconstruction of the uncondi- 

ional means of temperature, O 2 , H 2 O and CO 2 at all shown down-

tream distances. The maximum percentage error for temperature, 

 2 , H 2 O, CH 4 and CO 2 mass fractions ranges from approximately 

% to 4, 3, 6 and 13 and 7%, respectively. The figures also show 

ome discrepancies in the predictions of CO and H 2 unconditional 

eans at x/d = 1 and 5. The maximum percent error for H 2 and

O mass fractions ranges from 5% and 6% to 15% and 10%, respec- 

ively. The predictions for these 2 quantities is significantly im- 

roved further downstream. Much of the difference, we believe, 

an be attributed to the choice of the number of retained PCs. Dur- 

ng PCA, we retained a number of PCs that represents 94% of the 

ata variance. Including more PCs, such as the third PC for CO and 
11 
he seventh PC for H 2 , can improve these predictions with an in- 

reased cost for the conditional means and the joint and marginal 

DFs. 

The figures show that there is no real advantage to the use 

f ICs as parameters for the composition space despite the fact 

hat we have established a broader range of conditions for sta- 

istical independence with ICA. However, this enhanced statisti- 

al independence did not alter the evaluation of the convolu- 

ion relation (4) . In fact, while ICA appears to perform better for 

ome of the radial profiles, it generally has a poorer performance 

han PCA-based statistics for H 2 and CO. This may appear to be 

ounter-intuitive. However, the discrepancy between PCA and ICA- 

ased statistics can be related to the optimization algorithm for 

etermining the ICs. This algorithm yields a single rotation ma- 

rix to convert from PCs to ICs and is based on all the avail-

ble data. This rotation may not be optimum for all positions 

onsidered. 
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Fig. 14. Favre-averaged radial profiles based on PCs statistical independence of tem- 

perature, H 2 , O 2 , H 2 O, CO, and CO 2 mass fractions at x/d = 30. Solid black line: ex- 

perimental data; Red dashed line: PCA-ML reconstruction. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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. Conclusions and implications to turbulent combustion 

odeling 

In this paper, we investigate the key ingredients needed to con- 

truct flamelet-like models from PDF-like model-based simulations. 

 hybrid approach based on the implementation of flamelet-like 

odel simulations can be used to accelerate simulations based on 

DF-like models. 

One of the key ingredients is the determination of low- 

imensional manifolds from the computational data using PCA, 

hich generates a significant reduction in the dimensionality of 

he composition space. We also investigate a rotation of the PCs 

sing ICA to examine the assumption of statistical independence 

f the low-dimensional manifold parameters. We show that both 

ets of PCs and ICs parameters are reasonably independent, at least 

ithin the reaction region where statistics matter the most. Invari- 

bly, the assumption of statistical independence, while not appli- 

able everywhere in the flame, is most important where the PDF 

agnitude is sufficiently high to impact statistics. Regardless, this 
12 
ndependence enables a simplified expression for the joint PCs/ICs 

DFs in terms of their marginal PDFs. 

The marginal PDFs are constructed at each spatial position from 

he Sydney flame data [29,30] using the KDE approach [27] ; then, 

hese regressions for the PCs’ marginal PDFs are combined to be 

arameterized in terms of the unconditional means of the PCs us- 

ng the novel DeepONet architecture. The a priori results show that 

he KDE–DeepONet approach for the PCs’ marginal PDFs is able 

o reconstruct these distributions under different conditions and 

hapes. The use of machine learning also overcomes the curse of 

imensionality by retaining only the networks’ trainable param- 

ters. Therefore, this potential saving in memory enables further 

oftware and hardware acceleration within adaptive schemes for 

DF-like model simulations. 

The above results establish a clear motivation to explore the dif- 

erent elements of this work within a framework that can be com- 

ined with PDF-like models’ simulations to obtain efficient compu- 

ations while maintaining the key advantages of these models. 
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