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Eye movements provide a window into cognitive processes, but much of the research harnessing this data
has been confined to the laboratory. We address whether eye gaze can be passively, reliably, and privately
recorded in real-world environments across extended timeframes using commercial-off-the-shelf (COTS)
sensors. We recorded eye gaze data from a COTS tracker embedded in participants (N=20) work
environments at pseudorandom intervals across a two-week period. We found that valid samples were
recorded approximately 30% of the time despite calibrating the eye tracker only once and without placing
any other restrictions on participants. The number of valid samples decreased over days with the degree of
decrease dependent on contextual variables (i.e., frequency of video conferencing) and individual difference
attributes (e.g., sleep quality and multitasking ability). Participants reported that sensors did not change or
impact their work. Our findings suggest the potential for the collection of eye-gaze in authentic
environments.
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1 INTRODUCTION

Sensors such as eye trackers, cameras, electrocardiography, and electroencephalography have
been instrumental in advancing the understanding of human thought, emotion, and behavior.
From Duchenne’s classic images of facial expressions [20], Jung’s use of electrodermal activity to
measure unconscious processes [42], and Huey’s development of eye tracking to study reading
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[37], the psychological sciences have immensely benefitted from developments in sensing
technologies.

In recent years there has been an increasing discussion of the importance of studying people
in ecological environments to ascertain the extent to which laboratory discoveries generalize in
the real world and to make new discoveries by studying people in their natural environments.
For example, [80] discusses the importance of investigating attention in naturalistic environments
[17, 95]. The authors argue that although there are some similarities between attention in the lab
and the real world, there are also a number of key differences [9, 13, 27]. For example, [34]
examined applications of classical attention theory both in the laboratory and naturalistic
environments. In the laboratory, participants completed a cueing task [28] where an on-screen
face would provide a gaze cue prior to a gaze target. The cue would indicate the location of the
next target, and participants were monitored as to how well they picked up on the cues. In the
real world condition, visual cues were provided by a human being instead. Although the authors
found that they could measure social attention in both environments, they did not find any
reliable indices that were consistent across the two tasks. Similarly, [27] demonstrated that a
model of eye movements in visual search of a static image did not transfer to a 3D environment
(e.g., looking for an item in a picture of a room vs. looking for the item in that room).

Unfortunately, most sensing technologies used in psychological research are expensive and
require a controlled laboratory environment. Not only does this impact ecological validity, but it
also limits access to well-funded research labs. For example, the EyeLink 1000 is a state-of-the-art
eye tracker that samples eye movements at up to 2000 Hz. This technology has led to numerous
insights in understanding attention [73], information processing [75], working memory [81], and
many other fields, such as marketing [93] and education [46]. However, the EyeLink 1000 costs
over 30,000 dollars and is most successful when the head is stabilized in a chin rest/head support.
As such, its use has been predominantly limited to laboratory environments where participants
can be isolated from distractions (such as their phones, co-workers, family members, etc.), and
the environment is strictly controlled (e.g., the head is held in a fixed position and lighting
controlled). This precludes the use of the sensor in more naturalistic environments except in rare
cases where the sensor itself is embedded in the environment (e.g., when eye trackers are
embedded in surgical training environments, such as a simulated operating room [89]).

Some sensors are more amenable than others to the real world, and, in recent years, steps have
been taken to move pertinent research out of the lab and into the wild. In particular, more
individuals use wearable sensors, such as smartwatches and fitness trackers, as they go about
their daily routines. Researchers have taken advantage of these sensors to understand individuals
in their natural environments. Some early efforts include projects such as NetHealth [72], Project
Tesserae [57], TILES [62], StudentLife [92], CampusLife [83], and WorkSense [54]. These studies
have predominantly used cell phones and wearable sensors (providing physiological data such as
heart rate and movement) to measure mood and health-related behaviors, such as activity [59],
sleep [1, 2, 26, 56] as well as health events such as falls [67, 84]. Although wearable sensors have
successfully measured physiological arousal, such as increased heart rate during exercise [69], it
is less clear if these sensors can measure psychological constructs composed of both arousal and
valence [82]. Valence is not as clearly expressed via physiological signals [22, 68]. It is also unclear
if physiology can identify subtle differences among cognitive-affective blends, such as frustration
and confusion [14].

In contrast, eye gaze is ideally suited to measure cognitive and affective states [15, 73], given
well-established links between eye gaze and cognition [46, 73, 88]. The recent availability of
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consumer off-the-shelf (COTS) eye trackers (retailing for several hundred dollars) has ushered
forth an exciting era by enabling scalable “in the wild” research and applications (e.g., [39, 40,
99]). However, whether these COTS eye trackers provide valid measurements in real-world
contexts, especially over extended periods of time, is unknown.

In this work, we investigate the feasibility of using COTS eye trackers to collect data in an
ecologically valid environment. We developed a methodology to record and transmit data in the
wild, requiring minimal experimenter oversight. We evaluate this approach by recording data
from 20 information workers in their own workplaces over two weeks. We focused on the
workplace as this is an ecologically valid space with a high number of potential applications;
however, it also comes with a number of challenges. These include varying work environments,
differing hardware and software setups, and privacy concerns. In addition, eye tracking is
susceptible to data loss as a result of changes in head position or movement. Whereas previous
research in the wild has typically considered data collected over a limited time window in the
presence of researchers [4, 12, 39], we investigate the potential of using COTS eye trackers for
continuous, longitudinal measurements in the workplace without continual researcher oversight.
Our findings will be relevant to research and applications that aim to leverage gaze tracking for
psychological assessment in authentic environments.

1.1 Challenges and Considerations

There are a number of challenges to overcome when tracking eye movements in the workplace
compared to a controlled laboratory environment or wearable physiological devices. These
challenges increase when factoring in sensing for extended time periods (days vs. hours).

Varying Office Environments. There are several different office setups in any workplace,
with some having their own office, others sharing offices, or an open-plan office space. Recently,
more people are working from home, adding even more potential variation in environments. This
presents the potential for increased variability in data quality.

Multiple Displays. A person’s computer setup can also vary considerably in terms of
hardware (number of monitors, monitor size, processor power, etc.) and software (e.g., operating
system). In cases where there are multiple displays, eye tracking must either occur across displays
(which current gaze trackers do not support), or there needs to be a mechanism to select an
appropriate display to track eye gaze.

Resource Management. A further challenge is that tracking must not place an undue burden
on computing devices. To observe participants regular work behaviors, long-term sensing should
not interfere with said regular work. In order to avoid slowing down the person’s computer,
tracking should only use available processor time, which can be difficult to quantify. As such,
resources must be used sparingly to minimize the risk of impacting the user’s regular work.

Tracker Calibration. In a typical one-hour research study, a user may calibrate an eye tracker
multiple times in order to ensure the highest quality data [25, 65]. Calibration typically entails
asking the user to focus on a series of points on the screen, allowing software to derive parameters
required to convert raw gaze vectors into pixel coordinates [33]. Repeated calibrations are likely
infeasible in the workplace as they would be too disruptive to the user.

User Privacy. Research has consistently strived to protect the identity of participants,
ensuring that users are fully aware of their rights through informed consent and using standard
techniques such as deidentification (e.g., removing name, date of birth, etc.). However, it is
sometimes the case that participants can be reidentified from the data [79].
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Recent work has attempted to further protect users through differential privacy [51], which
involves adding noise to a sensor stream in a pseudorandom manner (often using a Gaussian
process). This additional noise helps to protect a user from being identified from their data at a
later point but introduces a privacy-utility trade-off. The increase in noise has the potential to
limit the conclusions that can be drawn from the data. However, the hope is that with a large
enough sample, the noise becomes irrelevant to the overall patterns in the data while still
protecting the individual.

A further concern is the perception of privacy by the user. If users feel they are being observed
or evaluated in some way, they are likely to behave differently [30, 45], limiting the ecological
validity. An additional privacy concern is that of a bystander. Real-world sensing must take steps
to ensure that only the user is being tracked and not bystanders, for example, when a user and a
co-worker are viewing the screen together.

1.2 Background and Related Work

Eye tracking has been used as a research tool for decades [37], with a long history of laboratory
studies examining attention [97], reading [5], visual search [76], and human-computer interaction
[41]. For example, eye tracking has been used to measure confusion [47], frustration [44], and
even personality traits [8]. Eye gaze research has also moved out of the lab; for example, gaze-
based interaction has been used for military training in flight simulations [94], for target
identification [35], and to help surgeons critically analyze their surgical skills [3]. Although these
applications were designed for use outside the lab, they use research-grade eye trackers that cost
thousands of dollars, thereby limiting widespread scalability.

Fortunately, the recent availability COTS eye trackers (retailing for hundreds of dollars rather
than thousands) has enabled eye gaze research to move out of the lab (e.g., [58, 64, 99]). Though
typically sampling at lower rates than research-grade equipment (i.e., 90Hz vs. 1000Hz), these
trackers provide affordable and portable eye tracking for a fraction of the cost of research-grade
equipment. COTS trackers are also known to be less accurate than research-grade equipment;
however, research has indicated that such eye trackers could yield valid measurements in real-
world contexts, such as classrooms [39], but with the presence of trained researchers to address
technical problems. These studies have also only considered short-term tasks with repeated
calibration of gaze rather than longitudinal tracking where calibration frequency is more limited.

Cheaper still is the option to use data from traditional RGB webcams to produce gaze estimates.
Traditional eye tracking requires specialized equipment in order to illuminate the eye with
infrared light and record the reflection produced [31]. In contrast, appearance- [6, 7, 96] and
shape- [74, 78] based techniques can be used to generate gaze estimations from RGB images
captured by a webcam. Converting these measures to screen coordinates has been consistently
shown to be imprecise [43, 50] and to require multiple calibrations [98]. For example, a recent
study reported a mean error of 10 degrees [98] (lower for some mobile devices) for a camera-
based eye tracker. To place this into context, the EyeLink 1000, a state-of-the-art research-grade
eye tracker, reports an average error of 0.3 degrees and considers an error above 1.5 to be too low
quality!. The Tobii 4C, the COTS eye tracker used in our study, reports an average error of 0.6
degrees [29]. A notable exception here is [90], which examined how the smartphone cameras
could be used for eye tracking after a brief calibration process. This work demonstrated
equivalence in accuracy (though not in sampling rate) to mobile PCCR trackers (Tobii Pro 2
glasses) across four tasks. However, this study was conducted in a controlled lab environment
where participants could be instructed on how to sit/position themselves. The relatively low
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sampling rate of standard video (often less than 30hz in comparison to upwards of 60hz from a
PCCR tracker) limits the computation of several critical gaze features, such as saccade onsets and
smooth pursuits [77]. The need for calibration prior to each use also restricts applicability as noted
above. Thus, although it is possible to estimate eye-gaze from webcam-based recordings, the state-
of-the-art approach is not a viable replacement for gaze trackers for modeling users’ mental states.

In psychology, longitudinal eye tracking has been a tool for learning about participants over
time, for example, skill development [52] and the progressions of neurological conditions [18, 71].
In most cases, these involve bringing participants to the lab for a series of visits, each involving a
calibration process and completion of lab-based tasks. These studies demonstrate the potential
value for eye tracking over extended periods of time, but are still limited by laboratory settings
and repeated calibrations — limitations that this research aims to address.

1.3  Current Study

Eye movements can provide cues to peoples’ psychological states, such as emotions and
attention. Until recently, use of these technologies has been mostly limited to the laboratory due
to cost, calibration demands, setup, and other logistical issues. The recent introduction of low-
cost, portable eye trackers has the potential of finally breaking away from the lab into real-world
sensing. However, the question of whether COTS eye gaze can yield valid data in real-world
environments and over extended periods of time remains unanswered.

We address this question by investigating the feasibility of ubiquitous monitoring of users’ eye
gaze in a complex authentic environment — the workplace. We conducted a study in which eye
gaze of 20 information workers was recorded at pseudorandom time intervals throughout the
workday over a two-week period. Because gaze tracking with webcam data is largely inaccurate
(as reviewed above), we chose to use a dedicated COTS eye tracker (Tobii 4C) to monitor eye
gaze, calibrated only once at the onset of the study. To the best of our knowledge, our study is
the first to investigate the feasibility of collecting longitudinal eye gaze data in an authentic work
context with minimal researcher involvement.

We had five research questions (RQs): (RQ1) To what extent can valid gaze data be collected
in an ecologically valid setting over a two-week period from a single calibration? (RQ2) Does the
validity of data degrade over time? (RQ3) How is data validity impacted by individual differences
in terms of user traits and user environments? (RQ4) How consistent are key gaze measures
derived from this approach compared to the literature? (RQ5) How does long-term sensing
influence participants’ perceptions of privacy and/or their regular work patterns?

2 METHODS

2.1  Participants

We recruited 21 participants from a large study focused on using sensors (wearable fitness
devices, phone agents, etc.) to analyze traits, mental states, health, and workplace performance
(see Mattingly et al., 2019 for an overview of this study). The current study commenced after the
previous study had ended. The study (both the broader study and this sub-study) received
approval from the university’s institutional review board.

All participants involved in the study worked on-campus at a private university in the Midwest
US. Participants all reported primarily working in an office; either their own office [n=9], a shared
office [n=2], or an open-plan office environment [n=10]. All participants used operating systems
compatible with the study software (Windows 7 [n=8], 8 [n=3], or 10 [n=10]), as well as having
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computer setups suitable for the eye tracker(i.e., desktops [n=2] or laptops with a secondary
monitor [n=19]). Participants also reported how frequently they used videoconferencing using a
four-point scale (Never [n=5], Rarely [n=6], Sometimes [n=9], and Very Often [n=1]). In addition
to providing written or electronic informed consent to participate in the larger study, participants
also consented to the recording eye gaze in the workplace for additional compensation of $50.

Participants had the eye tracker installed for approximately two weeks. However, due to
scheduling constraints, the number of days between installation and deinstallation ranged from
10 to 32, with a mean of 17 days and a median of 14 days. Due to a computer failure resulting in
extensive data loss, one user was excluded from the analyses. Thus, data from 20 participants was
analyzed here.

2.2 Materials

2.2.1 Equipment

Eye movements were recorded using a Tobii 4C2%, a COTS eye-tracking unit sampling at a 30
to 90 Hz variable rate, which automatically adjusted based on system performance. We opted to
use a researcher for setup to ensure that the devices were correctly configured so we could have
a uniform basis to analyze data quality over time, which is our central research question. The
extent to which users could set up the devices on their own is a different question that we do not
consider here, as, in most workplaces, staff configures a user’s workspace. Similarly, the
researcher delivered eye trackers to the participants, anticipating that future applications of this
work would also entail enrolling participants and assisting with the initial setup. The eye tracker
was affixed (via magnets in most cases) below the bottom of the participant’s screen. If the user
had multiple screens, the eye tracker was placed below the primary screen and calibrated for that
screen only. The researcher confirmed the firewall settings allowed communication with our
remote server and tested the data transfer (discussed below).

The eye tracker was calibrated once during the initial setup using a nine-point calibration
system from the Tobii API3, where nine points appear on the screen in turn, and the participant
shifts their eye gaze from point to point. Participants were also shown the region in which their
eyes would be tracked and how much movement was possible.

When launched (see below), the customized gaze recording software used this initial
calibration. For each sample, we recorded the participant ID, the exact timestamp (in Coordinated
Universal Time) for synchronization purposes, screen size (in pixels), the gaze location of each
eye, the pupil diameter of each eye, and the eye tracker’s internal validity value. The entire
recording process required no input from the user, nor was the user notified in any way. The only
indication that gaze was being monitored was a faint light on the front of the eye tracker.

2.2.2 Software

After the initial setup, participants were asked to resume their normal activities, and the
approximate two-week data recording period commenced. We developed customized software to
facilitate data collection and storage.

Sampling Method. We chose to sample participants rather than continuously record them so
as to reduce the volume of data and ensure that data could be effectively transferred to the cloud-
based storage servers in a reasonable time frame. Sampling was performed via a background
process initiated at login. Every five minutes, the background process would randomly sample
from a uniform distribution and trigger a 5-minute recording session if the sampled value was
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greater than a prespecified threshold (.19). The threshold was set to yield, on average, five sessions
per user per day. As we did not yet know the exact impact of the eye tracking, this number was
selected to balance two goals (1) collecting enough data for analysis and (2) not oversampling or
potentially overtaxing the participant’s computer. To further prevent oversampling, once a
recording had been initiated, a further recording could not be initiated for 30 minutes?. Sampling
was limited to weekdays between the hours of 9 am and 5 pm. This reduced the likelihood of
participants being recorded while in their homes (for laptop users) or when they were not
working.

Data Transfer. Each data recording session was uniquely named with a session ID consisting
of the anonymized participant ID and a timestamp. We appended the session ID to a file at the
end of the five-minute data recording period to maintain a list of completed sessions. In addition,
we maintained a second list of sessions that had been transmitted to the remote server. Before
transmitting data, we checked both lists. If a session was “completed” and not yet “transmitted,”
we initiated the data transmission.

Data was transmitted to a remote server using HTTPS posts in Python. Data was first
converted from tabular format to a JSON object. Only one sample of data was transmitted at a
time. An access token was embedded into the header of the HTTPS post of the JSON object to
ensure secure access to the remote server. After all samples of data were sent to the server, we
transmitted a summary of the sent data, which detailed the number of valid and invalid records.
After data transmission was finished, the session ID was appended to the list of transmitted data
files for internal data checks. As this was an initial experiment, a local copy of all data was stored
on participants’ computers as a backup.

Data transfer was initiated at the end of each recording session and was monitored by
researchers throughout the recording period via a Slack channel, which displayed how many
points of data had been transferred to the server in the last 24 hours for participant ID. If no data
transfer was observed over a 1-2 day period, and this period did not coincide with a weekend or
a previously disclosed vacation, a researcher contacted the participant to troubleshoot the
problem. This was done to understand whether the source of missing data was technical
(participant disconnecting either the sensors), personal (unplanned or undisclosed -to the
researchers- absence from the office), or for some other reason. In the former case, participants
were instructed to reconnect the devices, which restored their functioning. We opted to correct
technical issues because our research question is not concerned with whether participants have
the necessary expertise to run the sensors on their own, but instead, the number of valid samples
when the sensors function as intended. Having support from information technology
professionals to diagnose and correct technical problems is standard in most office settings, so
this aspect does not reduce the ecological validity of our study.

2.2.3  Preserving User Privacy

Each user was assigned a random alphanumeric identifier to index all of their data. Further
protection of user privacy has been shown through methods such as differential privacy [51];
however, this involves adding noise to data as it is recorded [51, 87]. As this was an initial
feasibility study and we were unsure of the data quality, we decided against this procedure. As
user perception is critical to effective privacy [63, 70], participants were shown a sample of
collected data during installation to demonstrate that it would be impossible to recreate an image
of their face from the data collected. We also informed the participants that none of the data
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collected would be used by their employers to evaluate them, nor would it be shared outside the
research team.

Bystander privacy presented more of a challenge. Because no video or images of participants
were collected, it is impossible to infer if the data collected is from the participant or a bystander.
The gaze tracking monitors the closest target, which we assume will be the participant since it
was their workstation (see Section 4.3 for further discussion).

2.24 Follow-up Survey

We designed a short survey to learn more about the participants’ experiences. The survey
assessed participants’ prior privacy views independent of the current setup [53], along with
perceived privacy [53], usability [49], and distraction [66] with the present setup. There were
three items per measure, and all items utilized a six-point Likert scale (shown to be more reliable
than a five-point Likert scale [16, 19]). Each measure included at least one reverse-coded item.

Both prior privacy views and perceived privacy were assessed as it was important to be able
to compare participants' baseline privacy views to how they felt during this study [53]. The prior
privacy measure asked participants, in general, how much they agreed with three statements,
such as ‘It is very important to me that I am aware and knowledgeable about how my personal
information will be used”. In contrast, questions for the perceived privacy measure focused on
perceptions of privacy pertaining to the study. Participants were first instructed to consider the
time when they were involved with the study and then asked how much they agreed with three
statements (e.g., “T was concerned about threats to my personal privacy when additional sensors were
running” - this item is reverse coded).

As data were collected in the background (i.e., there was no user interface), usability questions
were adapted from [49] and focused on the extent to which participants were able to complete
their regular tasks. Again, participants were instructed to consider their time in the study and
state their agreement with three statements (e.g., “I was able to efficiently complete my work even
when the additional sensors were running.”). For distraction [66], items focused on if the user found
the additional sensors distracting (e.g., “T was more distracted than usual because of the additional
sensors”). The usability and distraction measures provide insight into any burden or disruptions
caused by the sensors and how much this hindered the participants' day-to-day work.

In addition, we asked participants about their regular working patterns, including if they
typically worked from 9 am to 5 pm and the frequency at which they left their desks. We then
asked participants, “Overall, how satisfied were you with your experience with the additional
sensors” with responses again on a 6 point Likert scale. Finally, we asked participants two open-
ended questions, one asking them to discuss any challenges completing their regular work
because of the sensors, and the second requesting any additional comments.

The follow-up survey was administered approximately 30 weeks later. Ideally, the survey
would have been completed immediately after deinstallation, but was delayed due to logistical
issues pertaining to the main study. All 21 participants completed the survey, upon which they
were compensated with an additional $10 gift card.

2.2.5 Trait Level Measures

Participants also individually completed a large battery of validated individual differences
surveys as part of the larger study. Of these, we analyzed a subset in the current study to
investigate whether these were related to the quality of data collection (RQ3), including the
Morningness-Eveningness Questionnaire (MEQ) [36], the Pittsburgh Sleep Quality Index (PSQI)
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[85], and SynWork [23]. These survey measures cover a wide range of constructs all related to
the broader study on workplace performance. These measures provide insights on psychological
traits (e.g., personality and affect) as well as physical characteristics (e.g., sleep) that relate to a
users day to day activities. These surveys thus provide a convenient opportunity to explore how
a users characteristics and traits relate to the eye tracking and identify any moderators that may
need to be accounted for in long-term eye tracking.

The MEQ was originally developed by Horne and Ostberg [36] to determine whether a person’s
circadian rhythm (biological clock) produces peak alertness, either in the morning, in the evening,
or in between. The survey consists of 19 multiple choice questions assessing a person’s sleep
habits. A higher score on the MEQ indicates peak alertness in the morning, whereas a lower score
indicates peak alertness in the evening.

PSQI is a self-rated questionnaire that assesses sleep quality and disturbances [85]. Nineteen
individual items generate seven “component” scores: subjective sleep quality, sleep latency, sleep
duration, habitual sleep efficiency, sleep disturbances, use of sleeping medication, and daytime
dysfunction. The sum of these seven components provides one overall score. A lower PSQI score
indicates healthier sleep patterns.

SYNWORK is a computer-based multitasking environment composed of synthetic work tasks
that are relevant to a number of occupations first presented by Elsmore in 1994 [23]. SYNWORK
is beneficial for experiments as it provides both experimental control and realism for the
participants [21]. The task requires participants to engage in four individual tasks simultaneously,
each focused on a different skill; Memory, Visual Monitoring, Auditory Monitoring, and Math.
Participants used a mouse to complete each task. Incorrect task completion resulted in a sound,
whereas there was no audible feedback for correct responses (as this tended to be distracting).

3  RESULTS

In total, there were 1,382 five-minute recording sessions across the 20 participants. Figure 1 shows
a histogram of the number of sessions possible for each participant over the two-week period. We
note that four of the participants had less than 45 potential sessions (times when the background
triggered a recording session), ostensibly due to the computer being off or not being used during
the time window. The median number of sessions per participant was 69 (mean = 68, SD = 31).

3.1  Number of Valid Samples (RQ1)

A sample was considered valid if at least one eye was accurately tracked, determined by the
Tobii API. We deemed one eye tracked to be sufficient compared to a more stringent two eyes
tracked criterion as features such as fixations and saccade approximations can be derived from
one eye. Indeed it is common to only use data from one eye for these calculations, rather than
merging data from two eyes [86].

For each gaze sample, the Tobii API provides a Boolean value for each eye, indicating if the
eye was accurately detected. There are a number of reasons for an invalid sample. For example,
the user could be looking away from the screen (e.g., down at the keyboard), could have closed
their eyes, or may not currently be at their desk. Similarly, an invalid sample could indicate a
technical issue, where the eyes could not be detected due to a calibration error, incorrect angling
of the eye tracker, or interference from external light sources (both visible and infra-red).

Of the 1,382 sessions, 919 sessions (66.5%) had at least one sample of valid gaze data. All twenty
participants were able to record some amount of gaze data with varying levels of success. Mean
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session- and participant-level proportion of valid gaze samples was 30% and 32%, respectively, see
Table 1 and Figure 1.
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Figure 1. Histograms showing of the number of possible sessions per participant (top), the proportion of
each session that had a valid gaze sample (middle), and the participant level average number of valid
samples per session (bottom)
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We also noted that the tracker occasionally would pick up eye gaze outside the screen bounds.
If we limit gaze samples to those within the screen bounds, the average number of samples slightly
decreased to 28% (session-level) and 29% (participant level). The distribution of valid samples
when averaged at the participant level was significantly different than zero, t(19)=8.76, p<0.001.
We deemed the number of valid samples recorded to be acceptable in that participants only
calibrated their eye tracker once. Research has indicated that eye tracker calibration may drift
over time, causing less and less valid samples to be collected [32, 33]. In most eye tracking studies,
participants calibrate the tracker at least once per session, if not multiple times, which we did not
do to preserve ecological validity (see above). Similarly, we have no control over whether a user
is using their computer (or even at their desk) at the time of sampling, which is also likely to
reduce the overall number of samples.

Table 1. Descriptive statistics for validity measures at session-level and participant-level

Gaze (One Eye Tracked) Gaze (Both Eyes Tracked)
No. of sessions with at least one valid sample 919 892
No. of sessions with no valid samples 463 490
Proportion of Valid Samples Session Participant Session Participant
Level Level Level Level
Mean 30% 32% 26% 28%
SD 33% 17% 31% 16%
Min 0% 2% 0% 1%
Max 100% 60% 99% 57%

3.2  Valid Samples Over Time and Contextual Influences (RQ2)

We examined how the number of valid samples varied over time. Each participant had the
tracker for approximately two weeks, with only one calibration at the beginning of that period.
To systematically examine the influence of time, we regressed the count of valid samples per
session on session number (which indexes days from the start of the study) and time of the
recording (which indexes hours in the day) using linear mixed effects models with participant as
the random intercept due to the nested nature of the data (multiple sessions per participant). We
found that number of valid samples decreased across sessions (B=-1.68, p=.0.057), suggesting that
depending on the length of the tracking period, additional calibration may (at some point) be
necessary. More work is needed to find the exact inflection point at which recalibration would be
recommended. There was no effect of time of day (B = -.45, p=.585).

Next, we investigated whether contextual variables moderated above the influence of session
number. Using linear mixed effects models, we included the following contextual variables as
predictors and examined the time x context interaction term: (1) open/shared office [N=11] or
own office [N=9]); (2) computer use (use of computers for work only [N = 14] or work and
personal use [N = 6]); and (3) video conferencing (whether participants’ never or rarely [N = 11]
vs. sometimes or often [N = 9] participated in video conferencing). There were no significant
interactions between session number and time of day with office layout (ps > .11) and computer
use, but we observed a significant interaction effect of session number for those who often or
regularly engaged in video conferencing (B = 3.90; p = 0.03). We probed this interaction using a
simple slopes analysis which entails assessing the relationship between session number and valid
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samples for different levels of the moderator (video conferencing). The results, shown in Figure 2,
indicated that the number of valid gaze samples decreased over time for participants who rarely
took video calls (B = -3.48; p = .01), this was not the case for participants that took video calls
more often (B = .42, p = .73). We theorize that this may be due to those that rarely took video calls
being less conscious of their position relative to the screen.

Valid Gaze Samples

¥ ! | T
-1 0 1 2
Session Number (Z Scored)

Video Calls == Never or Rarely — Sometimes or Often

Figure 2. Interactions between frequency of video calls and the number of valid gaze samples

Next, we investigated the impact of trait level measures (SynWork score, PSQI score, and MEQ
Score — see section 2.2.5). Trait level data was not available for one of the participants, so this
analysis was completed with the remaining 19 participants. We again used mixed effects models
as above and examined the time x trait interaction term. We observed no significant effect (main
or interaction) with MEQ score, however we observed a significant interaction between session
number and SynWork (B = 3.1, p < 0.01) and PSQI (B = -2.46, p = 0.01) scores. We probed both
interactions again with simple slopes analyses (see Figure 3). We observed that participants with
SynWork scores one standard deviation below the mean (low multitasking) were more likely to
see degradation in the number of valid samples over sessions (B = -4.14, p < 0.01); whereas there
the number of valid samples remained constant for average multitaskers (B = 0.92, p = .31) or even
tended to increase (albeit nonsignificant, B = 1.39, p = .17) for good multitaskers (SynWork scores
1SD above the mean). Similarly, those with PSQI scores one SD above the mean (indicating less
healthy sleep) were also more likely to have the number of valid samples degrade over time (B=-
3.82, p < 0.01), whereas those with average PSQI scores showed a more consistent number of valid
samples over time (B=-1.36 p=.14) and those with PSQI scores 1 SD below the mean (good sleep
health) saw a slight (nonsignificant) increase in number of valid samples (B=1.11, p=.40). We also
observed a significant interaction between PSQI and the hour of the recording (B=1.85, p=0.03).
Simple slopes analysis indicated that participants with PSQI scores one SD below the mean
(healthier sleep) were less likely to have a higher number of samples later in the day (B=-2.34,
p=0.05), whereas those with PSQI scores above the mean (less healthy sleep) were more likely to
have more valid gaze samples later in the day (B=1.35, p=.26).

3.3  Feature Extraction (RQ4)

We next examined if the data collected was of suitable fidelity for additional analysis. We first
fixation filtered the raw eye gaze data using Open Gaze and Mouse Analyzer (OGAMA) [91].
Decades of eye tracking research have yielded a wide variety of potential features derived from
fixations and fixation patterns [24, 38, 39, 60]. Given that we do not know what the user was doing
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at the time of the gaze recording, the most relevant for this work was to examine the average
fixation duration and compare to previously collected standards. The average fixation duration
across all sessions ranged from 109ms to 760ms, with a mean of 373ms (see Figure 4). This finding
is consistent with work on eye movements which suggests in most cases fixations can last
between 50-600ms depending on the context [48, 76, 77]. Without additional data of screen
context (that would have potential privacy implications), it is difficult to evaluate if these fixations
were in fact accurate. However, this result reinforces the potential feasibility of our longitudinal
data collection as derived features fall within expected ranges.

Valid Gaze Samples

I 1
2

y T 1

0 1
Session Number (Z Scored)
SynWork Score = -1 == 0 =—

ARRRRT RN e nannn

Valid Gaze Samples

T e T T T T e e T T R T T
-1 0 1 2
Session Number (Z Scored)

PSQIl Score == -1 == 0 = 1

Figure 3 Interactions between session number and SynWork score z scored, (top) and PSQI Score z scored
(bottom) when predicting number of valid samples in a session
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Figure 4. Density Plot of Average Fixation Duration per Session

3.4  User Perceptions (RQ5)

We analyzed the user survey to examine how participants perceived the eye tracker when
incorporated into their work environments. Descriptive statistics for each of the individual
measures are shown in Table 2. Participants reported a mean overall satisfaction of 5.14 (out of
6), suggesting that participants were generally satisfied with their experience. We also observed
high (M = 5.11) usability scores, which in our case indicated the tracker did not interfere with
participants’ work (e.g., computer slowing down due to the recording process). Similarly,
distraction scores were low (M = 2.06), suggesting that work routines were not interrupted by the
eye tracker being distracting.

We used measures of prior privacy views to understand whether participants were sensitive
to privacy issues, specifically regarding technology. We note that our participants would describe
themselves as being somewhat sensitive to privacy issues (M = 4.43, a higher score indicating
greater privacy concern). Despite this, perceived privacy during the study (a higher score
indicating a greater sense of privacy) was also high (M = 4.89). This implies that despite being
privacy conscious, participants felt a high level of privacy during the study.

We also analyzed participants’ responses to the open-ended item - “Please describe any
challenges you experienced with completing your usual work due to the additional sensors. Please
be as explicit as possible.” A researcher coded each of their responses. We note that 17/20
participants reported no challenges or interference to their work, and one user reported
challenges with initial setup (the user that was excluded from analysis). The remaining responses
are listed below and suggest some initial concerns with being monitored, occasional distraction
from the eye tracker infrared lights, and minor annoyances with the sensors and software:

e  “No real challenges. I did feel more watched, especially in the beginning, and there
were a few times that the sensors needed upgrading/weren’t connecting accurately
and it took me a bit to fix that.”

e  “Occasionally the lights [on the eye tracker] turning on would be a distraction, but
once they stayed on I forgot about them.”

e “Occasionally, [the eye tracker] on the bottom of my monitor would fall off, but I just
had to press it back on. Other than that, I didn’t really notice or was impacted by the
Sensors.
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Table 2. Descriptive Statistics for user survey measures, for each measure theoretical min and max, is 1
and 6 respectively.

Measure Mean S.D. Min Max
Overall Satisfaction 5.14 0.65 4.00 6.00
Prior Privacy Concern 4.43 0.76 2.33 6.00
Perceived Privacy 4.89 0.64 3.67 6.00
Usability 5.11 0.63 4.33 6.00
Distraction 2.06 0.77 1.00 3.33

4  DISCUSSION

Over the past decades, eye tracking has provided countless insights into psychological science
[73]. Unfortunately, research-grade equipment is expensive and requires a controlled laboratory
environment. Not only does this limit the ecological validity of findings, it also limits the research
to those with the required resources. The development of newer, low cost, portable eye tracking,
has opened the door to a number of potential research activities, particularly studying affect and
attention “in-the-wild.” However, it is not yet known how well COTS tracking will perform
outside the controlled environment of the lab and what potential there is for longer-term sensing
(e.g., not a single 1-hour study). To address these questions, we recorded eye movements from 20
users in real-world environments using COTS sensors. We investigate the validity of data
collected and the effect of time and computer setup on recording quality. We also used surveys
to assess user perceptions of the sensing setup. Our main findings are summarized below,
followed by a discussion of applications, limitations, and future work.

4.1  Main Findings

Despite the noisy workplace environment, we found that it is feasible to collect valid gaze
samples with COTS eye tracking in normal working environments and without any restrictions
on the participants (RQ1). Researchers were not present for data collection (other than at
installation), nor did they enforce any protocol/compliance from participants (beyond occasional
check-ins). We achieved an average proportion of valid samples of 32%, which we consider
moderate given the lack of constraints. For example, we could not control if the participants were
using their computer or even at their desks. Even when working on their computers, participants
could have turned to discuss something with a colleague or reached to get something from across
the desk, all factors that would result in invalid signals. Further, although the proportion of valid
samples may be lower than equivalent laboratory studies [10, 11], they are in line with other
short-term (60-90 minute) “in the wild” studies with these sensors [11, 39].

We found that number of valid samples diminished over time (RQ2) with marginal
significance. This implies that some level of recalibration is required, though how frequent is still
an open question. We gained a deeper insight into signal degradation by examining how
contextual and trait measures moderated the effect of time (RQ3). We observed significant
degradation in the number of valid gaze samples collected per session over time for those that
rarely took video calls — potentially because they were less conscious of their positioning. We
also saw that participants with more unhealthy sleep habits or worse multitasking skills also had
greater degradation over time. We did not observe any impact of morningness-eveningness
(MEQ score) on the number of valid samples. These moderators give insights that will be critical
as we design more longitudinal data collection.
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We have shown that the data collected from the sensors is of suitable fidelity for feature
calculation (RQ4), with calculated values with expected ranges based on previous findings.
Finally, We found that participants positively perceived their experiences with the tracker (RQ5),
reporting a mean overall satisfaction of 5.14 out of 6. Our participants also did not raise any
privacy concerns with the tracking, even though they described themselves as generally
concerned with privacy matters. Participants also found the long-term sensing to provide minimal
distractors to their regular work. Taken together, our result suggests that longitudinal (at least
within the two weeks considered here) gaze tracking is a viable option in the workplace despite
the challenges outlined above.

4.2 Applications

Though this work has several applications, it is important first to discuss how this approach
should not be used. It should never be used for “big brother” style monitoring or for evaluative
assessments of workplace satisfaction and performance. It should mainly be used for research
studies and workflow improvement efforts with full opt-in and consent of individual users, never
mandated by supervisors or employers. Similarly, we should be conscious of the potential effects
of adding this type of monitoring on participants health (e.g., if they feel they are being observed,
are they less likely to take breaks, or move to stretch, etc.).

The results presented here pave the way to a wide variety of ecologically valid studies, such as
those that explore multitasking, stress, and burnout in the workplace. Further, studies could,
consider other ecologically valid environments such as remote schooling or work from home (e.g.,
Mark et al., 2016). Researchers could also examine if results obtained from laboratory experiments
replicate in ecologically valid environments, and if they do not, analyze the differences.

In addition to psychological/cognitive studies, these results also present opportunities for
usability studies. For example, developers can leverage eye gaze to better understand how a user
is interacting with their software and identify general usage patterns as well as ‘problem spots’.
Understanding how users interact and respond to errors in their own environments will provide
more ecological valid user studies that in turn could lead to better software interfaces.

More broadly, the success of longitudinal gaze tracking in the wild has several applications
beyond research. In educational contexts, gaze tracking has been used to monitor affect and
engagement and deliver automated interventions [39, 61]. Similar applications, such as an
interactive assistant that delivers real-time data-driven feedback or suggestions, can be developed
in workplace contexts. For example, if sensors indicate that the user is frustrated or cognitively
overloaded, the assistant might suggest taking a break or temporarily switching to another task.

4.3 Limitations and Future Work

Like all studies, ours has limitations. First, our study was conducted with a small number of
participants using a convenience sample of participants who were already part of a larger study
monitoring them in the workplace [57]; these participants might be more predisposed to being
monitored and less likely to have privacy concerns. Further, researchers monitored the data
collection remotely and provided troubleshooting information if no recording sessions occurred,
which may not always be possible for real-world use. We also considered just one type of eye
tracker (the Tobi 4C). Future work should consider more diverse participants, multiple eye
trackers, and collect more expansive measures of individual attributes (such as if a user wears
eyeglasses).
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Second, the number of sessions varied greatly between participants. Analyzing the factors that
caused variation across participants (e.g., did they typically work in the sample window) may lead
to more accurate tracking in the future. Furthermore, some participants had 100% sample validity
for some sessions. A deeper analysis of these sessions could potentially yield insights into how to
improve tracking.

Future work should also further expand on the duration of the study. We observed a decrease
in sample validity, implying that some level of repositioning or recalibration may be required for
long-term tracking. Future work should attempt to pinpoint how long a participant can record
data before the need to recalibrate. It should also consider the effect that recalibration may have
on user behavior and their perceptions of being monitored.

Although we have taken considerable steps to preserve user privacy, participants still have
potential to be identified from their eye gaze [79] if a suitable comparison dataset is available. In
recent work, methods have been proposed to preserve user privacy against such comparisons by
systematically introducing noise into the dataset [87]. Future work should examine the impact of
these differential privacy techniques on data quality. Similarly, we have not considered bystander
privacy in this work. If two people were at the same workstation (e.g., co-editing a report), the
bystanders’ eye movements could have been recorded. Future work should examine the
possibility of using face recognition or similar to guarantee that only the desired participant's
data is collected.

44  Concluding Remarks

The recent introduction of commercial off-the-shelf eye-trackers has brought with it exciting
opportunities to move research previously confined to the lab into more ecologically valid
environments. This work has made three contributions toward this goal. First, we have shown
that it is possible to collect gaze data with minimal experimenter oversight (other than the initial
setup and technical troubleshooting) over a two-week period. Second, we have demonstrated that
this method is somewhat robust over time, an essential consideration for long-term sensing.
Third, we investigated the effect of the sensors on users’ perceptions of privacy and on their
workflow. On average, users reported little to no distraction from the sensors and minimal
interruptions to their regular working habits, indicating that this method would be suitable for
future studies striving for ecological validity. We also show that even though our users
characterize themselves as privacy conscious, they feel comfortable with the data being collected
by the sensors. Our findings suggest that it may finally be possible to apply decades of lab-based
eye tracking research in the noisy workplace environment, thereby affording new discoveries
regarding human behavior.
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