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Abstract. Conservative dynamical systems propagate as stationary points of the action func-5

tional. Using this representation, it has previously been demonstrated that one may obtain funda-6

mental solutions for two-point boundary value problems for some classes of conservative systems via7

a solution of an associated dynamic program. It is also known that the gravitational and Coulomb8

potentials may be represented as stationary points of cubicly parameterized quadratic functionals.9

Hence, stationary points of the action functional may be represented via iterated ``staticization"" of10

polynomial functionals, where the staticization operator (introduced and discussed in [J. Differen-11

tial Equations, 264 (2018), pp. 525--549] and [Automatica J. IFAC, 81 (2017), pp. 56--67]) maps a12

function to the function value(s) at its stationary (i.e., critical) points. This leads to representations13

through operations on sets of solutions of differential Riccati equations. A key step in this process14

is the reordering of staticization operations. Conditions under which this reordering is allowed are15

obtained, and it is shown that the conditions are satisfied for an astrodynamics problem.16
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1. Introduction. Staticization maps a function to its values at stationary points21

(i.e., critical points). More specifically, the set-valued ``stat"" operator has as its range22

the set of such values, and if there is such a unique value, then that value is the output23

of the (single-valued) stat operator. This operator is obviously a generalization of24

the minimization and maximization operators for appropriate classes of differentiable25

functionals and is also valid for functions with a range other than the reals, including26

complex-valued functionals. The stat operator is at the heart of a new approach to a27

solution of two-point boundary value problems (TPBVPs) in conservative dynamical28

systems [4, 5, 18, 19], as well as to a solution of the Schr\"odinger equation [14, 16, 17].29

A key component in this development is the theory that allows one to reorder stat30

operators under certain conditions, and that theory is the focus of the effort here. In31

order to motivate the theory, first let us indicate application domains a bit further.32

Recall that conservative dynamical systems propagate as stationary points of33

the action functional over the possible paths of the system. This stationary-action34

formulation has recently been found to be quite useful for generation of fundamental35

solutions to TPBVPs for conservative dynamical systems; cf. [4, 5, 18, 19]. To obtain36

a sense of this application domain, consider a finite-dimensional action functional37

formulation of such a TPBVP. Let the path of the conservative system be denoted by38

\xi r for r \in [0, t] with \xi 0 = \=x, in which case the action functional, with an appended39

terminal cost, may take the form40

(1.1) J(t, \=x, u)
.
=

\int t

0

T (ur) - V (\xi r) dr + \phi (\xi t),41
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where \.\xi = u, u \in \scrU .
= L2(0, t), T (\cdot ) denotes the kinetic energy associated to the42

momentum (specifically taken to be T (v)
.
= 1

2v
T\scrM v further below, with \scrM positive-43

definite and symmetric), and V (\cdot ) denotes a potential energy field. If, for example,44

one takes \phi (x)
.
=  - \=vT\scrM x, a stationary-action path satisfies the TPBVP with \xi 0 = \=x45

and \.\xi t = \=v; if one takes \phi to be a min-plus delta function centered at z, then a46

stationary-action path satisfies the TPBVP with \xi 0 = \=x and \xi t = z; cf. [5]. In47

the early work of Hamilton, it was formulated as the least-action principle [8], which48

states that a conservative dynamical system follows the trajectory that minimizes the49

action functional. However, this is typically only the case for relatively short-duration50

cases; cf. [7] and the references therein. In such short-duration cases, optimization51

methods and semiconvex duality are quite useful [4, 5, 19]. However, in order to52

extend to indefinitely long duration problems, it becomes necessary to apply concepts53

of stationarity [18].54

It is worth noting that if one defines statx\in \scrX \phi (x) to be the critical value of \phi (de-55

fined rigorously in section 2.1), then a gravitational potential given as V (x) =  - \mu /| x| 56

for x \not = 0 and constant \mu > 0 has the representation V (x) =  - ( 32 )
3
2\mu stat\alpha >0\{ \alpha  - 57

\alpha 3| x| 2
2 \} , where we note that the argument of the stat operator is polynomial [9, 19].58

The Schr\"odinger equation in the context of a Coulomb potential may be similarly59

addressed. In that case, it is particularly helpful to consider an extension of the60

space variable to a vector space over the complex field, say, x \in \BbbC n rather than61

x \in \BbbR n. More specifically, for x \in \BbbC n, this representation takes a general form62

V (x) =  - ( 32 )
3
2 \^\mu stat\alpha \in \scrA R\{ \alpha  - \alpha 3xT x

2 \} , where \scrA R .
=\{ \alpha = r[cos(\theta ) + i sin(\theta )] \in \BbbC | r \geq 63

0, \theta \in ( - \pi 
2 , \pi 

2 ]\} [3, 14]. In the simple one-dimensional case, the resulting function64

on \BbbC has a branch cut along the negative imaginary axis, and this generalizes to65

higher-dimensional cases in the natural way.66

Although stationarity-based representations for gravitational and Coulomb po-67

tentials are inside the integral in (1.1), they may be moved outside through the in-68

troduction of \alpha -valued processes; cf. [9, 19]. In particular, not only does one seek69

the stationary path for action J , but the action functional itself can be given as a70

stationary value of an integral of a polynomial, leading to an iterated-stat problem71

formulation for such TPBVPs. This may be exploited in the solution of TPBVPs in72

such systems (cf. [9, 18, 19]), which will be discussed further in section 5.73

It has also been demonstrated that this stationary-action approach may be ap-74

plied to TPBVPs for infinite-dimensional conservative systems described by classes of75

lossless wave equations; see, for example, [4, 5]. There, stat is used in the construction76

of fundamental solution groups for these wave equations by appealing to stationarity77

of action on longer horizons.78

Lastly, it has recently been demonstrated that stationarity may be employed to79

obtain a Feynman--Kac type of representation for solutions of the Schr\"odinger initial80

value problem for certain classes of initial conditions and potentials [3, 17]. As with81

the conservative system cases above, these representations are valid for indefinitely82

long duration problems, whereas with only the minimization operation, such repre-83

sentations are valid only on time intervals such that the action remains convex, which84

is always a bounded duration and potentially zero.85

In all of these examples, one obtains the stationary value of an action functional,86

where the action functional itself takes the form of a stationary value of a functional87

that is quadratic in the momentum (the u\cdot input in (1.1)) and cubic in the newly88

introduced potential energy parameterization variable (a time-dependent form of the89

\alpha parameter above). That is, the overall stationary value is obtained from iterated90
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staticization operations, where the outer stat is over a variable in which the functional91

is quadratic. Thus, if one can invert the order of the stat operations, then the inner92

stat operation results in a functional that is obtained as a solution of a differential93

Riccati equation (DRE). (It should be noted that this DRE must typically be propa-94

gated through past escape times, where this propagation may be efficiently performed95

through the use of what has been termed ``stat duality""; cf. [15].) Hence, after in-96

version of the order of the iterated stat operations, the problem may be reduced to97

a single stat operation such that the argument takes the form of a linear functional98

operating on a set of DRE solutions. Consequently, an issue of fundamental impor-99

tance regards conditions under which one may invert the order of stat operations in100

an iterated staticization.101

In section 2, the stat operator will be rigorously defined, and a general problem102

class along with some corresponding notation will be indicated. Then, in section103

3, a somewhat general condition will be indicated. Further, it will be shown that104

one may invert the order of staticization operations under that condition. This will105

be demonstrated by obtaining an equivalence between iterated staticization and full106

staticization over both variables together. Section 4 will present several classes of107

problems for which the general condition of section 3 holds. Finally, in section 5, a108

stationary-action application in astrodynamics will be discussed.109

2. Problem and stationarity definitions. Before the issue to be studied can110

be properly expressed, it is necessary to define stationarity and the stat operator.111

2.1. Stationarity definitions. As noted above, the motivation for this effort is112

the computation and propagation of stationary points of payoff functionals, which is113

unusual in comparison to the standard classes of problems in optimization (although114

one should note, for example, [6]). In analogy with the language for minimization115

and maximization, we will refer to the search for stationary points as ``staticization,""116

with these points being statica, in analogy with minima/maxima, and a single such117

point being a staticum in analogy with minimum/maximum. One might note here118

that the term staticization is being derived from a Latin root, staticus (presumably119

originating from the Greek statik\'os), in analogy with the Latin root maximus of120

``maximization."" We note that Ekeland [6] employed the term ``extremization"" for121

what is largely the same notion that is being referred to here as staticization but with122

a very different focus. We make the following definitions. Let \scrF denote either the123

real or complex field. Suppose \scrU is a normed vector space (over \scrF ) with \scrA \subseteq \scrU , and124

suppose G : \scrA \rightarrow \scrF . We will use the notation | \cdot | for both modulus and appropriate125

norm, where in particular we will not subscript the norm by the space when it can be126

deduced from context. We say \=u \in argstatu\in \scrA G(u)
.
= argstat\{ G(u) | u \in \scrA \} if \=u \in \scrA ,127

and either128

(2.1) lim sup
u\rightarrow \=u,u\in \scrA \setminus \{ \=u\} 

| G(u) - G(\=u)| 
| u - \=u| 

= 0129

or there exists \delta > 0 such that \scrA \cap B\delta (\=u) = \{ \=u\} (where B\delta (\=u) denotes the ball of130

radius \delta around \=u). If argstat\{ G(u) | u \in \scrA \} \not = \emptyset , we define the possibly set-valued131

stats operation by132

stats
u\in \scrA 

G(u)
.
= stats\{ G(u) | u \in \scrA \} .

=
\bigl\{ 
G(\=u)

\bigm| \bigm| \=u \in argstat\{ G(u) | u \in \scrA \} 
\bigr\} 
.(2.2)133

134

If argstat\{ G(u) | u \in \scrA \} = \emptyset , then statsu\in \scrA G(u) is undefined. Where applicable, we135

are also interested in a single-valued stat operation (note the absence of superscript s).136
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In particular, if there exists a \in \scrF such that statsu\in \scrA G(u) = \{ a\} , then statu\in \scrA G(u)
.
=137

a; otherwise, statu\in \scrA G(u) is undefined. At times, we may abuse notation by writing138

\=u = argstat\{ G(u) | u \in \scrA \} in the event that the argstat is the single point \{ \=u\} .139

In the case where \scrU is a Banach space and \scrA \subseteq \scrU is an open set, G : \scrA \rightarrow \scrF is140

Fr\'echet differentiable at \=u \in \scrA with continuous, linear DG(\=u) \in \scrL (\scrU ;\scrF ) if141

(2.3) lim
w\rightarrow 0, \=u+w\in \scrA \setminus \{ \=u\} 

| G(\=u+ w) - G(\=u) - [DG(\=u)]w| 
| w| 

= 0.142

The following is immediate from the above definitions.143

Lemma 2.1. Suppose \scrU is a Banach space, with open set \scrA \subseteq \scrU , and that G144

is Fr\'echet differentiable at \=u \in \scrA . Then, \=u \in argstat\{ G(y) | y \in \scrA \} if and only if145

DG(\=u) = 0.146

2.2. Problem definition. Throughout, let \scrU ,\scrV be Banach spaces. When \scrU is
also Hilbert, let the inner product be denoted by \langle \cdot , \cdot \rangle \scrU and similarly for \scrV . Let the
inner product on \scrU \times \scrV be denoted by \langle \cdot , \cdot \rangle \scrU \times \scrV . Let \scrA \subseteq \scrU and \scrB \subseteq \scrV be open.
Throughout, we assume

(A.1) G \in C2(\scrA \times \scrB ;\scrF ).

Let147

Dom( \=G1)
.
=

\bigl\{ 
u \in \scrA 

\bigm| \bigm| stat
v\in \scrB 

G(u, v) exists
\bigr\} 
, Dom( \=G2)

.
=
\bigl\{ 
v \in \scrB 

\bigm| \bigm| stat
u\in \scrA 

G(u, v) exists
\bigr\} 
,

(2.4)

148

\=G1(u)
.
= stat

v\in \scrB 
G(u, v) \forall u \in Dom( \=G1), \=G2(v)

.
= stat

u\in \scrA 
G(u, v) \forall v \in Dom( \=G2),149

\scrA 1(u)
.
= argstat

v\in \scrB 
G(u, v), \scrA 2(v)

.
= argstat

u\in \scrA 
G(u, v),150

\=\scrA 1 .
= argstat

u\in Dom( \=G1)

\=G1(u), \=\scrA 2 .
= argstat

v\in Dom( \=G2)

\=G2(v).151

152

We will discuss conditions under which153

(2.5) stat
u\in Dom( \=G1)

\=G1(u) = stat
(u,v)\in \scrA \times \scrB 

G(u, v) = stat
v\in Dom( \=G2)

\=G2(v).154

We will generally be concerned only with the left-hand equality in (2.5); obviously the
right-hand equality would be obtained analogously. We refer to the left-hand object
in (2.5) as an iterated stat operation, while the center object will be referred to as
a full stat operation. Although in some results, the existence of both the iterated
and full stat operations are obtained, many of the results will assume the existence
of one or both of these objects. We list the two potential assumptions below. In each
result to follow, we will indicate when one or both of these is utilized. The full stat
assumption is as follows:

(A.2f) Assume stat(u,v)\in \scrA \times \scrB G(u, v) exists.

Note that under assumption (A.2f), if (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v), then155

(2.6) \=v \in \scrA 1(\=u) and \=u \in \scrA 2(\=v).156

The iterated stat assumption is as follows:

(A.2i) Assume statu\in Dom( \=G1)
\=G1(u) exists.
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Note that under assumption (A.2i), if \=u \in \=\scrA 1, then157

(2.7) there exists \=v \in \scrA 1(\=u) and stat
u\in Dom( \=G1)

\=G1(u) = G(\=u, \=v).158

We will first obtain (2.5) under some general assumptions. After that, we will159

demonstrate that these assumptions are satisfied under certain other sets of assump-160

tions, where the latter sets describe more commonly noted classes of functions (specif-161

ically, quadratic, semiquadratic, and Morse functions). Again, we mainly address only162

the left-hand equality of (2.5); the right-hand equality is handled similarly.163

3. The general case. Given \scrC \subseteq \scrV and \^v \in \scrV , we let d(\^v, \scrC ) .
= infv\in \scrC | v  - \^v| ,

and use this distance notation more generally throughout. In addition to (A.1), we
assume the following throughout this section.

(A.3)

If (A.2f) is satisfied, then for any (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v), there

exist \delta = \delta (\=u, \=v) > 0 and K = K(\=u, \=v) < \infty such that d(\=v,\scrA 1(u)) \leq 
K | \=u - u| \forall u \in Dom( \=G1) \cap B\delta (\=u).

We note that (A.3) is trivially satisfied in the case that there exists \delta > 0 such that164

B\delta (\=u) \cap Dom( \=G1) = \emptyset .165

Lemma 3.1. Assume (A.2f), and let (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v). If \=u \in 166

Dom( \=G1), then \=u \in \=\scrA 1 and G(\=u, \=v) \in stats
u\in Dom( \=G1)

\=G1(u).167

Proof. Let (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v), and let R
.
= 1 \wedge d

\bigl( 
(\=u, \=v), (\scrA \times \scrB )c

\bigr) 
.168

By assumption (A.3), there exist \delta \in (0, R/2) and K < \infty such that for all u \in 169

Dom( \=G1) \cap B\delta (\=u) and all \epsilon \in (0, 1), there exists v \in \scrA 1(u) such that170

(3.1) | v  - \=v| \leq (K + \epsilon )| u - \=u| \leq (K + \epsilon )\delta .171

Let \~u \in Dom( \=G1) \cap B\delta /(K+1)(\=u). By (2.6),172

| stat
v\in \scrB 

G(\~u, v) - stat
v\in \scrB 

G(\=u, v)| = | stat
v\in \scrB 

G(\~u, v) - G(\=u, \=v)| ,173

and by (3.1), there exists \~v = \~v(\=v) \in B\delta (\=v) such that this is

= | G(\~u, \~v) - G(\=u, \=v)| .(3.2)174
175

Let f \in C\infty \bigl( 
( - 3/2, 3/2);\scrA \times \scrB 

\bigr) 
be given by f(\lambda ) =

\bigl( 
\=u+ \lambda (\~u - \=u), \=v+ \lambda (\~v - \=v)

\bigr) 
176

for all \lambda \in ( - 3/2, 3/2). Define W 0(\lambda ) = [G \circ f ](\lambda ) for all \lambda \in ( - 3/2, 3/2), and note177

that by assumption (A.1) and standard results, W 0 \in C2
\bigl( 
( - 3/2, 3/2);\scrF 

\bigr) 
. Similarly,178

let W 1(\lambda ) = [(Gu, Gv) \circ f ](\lambda ) =
\bigl( 
Gu(f(\lambda )), Gv(f(\lambda ))

\bigr) 
. By assumption (A.1) and179

standard results, W 1 \in C1
\bigl( 
( - 3/2, 3/2);\scrU \prime \times \scrV \prime \bigr) , where \scrU \prime ,\scrV \prime denote the dual spaces180

of \scrU ,\scrV . Then, by a version of the mean value theorem [1, Theorem 12.6] (which is181

included in Appendix A for easy reference), there exists \lambda 0 \in (0, 1) such that182

| G(\~u, \~v) - G(\=u, \=v)| = | W 0(1) - W 0(0)| \leq 
\bigm| \bigm| \bigm| dG

d(u, v)
(f(\lambda 0))

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| df
d\lambda 

(\lambda 0)
\bigm| \bigm| \bigm| 183

=
\bigm| \bigm| \bigl( Gu(u0, v0), Gv(u0, v0)

\bigr) \bigm| \bigm| \bigm| \bigm| (\~u - \=u, \~v  - \=v)
\bigm| \bigm| ,184

where (u0, v0)
.
= f(\lambda 0) and which, by (3.1),

\leq 
\bigm| \bigm| \bigl( Gu(u0, v0), Gv(u0, v0)

\bigr) \bigm| \bigm| \sqrt{} 1 + (K + 1)2| \~u - \=u| .(3.3)185
186
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Again by the aforementioned mean value theorem, there exists \lambda 1 \in (0, \lambda 0) such187

that188 \bigm| \bigm| \bigl( Gu(u0, v0), Gv(u0, v0)
\bigr) 
 - 
\bigl( 
Gu(\=u, \=v), Gv(\=u, \=v)

\bigr) \bigm| \bigm| = | W 1(\lambda 0) - W 1(0)| 189

\leq 
\bigm| \bigm| \bigm| d2G

d(u, v)
2 (f(\lambda 1))

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| df
d\lambda 

(\lambda 1)
\bigm| \bigm| \bigm| | \lambda 1| \leq 

\bigm| \bigm| \bigm| d2G

d(u, v)
2 (u1, v1)

\bigm| \bigm| \bigm| \bigm| \bigm| (u1  - \=u, v1  - \=v)
\bigm| \bigm| ,190

where (u1, v1)
.
= f(\lambda 1), and this is

\leq 
\bigm| \bigm| \bigm| d2G

d(u, v)
2 (f(\lambda 1))

\bigm| \bigm| \bigm| \sqrt{} 1 + (K + 1)2| \~u - \=u| .191

192

Recalling (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v), this implies193

(3.4)
\bigm| \bigm| \bigl( Gu(u0, v0), Gv(u0, v0)

\bigr) \bigm| \bigm| \leq \bigm| \bigm| \bigm| d2G

d(u, v)
2 (f(\lambda 1))

\bigm| \bigm| \bigm| \sqrt{} 1 + (K + 1)2| \~u - \=u| .194

Combining (3.3) and (3.4) yields

| G(\~u, \~v) - G(\=u, \=v)| \leq 
\bigm| \bigm| \bigm| d2G

d(u, v)
2 (f(\lambda 1))

\bigm| \bigm| \bigm| [1 + (K + 1)2] | \~u - \=u| 2.

Let K1
.
=

\bigm| \bigm| d2G
d(u,v)2

(\=u, \=v)
\bigm| \bigm| . By (A.1), there exists \^\delta \in (0, \delta /(K + 1)) such that for all195

(u, v) \in B\^\delta (\=u, \=v),
\bigm| \bigm| d2G
d(u,v)2

(u, v)
\bigm| \bigm| \leq K1 + 1. Hence, there exists \=C < \infty such that196

(3.5) | G(\~u, \~v) - G(\=u, \=v)| \leq \=C| \~u - \=u| 2 \forall \~u \in Dom( \=G1) \cap B\^\delta /(K1+1)(\=u).197

Combining (3.2) and (3.5) and noting that \~u \in Dom( \=G1)\cap B\^\delta /(K+1)(\=u) was arbitrary,198

one has | \=G1(u) - \=G1(\=u)| /| u - \=u| \leq \=C| u - \=u| for all u \in [Dom( \=G1)\cap B\^\delta /(K1+1)(\=u)]\setminus \{ \=u\} ,199

which implies \=u \in \=\scrA 1 by definition. The second assertion follows easily.200

Theorem 3.2. Assume (A.2f), and let (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v). Assume

(A.2i) and that \=u \in Dom( \=G1). Then

stat
u\in Dom( \=G1)

\=G1(u) = G(\=u, \=v) = stat
(u,v)\in \scrA \times \scrB 

G(u, v).

Proof. The assertions follow directly from the assumption, (A.2f), and Lemma201

3.1.202

4. Some specific cases. We examine several classes of functionals that fit203

within the general class above.204

4.1. The quadratic case. Throughout this section, we take \scrA = \scrU and \scrB = \scrV ,205

where \scrU ,\scrV are Hilbert. Let206

G(u, v) = c
2 + \langle w, u\rangle \scrU + \langle y, v\rangle \scrV + 1

2 \langle \=B1u, u\rangle \scrU + \langle \=B2v, u\rangle \scrU + 1
2 \langle \=B3v, v\rangle \scrV 207

= c
2 + \langle w, u\rangle \scrU + \langle y, v\rangle \scrV + 1

2 \langle \=B1u, u\rangle \scrU + \langle \=B\prime 
2u, v\rangle \scrV + 1

2 \langle \=B3v, v\rangle \scrV (4.1)208
209

for all u \in \scrU and v \in \scrV , where \=B1 \in \scrL (\scrU ;\scrU ), \=B2 \in \scrL (\scrV ;\scrU ), \=B3 \in \scrL (\scrV ;\scrV ), w \in \scrU ,210

y \in \scrV , and c \in \scrF , where \scrL (\cdot , \cdot ) generically denotes a space of bounded linear operators211

and \=B1, \=B3 are self-adjoint and closed. We present results under both the cases of212

(A.2f) and (A.2i).213
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4.1.1. When the full staticization is known to exist. We suppose (A.2f),214

and let (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v). This subcase is fully covered in [15], and215

hence here, we will mainly only indicate an additional approach. We begin by noting216

the following, which follows directly from (4.1) and Lemma 2.1.217

Lemma 4.1. Let \^u \in \scrA . Then \^v \in \scrA 1(\^u) if and only if \=B\prime 
2\^u+ \=B3\^v + y = 0.218

Under condition (A.2f), the following is obtained in [15, Section 4.2], and those219

proofs are not repeated here. We note, however, that a proof of the second assertion220

of Lemma 4.2 is a subcase of the proof of the first assertion of Lemma 4.8 below,221

which covers a slightly more general class.222

Lemma 4.2. statu\in Dom( \=G1)
\=G1 exists (i.e., (A.2i) is satisfied), and \=u \in Dom( \=G1).223

Lemma 4.3. Assumption (A.3) is satisfied.224

Proof. We suppose Dom( \=G1) \not = \{ \=u\} ; otherwise the result is trivial. Let \^u \in 225

Dom( \=G1)\setminus \{ \=u\} . By Lemma 4.1, \^v \in \scrA 1(\^u) if and only if \=B\prime 
2\^u+

\=B3\^v+y = 0. However,226

by (2.6), \=v \in \scrA 1(\=u), and hence by Lemma 4.1, \=B\prime 
2\=u+ \=B3\=v + y = 0. Combining these227

two inequalities, we see that \^v \in \scrA 1(\^u) if and only if \=B\prime 
2(\^u  - \=u) + \=B3(\^v  - \=v) = 0.228

We take \^v
.
= \=v - \=B\#

3
\=B\prime 
2(\^u - \=u), where the \# superscript indicates the Moore--Penrose229

pseudoinverse, where existence follows by the closedness of \=B3; cf. [2, 22]. Then230

\^v \in \scrA 1(\^u) and | \^v  - \=v| \leq | \=B\#
3 | | \=B\prime 

2| | \^u  - \=u| , where the induced norms on the operators231

are employed, which yields the desired assertion.232

By Lemmas 4.2 and 4.3 and Theorem 3.2, one has the following.233

Theorem 4.4. Let (\=u, \=v) denote any element of argstat(u,v)\in \scrA \times \scrB G(u, v), and as-234

sume \=u \in Dom( \=G1). Then235

(4.2) stat
u\in Dom( \=G1)

\=G1(u) = G(\=u, \=v) = stat
(u,v)\in \scrA \times \scrB 

G(u, v).236

4.1.2. When the iterated staticization is known to exist. We suppose237

(A.2i), and let \=u \in \=\scrA 1. We will find that stat(u,v)\in \scrA \times \scrB G(u, v) exists and obtain the238

equivalence between full and iterated staticization. We begin with a lemma (which is239

similar to Lemma 10 of [15]).240

Lemma 4.5. Given any \~u \in \scrA , \scrA 1(\~u) is an affine subspace, and further, if \~u \in 241

Dom( \=G1), then \scrA 1(\~u) is nonempty.242

Proof. By Lemma 4.1 v \in \scrA 1(\~u) if and only if \=B\prime 
2\^u + \=B3v + y = 0, which yields243

the assertions.244

We remark that, by definition, for any \~u \in Dom( \=G1), G(\~u, \cdot ) is constant on the245

affine subspace \scrA 1(\~u).246

Theorem 4.6. Assume (A.2i), and suppose \=u \in \=\scrA 1. Let \=v be as given in (2.7).247

Then, stat(u,v)\in \scrA \times \scrB G(u, v) exists, and stat(u,v)\in \scrU \times \scrV G(u, v) = G(\=u, \=v)248

= statu\in Dom( \=G1)
\=G1(u).249

Proof. Assume (A.2i), and let \=u \in \=\scrA 1. Let \=v be as given in (2.7). First, note that250

the assertion that G(\=u, \=v) = statu\in Dom( \=G1)
\=G1(u) will follow from the other assertions251

and (2.7). By Lemma 4.1, v \in \scrA 1(\=u) if and only if \=B\prime 
2\=u + \=B3v + y = 0. For u \in 252

Dom( \=G1), let253

\u v(u)
.
= \=v  - \=B\#

3

\bigl[ 
\=B\prime 
2u+ y  - ( \=B\prime 

2\=u+ y)
\bigr] 
,(4.3)254

and note that
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\u v(\=u) = \=v.(4.4)255
256

Let \~v
.
=  - \=B\#

3 [ \=B\prime 
2\=u+ y], and note that as \=v and \~v are both in \scrA 1(\=u), by Lemma 4.1,257

(4.5) 0 = \=B3[\=v  - \~v] = \=B3

\bigl[ 
\=v + \=B\#

3 ( \=B\prime 
2\=u+ y)

\bigr] 
.258

Then using (4.3) and (4.5), we see that for u \in Dom( \=G1),259

\=B3\u v(u) + \=B\prime 
2u+ y = \=B3

\bigl[ 
\=v  - \=B\#

3 ( \=B\prime 
2u - \=B\prime 

2\=u)
\bigr] 
+ \=B\prime 

2u+ y260

= \=B3

\bigl[ 
 - \=B\#

3 ( \=B\prime 
2u+ y)

\bigr] 
+ \=B\prime 

2u+ y,261

which, by definition of the pseudoinverse and the fact that \=B\prime 
2\=u+ y \in Range( \=B3) for

u \in Dom( \=G1),

= 0.262
263

Hence, \u v(u) \in \scrA 1(u) \forall u \in Dom( \=G1), and consequently,264

(4.6) \=G1(u) = G(u, \u v(u)) \forall u \in Dom( \=G1).265

Then, by (A.2i) and the choice of \=u,266

0 =
d \=G1

du
(\=u),267

which by (4.6), (A.1) and the chain rule,

= Gu(\=u, \u v(\=u)) +Gv(\=u, \u v(\=u))
d\u v

du
(\=u),268

which, by (4.4) and our choice of \=v,

= Gu(\=u, \=v) +Gv(\=u, \=v)
d\u v

du
(\=u) = Gu(\=u, \=v).269

270

From this and the choice of \=v, we see that271

(4.7) (\=u, \=v) \in argstat
(u,v)\in \scrA \times \scrB 

G(u, v) and G(\=u, \=v) \in stats
(u,v)\in \scrA \times \scrB 

G(u, v).272

Now suppose there exists (\^u, \^v) \in argstat(u,v)\in \scrA \times \scrB G(u, v)\setminus \{ (\=u, \=v)\} . This implies273

(4.8) Gu(\^u, \^v) = 0 and Gv(\^u, \^v) = 0,274

and consequently,275

(4.9) \^v \in \scrA 1(\^u) and \=G1(\^u) = G(\^u, \^v).276

Let277

\u v \prime (u)
.
= \^v  - \=B\#

3

\bigl[ 
\=B\prime 
2u+ y  - ( \=B\prime 

2\^u+ y)
\bigr] 
\forall u \in Dom( \=G1),(4.10)278

and note that

\u v \prime (\^u) = \^v.(4.11)279
280

Let \^\^v
.
=  - \=B\#

3 ( \=B\prime 
2\^u+y), and note that \^v, \^\^v \in \scrA 1(\^u). Similar to the above, we see that281

(4.12) 0 = \=B3(\^v  - \^\^v) = \=B3

\bigl[ 
\^v + \=B\#

3 ( \=B\prime 
2\^u+ y)

\bigr] 
.282
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Then, again similar to the above, using (4.12), the definition of the pseudoinverse,283

and \=B\prime 
2\=u+ y \in Range( \=B3), we see that284

\=B3\u v
\prime (u) + \=B\prime 

2u+ y = \=B3

\bigl[ 
\^v  - \=B\#

3

\bigl( 
\=B\prime 
2u+ y  - ( \=B\prime 

2\^u+ y)
\bigr) \bigr] 

+ \=B\prime 
2u+ y285

= \=B3

\bigl[ 
\^v  - \=B\#

3 ( \=B\prime 
2u+ y)

\bigr] 
+ \=B\prime 

2u+ y = 0,286
287

which implies that \u v \prime (u) \in \scrA 1(u) for all u \in Dom( \=G1). Hence,288

(4.13) \=G1(u) = G(u, \u v \prime (u)) \forall u \in Dom( \=G1).289

By (4.10), (4.13), (A.1), and the chain rule,290

d \=G1

du
(\^u) = Gu(\^u, \u v

\prime (\^u)) +Gv(\^u, \u v
\prime (\^u))

d\u v \prime 

du
(\^u),291

which, by (4.8) and (4.11),

= Gu(\^u, \^v) +Gv(\^u, \^v)
d\u v \prime 

du
(\^u) = 0,292

293

which implies that \^u \in \=\scrA 1. Using this, (4.9), and (A.2i), we see that G(\^u, \^v) =294

G(\=u, \=v). As (\^u, \^v) \in argstat(u,v)\in \scrA \times \scrB G(u, v) \setminus \{ (\=u, \=v)\} was arbitrary, we have the295

desired result.296

4.2. The semiquadratic case. Throughout this section, we take \scrA \subseteq \scrU and297

\scrB = \scrV , with \scrV being Hilbert. Let298

G(u, v)
.
= f1(u) + \langle f2(u), v\rangle \scrV + 1

2 \langle \=B3(u)v, v\rangle \scrV (4.14)299
300

for all u \in \scrA and v \in \scrV , where f1 \in C2(\scrA ;\scrF ), f2 \in C2(\scrA ;\scrV ), and \=B3 \in C2(\scrA ;\scrL (\scrV ,\scrV ))301

and \=B3(u) is self-adjoint and closed for all u \in \scrA . For each u \in \scrA , let \=B\#
3 (u)

.
=302

[ \=B3(u)]
\# denote the Moore--Penrose pseudoinverse of \=B3(u) (where the existence of303

such follows from the closedness of \=B3(u)). Assume that there exists a constant D > 0304

such that | \=B\#
3 (u)| \leq D for all u \in Dom( \=G1). Similar to Lemma 4.1, the next lemma305

follows directly from (4.14) and Lemma 2.1.306

Lemma 4.7. Let \^u \in \scrA . Then \^v \in \scrA 1(\^u) if and only if f2(\^u) + \=B3(\^u)\^v = 0.307

4.2.1. When the full staticization is known to exist.308

Lemma 4.8. Assume (A.2f), and let (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v). Then \=u \in 309

Dom( \=G1), and assumption (A.3) is satisfied.310

Proof. We begin with the first assertion. Let (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v).311

Then, by definition of stat,312

(4.15) \=B3(\=u)\=v + f2(\=u) = 0.313

For any v \in \scrV ,314

G(\=u, v) - G(\=u, \=v) = \langle f2(\=u), v  - \=v\rangle \scrV + 1
2 \langle \=B3(\=u)v, v\rangle \scrV  - 1

2 \langle \=B3(\=u)\=v, \=v\rangle \scrV ,315

and by the self-adjointness of \=B3(\=u) and (4.15), one finds

= \langle f2(\=u), v  - \=v\rangle \scrV + \langle \=B3(\=u)\=v, v  - \=v\rangle \scrV + 1
2 \langle \=B3(\=u)(v  - \=v), v  - \=v\rangle \scrV 316

= 1
2 \langle \=B3(\=u)(v  - \=v), v  - \=v\rangle \scrV .(4.16)317

318
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Now suppose there exists \^v \not = \=v such that \^v \in argstatv\in \scrV G(\=u, v). This implies319

\=B3(\=u)\^v + f2(\=u) = 0, and similar to the case for \=v, one sees that for all v \in \scrV ,320

(4.17) G(\=u, v) - G(\=u, \^v) = 1
2 \langle \=B3(\=u)(v  - \^v), v  - \^v\rangle \scrV .321

Taking v = \^v in (4.16) and v = \=v in (4.17) yields G(\=u, \=v) = G(\=u, \^v). As \^v \in \scrV was322

arbitrary, we have the first assertion.323

Next, suppose Dom( \=G1) \not = \{ \=u\} ; otherwise the result is trivial. Choose any \delta > 0324

such that Dom( \=G1) \cap (B\delta (\=u)\setminus \{ \=u\} ) \not = \emptyset . Let \^u \in [Dom( \=G1) \cap B\delta (\=u)] \setminus \{ \=u\} . Let325

\^v = \=v  - \=B\#
3 (\^u)f2(\^u) - \=B\#

3 (\^u) \=B3(\^u)\=v. Note that as f2(\^u) \in Range( \=B3(\^u)),326

\=B3(\^u)\^v + f2(\^u) = \=B3(\^u)[\=v  - \=B\#
3 (\^u)f2(\^u) - \=B\#

3 (\^u) \=B3(\^u)\=v] + f2(\^u)327

= \=B3(\^u)\=v  - f2(\^u) - \=B3(\^u)\=v + f2(\^u) = 0.328
329

Therefore, \^v \in \scrA 1(\^u) by Lemma 4.7. We have330

| \^v  - \=v| =
\bigm| \bigm| \=B\#

3 (\^u)f2(\^u) + \=B\#
3 (\^u) \=B3(\^u)\=v

\bigm| \bigm| ,331

and noting that by Lemma 4.7, \=B3(\=u)\=v + f2(\=u) = 0, this is

=
\bigm| \bigm| \=B\#

3 (\^u)[f2(\^u) - f2(\=u) - \=B3(\=u)\=v + \=B3(\^u)\=v]
\bigm| \bigm| 332

\leq | \=B\#
3 (\=u)| | f2(\^u) - f2(\=u) + ( \=B3(\^u) - \=B(\=u))\=v| ,333

and letting Kf
.
= max\lambda \in [0,1]

\bigm| \bigm| df2
du (\lambda \^u+(1 - \lambda )\=u)

\bigm| \bigm| and KB
.
= max\lambda \in [0,1]

\bigm| \bigm| d \=B3

du (\lambda \^u+(1 - 
\lambda )\=u)

\bigm| \bigm| and using the mean value theorem [1, Theorem 12.6] (see also Appendix A), we

see that this is

\leq D
\bigl[ 
Kf | \^u - \=u| +KB | \=v| | \^u - \=u| 

\bigr] 
,334

335

which yields (A.3).336

Theorem 4.9. Assume (A.2f), and let (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v). Also
assume (A.2i). Then

stat
u\in Dom( \=G1)

\=G1(u) = G(\=u, \=v) = stat
(u,v)\in \scrA \times \scrB 

G(u, v).

Proof. This follows immediately from Lemma 4.8 and Theorem 3.2.337

In order to remove the assumption in Theorem 4.9 that statu\in Dom( \=G1)
\=G1(u) exists338

(i.e., (A.2i)), we will use an assumption that is more easily verified. The following339

lemma and theorem perform that replacement.340

Lemma 4.10. Suppose f2(u) \in Range[ \=B3(u)] for all u \in Dom( \=G1). Suppose \^u \in 341

\=\scrA 1, and let \^v \in \scrA 1(\^u). Then Gu(\^u, \^v) = 0.342

Proof. By assumption and Lemma 4.7,343

(4.18) Gv(\^u, \^v) = 0.344

Suppose345

(4.19) Gu(\^u, \^v) \not = 0.346

Then there exists \epsilon > 0, sequence \{ un\} with elements un \in \scrA \setminus \{ \^u\} and un \rightarrow \^u, and347

\~n = \~n(\epsilon ) \in \BbbN such that348

(4.20) | G(u\~n, \^v) - G(\^u, \^v)| > \epsilon | un  - \^u| \forall n \geq \~n.349
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Let350

(4.21) vn
.
= \^v  - \=B\#

3 (un)[f2(un) + \=B3(un)\^v] \forall n \in \BbbN .351

Then using Lemma 4.7,352

| vn  - \^v| \leq | \=B\#
3 (un)| 

\bigm| \bigm| f2(un) + \=B3(un)\^v  - f2(\^u) - \=B3(\^u)\^v
\bigm| \bigm| ,353

which, by assumption,

\leq D
\bigl( 
| f2(un) - f2(\^u)| + | \=B3(un) - \=B3(\^u)| | \^v| 

\bigr) 
.(4.22)354

355

Now, by mean value theorem [1, Theorem 12.6] (see also Appendix A), for each356

n \in \BbbN , there exist \lambda n, \^\lambda n \in [0, 1] such that357

| f2(un) - f2(\^u)| \leq 
\bigm| \bigm| \bigm| df2
du

(\lambda nun + (1 - \lambda n)\^u)
\bigm| \bigm| \bigm| | un  - \^u| ,358

| \=B3(un) - \=B3(\^u)| \leq 
\bigm| \bigm| \bigm| d \=B3

du
(\^\lambda nun + (1 - \^\lambda n)\^u)

\bigm| \bigm| \bigm| | un  - \^u| ,359

360

and hence by the smoothness of f2, \=B3 and (4.22), there exist K < \infty and \^n \in \BbbN such361

that362

(4.23) | vn  - \^v| \leq DK(1 + | \^v| )| un  - \^u| \forall n \geq \^n.363

Also, using (4.21),364

\=B3(un)vn + f2(un) = \=B3(un)
\bigl[ 
\^v  - \=B\#

3 (un)f2(un) - \=B\#
3 (un) \=B3(un)\^v

\bigr] 
+ f2(un),365

which, by assumption and the properties of the pseudoinverse,

= \=B3(un)\^v  - f2(un) - \=B3(un)\^v + f2(un) = 0.(4.24)366
367

By (4.24) and Lemma 4.7, vn \in \scrA 1(un) for all n \in \BbbN . Using this, recalling that we368

took \^v \in \scrA 1(\^u), and noting the semiquadratic form, we see that369

| G(un, vn) - G(\^u, \^v)| = | \=G1(un) - \=G1(\^u)| ,370

and by the assumption that \^u \in \=\scrA 1, there exists \=n = \=n(\epsilon ) such that for all n \geq \=n,

<
\epsilon 

2
| un  - \^u| ,371

which implies

| G(un, vn) - G(un, \^v) +G(un, \^v) - G(\^u, \^v)| < \epsilon 

2
| un  - \^u| \forall n \geq \=n,372

and hence

| G(un, \^v) - G(\^u, \^v)| < \epsilon 

2
| un  - \^u| + | G(un, vn) - G(un, \^v)| \forall n \geq \=n.(4.25)373

374

Now by (4.14),375

G(un, \^v) - G(un, vn) = \langle f2(un), \^v  - vn\rangle \scrV + 1
2 \langle \=B3(un)\^v, \^v\rangle \scrV  - 1

2 \langle \=B3(un)vn, vn\rangle \scrV ,376

which, by (4.21),

= \langle f2(un), \=B
\#
3 (un)[f2(un) + \=B3(un)\^v]\rangle \scrV + 1

2 \langle \=B3(un)\^v, \^v\rangle \scrV  - 1
2 \langle \=B3(un)vn, vn\rangle \scrV ,377

and by Lemma 4.7 and the self-adjointness of \=B3, this is

= \langle  - \=B3(un)vn, \=B
\#
3 (un) \=B3(un)(\^v  - vn)]\rangle \scrV + 1

2 \langle \=B3(un)\^v, \^v\rangle \scrV  - 1
2 \langle \=B3(un)vn, vn\rangle \scrV ,378

= \langle \=B3(un)(\^v  - vn), (\^v  - vn)\rangle \scrV .
(4.26)

379
380
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Applying (4.23) in (4.26), we see that there exists K1 < \infty such that | G(un, \^v)  - 381

G(un, vn)| \leq K1| un  - \^u| 2 for all n \geq \^n, and consequently, there exists \=n1 = \=n1(\epsilon ) \in 382

(\^n,\infty ) such that383

(4.27) | G(un, \^v) - G(un, vn)| <
\epsilon 

2
| un  - \^u| \forall n \geq \=n1.384

By (4.25) and (4.27),385

| G(un, \^v) - G(\^u, \^v)| < \epsilon | un  - \^u| \forall n \geq \=n \wedge \=n1.(4.28)386
387

However, (4.28) contradicts (4.20), and consequently, Gu(\^u, \^v) = 0.388

Theorem 4.11. Assume (A.2f), and let (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v). Also

assume f2(u) \in Range[ \=B3(u)] for all u \in Dom( \=G1). Then

stat
u\in Dom( \=G1)

\=G1(u) = G(\=u, \=v) = stat
(u,v)\in \scrA \times \scrB 

G(u, v).

Proof. Suppose \^u \in \=\scrA 1, and let \^v \in \scrA 1(\^u). Then Gv(\^u, \^v) = 0, and by Lemma389

4.10, Gu(\^u, \^v) = 0. These imply (\^u, \^v) \in argstat(u,v)\in \scrA \times \scrV G(u, v), and hence, by390

the assumption of the subsection, G(\^u, \^v) = G(\=u, \=v). By this and the choice of \^v,391

\=G1(\^u) = G(\=u, \=v). As \^u \in \=\scrA 1 was arbitrary, statu\in Dom( \=G1)
\=G1(u) exists. The assertion392

then follows by Theorem 4.9.393

4.2.2. When the iterated staticization is known to exist. The case where394

the iterated staticization is known to exist appears to also require an additional as-395

sumption.396

Theorem 4.12. Assume (A.2i), and let \=u \in \=\scrA 1. Also assume that f2(u) \in 
Range[ \=B3(u)] for all u \in Dom( \=G1). Then stat(u,v)\in \scrA \times \scrB G(u, v) exists, and

stat
u\in Dom( \=G1)

\=G1(u) = G(\=u, \=v) = stat
(u,v)\in \scrA \times \scrB 

G(u, v).

Proof. Note that by assumption and Lemma 4.7, Dom( \=G1) = \scrA . Let \=u \in 
argstatu\in Dom( \=G1)

\=G1(u), and let \=v be as in (2.7). By definition and Lemma 4.10,
Gv(\=u, \=v) = 0 and Gu(\=u, \=v) = 0, which implies

(\=u, \=v) \in argstat
(u,v)\in \scrA \times \scrB 

G(u, v) and G(\=u, \=v) \in stats
(u,v)\in \scrA \times \scrB 

G(u, v).

Now suppose there exists (\^u, \^v) \in argstat(u,v)\in \scrA \times \scrB G(u, v)\setminus \{ (\=u, \=v)\} . This implies397

Gu(\^u, \^v) = 0, Gv(\^u, \^v) = 0, \^v \in \scrA 1(\^u), and \=G1(\^u) = G(\^u, \^v).(4.29)398
399

Let400

(4.30) \u v(u)
.
= \^v  - \=B\#

3 (u)f2(u) - \=B\#
3 (u) \=B3(u)\^v \forall u \in \scrA ,401

and note that \u v(\^u) = \^v. Also note that by (4.30), the assumptions, and properties of402

the pseudoinverse,403

\=B3(u)\u v(u) + f2(u) = \=B3(u)\^v  - f2(u) - \=B3(u)\^v + f2(u) = 0,404
405
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which implies that \u v(u) \in \scrA 1(u) for all u \in \scrA . Hence, \=G1(u) = G(u, \u v(u)) for all406

u \in \scrA . Note that407

| \=G1(u) - \=G1(\^u)| = | G(u, \u v(u)) - G(\^u, \^v)| \leq | G(u, \u v(u)) - G(u, \^v)| +| G(u, \^v) - G(\^u, \^v)| ,408

and note that by (4.29), given \epsilon > 0, there exists \^\delta 1 = \^\delta 1(\epsilon ) > 0 such that, for all

| u - \^u| < \^\delta 1,

\leq \epsilon 

2
| u - \^u| + | G(u, \u v(u)) - G(u, \^v)| .

(4.31)

409

410

Also, similar to the estimate in the proof of Lemma 4.10, we find that there exists
\^\delta 2 = \^\delta 2(\epsilon ) > 0 such that

| G(u, \u v(u)) - G(u, \^v)| < \epsilon 

2
| u - \^u| \forall | u - \^u| < \^\delta 2.

Using this in (4.31), we see that411

(4.32) | \=G1(u) - \=G1(\^u)| < \epsilon | u - \^u| \forall | u - \^u| < \^\delta 1 \wedge \^\delta 2.412

Hence, d \=G1

du (\^u) = 0, which implies that \^u \in \=\scrA 1. Using this and (A.2i), we see that413

G(\^u, \^v) = G(\=u, \=v). As (\^u, \^v) \in argstat(u,v)\in \scrA \times \scrB G(u, v) \setminus \{ (\=u, \=v)\} was arbitrary, we414

have the desired result.415

4.3. The uniformly locally Morse case. Throughout this section, we will416

assume that G is uniformly locally Morse in v in the following sense. We assume417

that for all (\^u, \^v) \in \scrA \times \scrB such that Gv(\^u, \^v) = 0, there exist \~\epsilon = \~\epsilon (\^u, \^v) > 0 and418

\~K = \~K(\^u, \^v) < \infty such that Gvv(u, v) is invertible with
\bigm| \bigm| [Gvv(u, v)]

 - 1
\bigm| \bigm| \leq \~K for all419

(u, v) \in B\~\epsilon (\^u, \^v). We also assume that Guv(u, v) is bounded on bounded sets.420

4.3.1. When the full staticization is known to exist. We suppose (A.2f),421

and let (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v). We will find that (A.3) holds and that422

statu\in Dom( \=G1)
\=G1(u) exists. We will then obtain the equivalence between full and423

iterated staticization.424

Lemma 4.13. Assume (A.2f), and let (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v). There

exist \epsilon , \delta > 0 and \u v \in C1(B\epsilon (\=u);\scrB \cap B\delta (\=v)) such that \u v(\=u) = \=v, Gv(u, \u v(u)) = 0, and

d\u v

du
(u) =  - 

\bigl[ 
Gvv(u, v)

\bigm| \bigm| 
(u,\u v(u))

\bigr]  - 1
Guv(u, v)

\bigm| \bigm| 
(u,\u v(u))

for all u \in B\epsilon (\=u).425

Proof. The first two assertions are simply the implicit mapping theorem; cf. [12].426

The final assertion then follows from an application of the chain rule; that is, noting427

that Gv(u, \u v(u)) = 0 on B\epsilon (\=u),428

0 =
dGv(u, \u v(u))

du
= Guv(u, v)

\bigm| \bigm| 
(u,\u v(u))

+Gvv(u, v)
\bigm| \bigm| 
(u,\u v(u))

d\u v

du
(u) \forall u \in B\epsilon (\=u).

429

By Lemma 4.13 and the definition of Dom( \=G1),430

(4.33) \=G1(u) = stat
v\in \scrB 

G(u, v) = G(u, \u v(u)) \forall u \in B\epsilon (\=u) \cap Dom( \=G1).431

Then, by (4.33), the chain rule, (A.1), and Lemma 4.13,432

(4.34) \=G1(\cdot ) \in C1(B\epsilon (\=u) \cap Dom( \=G1);\scrF ).433
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Lemma 4.14. Assume (A.2f), and let (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v). Then434

(A.3) is satisfied. That is, there exists K < \infty and \delta \in (0, \epsilon ) such that | \u v(u) - \u v(\=u)| =435

| \u v(u) - \=v| \leq K| u - \=u| for all u \in B\delta (\=u) \cap Dom( \=G1).436

Proof. By Lemma 4.13, d\u v
du (\cdot ) is continuous on B\epsilon (\=u) \cap Dom( \=G1). Further, by

the final assertion of Lemma 4.13, the uniformly locally Morse assumption, and the
boundedness assumption of the lemma,\bigm| \bigm| \bigm| d\u v

du
(u)

\bigm| \bigm| \bigm| = \bigm| \bigm| \bigl[ Gvv(u, v)
\bigm| \bigm| \bigm| 
(u,\u v(u))

\bigr]  - 1\bigm| \bigm| \bigm| \bigm| Guv(u, v)
\bigm| \bigm| \bigm| 
(u,\u v(u))

\bigm| \bigm| \leq \~K \^K,

where \^K is a bound on | Guv(u, \u v(u))| (u,\u v(u))| over B\delta (\=u). Hence, by an application of437

the mean value theorem, we obtain the asserted bound.438

By Lemma 4.14, we see that one may apply Theorem 3.2 if \=u \in Dom( \=G1). This439

implies that the equivalence of stat and iterated stat holds under the assumption of440

existence of the latter. We proceed to obtain this existence.441

Lemma 4.15. Assume (A.2f), and let (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v). Also as-442

sume that \=u \in Dom( \=G1). Then statu\in Dom( \=G1)
\=G1(u) exists.443

Proof. Note first that by (4.33), (4.34), and the chain rule,444

d

du
\=G1(u)

\bigm| \bigm| 
u=\=u

=
d

du
G(u, \u v(u))

\bigm| \bigm| 
u=\=u

= Gu(\=u, \u v(\=u)) +Gv(\=u, \u v(\=u))
d\u v

du
(\=u),445

which, by (A.2f) and Lemma 4.13,

= 0.446
447

Consequently,448

(4.35) \=u \in argstat
u\in Dom( \=G1)

\=G1(u) and \=G1(\=u) \in stats
u\in Dom( \=G1)

\=G1(u).449

Suppose \=u \in Dom( \=G1), with \^u \not = \=u, is such that450

(4.36) \^u \in argstat
u\in Dom( \=G1)

\=G1(u).451

Then, by (A.2f), there exists \^v \in \scrA 1(\^u). Recalling that G is uniformly locally Morse452

in v and applying the implicit mapping theorem again, we find that there exists \epsilon \prime > 0453

and \u v \prime \in C1(B\epsilon \prime (\^u);\scrB ) such that B\epsilon \prime (\^u) \subseteq Dom( \=G1) and454

(4.37) \u v \prime (\^u) = \^v and Gv(u, \u v
\prime (u)) = 0 \forall u \in B\epsilon \prime (\^u) \subseteq Dom( \=G1).455

Then, by (4.36), another application of the chain rule, and (4.37),456

(4.38) 0 =
d

du
\=G1(u)

\bigm| \bigm| 
u=\^u

= Gu(\^u, \u v
\prime (\^u)) +Gv(\^u, \u v

\prime (\^u))
d\u v \prime 

du
(\^u) = Gu(\^u, \^v).457

By (4.37) and (4.38), (\^u, \^v) \in argstat(u,v)\in \scrA \times \scrB G(u, v), and hence by (A.2f),458

(4.39) G(\^u, \^v) = G(\=u, \=v).459

Recalling from (2.6) that \^v \in argstatv\in \scrB G(\^u, v) and using (4.39), we have

\=G1(\^u) = G(\^u, \^v) = G(\=u, \=v).

As \^u \in argstatu\in Dom( \=G1)
\=G1(u) \setminus \{ \=u\} was arbitrary, we have the desired result.460
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Theorem 4.16. Assume (A.2f), and let (\=u, \=v) \in argstat(u,v)\in \scrA \times \scrB G(u, v). Also

assume \=u \in Dom( \=G1). Then statu\in Dom( \=G1)
\=G1(u) exists, and

stat
u\in Dom( \=G1)

\=G1(u) = G(\=u, \=v) = stat
(u,v)\in \scrU \times \scrV 

G(u, v).

Proof. The assertion of the existence of statu\in Dom( \=G1)
\=G1(u) is simply Lemma461

4.15. Then, noting that Lemma 4.14 implies that assumption (A.3) is satisfied, one462

may apply Theorem 3.2 to obtain the second assertion of the theorem.463

4.3.2. When the iterated staticization is known to exist. We suppose464

(A.2i), and let \=u \in \=\scrA 1. We will find that stat(u,v)\in \scrA \times \scrB G(u, v) exists and obtain the465

equivalence between full and iterated staticization.466

Lemma 4.17. Assume (A.2i), and let \=u \in \=\scrA 1. Then stat(u,v)\in \scrA \times \scrB G(u, v) exists.467

Proof. By (A.2i), (2.7), the uniform Morse property, and the implicit mapping468

theorem, there exists \delta > 0 and \u v \in C1(B\delta (\=u);\scrB ) such that B\delta \subseteq Dom( \=G1),469

(4.40) \u v(\=u) = \=v and Gv(u, \u v(u)) = 0 \forall u \in B\delta (\=u).470

By the differentiability of \u v, (A.1), and the chain rule,

d \=G1

du
(\=u) = Gu(\=u, \u v(\=u)) +Gv(\=u, \u v(\=u))

d\u v

du
(\=u) = Gu(\=u, \=v) +Gv(\=u, \=v)

d\u v

du
(\=u).

Using (A.2i) and (2.7), this implies 0 = Gu(\=u, \=v), and hence (\=u, \=v)471

\in argstat(u,v)\in \scrA \times \scrB G(u, v).472

Now suppose there exists (\^u, \^v) \in argstat(u,v)\in \scrA \times \scrB G(u, v)\setminus \{ (\=u, \=v)\} , which implies473

(4.41) Gu(\^u, \^v) = 0 and Gv(\^u, \^v) = 0.474

By (4.41), (A.1), the uniform Morse property, and the implicit mapping theorem,475

there exists \delta \prime > 0 and \u v \prime \in C1(B\delta \prime (\^u);\scrB ) such that B\delta \prime (\^u) \subseteq Dom( \=G1),476

(4.42) \u v \prime (\^u) = \^v and Gv(u, \u v
\prime (u)) = 0 \forall u \in B\delta \prime (\^u).477

Further, combining the definition of Dom( \=G1) and (4.42), we see that478

(4.43) \=G1(u) = stat
v\in \scrB 

G(u, v) = G(u, \u v \prime (u)) \forall uB\delta \prime (\^u).479

Then, by (4.42), (4.43), (A.1), and the chain rule,480

d \=G1(\^u)

du
(\^u) = Gu(\^u, \u v

\prime (\^u)) +Gu(\^u, \u v
\prime (\^u))

d\u v \prime 

du
(\^u),481

which, by (4.41) and the definition of \u v \prime (u),

= 0;482
483

that is, \^u \in argstatu\in Dom( \=G1)
\=G1(u), and using (A.2i), this implies \=G1(\^u) = \=G1(\=u).484

Combining this with (4.42) and (4.43), we see that485

G(\^u, \^v) = \=G1(\^u) = \=G1(\=u),486

and then by the definition of \=G1 and (2.7), this is

= G(\=u, \=v).487
488

As (\^u, \^v) \in argstat(u,v)\in \scrA \times \scrB was arbitrary, G(\^u, \^v) = G(\=u, \=v) for all (\^u, \^v)489

\in argstat(u,v)\in \scrA \times \scrB G(u, v).490
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By Lemma 4.17 and Theorem 4.16 we have the following.491

Theorem 4.18. Assume (A.2i), and let \=u \in \=\scrA 1. Then argstat(u,v)\in \scrA \times \scrB G(u, v)
exists, and

stat
(u,v)\in \scrU \times \scrV 

G(u, v) = G(\=u, \=v) = stat
u\in Dom( \=G1)

\=G1(u).

5. Application to astrodynamics. As noted in the introduction, there are492

two classes of problems in dynamical systems that have motivated the above de-493

velopment. The first class consists of TPBVPs in astrodynamics, and we discuss494

that here. Specifically, one may obtain fundamental solutions to TPBVPs in astro-495

dynamics through a stationary-action--based approach [9, 10, 18, 19]. We briefly496

recall the case of the n-body problem. In this case, the action functional with497

an appended terminal cost (cf. [19]) takes the form indicated in (1.1), where now498

x =
\bigl( 
(x1)T , (x2)T , . . . (xn)T

\bigr) T
, where each xj \in \BbbR 3 denotes a generic position of499

body j for j \in \scrN .
= \{ 1, 2, . . . n\} , and \xi \cdot , u\cdot of (1.1) are similarly constructed. The500

kinetic-energy term is T (ur)
.
= 1

2

\sum n
j=1 mj | uj

r| 2, where mj is the mass of the jth body.501

Suppose xi \not = xj for all i \not = j. Then, the additive inverse of the potential is given502

by503

 - V (x) =
\sum 

(i,j)\in \scrI \Delta 

\Gamma mimj

| xi  - xj | 
= max
\alpha \in \scrM (0,\infty )

\sum 
(i,j)\in \scrI \Delta 

\bigl( 
3
2

\bigr) 3
2 \Gamma mimj

\Biggl[ 
\alpha i,j  - 

\alpha 3
i,j | xi  - xj | 2

2

\Biggr] 
504

.
= max

\alpha \in \scrM (0,\infty )

\bigl[ 
 - \~V (x, \alpha )

\bigr] 
=  - \~V (x, \=\alpha ),(5.1)505

506

where \Gamma is the universal gravitational constant, \scrI \Delta .
= \{ (i, j) \in \scrN 2 | j > i\} , \scrM (0,\=a)507

denotes the set of arrays indexed by (i, j) \in \scrI \Delta with elements in (0, \=a), and \=\alpha i,j =508

\=\alpha i,j(x) =
\bigl[ 
2/(3| xi  - xj | 2)

\bigr] 1/2
for all (i, j) \in \scrI \Delta ; see [19]. Recalling the discussion in509

section 1, we note that solutions of stationary-action problems with these kinetic and510

potential energy functions will yield solutions of TPBVPs for the n-body dynamics.511

Letting \scrU (0,t)
.
= L2

\bigl( 
(0, t);\BbbR 3n

\bigr) 
, one finds that the problem becomes that of finding512

the stationary-action value function given by513

W (t, x) = stat
u\in \scrB 

J0(t, x, u),

(5.2)

514

where

J0(t, x, u)
.
=

\int t

0

T (ur) - V (\xi r) dr + \phi (\xi t) =

\int t

0

T (ur) + max
\alpha \in \scrM (0,\infty )

\bigl[ 
 - \~V (x, \alpha )

\bigr] 
dr515

+ \phi (\xi t),516

\scrB \subseteq \{ u \in \scrU (0,t)| | \xi ir  - \xi jr | \not = 0 \forall (i, j) \in \scrI \Delta , r \in [0, t]\} .
(5.3)

517
518

Remark 5.1. Throughout the discussion to follow, we assume that W (t, x) given519

by (5.2) exists. In particular, we assume that \scrB is open and that there exists \=u \in \scrB 520

such that argstatu\in \scrB J0(t, x, u) = \{ \=u\} . One may note that given u \in \scrB , there exists521

\=\delta > 0 such that | \xi ir  - \xi jr | > \=\delta for all (i, j) \in \scrI \Delta and r \in [0, t], and consequently522

there exists an open ball, B\delta (u) \subseteq \scrB , which implies that \scrB has nonempty interior. In523

the case where the problem corresponds to a TPBVP, these conditions amount to an524

assumption that if there are multiple solutions to the TPBVP, then the solutions are525

isolated; cf. [9, 10, 19].526
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Let \~\scrA \=a
(0,t)

.
= C

\bigl( 
(0, t);\scrM (0,\=a)

\bigr) 
and \~\scrA B

(0,t)

.
= C

\bigl( 
(0, t);\scrM \BbbR 

\bigr) 
, where \scrM \BbbR denotes the527

set of arrays indexed by (i, j) \in \scrI \Delta with elements in \BbbR and where we note that the528

former is a subset of the latter, which is a Banach space.529

Lemma 5.2. Let x \in \BbbR 3n, t \in (0,\infty ), and \scrB \subseteq \scrU (0,t). Then530

W (t, x) = stat
u\in \scrB 

stat
\~\alpha \in \~\scrA \infty 

(0,t)

J(t, x, u, \~\alpha ),531

where

J(t, x, u, \~\alpha )
.
=

\int t

0

T (ur) - \~V (\xi r, \~\alpha r) dr + \phi (\xi t).(5.4)532

533

Further, if \scrA \subset \~\scrA \infty 
(0,t) is open and such that \=\~\alpha i,j \in \scrA , where \=\~\alpha i,j

r = \=\alpha i,j(\xi r) for534

all (i, j) \in \scrI \Delta and a.e. r \in (0, t), where \xi r = x +
\int r

0
u\rho d\rho , then W (t, x) =535

statu\in \scrB stat\~\alpha \in \scrA J(t, x, u, \~\alpha ) = statu\in \scrB J(t, x, u, \=\~\alpha ).536

Proof. Let x \in \BbbR 3n, t \in (0,\infty ), u \in \scrB \subseteq \scrU (0,t), and \scrA = \~\scrA \infty 
(0,t). By [19,537

Theorem 4.7], we find J0(t, x, u) = max\~\alpha \in \scrA J(t, x, u, \~\alpha ), where J(t, x, u, \~\alpha ) is given538

by (5.4). Noting that J(t, x, u, \cdot ) is differentiable and strictly concave then yields539

J0(t, x, u) = stat\~\alpha \in \scrA J(t, x, u, \~\alpha ). Combining this with (5.2) yields the first assertion.540

The second assertion then follows by noting the argmax of (5.1).541

If one is able to reorder the stat operations, then the stat representation of Lemma542

5.2 may be decomposed as543

W (t, x)
.
= stat

\~\alpha \in \scrA 
\~W (t, x, \~\alpha ),(5.5)544

\~W (t, x, \~\alpha )
.
= stat

u\in \scrB 

\biggl\{ \int t

0

T (ur) - \~V (\xi r, \~\alpha r) dr + \phi (\xi t)

\biggr\} 
.(5.6)545

546

Further, suppose \phi is a quadratic form, say,547

(5.7) \phi (x) = \phi (x; z)
.
= 1

2 (x - z)TP0(x - z) + \gamma 0,548

where z \in \BbbR 3n and P0 is symmetric, positive-definite. Then, the argument of stat in549

(5.6) will be quadratic in u, and we will have550

(5.8) \~W (t, x, \~\alpha ) = 1
2 (x

TP \~\alpha 
t x+ xTQ\~\alpha 

t z + zTQ\~\alpha 
t x+ zTR\~\alpha 

t z + \gamma \~\alpha 
t ),551

where P \~\alpha 
\cdot , Q

\~\alpha 
\cdot , R

\~\alpha 
\cdot may be obtained from solution of \~\alpha -indexed DREs, and \gamma \~\alpha 

t is552

obtained from an integral [15, 19]. It will now be demonstrated that in the case of553

quadratic \phi , we may reorder the stat operators.554

Remark 5.3. We remark that different forms of \phi may be used such that payoffs555

(5.4) (which will be shown to be equivalent to (5.5)) correspond to different TPBVPs556

for the n-body problem; see section 1 and [19]. The means by which this may be557

utilized for efficient generation of fundamental solutions is indicated in [9, 10, 19].558

Remark 5.4. It can be shown that for sufficiently short time intervals, J0(t, x, \cdot )559

is convex and coercive, and one then hasW (t, x) = minu\in \scrB max\~\alpha \in \scrA J(t, x, u, \~\alpha ) for ap-560

propriate\scrA ,\scrB . In that case, one also finds thatW (t, x) = max\~\alpha \in \scrA minu\in \scrB J(t, x, u, \~\alpha ),561

and one proceeds similarly to the case here. That is, one again has (5.8), where the562

coefficients satisfy DREs. See [19] for the details. Here, we will employ the reordering563

of iterated stat operations to obtain W (t, x) in a similar form, i.e., in the form (5.5).564
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Lemma 5.5. Let x \in \BbbR 3n, t \in (0,\infty ), and \~\alpha \in \scrA \subseteq \~\scrA \infty 
(0,t). Suppose \phi has the

form (5.7). Then

J(t, x, u, \~\alpha )
.
= f1(\~\alpha ) + \langle f2(\~\alpha ), u\rangle \scrU (0,t)

+ 1
2 \langle \=B3(\~\alpha )u, u\rangle \scrU (0,t)

\forall u \in \scrU (0,t),

where f1(\~\alpha ) \in \BbbR , f2(\~\alpha ) \in \scrU (0,t), and \=B3(\~\alpha ) \in \scrL (\scrU (0,t);\scrU (0,t)). Further, if \scrA \subseteq \~\scrA \=a
(0,t)565

with \=a < \infty , then for | P - 1
0 | sufficiently small, Range[ \=B3(u)] = \scrU (0,t).566

Proof. Using (5.1) and (5.4), we see that567

(5.9)

J(t, x, u, \~\alpha ) =

\int t

0

1
2

n\sum 
j=1

mj | uj
r| 2+

\sum 
(i,j)\in \scrI \Delta 

\bigl( 
3
2

\bigr) 3
2 \Gamma mimj

\biggl[ 
\~\alpha i,j
r  - 

\bigl( 
\~\alpha i,j
r

\bigr) 3| \xi ir  - \xi jr | 2

2

\Biggr] 
dr+\phi (\xi t).568

Note that for the kinetic-energy term, we have the Riesz representation569

(5.10)

\int t

0

1
2

n\sum 
j=1

mj | uj
r| 2dr = 1

2 \langle Q1u, u\rangle \scrU (0,t)
,570

where the operator Q1 \in \scrL (\scrU (0,t);\scrU (0,t)) is given by [Q1u]r
.
= \=Q1ur for all r \geq 0, and571

\=Q1 is the 3n\times 3n block-diagonal matrix with blocks m1I3,m2I3, . . .mnI3.572

Let \^\Gamma 
.
=

\bigl( 
3
2

\bigr) 32
\Gamma . Similarly, we find that the potential term in J may be decom-573

posed as574

\^\Gamma 
\sum 

(i,j)\in \scrI \Delta 

mimj

\int t

0

\biggl[ 
\~\alpha i,j
r  - 

\bigl( 
\~\alpha i,j
r

\bigr) 3 | \xi ir  - \xi jr | 2

2

\biggr] 
dr575

= \^\Gamma 
\sum 

(i,j)\in \scrI \Delta 

 - mimj

\int t

0

\Biggl[ \bigl( 
\~\alpha i,j
r

\bigr) 3 | 
\int r

0
ui
\rho d\rho | 2 + | 

\int r

0
uj
\rho d\rho | 2  - 2

\bigl( \int r

0
ui
\rho d\rho 

\bigr) T \int r

0
uj
\tau d\tau 

2

\Biggr] 
dr576

+ \^\Gamma 
\sum 

(i,j)\in \scrI \Delta 

 - mimj

\int t

0

\Biggl[ \bigl( 
\~\alpha i,j
r

\bigr) 3 2(xi  - xj)T
\bigl( \int r

0
ui
\rho d\rho 

\bigr) 
+ 2(xj  - xi)T

\bigl( \int r

0
uj
\rho d\rho 

\bigr) 
2

\Biggr] 
dr577

+ \^\Gamma 
\sum 

(i,j)\in \scrI \Delta 

mimj

\int t

0

\biggl[ 
\~\alpha i,j
r  - 

\bigl( 
\~\alpha i,j
r

\bigr) 3 | xi| 2 + | xj | 2  - 2(xi)Txj

2

\biggr] 
dr

(5.11)

578

.
= 1

2 \langle Q2(\~\alpha )u, u\rangle \scrU (0,t)
+ \langle R2(\~\alpha ), u\rangle \scrU (0,t)

+ S2(\~\alpha ) \forall u \in \scrU (0,t),579
580

where we will obtain explicit expressions for Q2(\~\alpha ) \in L(\scrU (0,t);\scrU (0,t)), R2(\~\alpha ) \in \scrU (0,t),581

and S2(\~\alpha ) \in \BbbR . Considering a single generic component inside the first summation582

on the right-hand side of (5.11), note that583 \int t

0

\bigl( 
\~\alpha i,j
r

\bigr) 3\Bigl( \int r

0

ui
\rho d\rho 

\Bigr) T
\int r

0

uj
\tau d\tau dr584

=

\int t

0

\int t

0

\int t

0

\scrI (0,r)(\rho )\scrI (0,r)(\tau )
\bigl( 
\~\alpha i,j
r

\bigr) 3\bigl( 
ui
\rho 

\bigr) T
uj
\tau d\rho d\tau dr,585

where generically, \scrI \scrC denotes the indicator function on set \scrC , and this is

=

\int t

0

\int t

0

\int t

0

\scrI (\rho ,t)(r)\scrI (\tau ,t)(r)
\bigl( 
\~\alpha i,j
r

\bigr) 3\bigl( 
ui
\rho 

\bigr) T
uj
\tau dr d\rho d\tau 586

=

\int t

0

\bigl( 
ui
\rho 

\bigr) T\Bigl\{ \int t

0

\Bigl[ \int t

\rho \vee \tau 

\bigl( 
\~\alpha i,j
r

\bigr) 3
dr
\Bigr] 
uj
\tau d\tau 

\Bigr\} 
d\rho .587

588
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Combining all these generic terms and rearranging our choice of dummy variables, we
find that for all u \in \scrU (0,t), [Q2(\~\alpha )u]r =

\int t

0
[ \=Q2(\~\alpha )](r, \tau )u\tau d\tau , where [ \=Q2(\~\alpha )](r, \tau ) is

given as follows. For i, j \in ]1, n[ such that i \not = j, let

[ \^Q2(\~\alpha )](r, \tau )]i,j
.
= \^\Gamma mimj

\int t

\tau \vee r

\bigl( 
\~\alpha i,j
\sigma 

\bigr) 3
d\sigma ,

and for i \in ]1, n[, let

[ \^Q2(\~\alpha )](r, \tau )]i,i
.
=  - 

\sum 
j\in ]1,n[, j \not =i

[ \^Q2(\~\alpha )](r, \tau )]i,j .

Then [ \=Q2(\~\alpha )](r, \tau ) = [ \^Q2(\~\alpha )](r, \tau )]\otimes I3, where \otimes denotes the Kronecker product here.589

Proceeding similarly, we find that R2(\~\alpha ) \in \scrU (0,t) has the Riesz representation

R2(\~\alpha ) =
\bigl( 
([ \^R2(\~\alpha )(r)]1)

T , ([ \^R2(\~\alpha )(r)]2)
T , . . . ([ \^R2(\~\alpha )(r)]n)

T
\bigr) T

,

where for i \in ]1, n[,

[ \^R2(\~\alpha )(r)]i =  - \^\Gamma 
\sum 
j \not =i

mimj

\int t

r

\bigl( 
\~\alpha i,j
\tau 

\bigr) 3
d\tau (xi  - xj).

For the zeroth order in the expansion of the integral of the potential term, we have590

S2(\~\alpha ) =
\sum 

(i,j)\in \scrI \Delta 

\^\Gamma mimj

\int t

0

\bigl[ 
\~\alpha i,j
r  - 

\bigl( 
\~\alpha i,j
r

\bigr) 3\bigr] 
dr

| xi| 2 + | xj | 2  - 2(xi)Txj

2
.591

592

Now, we turn to the terminal cost. Recalling (5.7), we have593

\phi (\xi t) =
1
2

\Bigl( t

\int 
0
u\rho d\rho 

\Bigr) T

P0

\Bigl( t

\int 
0
u\rho d\rho 

\Bigr) 
+
\bigl( 
x - z

\bigr) T
P0

\Bigl( t

\int 
0
u\rho d\rho 

\Bigr) 
+ 1

2 (x - z)TP0(x - z) + \gamma 0594

.
= 1

2 \langle Q3u, u\rangle \scrU (0,t)
+ \langle R3, u\rangle \scrU (0,t)

+ S3,595
596

where Q3 \in \scrL (\scrU (0,t);\scrU (0,t)), R3 \in \scrU (0,t), and S3 \in \BbbR . In particular, we have [Q3u]r =597

P0

\int t

0
u\rho d\rho and [R3]r = P0(x - z) for all r \in (0, t) and S3 = 1

2 (x - z)TP0(x - z) + \gamma 0.598

Combining the terms, we have the asserted form for J(t, x, u, \~\alpha ), where599

f1(\~\alpha ) = S2(\~\alpha ) + S3, f2(\~\alpha ) = R2(\~\alpha ) +R3, and \=B3(\~\alpha ) = Q1 +Q2(\~\alpha ) +Q3.600
601

That \=B3(\~\alpha ) \in \scrL (\scrU (0,t);\scrU (0,t)) and f2(\~\alpha ) \in \scrU (0,t) is easily seen from the above ex-602

pressions. The final assertion follows from the dominance of Q3 when the minimal603

eigenvalue of P0 is sufficiently large.604

Theorem 5.6. Let t \in (0,\infty ) and x \in \BbbR 3n. Suppose W (t, x) given by (5.2)605

exists. Let \=\~\alpha i,j \in \~\scrA \=a
(0,t) be as in Lemma 5.2 for some \=a < \infty , and let D > | \=B\#

3 (\=\~\alpha )| .606

Let \scrA .
= \{ \~\alpha \in \~\scrA \=a

(0,t)| | \=B
\#
3 (\~\alpha )| < D\} . Then607

W (t, x) = stat
u\in \scrB 

stat
\~\alpha \in \scrA 

J(t, x, u, \~\alpha ) = stat
(u,\~\alpha )\in \scrB \times \scrA 

J(t, x, u, \~\alpha ) = stat
\~\alpha \in \scrA 

stat
u\in \scrB 

J(t, x, u, \~\alpha ).608

609

Proof. Note that for heuristic reasons, some technical derivative computations in610

this proof are delayed to Appendix B.611
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Fix t \in (0,\infty ) and x \in \BbbR 3n. Note that by the conditions of Remark 5.1, \scrB is open.
By Lemma 5.5, \=B3(\~\alpha ) \in \scrL (\scrU (0,t);\scrU (0,t)) for all \~\alpha \in \~\scrA \=a

(0,t), where this implies that all

such \=B3(\~\alpha ) are closed operators, and hence [ \=B\#
3 (\~\alpha )] \in \scrL (\scrU (0,t);\scrU (0,t)) exists for all

\~\alpha \in \~\scrA \=a
(0,t). Let g : \scrL (\scrU (0,t);\scrU (0,t)) \rightarrow \scrL (\scrU (0,t);\scrU (0,t)) be given by g(B)

.
= B\# for all

B \in \scrL (\scrU (0,t);\scrU (0,t)). Let D be as given and \^D \in (D,\infty ). Let the open ball of radius

D be denoted by \scrD D
.
= \{ B \in \scrL (\scrU (0,t);\scrU (0,t)) | | B| < D\} and similarly for \^D. Let

QD
.
= g - 1(\scrD D) and Q \^D

.
= g - 1(\scrD \^D), and note that g is continuous on Q \^D [11, 21].

Hence, QD is open, and as \=B3(\cdot ) is continuous, we find that \scrA = ( \=B3)
 - 1(QD) is

open. The first asserted equality then follows from Lemma 5.2. Further, this implies
that assumption (A.2i) is satisfied by the expression on the right-hand side of the
first equality. Hence, if the conditions of section 4.3 are met, then Theorem 4.18 will
yield the second equality. In this case here, the Morse condition of section 4.3 is
that for all (\~\alpha , u) \in \scrA \times \scrB , D2

\~\alpha J(t, x, u, \~\alpha ) \in \scrL ( \~\scrA B
(0,t);

\~\scrA B
(0,t)) is invertible with locally

bounded inverse. From Lemma B.2, the differential D2
\~\alpha J(t, x, u, \~\alpha )\gamma for \gamma \in \scrA B

(0,t) has
representation with components given by

[\nabla 2
\~\alpha J(t, x, u, \~\alpha )\gamma ]

i,j
r =  - 3\^\Gamma mimj \~\alpha 

i,j
r | \xi ir  - \xi jr | 2\gamma i,j

r \forall (i, j) \in \scrI \Delta , a.e. r \in (0, t).

As \~\alpha i,j
r , | \xi ir  - \xi jr | > 0 for all (i, j) \in \scrI \Delta and r \in (0, t), one finds that operator612

D2
\~\alpha J(t, x, u, \~\alpha ) is indeed invertible with locally bounded inverse for all (\~\alpha , u) \in \scrA \times \scrB .613

Lastly, noting the representation given in Lemma B.3, one may easily show that614

D2
u,\~\alpha J(t, x, u, \~\alpha ) is bounded on bounded sets. Hence, the conditions of section 4.3 are615

met, and one may apply Theorem 4.18 to obtain the second equality.616

Note that the second equality also implies that the expression on the right-hand
side of that equality satisfies assumption (A.2f). If the conditions of Theorem 4.9 are
satisfied, we will have the final equality. It is sufficient to show that, as a function of
(\~\alpha , u) \in \scrA \times \scrB , J(t, x, u, \~\alpha ) satisfies the conditions of section 4.2. That is, suppressing
the dependence on (t, x), we must have

J(t, x, u, \~\alpha ) = f1(\~\alpha ) + \langle f2(\~\alpha ), u\rangle \scrU (0,t)
+ 1

2 \langle \=B3(\~\alpha )u, u\rangle \scrU (0,t)

with f1, f2, \=B3 satisfying the conditions indicated there. From Lemma 5.5, we see that617

f1, f2, \=B3 are C2 with Range[ \=B3(u)] = \scrU (0,t) and that \=B\#
3 (\~\alpha ) exists and is uniformly618

bounded over \scrA . The result follows from Theorem 4.9.619

Remark 5.7. It should be noted that the assertions of Theorem 5.6 allow the620

staticization problem of (5.2) to be reduced to staticization over the set of DRE solu-621

tions and integrals, \scrP .
= \{ (P \~\alpha 

t , Q
\~\alpha 
t , R

\~\alpha 
t , \gamma 

\~\alpha 
t ) | \~\alpha \in \scrA \} , as noted in (5.8). In cases where622

the terminal cost, \phi (indexed by z), has been constructed so that the staticization623

problems correspond to TPBVPs, the set \scrP provides a fundamental solution object624

for a set of TPBVPs. One may see [9, 10, 19] for more detailed discussions regarding625

the calculations.626

Appendix A. A mean value theorem. For ease of reading, we recall a version627

of the mean value theorem from [1, Theorem 12.6].628

Theorem A.1. Let \scrU ,\scrV denote Banach spaces, and let f : \scrD \rightarrow \scrV where \scrD \subseteq \scrU .629

Suppose u1, u2 \in \scrD are such that \^u(\lambda )
.
= \lambda u1 + (1  - \lambda )u2 \in \scrD for all \lambda \in [0, 1].630

Suppose f is continuous at u for all u \in \{ \^u(\lambda ) | \lambda \in [0, 1]\} and f is differentiable at u631

for all u \in \{ \^u(\lambda ) | \lambda \in (0, 1)\} . Then there exists \=\lambda \in (0, 1) such that | f(u1) - f(u1)| \leq 632

| Df(\^u(\=\lambda )| | u1  - u2| .633

Appendix B. Calculation of derivatives. We begin by indicating some no-634

tation and recalling standard results; cf. [1]. Let f : \scrU (0,t) \times \~\scrA B
(0,t) \rightarrow \BbbR satisfy635
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f(u, \cdot ) \in C2( \~\scrA B
(0,t);\BbbR ), f(\cdot , \~\alpha ) \in C2(\scrU (0,t);\BbbR ) for all u \in \scrU (0,t), and \~\alpha \in \~\scrA B

(0,t).636

Let Duf : \scrU (0,t) \times \~\scrA B
(0,t) \rightarrow \scrL (\scrU (0,t);\BbbR ) and D\~\alpha f : \scrU (0,t) \times \~\scrA B

(0,t) \rightarrow \scrL ( \~\scrA B
(0,t);\BbbR )637

denote the Fr\'echet derivatives with respect to u and \~\alpha , respectively. Note that638

we have [Duf(u, \~\alpha )]\delta u \in \BbbR , [D\alpha f(u, \~\alpha )]\delta \~\alpha \in \BbbR \forall \delta u \in \scrU (0,t), \delta \~\alpha \in \~\scrA B
(0,t). By the639

Riesz representation theorem, for each \^u \in \scrU (0,t) and \^\~\alpha \in \~\scrA B
(0,t), there exists unique640

\nabla uf(\^u, \^\~\alpha ) \in \scrU (0,t) such that Duf(\^u, \^\~\alpha )\delta u = \langle \delta u,\nabla uf(\^u, \^\~\alpha )\rangle \scrU (0,t)
\forall \delta u \in \scrU (0,t).641

For L \in L2((0, t);\scrM \BbbR ) and \gamma \in \~\scrA B
(0,t), define the continuous, bilinear func-642

tional \langle L, \gamma \rangle 2 = \langle \gamma , L\rangle 2
.
=

\sum 
(i,j)\in \scrI \Delta 

\int t

0
Li,j
r \gamma i,j

r dr. Note that \nabla \~\alpha f(\^u, \^\~\alpha ) : \scrU (0,t) \times 643

\~\scrA B
(0,t) \rightarrow \~\scrA B

(0,t) is a representation of D\alpha f(\^u, \^\~\alpha )\delta \~\alpha everywhere in \scrU (0,t) \times \~\scrA B
(0,t) if644

\langle \nabla \~\alpha f(\^u, \^\~\alpha ), \delta \~\alpha \rangle 2 = D\alpha f(\^u, \^\~\alpha )\delta \~\alpha for all \delta \~\alpha \in \~\scrA B
(0,t), (\^u,

\^\~\alpha ) \in \scrU (0,t) \times \~\scrA B
(0,t).645

Let D2
\~\alpha f : \scrU (0,t) \times \~\scrA B

(0,t) \rightarrow \scrL ( \~\scrA B
(0,t),\scrL ( \~\scrA 

B
(0,t),\BbbR )) denote the second Fr\'echet646

derivative with respect to \~\alpha . Note that for each \delta \~\alpha \in \~\scrA B
(0,t) and pair (\^u, \^\~\alpha ), we have647

D2
\~\alpha f(\^u,

\^\~\alpha )\delta \~\alpha \in \scrL ( \~\scrA B
(0,t);\BbbR ). Further, D

2
\~\alpha f(\^u,

\^\~\alpha ) is the second Fr\'echet derivative with648

respect to \~\alpha at (\^u, \^\~\alpha ) if D2
\~\alpha f(\^u,

\^\~\alpha ) = D\~\alpha [D\~\alpha f ](\^u, \^\~\alpha ). Analogous definitions hold for649

second derivatives with respect to u.650

We now proceed to obtain certain derivatives and Riesz representations employed651

in the proof of Theorem 5.6. Let J : (0, t) \times \BbbR 3n \times \scrU (0,t) \times \~\scrA \infty 
(0,t) be given by (5.4)652

with quadratic terminal cost (5.7).653

Lemma B.1. For any t \in (0,\infty ), x \in \BbbR 3n, and u \in \scrU (0,t), J(t, x, u, \cdot ) is Fr\'echet654

differentiable over \~\scrA B
(0,t), and the Fr\'echet derivative has Riesz representation655

\nabla \~\alpha J(t, x, u, \~\alpha ), where \nabla \~\alpha J(t, x, u, \~\alpha ) acting on \gamma \in \~\scrA B
(0,t) is given by \langle \nabla \~\alpha J(t, x, u, \~\alpha ),656

\gamma \rangle 2, and657

(B.1) [\nabla \~\alpha J(t, x, u, \~\alpha )]
i,j
r = \^\Gamma mimj

\Bigl[ 
1 - 

3
\bigl( 
\~\alpha i,j
r

\bigr) 2| \xi ir  - \xi jr | 2

2

\Bigr] 
\forall (i, j) \in \scrI \Delta , r \in (0, t).658

Proof. Let \gamma \in \~\scrA B
(0,t), and let L denote the object indicated by the right-hand659

side of (B.1). With a small amount of algebra, one finds660

| J(t, x, u, \~\alpha + \gamma ) - J(t, x, u, \~\alpha ) - \langle L, \gamma \rangle 2| 661

=

\bigm| \bigm| \bigm| \bigm| \^\Gamma \sum 
(i,j)\in \scrI \Delta 

\int t

0

 - mimj

2

\bigl[ 
3\~\alpha i,j

r

\bigl( 
\gamma i,j
r

\bigr) 2
+

\bigl( 
\gamma i,j
r

\bigr) 3\bigr] | \xi ir  - \xi jr | 2 dr
\bigm| \bigm| \bigm| \bigm| 662

\leq \^\Gamma 
\sum 

(i,j)\in \scrI \Delta 

mimj

2

\int t

0

\bigl( 
1 + 3\~\alpha i,j

r

\bigr) 
| \xi ir  - \xi jr | 2 dr sup

r\in (0,t)

\bigl[ \bigm| \bigm| \gamma i,j
r

\bigm| \bigm| 2 + \bigm| \bigm| \gamma i,j
r

\bigm| \bigm| 3\bigr] ,663

which, for appropriate choice of K0(t, x, u, \~\alpha ) < \infty and | \gamma | \leq 1,

\leq K0(t, x, u, \~\alpha )| \gamma | 2,664
665

which implies that the Fr\'echet derivative D\~\alpha J(t, x, u, \~\alpha ) exists and has the indicated666

Riesz representation.667

Lemma B.2. For any t \in (0,\infty ), x \in \BbbR 3n, and u \in \scrU (0,t), the second-order
Fr\'echet derivative D2

\~\alpha J(t, x, u, \~\alpha ) exists for all \~\alpha \in \scrA (0,t), and the differential has

representation \nabla 2
\~\alpha J(t, x, u, \~\alpha )\gamma , which, for all \gamma \in \~\scrA B

(0,t), is given by

[\nabla 2
\~\alpha J(t, x, u, \~\alpha )\gamma ]

i,j
r =  - 3\^\Gamma mimj \~\alpha 

i,j
r | \xi ir  - \xi jr | 2\gamma i,j

r \forall (i, j) \in \scrI \Delta , a.e. r \in (0, t).
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Proof. Recalling the above discussion, we obtain the second-derivative representa-668

tion by examining the Fr\'echet derivative of \nabla \~\alpha J(t, x, u, \~\alpha ). Let t, x, u be as specified,669

and take \~\alpha \in \scrA (0,t). Let \gamma \in \~\scrA B
(0,t), and let [T\gamma ]i,jr

.
=  - 3\^\Gamma mimj \~\alpha 

i,j
r | \xi ir  - \xi jr | 2\gamma i,j

r for670

all i, j \in ]1, n[ and r \in (0, t), where \xi ir = xi +
\int r

0
u\rho d\rho . Note that671

| \nabla \~\alpha J(t, x, u, \~\alpha + \gamma ) - \nabla \~\alpha J(t, x, u, \~\alpha ) - [T\gamma ]| 672

=

\biggl[ \sum 
(i,j)\in \scrI \Delta 

\int t

0

\bigm| \bigm| \bigm| \bigm| [\nabla \~\alpha J(t, x, u, \~\alpha + \gamma )]i,jr673

 - [\nabla \~\alpha J(t, x, u, \~\alpha )]
i,j
r + 3\^\Gamma mimj \~\alpha 

i,j
r | \xi ir  - \xi jr | 2\gamma i,j

r

\bigm| \bigm| \bigm| \bigm| 2dr\biggr] 1
2

,674

which, by (B.1),

=

\biggl[ 
\^\Gamma 

\sum 
(i,j)\in \scrI \Delta 

\int t

0

\bigm| \bigm| \bigm|  - 3

2
mimj

\bigl[ 
2\~\alpha i,j

r \gamma i,j
r + (\gamma i,j

r )2
\bigr] \bigm| \bigm| \xi ir  - \xi jr

\bigm| \bigm| 2675

+ 3mimj \~\alpha 
i,j
r | \xi ir  - \xi jr | 2\gamma i,j

r

\bigm| \bigm| \bigm| 2dr\biggr] 1
2

676

=

\biggl[ 
\^\Gamma 

\sum 
(i,j)\in \scrI \Delta 

9

4
m2

im
2
j

\int t

0

\bigm| \bigm| \bigm| (\gamma i,j
r )2

\bigm| \bigm| \xi ir  - \xi jr
\bigm| \bigm| 2\bigm| \bigm| \bigm| 2dr\biggr] 1

2

677

\leq \^\Gamma 
\sum 

(i,j)\in \scrI \Delta 

9

4
m2

im
2
j

\Bigl( \int t

0

\bigm| \bigm| \xi ir  - \xi jr
\bigm| \bigm| 4 dr\Bigr) 1

2

sup
r\in (0,t)

\bigm| \bigm| \gamma i,j
r

\bigm| \bigm| 2 \leq K1| \gamma | 2678

679

for appropriate choice of K1 = K1(t, x, u) < \infty , and this yields the result.680

The following is obtained in a similar manner to Lemma B.1, and the proof is not681

included.682

Lemma B.3. For any t \in (0,\infty ) and x \in \BbbR 3n, J(t, x, \cdot , \cdot ) : \scrU (0,t) \times \~\scrA \infty 
(0,t) \rightarrow 683

\BbbR has a mixed second partial Fr\'echet derivative, and this derivative, evaluated at684

(u, \~\alpha ) \in \scrU (0,t) \times \~\scrA \infty 
(0,t), D

2
u,\~\alpha J(t, x, u, \~\alpha ), has a representation comprised of the Riesz685

representations of the derivatives of [\nabla \~\alpha J(t, x, u, \~\alpha )]
i,j
\cdot with respect to u for (i, j) \in \scrI \Delta .686

More specifically, for \delta u \in \scrU (0,t) and \delta \~\alpha \in \~\scrA \infty 
(0,t),687 \bigl[ 

D2
u,\~\alpha J(t, x, u, \~\alpha )\delta \~\alpha 

\bigr] 
\delta u =

\Bigl\langle 
\nabla 2

u,\~\alpha J(t, x, u, \~\alpha )\delta \~\alpha , \delta u

\Bigr\rangle 
\scrU (0,t)

688

=
\sum 
k\in \scrN 

\int t

0

\bigl[ 
\nabla 2

u,\~\alpha J(t, x, u, \~\alpha )\delta \~\alpha 
\bigr] k
\rho 
[\delta u]

k
\rho d\rho ,689

where\bigl[ 
\nabla 2

u,\~\alpha J(t, x, u, \~\alpha )\delta \~\alpha 
\bigr] k
\rho 
=

\sum 
(i,j)\in \scrI \Delta 

\int t

0

\bigl[ 
[\nabla \~\alpha ,uJ(t, x, u, \~\alpha )]

i,j
r

\bigr] k
\rho 
[\delta \~\alpha ]

i,j
r dr \forall k \in \scrN ,690

\rho \in (0, t),691

\bigl[ 
[\nabla \~\alpha ,uJ(t, x, u, \~\alpha )]

i,j
r

\bigr] k
\rho 

.
=

\left\{     
 - 3\^\Gamma mimj(\~\alpha 

i,j
r )2(\xi ir  - \xi jr)\scrI (0,r)(\rho ) if k = i,

3\^\Gamma mimj(\~\alpha 
i,j
r )2(\xi ir  - \xi jr)\scrI (0,r)(\rho ) if k = j,

0, otherwise

692

693

for all r, \rho \in (0, t), k \in \scrN , and (i, j) \in \scrI \Delta , and we recall that \scrI (0,r)(\cdot ) denotes the694

indicator function on set (0, r).695
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