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Abstract

We develop tools for the analysis of fronts, pulses, and wave trains in spatially extended

systems with nonlocal coupling. We first determine Fredholm properties of linear operators,

thereby identifying pointwise invertibility of the principal part together with invertibility

at spatial infinity as necessary and sufficient conditions. We then build on the Fredholm

theory to construct center manifolds for nonlocal spatial dynamics under optimal regularity

assumptions, with reduced vector fields and phase space identified a posteriori through the

shift on bounded solutions. As an application, we establish uniqueness of small periodic

wave trains in a Lyapunov center theorem using only C1-regularity of the nonlinearity.

Keywords Nonlocal · Center manifold · Fredholm · Coherent structures · Lyapunov center

1 Introduction

Describing the emergence of coherent structures and self-organized collective behavior in

large complex systems is both central to our understanding of dynamical behavior and theoret-

ically challenging. Recently, interest has grown in studying systems with nonlocal coupling,

with motivation from neuronal networks, biology, material science, and ecology [2, 6, 13, 14,

17, 22, 26, 33, 40–42, 44, 45]. Nonlocal coupling can take many forms but, in a continuum

modeling context, can be quite generally represented by integral operators, rather than dif-

ferential operators in local differential equation models. Phenomena in nonlocally coupled

systems are often qualitatively different from phenomena in differential equations, notably

including effects ranging from singularity formation [24, 39, 45], to rapid synchronization

[11], pinning [3], or acceleration of fronts [8, 31]. Relatedly, mathematical techniques from
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differential equations are not immediately applicable to nonlocally coupled systems and

limitations of techniques often point to new phenomena [3, 9, 42].

In the present work, we focus on developing techniques that adapt tools from the study

of differential equations to nonlocal systems, identifying in particular potential limitations

such as the lack of regularity or the loss of compactness. Our focus is on coherent structures,

particularly traveling waves—periodic wave trains, solitary waves and pulses, fronts, and

other types of solutions arising from the inherent self-organizing capabilities of large systems.

In the analysis of existence, stability, and bifurcations of such states, one desires a robust

functional-analytic framework which the present work aims to contribute to. The class of

equations we study arises as steady-state or traveling-wave equations of a time-dependent

system. Our contributions can be organized into three categories. We study, for a class of

nonlocal equations:

• Fredholm theory for linearization at coherent structures;

• Center manifold theory for bifurcation of coherent structures from the trivial state;

• A Lyapunov-Center theorem for nonlocal systems.

In fact, technical results in these three areas build on each other, with center manifold the-

ory relying on Fredholm theory, and uniqueness in Lyapunov-Center theorems relying on

center manifold theory. We describe the above contributions in more detail below, briefly

summarizing results as well as connections to local theory.

1.1 Fredholm Properties

Fredholm theory is instrumental in the study of bifurcation theory in local as well as nonlocal

settings. For instance, in situations where a given coherent structure exists but the lineariza-

tion of the system is not invertible, a Fredholm linearization may allow one to establish

continuation and bifurcation results using Lyapunov-Schmidt reduction. Fredholm proper-

ties for a nonlocal operator on L2(R, Cn) corresponding to traveling wave solutions of a

time-dependent nonlocal equation were first established in [18]. Here, we consider instead

the somewhat broader class of operators of the form

T U (ξ) = A(ξ)U (ξ) + Kξ ∗ U , (1.1)

with ξ ∈ R, U (ξ) ∈ Cn , corresponding to steady-state solutions of a time-dependent nonlocal

equation. As in [18], the convolution kernel is inhomogeneous, ξ−dependent, with limits at

±∞, but possesses some smoothing properties. In contrast to [18], the principal part of the

operator is a multiplication operator rather than a differential operator, and we investigate

Fredholm properties of T on a larger class of function spaces, L p(R, Cn), 1 ≤ p ≤ ∞, as

well as C0(R, Cn), the latter with an eye toward proving center manifold properties in later

sections. We note however that Fredholm properties are useful beyond the study of small-

amplitude structures: they have been used to investigate eigenvalue problems near the edge

of the essential spectrum [18] or to construct a Conley-Floer homology theory for gradient-

like problems [5] and thus establish existence of large-amplitude front solutions for nonlocal

systems.

Our results identify necessary and sufficient conditions for the operators of the form (1.1)

to be Fredholm (Theorem 1), and show how to compute the index (Theorem 2). Informally,

Theorem 1 states that within a large class of operators,

T is Fredholm ⇐⇒
{

T is invertible at spatial infinity;

The multiplication operator A(·) is invertible.
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The first condition, loss of invertibility at infinity, is a well-known source of non-compactness,

also in local problems [18, 32]. The second condition arises from the change in principal

part and loss of regularity, and may contribute to possible bifurcations such as depinning of

fronts in the nonlocal setting [3] or synchronization transitions in coupled oscillators [10].

Nonlocal Center Manifolds Center manifold theory has long been used to study small-

amplitude solutions of nonlinear equations. Originally set in finite dimensions [27], then

extended to Banach space settings [23] and ill-posed equations [28], the reduction of large or

infinite-dimensional systems to a low-dimensional submanifold can allow for, for instance,

existence and uniqueness arguments where they otherwise are not possible. We are concerned

here with the construction of small, bounded stationary or traveling-wave solutions for non-

linear, nonlocal equations. For local equations, for instance PDEs set on x ∈ R or x in a

cylinder, such solutions can be studied using spatial dynamics and existing center manifold

results. Constructing such stationary or traveling-wave solutions for nonlocal equations poses

new challenges, in particular since an initial-value problem formulation, even an ill-posed

one as for elliptic equations, is not readily available. Analytical results therefore were lim-

ited to special kernels that allow for a reformulation as an ODE [16]. This obstruction was

removed in [19], with a center manifold theory for nonlocal systems of the form

0 = −U + K ∗ U + F(U ), (1.2)

for exponentially localized K . There, the need for a phase space is sidestepped: instead of

parameterizing initial conditions over a center subspace, entire trajectories are parameterized

in function space over the kernel of the linearization, which is finite-dimensional. The crux of

this idea is that the analogue of a flow in phase space is the shift operator in function space—

the shift operator τξ “flows” a trajectory u(·) forward to the shifted trajectory u(· + ξ). This

flow, the action of the shift operator, can then be pulled back to the kernel and differentiated,

in order to obtain a reduced vector field.

Along with establishing a center manifold comes the question of optimal regularity. In

traditional settings, one seeks to establish Ck regularity of center manifolds for Ck vector

fields, or Ck,α regularity for Ck,α vector fields [23], for finite-dimensional or Banach space

settings [15, 21, 27, 35, 43]. The phrase "Ck manifold" refers, equivalently in that case, to

regularity of the map parameterizing the set of center solutions, as well as to the regularity

of the reduced vector field. Analogous ’optimal regularity’ results were precluded in [19],

through the use of an H1-function space setting: although the proof there establishes Ck

regularity of the manifold for a Ck nonlinearity on H1, a pointwise nonlinearity must be a

Ck+1 function in order for the substitution operator to be a Ck operator on H1. We remedy

this loss of regularity by relying on a C0 function-space setting, where pointwise substitution

operators do not lose regularity.

Our contribution in Theorem 5 then is twofold:

• Optimal regularity: We construct nonlocal center manifolds on C0 spaces, yielding Ck

manifolds and reduced vector fields for Ck pointwise nonlinearities after a Ck change of

coordinates.

• Local cutoff: Our construction on C0 spaces does not rely on the modified cutoff function

necessary in the H1-setting [20], simplifying the argument and allowing easier adaptation

to different nonlinearities.

We delineate in Sect. 4 of this paper this construction of the nonlocal center manifold on

C0-based spaces, a key ingredient of which is the Fredholm theory from Sects. 2 and 3. We

note that the Ck change of coordinates is not necessary to achieve the Ck map parameterizing

the center manifold, only the reduced vector field, since it allows bootstrapping of the center
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solutions. We remark also that we are able to recover the smoothness from [19] when changing

back to the original coordinates. Of course, the existence of a Ck reduced vector field in

some coordinates, may well be useful and desirable since it allows for arguments based

on uniqueness or sharp Taylor expansions that yield results which are valid independent of

coordinates choices.

Lyapunov-Center Theorem In Hamiltonian and reversible systems, one can often conclude

the existence of nonlinear oscillations from oscillations in the linear part. Such Lyapunov-

Center theorems have been established in many contexts [7, 12, 29, 37]. First, existence of

a one-parameter family of periodic trajectories near an equilibrium of the nonlinear flow is

guaranteed by a pair of nonresonant imaginary eigenvalues ±iω. Uniqueness of this family

within the class of small periodic solutions can then be guaranteed by Lyapunov-Schmidt

reduction, if there is exactly one simple pair of imaginary eigenvalues. Further, if a center

manifold exists, one can show uniqueness of the family within the class of all small bounded,

not necessarily periodic solutions to the nonlinear system.

As an application of the center manifold on C0 spaces, we prove here a Lyapunov-Center

theorem for a system

0 = −u + k ∗ (Au + N (u)) (1.3)

with A a constant matrix, k an exponentially localized kernel, and N (u) a C1 pointwise

nonlinearity, N (0) = N ′(0) = 0. In the nonlocal case, reversibility corresponds to evenness

of the convolution kernel k, and eigenvalues in the classical systems correspond to roots of

the equation 0 = d(ν) = det(In + k̂(ν)A). Our result, Theorem 8, can thus informally be

stated:

{
d(ν) has a unique pair of roots ± iω∗ on iR,

d ′(iω∗) 	= 0


⇒ all small bounded solutions to (1.3) are periodic.

In the context of spatial dynamics, the result establishes absence of small-amplitude coherent

structures, such as solitary waves or nanopterons, for wave speeds different from group veloc-

ities under a non-resonance condition, with optimal regularity assumptions; see Remark 5.3.

Technically, the C1 case requires careful analysis because the principal term in the reduced

equation is essentially quadratic. The argument also relies on the ability to establish a center

manifold for a C1 nonlinearity, which is made possible by the C0-based center manifold

construction.

Outline of the Paper We establish in Sect. 2 necessary and sufficient conditions for Fred-

holm properties of a class of nonlocal operators. We characterize Fredholm indices of these

operators in Sect. 3 via relative Morse indices, requiring stronger localization of the kernel

than in the previous section.

In Sect. 4, we prove existence of center manifolds for nonlocal systems on C0-based

spaces, using the methods in [19], and establish regularity of the reduced vector field. We

use this center manifold theory in Sect. 5 to prove a Lyapunov-Center theorem for nonlocal

systems.

We note that sections may be read independently from each other—taking major results

of the others for granted, and occasionally notation, they are essentially self-contained.
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2 Fredholm Properties of a Nonlocal Operator

We establish Fredholm properties for a class of nonlocal operators whose principal part is

a multiplication operator, with a lower-order integral operator perturbation. Such operators

may arise in studying space-dependent equilibria of nonlocal differential equations. The

nonlocal coupling here is not a true convolution, except in the limit at spatial infinity. Such

operators arise from linearizations at heteroclinic profiles in otherwise translation invariant

systems, or from translation-invariant problems considered in weighted spaces. Our main

focus in this section is to establish Fredholm properties for these operators on L∞ and C0,

and outline adaptations to L p, p ≥ 1. In subsequent sections, Fredholm properties on C0

will be used to extend results in [19] on nonlocal center manifolds to C0-based spaces. This

class of operators are related to those in [18] but slightly more general and interesting in their

own right due to additional sources of loss of compactness.

2.1 Setup and Notation

We denote by L1, L∞ the usual L p spaces L1(R, Cn) and L∞(R, Cn), and we let C0(R, Cn)

be the space of continuous functions with finite norm,

‖ f ‖C0 = max
1�i�n

sup
x∈R

| fi (x)|.

We let Mn(C) be the set of n × n complex matrices. Lastly, we introduce the weighted L2

space

L2
1(R, Mn(C)) = { f ∈ L2(R, Cn) | ‖

√
1 + ξ2 · f ‖L2 < ∞}.

Also define the complex Fourier Transform on L2(R, Cn) by

f̂ (i�) =
1

√
2π

∫

R

f (ξ)e−i�ξ dξ ;

note that the standard Fourier transform evaluates f̂ on iR.

A Class of Nonlocal Operators

We consider operators of the form

T : L∞(R, Cn) → L∞(R, Cn)

U (ξ) �→ A(ξ)U (ξ) +
∫

R

K (ξ − ξ ′; ξ)U (ξ ′)dξ ′,
(2.1)

with A(·) ∈ L∞(R, Mn(C)), K (ξ − ·, ξ) ∈ W 1,∞(R, W 1,1(R, Mn(C)). We further require,

in order to ensure properties of the adjoint, that K (· + ξ, ·) ∈ W 1,∞(R, W 1,1(R, Mn(C))).

The integral kernel Kξ (·) = K (·, ξ) can be thought of as an inhomogeneous convolution

Kξ ∗ U . We denote the pair (A, K ) =: A, and we denote the operator by TA or simply T ,

when unambiguous. We also consider the analogous class of operators TAC on C0(R, Cn),

for which all assumptions are the same except that we must have A(·) ∈ C0(R, Mn(C)).

With suitable assumptions on limits and regularity, we wish to establish Fredholm prop-

erties for operators in this class: we first identify necessary and sufficient conditions for the

operator to be Fredholm and then, with stronger localization assumptions, relate the Fredholm

index to a spectral flow.

We give two examples where such generalized convolution kernels arise.
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Linearized Nonlocal Allen–Cahn Equation

The reaction-diffusion Allen–Cahn equation can be posed nonlocally as

du

dt
= d(−u + k ∗ u) + f (u), (2.2)

with
∫

k = 1, for instance a normalized Gaussian, and constant effective diffusivity d > 0.

Considering stationary solutions, and then linearizing the equation about an interface-like

solution u∗, u∗(x) → u± for x → ±∞, one obtains

T u = d(−u + k ∗ u) + f ′(u∗) · u. (2.3)

Neural Fields Similarly, one can consider simple models for neural fields with an assump-

tion of homogeneity, that is, translation invariance,

du

dt
= −u + k ∗ F(u), (2.4)

where x lives in physical or feature space, and u denotes a possibly averaged state of the

neural field. The state could be scalar- or vector-valued, and the convolution kernel is often

assumed Gaussian, or, for technical reasons, to possess rational Fourier transform.

Again considering stationary solutions u∗ and linearizing, one obtains

T u = −u + k ∗ [F ′(u∗) · u]. (2.5)

2.2 Fredholm Properties

We state the main result and hypotheses.

Hypothesis 2.1 (Limits at infinity) We assume that there exist two matrices A± ∈ Mn(C)

such that

A(ξ) → A±, ξ → ±∞.

We also assume that there exist two functions K ± ∈ W 1,1(R, Mn(C)) ∩ L2
1(R, Mn(C))

such that

lim
ξ→±∞

∥∥K (·, ξ) − K ±(·)
∥∥

L1 = 0

and lim
ξ→±∞

∥∥K (·, · + ξ) − K ±(·)
∥∥

L1 = 0.

Remark 2.2 The examples discussed above can be shown to satisfy these hypotheses, given

somewhat mild assumptions on the kernel, and assuming that u∗ ∈ L∞, with limits at infinity,

so that f ′(u∗(x)) → f ′(u±(x)), x → ±∞.

Theorem 1 Given TA in the class of operators defined in Sect.2.1 that satisfies Hypothe-

sis 2.1, the following are equivalent:

(i) TA is Fredholm.

(ii) TA satisfies

(a) Hyperbolicity at Infinity: det(̂K ±(i�) + A±) 	= 0 for all � ∈ R;

(b) Pointwise Invertibility of Principal Part: A−1(·) ∈ L∞(R, Mn(C)).
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Furthermore, when TA is Fredholm, its index depends only on the limits A± and K ±(·)
defined in Hypothesis 2.1.

If A is continuous, the analogous result holds for TAC .

Note that the above theorem essentially suggests that loss of compactness happens for two

reasons—noncompactness of the domain, and pointwise lack of invertibility in the principal

part. The former is a well-known source of non-compactness, but the latter is not present in

the results of [18], where the principal part is a differential operator.

2.3 Proof of Theorem 1, Sufficiency of Conditions for Fredholm

We first state some propositions which will be used in the proof.

Proposition 2.3 There exists C > 0 such that for all U ∈ L∞, the following estimate holds:
∥∥∥∥
∫

R

K (ξ − ξ ′; ξ)U (ξ ′)dξ ′
∥∥∥∥

L∞
≤ C‖U‖(W 1,1)∗ . (2.6)

Proof Consider the operator

K̃ : L1(R, Cn) → W 1,1(R, Cn)

U (ξ) �→
∫

R

K ∗(ξ ′ − ξ, ξ ′)U (ξ ′)dξ ′,

where K ∗ denotes the conjugate transpose of the matrix K .

We have that

∥∥K̃U
∥∥

W 1,1 ≤

(
sup
ξ

∥∥K ∗(· + ξ, ·)
∥∥

L1 + sup
ζ

∥∥∥∥
d

dξ
K ∗(ξ − ζ, ξ)

∥∥∥∥
L1(ξ)

)
‖U‖L1

≤ C ‖U‖L1 ,

by the fact that K (·+ξ, ·) ∈ W 1,∞(R, W 1,1(R, Mn(C))). Therefore, K̃ is a bounded operator

from L1(R, Cn) to W 1,1(R, Cn). Since K̃ is bounded, its adjoint K̃∗ is also bounded as an

operator from (W 1,1(R, Cn))∗ to L∞(R, Cn).

Formally, K̃∗ is defined only as an abstract operator on (W 1,1)∗; however, elements of

L∞ can be considered elements of (W 1,1)∗ via the measure associated to the L∞ function.

Whenever the argument of K̃∗ corresponds to an L∞ function in this way, the adjoint operator

K̃ ∗ must coincide with the operator

U (ξ) →
∫

R

K (ξ − ξ ′; ξ)U (ξ ′)dξ ′. (2.7)

The boundedness of the adjoint operator then implies the boundedness of the operator

(2.7) on L∞, which gives for U ∈ L∞ the bound in 2.3 as desired. ��

We will also need the following lemma:

Lemma 2.4 (Abstract closed range lemma) Suppose that X , Y , and Z are Banach spaces,

that T is a bounded linear operator, and that R : X → Z is a compact linear operator.

Assume that there exists a constant c > 0 such that

‖U‖X ≤ c (‖T U‖Y + ‖RU‖Z ) , for all U ∈ X .

Then T has closed range and finite-dimensional kernel.
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Proof See [38]. ��

Proposition 2.5 For the operator TA, there exist constants c > 0 and L > 0 so that

‖U‖L∞ ≤ c(‖U‖(W 1,1([−L,L],Cn))∗ + ‖TAU‖L∞). (2.8)

The same holds for TAC .

In particular, this will allow us to use Lemma 2.4 since the composition I ◦ RL of

the restriction operator RL : L∞(R, Cn) → L∞([−L, L], Cn) and the inclusion operator

I : L∞([−L, L], Cn) → (W 1,1([−L, L], Cn))∗ is compact. The same argument applies for

the analogous operators on C0 since the latter is a closed subspace of L∞.

Proof Let T refer either to TA or TAC . Following [18], we divide the proof into four steps.

Step 1: We first show that

‖U‖L∞ ≤ c1(‖U‖(W 1,1(R,Cn))∗ + ‖T U‖L∞). (2.9)

For each U , we have

‖T U‖L∞ =
∥∥∥∥A(ξ)U (ξ) +

∫

R

K (ξ − ξ ′; ξ)U (ξ ′)dξ ′
∥∥∥∥

L∞

=
∥∥∥∥A(ξ)

(
U (ξ) + A−1(ξ)

∫

R

K (ξ − ξ ′; ξ)U (ξ ′)dξ ′
)∥∥∥∥

L∞

≥
1

‖A−1(ξ)‖L∞

∥∥∥∥U (ξ) + A−1(ξ)

∫

R

K (ξ − ξ ′; ξ)U (ξ ′)dξ ′
∥∥∥∥

L∞

≥ c

∥∥∥∥U (ξ) + A−1(ξ)

∫

R

K (ξ − ξ ′; ξ)U (ξ ′)dξ ′
∥∥∥∥

L∞

≥ c

(
‖U (ξ)‖L∞ − ‖A−1(ξ)‖L∞ ·

∥∥∥∥
∫

R

K (ξ − ξ ′; ξ)U (ξ ′)dξ ′
∥∥∥∥

L∞

)

≥ c(‖U (ξ)‖L∞ − c′‖U (ξ)‖(W 1,1)∗),

for some c, c′ > 0, which implies the estimate (2.9).

Step 2: We now consider a constant-coefficient operator

TA0 : U (ξ) �→ A0U (ξ) + (K 0 ∗ U )(ξ), (2.10)

with A0 invertible and K 0(·) ∈ W 1,1(R, Mn(C))∩L2
1(R, Mn(C)), satisfying the hyperbolic-

ity condition det(K̂ 0(i�)+ A0) 	= 0 for all � ∈ R. Note that the condition K ∈ L2
1(R, Mn(C))

guarantees that K̂ ∈ H1. We will show directly that TA0 is bounded invertible, since L∞ is

less amenable to the properties of Fourier multipliers.

We define the inverse of TA0 on L∞(R, Mn(C)) by

(TA0)−1(U ) = (A0)−1U + Kinv ∗ U , (2.11)

where Kinv is the inverse Fourier transform of ((A0 + K̂ 0(i�))−1 − (A0)−1).

That T
−1

A0 is an inverse can be shown directly by calculating

TA0(TA0)−1U = U + (A0 Kinv + K 0 A−1 + (K ∗ Kinv)) ∗ U ;

the function (A0 Kinv + K 0 A−1 + (K ∗ Kinv)) is the Fourier inverse of the 0 function, so

vanishes almost everywhere, giving TA0(TA0)−1U = U . One can likewise show the same
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for (TA0)−1TA0 . We would then like to show that the inverse function (TA0)−1 is bounded.

We do this by showing that K̂inv ∈ H1, so that Kinv ∈ L1, leading to boundedness of T
−1

A0 .

We have by a matrix identity that (A0 + K̂ 0(i�))−1 − (A0)−1 = −(A0)−1 K̂ 0(i�)(A0 +
K̂ 0(i�))−1. Then

∥∥∥((A0 + K̂ 0(i�))−1 − (A0)−1)

∥∥∥
Mn (C)

≤

(
sup
�∈R

∥∥∥∥(A0)−1
(

A0 + K̂ 0(i�)
)−1

∥∥∥∥
Mn (C)

) ∥∥∥K̂ 0(i�)

∥∥∥
Mn (C)

= C1

∥∥∥K̂ 0(i�)

∥∥∥
Mn (C)

,

and

∥∥∥∥
d

d�
((A0 + K̂ 0(i�))−1 − (A0)−1)

∥∥∥∥
Mn (C)

≤ sup
�∈R

(∥∥∥∥
(

A0 + K̂ 0(i�)
)−2

∥∥∥∥
Mn (C)

) ∥∥∥(K̂ 0)′(i�)
∥∥∥

Mn (C)

= C2

∥∥∥(K̂ 0)′(i�)
∥∥∥

Mn (C)
,

so that

∥∥∥K̂inv

∥∥∥
H1

≤ (C1 + C2)

∥∥∥K̂ 0

∥∥∥
H1

, and K̂inv ∈ H1. Then Kinv ∈ L2
1(R, Mn(C)) ⊂

L1(R, Mn(C)).

For c2 :=
(∥∥(A0)−1

∥∥
Mn(C)

+ ‖Kinv‖L1

)
, this gives the estimate

‖U‖L∞ ≤ c2

∥∥TA0U
∥∥

L∞ , for all U ∈ L∞. (2.12)

Step 3: We now want to show that there exists L > 0 such that if U (ξ) = 0 for |ξ | < L−1,

we have

‖U‖L∞ ≤ c3‖T U‖L∞ . (2.13)

First, suppose that we have two functions U+(ξ) = 0, ξ ≤ L − 1, and U−(ξ) = 0, ξ >

−(L − 1).

Then, note that since K , A satisfy Hypothesis 2.1, we may find L large enough, so that

for U±,
∥∥∥∥
∫

R

(
K (ξ − ξ ′; ξ) − K ±(ξ − ξ ′)

)
U±(ξ ′)dξ ′

∥∥∥∥
L∞

≤
ε

2
‖U±‖L∞

‖(A± − A)U±‖L∞ ≤
ε

2
‖U±‖L∞ ,

so we have 1
c2

‖U±‖L∞ ≤ ‖T ±U±‖L∞ ≤ ε‖U±‖L∞ +‖T U±‖L∞ , which gives ‖U±‖L∞ ≤
c‖T U±‖L∞ , choosing εc2 < 1, where the implicit notation T ± refers to the map

T
± : U (ξ) �→ A±(ξ)U (ξ) +

∫

R

K ±(ξ − ξ ′)U (ξ ′)dξ ′).

Finally, given U such that U = 0, |ξ | < L − 1, we can decompose U = U+ + U−, taking

U+(ξ) = U (ξ), for ξ > 0, and U+(ξ) = 0 otherwise, and U−(ξ) = U (ξ) for ξ ≤ 0, and

U−(ξ) = 0 otherwise.

Then we have

‖U‖L∞ ≤ ‖U+‖L∞ + ‖U−‖L∞ ≤ c(‖T U+‖L∞ + ‖T U−‖L∞)

≤ 2c‖T U‖L∞ =: c3‖T U‖L∞ ,

as desired.
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Step 4: Finally, let χ be a smooth cutoff function equal to 0 outside [−L, L] and equal to

1 for |ξ | < L − 1. Then we have

‖U‖L∞ ≤ ‖χU‖L∞ + ‖(1 − χ)U‖L∞

≤ c1(‖χU‖W 1,1∗ + ‖T (χU )‖L∞) + c3‖T (1 − χ)U‖L∞ (by steps 1 and 3 )

≤ c(‖U‖(W 1,1([−L,L]))∗ + ‖T U‖L∞),

which concludes the proof of Proposition 2.5. ��

Corollary 2.6 The operators TA and TAC have closed range and finite-dimensional kernel.

Proof Let R = I ◦ RL , X , Y = L∞(R, Cn), Z = (W 1,1([−L, L], Cn))∗. The result then

follows for TA from Lemma 2.4 and Proposition 2.5. For TAC , let R : C0(R, Cn) →
(W 1,1([−L, L], Cn))∗ be defined analogously, and let X , Y = C0(R, Cn), and the same is

true. ��

Adjoint Properties In order to show that the cokernels of TA and TAC are finite-

dimensional, we consider the kernels of the adjoint operators T ∗
A

, T ∗
AC . Consider first

T ∗
A

: (L∞(R, Cn))∗ → (L∞(R, Cn))∗. Abstractly, the adjoint T ∗
A

is defined only as an

operator on (L∞(R, Cn))∗ ∼= ((L∞(R, C))∗)n , where (L∞(R, C))∗ can be identified with

the space of absolutely continuous finite Borel measures on R. However, we see that for an

n-tuple μ of measures in the kernel of T ∗
A

, we must have

∫
U (ξ) · dμ = −

∫ [∫

R

K (ξ − ξ ′; ξ)A−1(ξ ′)U (ξ ′)dξ ′
]

· dμ(ξ) (2.14)

for all U ∈ L∞, where · refers here to the dot product on Cn . Note that every component

of the matrix-valued function K (ξ − ξ ′; ξ)A−1(ξ ′) is an L∞ function of ξ , with L∞ norm

bounded over ξ ′. Then for any i, j , the function
∫
(K (ξ − ξ ′; ξ)A−1)i j (ξ

′)dμi is in fact

an L∞ function of ξ ′. Therefore, since (2.14) must hold for every U , we see by equat-

ing terms that the n-tuple of measures μ is given by an element of L∞(R, Cn) through

(μ)i =
(∫

(K (ξ − ξ ′; ξ)A−1(ξ ′)ei ) · dμ
)
λ, where λ is the Lebesgue measure and ei is the

i th standard basis vector in Cn .

The same is true for T ∗
AC . Since the dual of C0(R, C) can be identified with the space of

finite, finitely-additive complex measures on R, we can again identify the dual of C0(R, Cn)

with n-tuples of measures, and we must have for all μ ∈ (C0(R, Cn))∗, U ∈ C0, that
∫

U (ξ) · dμ = −
∫ [∫

R

K (ξ − ξ ′; ξ)A−1(ξ ′)U (ξ ′)dξ ′
]

· dμ.

Now, K (·−ξ ′, ·) ∈ C0(R, Mn(C)) ⊂ W 1,1(R, Mn(C)), with C0 norm bounded over ξ ′ ∈ R.

Therefore, for all i, j,
∫
(K (ξ − ξ ′; ξ)A−1(ξ ′))i j dμi is well-defined and an L∞ function

of ξ ′. Then, by the same calculation as above, the n-tuple of measures μ corresponds to an

element of L∞(R, Cn) by (μ)i =
(∫

(K (ξ − ξ ′; ξ)A−1(ξ ′)ei ) · dμ
)
λ.

For such an n-tuple of measures that corresponds to an L∞(R, Cn) function, the actions

of both the operators T ∗
A

and T ∗
AC coincide with the action of the operator

T
∗

L∞ : U (ξ) �→ A∗(ξ)U (ξ) +
∫

K ∗(ξ ′ − ξ ; ξ ′)U (ξ ′)dξ ′

on the L∞ function, where K ∗, A∗ refer to the conjugate transposes of the matrices K , A.

Then for both TA and TAC , the kernel of the adjoint operator will be finite-dimensional

provided that the kernel of T ∗
L∞ is finite-dimensional on L∞.
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Lemma 2.7 The operator T ∗
L∞ satisfies Hypothesis 2.1 and condition (ii) from Theorem 1

whenever TA (or TAC ) does.

Proof We note that the conditions that K (ξ − ·, ξ) ∈ W 1,∞(R, W 1,1(R, Mn(C)) and

K (· + ξ, ·) ∈ W 1,∞(R, W 1,1(R, Mn(C))) exactly guarantee that Hypothesis 2.1 is read-

ily satisfied by both TA (or TAC ) and T ∗
L∞ . Condition (i i)(a) holds for T ∗

L∞ since A∗(ξ) is

invertible whenever A(ξ) is, and we can see that condition (i i)(b) holds by noting that for

a hyperbolic TA0 , we have that det((K̂ 0(i�) + A0)) = (−1)n det((K̂ 0(i�) + A0)∗), so T ±

will be hyperbolic exactly when (T ∗
L∞)± are. ��

Limit Operators and the Fredholm Index

The last part of Theorem 1 concerns the indices of the operators, when they are Fredholm.

In particular, it will be useful later to have the following fact:

Proposition 2.8 If TA (or TAC ) is Fredholm, its index depends only on A± and K ±.

Proof Suppose TA1 and TA2 (or T
AC

1
, T

AC
2

respectively) satisfy Hypothesis 2.1 and are

Fredholm. We use in the following that, as a consequence of the necessary part of Theorem 1

which is proved below, we may assume that condition (ii) from Theorem 1 is met. Suppose

A1, A2 are given by (A1, K1), (A2, K2), with the same limits A±, K ±.

Two Fredholm operators T1 and T2 have the same index if there exists an invertible operator

B such that T1 − T2 B is compact. The multiplication operator U (ξ) �→ A−1
2 (ξ)A1(ξ)U (ξ)

is invertible, so we would like to show that TR := TA1 − TA2 A−1
2 A1 is compact. We will do

this by showing it is the operator-norm limit of a sequence of compact operators. Essentially,

we would like to cut off the operator outside |ξ | < L , and show that TR is the limit of the

truncated operators as L → ∞.

More formally, let T L
R U = EL ◦ IL ◦ RL ◦ (χ LTRU ), where

RL : W 1,∞(R, Cn) → W 1,∞([−L, L], Cn)) (or C1, C1) is the restriction operator,

IL : W 1,∞([−L, L], Cn) → L∞([−L, L], Cn) (or C1, C0) is the inclusion operator,

EL : L∞([−L, L], Cn) → L∞(R, Cn) (or C0, C0) extends by 0 outside [−L, L], and

χ L is a smooth characteristic function equal to 1 on

[−(L − 1), L − 1], and 0 outside [−L, L].

The operator IL is compact, and the operators RL , EL , and multiplication by χ L are

bounded, so T L
R is a compact operator.

We now show that TR is the operator limit of the sequence {T L
R }, L → ∞. Let ε > 0, and

note that ‖·‖L∞ may refer equivalently to the supremum norm on L∞ or C0. We have

TRU (ξ) = (TA1 − TA2 A−1
2 A1)U (ξ)

=
∫

R

[
K1(ξ − ξ ′; ξ)U (ξ ′) − K2(ξ − ξ ′; ξ)A−1

2 (ξ ′)A1(ξ
′)U (ξ ′)

]
dξ ′.
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Let AR(ξ ′) = In − A−1
2 (ξ ′)A1(ξ

′). Then

∥∥∥(TR − T
L

R )U

∥∥∥
L∞

≤ sup
|ξ |>(L−1)

|TRU (ξ)|

≤ sup
|ξ |>(L−1)

(∣∣∣∣
∫

R

(K1 − K2)(ξ − ξ ′; ξ)U (ξ ′)dξ ′
∣∣∣∣

+
∣∣∣∣
∫

R

K2(ξ − ξ ′; ξ)AR(ξ ′)U (ξ ′)

∣∣∣∣
)

.

Since K1 and K2 each converge to K ± in L1, we can find L > 0 that sup|ξ |>(L−1)

‖(K1 − K2)(·, ξ)‖L1 < ε
2

. Then

sup
|ξ |>L−1

∣∣∣∣
∫

R

(K1 − K2)(ξ − ξ ′; ξ)U (ξ ′)dξ ′
∣∣∣∣

≤ sup
|ξ |>L−1

‖(K1 − K2)(·, ξ)‖L1 ‖U‖L∞ <
ε

2
‖U‖L∞ .

We can then find M1 large enough that supξ ′>M1

∥∥AR(ξ ′)
∥∥

Mn(C)
< ε

4 supξ ‖K2(·,ξ)‖
L1

, since

AR(ξ ′) goes to 0 as |ξ ′| → ∞. We can also find M2 large enough that |
∫
|ζ |>M2

K2(ζ ; ξ)dζ | <
ε

4 max
(

1,supξ ′‖AR(ξ ′)‖Mn (C)

) for all |ξ | > (L − 1), since K2 varies continuously in L1 with ξ ,

with limits at infinity. Then take L > M1 + M2 + 1.

We have

sup
|ξ |>(L−1)

∣∣∣∣
∫

R

K2(ξ − ξ ′; ξ)AR(ξ ′)U (ξ ′)dξ ′
∣∣∣∣

≤ sup
|ξ |>(L−1)

(∣∣∣∣
∫

|ξ ′|<M1

K2(ξ − ξ ′; ξ)AR(ξ ′)U (ξ ′)dξ ′
∣∣∣∣

+
∣∣∣∣
∫

|ξ ′|>M1

K2(ξ − ξ ′; ξ)AR(ξ ′)U (ξ ′)dξ ′
∣∣∣∣
)

≤ sup
|ξ |>(L−1)

(
sup
ξ ′∈R

∥∥AR(ξ ′)
∥∥

∣∣∣∣
∫

|ζ |>M2

K2(ζ, ξ)dζ

∣∣∣∣

+ sup
ξ ′>M1

∥∥AR(ξ ′)
∥∥ ‖K2(·, ξ)‖L1

)
‖U‖L∞

<
( ε

4
+

ε

4

)
‖U‖L∞ .

Putting this together, for L sufficiently large, we get

∥∥∥(TR − T
L

R )U

∥∥∥
L∞

≤ sup
|ξ |>(L−1)

(∣∣∣∣
∫

R

(K1 − K2)(ξ − ξ ′; ξ)U (ξ ′)dξ ′
∣∣∣∣

+
∣∣∣∣
∫

R

K2(ξ − ξ ′; ξ)AR(ξ ′)U (ξ ′)

∣∣∣∣
)

<
( ε

2
+

ε

2

)
‖U‖L∞ = ε ‖U‖L∞ .
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So TR is the operator-norm limit of the sequence {T L
R }, L → ∞. Then since it is the limit of

a sequence of compact operators, TR must be compact. Therefore the Fredholm indices of

TA and TAC depend only on the limiting operators. ��

Given this, we are finally ready to prove Theorem 1.

Proof of Theorem 1, Sufficiency Assume Hypothesis 2.1 and conditions (a) and (b) from The-

orem 1, and let T refer either to TA or TAC . From Corollary 2.6, we conclude that T has

closed range and finite-dimensional kernel.

Using Lemma 2.7, T ∗
L∞ then satisfies the same hypotheses as T , meaning the same con-

clusions apply, and T ∗
L∞ has finite-dimensional kernel. Since the kernel of T corresponds to

the kernel of T ∗
L∞ , then T have finite-dimensional kernel also.

These together imply that T is a Fredholm operator.

Lastly, by Proposition 2.8, the Fredholm index of T depends only on the limits A±, K ±.

Then the sufficiency part of Theorem 1 is proven. ��

Remark 2.9 The above argument extends readily to L p , 1 < p < ∞, with only minor

modifications. In particular, replace L∞ and (W 1,1)∗ with L p and (W 1,q)∗ everywhere they

appear, with 1
q

+ 1
p

= 1. Also replace L1 and W 1,1 with Lq and W 1,q in the proof of

Proposition 2.3, and the main inequality in the proof of Proposition 2.3 with
∥∥K̃U

∥∥q

W 1,q ≤
C ‖U‖q

Lq , where

C = sup
ξ

∥∥K ∗(ξ − ·, ξ)
∥∥p/q

L1 sup
ζ

∥∥K ∗(· − ζ, ·)
∥∥

L1

+ sup
ξ

∥∥∥∥
d

dξ
K ∗(ξ − ζ, ξ)

∥∥∥∥
p/q

L1(ζ )

sup
ζ

∥∥∥∥
d

dξ
K ∗(ξ − ζ, ξ)

∥∥∥∥
L1(ξ)

,

which is verified by a short calculation using Hölder’s inequality. Lastly, in the proof of

Proposition 2.8, replace ‖·‖L∞ with ‖·‖p
L p and supξ>(L−1)(·) with

∫
ξ>(L−1)

| · |p whenever

they appear, and note that the inequality |a + b|p ≤ 2p(|a|p + |b|p) introduces a factor of 2.

The rest holds without further modification.

We do note that for 1 < p < ∞, the requirement that K ± ∈ L2
1 can be dropped, since step

2 in the proof of Proposition 2.5 can be proved instead using properties of Fourier multipliers.

2.4 Proof of Theorem 1, Necessity of Conditions for Fredholm

We now prove the necessity of conditions (i i)(a) and (i i)(b) in Theorem 1. The proof

relies on construction of two Weyl sequences: first, when the principal part has a zero, a

sequence becoming concentrated around the zero; second, when the limiting operators are

not invertible, a sequence concentrating at the kernel in Fourier space, whose support in

physical space is pushed out to infinity. These sequences are constructed for L∞ and C0, but

can be easily modified for the L p case.

Construction of Weyl Sequence for Condition (ii)(b) Assume that condition (i i)(b) is not

met; that is, A−1 /∈ L∞(R, Mn(C)). We will construct a Weyl sequence first for TA, then for

TAC .

First, consider TA, so that A(·) is in L∞ but not necessarily C0. Since A−1 /∈ L∞, then for

each N ∈ N there exists a set EN ⊂ R of positive measure such that inf |v|=1 |A(ξ)v| < 1
2N

.

If the measure of EN is greater than 1
N

, redefine it as a subset so that its measure is equal

to 1
N

. Since A(ξ) ∈ L∞(R, Mn(C)), by Lusin’s theorem, there exists for each N ∈ N an
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AN ∈ C0(R, Mn(C)), and 
N ⊂ R, so that AN (ξ) ≡ A(ξ) on 
N , with the measure of

R \
N equal to half the measure of EN . Let ẼN = EN ∩
N . Because each AN is continuous,

we can define vN (ξ) supported on ẼN , piecewise constant, so that |A(ξ)vN (ξ)| < 1
N

, as

follows:

AN is uniformly continuous on each [k, k + 1] ⊂ R, k ∈ N. Cover [k, k + 1] ∩ Ẽn with

disjoint intervals �k,i of length at most δk such that |(AN (ξ) − AN (ξ0))v| < 1
2N

for any

|ξ − ξ0| < δk, |v| = 1. Choose ξk,i ∈ �k,i ∩ ẼN , and let vk,i , |vk,i | = 1 be such that

|AN (ξk,i )vk,i | < 1
2N

. Let

uN (ξ) =

{
vk,i , ξ ∈ �k,i ∩ ẼN

0, otherwise.

Then uN is a measurable function, with ‖uN ‖L∞ = 1, for which |A(ξ)vN (ξ)| < 1
N

for all ξ .

For TAC the construction is somewhat simpler. Since in this case A(·) is continuous

with A−1 /∈ L∞, there exists for all N ∈ N an interval EN with positive measure so that

inf |v|=1 |A(ξ)v| < 1
2N

for all ξ ∈ En . Again, redefine EN possibly as a subinterval so that

m(EN ) < 1
N

. Let ξN ∈ EN , and let v0, |v0| = 1, be a vector such that |A(ξN )v0| < 1
2N

.

Then there exists a subinterval ẼN of EN with positive measure such that |A(ξ)v0| < 1
N

for

ξ ∈ ẼN . Let χN be a smooth function supported on ẼN with ‖χN ‖C0 = 1. Then let

uN (ξ) = χN (ξ)v0.

Note that in both constructions, we get that uN is supported on a set of measure δ̃N ≤ 1
N

.

Proof (Necessity of Condition (ii)(b)) We will now prove that {uN } is a Weyl sequence. Let

T refer either to TA or TAC , and let {uN } be the corresponding sequence defined above.

Let ‖·‖L∞ refer equivalently to the norm on L∞ or C0. Since ‖A(ξ)uN (ξ)‖L∞ < 1
N

, we

can choose N0 large enough so that ‖A(ξ)uN (ξ)‖L∞ < ε
2

for all N > N0. Note also that

‖uN ‖L1 ≤ δ̃N → 0, and, by the assumptions on K , that supξ,ξ ′
∥∥K (ξ − ξ ′, ξ)

∥∥
Mn(C)

< ∞.

Then we can find N0, possibly larger, so that for N > N0,

∥∥∥∥
∫

R

K (ξ − ξ ′, ξ)uN (ξ ′)dξ ′
∥∥∥∥

L∞
≤ sup

ξ,ξ ′

∥∥K (ξ − ξ ′, ξ)
∥∥

Mn(C)
‖uN ‖L1 <

ε

2
.

Putting this together, there exists N0 large enough so that for N > N0,

‖T uN ‖L∞ ≤ ‖AuN ‖L∞ +
∥∥∥∥
∫

R

K (ξ − ξ ′, ξ)uN (ξ)dξ ′
∥∥∥∥

L∞

<
ε

2
+

ε

2
= ε.

Then {uN } forms a Weyl sequence for T , and T is not Fredholm, showing the necessity

of condition (ii)(a). ��

Construction of Weyl Sequence for Condition (ii)(a) Next, assume that Condition (ii)(a)

is not satisfied; i.e., there exists m ∈ R such that

det(K̂ ±(im) + A±) = 0.

We construct one Weyl sequence for both TA and TAC . Without loss of generality suppose

det(K̂ +(im) + A+) = 0. Then there exists a vector v ∈ Rn, |v| = 1, so that (K̂ +(im) +
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A+)v = 0. Let

u(ξ) = e− 1
4 ξ2−imξv,

uN (ξ) = u(
ξ − N 2

N
).

Note that ûN (i�) = N
√

2e−N 2(�−m)2

e−i N 2

v, and ‖ûN ‖L1 =
√

2π for all N .

Proof (Necessity of condition (ii)(a)) We now prove {uN } is a Weyl sequence. Again, let T

refer to either TA or TAC , and ‖·‖L∞ to the norm on L∞ or C0 equivalently. We have

‖T uN ‖L∞ =
∥∥∥∥A(ξ)uN (ξ) +

∫

R

K (ξ − ξ ′; ξ)uN (ξ ′)dξ ′)

∥∥∥∥
L∞

≤
∥∥(A(ξ) − A+)uN

∥∥
L∞

+
∥∥∥∥
∫

R

(K (ξ − ξ ′; ξ) − K +(ξ − ξ ′))uN (ξ ′)dξ ′
∥∥∥∥

L∞
+

∥∥T
+uN

∥∥
L∞ .

Let ε > 0. Choose N0 large enough that for N > N0,

sup
ξ≤n

|uN (ξ)| <
ε

max(1, supξ≤n

∥∥A(ξ) − A+
∥∥2

)
,

which we may do by the choice of uN , and so that supξ>N

∥∥A(ξ) − A+∥∥ < ε, which we

may do by Hypothesis 2.1. Then for N > N0,
∥∥(A(ξ) − A+)uN (ξ)

∥∥
L∞

= max

(
sup
ξ≤n

∣∣(A(ξ) − A+)uN (ξ)
∣∣ , sup

ξ>n

∣∣(A(ξ) − A+)uN (ξ)
∣∣
)

≤ max

(
sup
ξ≤n

∥∥A(ξ) − A+∥∥ sup
ξ≤n

|uN |, sup
ξ>n

∥∥A(ξ) − A+∥∥ sup
ξ>n

|uN |

)

< ε.

Next, choose M large enough so that

sup
ξ>M

∥∥K (·, ξ) − K +(·)
∥∥

L1 < ε.

Note that

∥∥∥∥
∫

R

[
K (ξ − ξ ′; ξ) − K +(ξ − ξ ′)

]
uN (ξ ′)dξ ′

∥∥∥∥
L∞

is equal to the larger of

sup
ξ≤M

∣∣∣∣
∫

R

[
K (ξ − ξ ′; ξ) − K +(ξ − ξ ′)

]
uN (ξ ′)dξ ′

∣∣∣∣ ,

sup
ξ>M

∣∣∣∣
∫

R

[
K (ξ − ξ ′; ξ) − K +(ξ − ξ ′)

]
uN (ξ ′)dξ ′

∣∣∣∣ ;

and by the choice of M ,

sup
ξ>M

∣∣∣∣
∫

R

[
K (ξ − ξ ′; ξ) − K +(ξ − ξ ′)

]
uN (ξ ′)dξ ′

∣∣∣∣

≤ sup
ξ>M

‖K (·, ξ) −K +(·)
∥∥

L1 ‖uN ‖L∞ <
ε

4
.
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On the other hand, we have

sup
ξ≤M

∣∣∣∣
∫

R

[
K (ξ − ξ ′; ξ) − K +(ξ − ξ ′)

]
uN (ξ ′)dξ ′

∣∣∣∣

= sup
ξ≤M

∣∣∣∣
∫

ξ ′≤ξ+L

[
K (ξ − ξ ′, ξ) − K +(ξ − ξ ′)

]
uN (ξ ′)dξ ′

+
∫

ξ ′>ξ+L

[
K (ξ − ξ ′, ξ) − K +(ξ − ξ ′)

]
uN (ξ ′)dξ ′

∣∣∣∣ .

Since K (·, ξ) ∈ W 1,∞(R, W 1,1(Mn(C))), with limits at infinity, we can find L(ε) so that

∫

|ζ |>L

|K (ζ, ξ) − K +(ζ )|dζ ′ <
ε

2
, for all ξ,

yielding

sup
ξ≤M

|
∫

ξ ′>ξ+L

[
K (ξ − ξ ′, ξ) − K +(ξ − ξ ′)

]
uN (ξ ′)dξ ′|

≤

(
sup
ξ

∫ −L

−∞
|K (ξ ′, ξ) − K +(ξ ′)|dξ ′

)
‖uN ‖L∞ ≤

ε

2
.

Also, because uN is shifted to the right by N 2, but is only stretched by a factor of N , we can

choose N0 large enough so that for N > N0, sup
ξ≤L+M

|uN (ξ)| <
ε

2 supξ

∥∥K (·, ξ) − K +(·)
∥∥

L1

,

yielding

sup
ξ≤M

∫

ξ ′≤ξ L

[
K (ξ − ξ ′, ξ) − K +(ξ − ξ ′)

]
uN (ξ ′)dξ ′

≤ sup
ξ

∥∥K (·, ξ) − K +(·)
∥∥

L1 sup
ξ<L+M

|uN (ξ)| ≤
ε

2
.

This, combined with the above, gives

sup
ξ≤M

∣∣∣∣
∫

R

[
K (ξ − ξ ′; ξ) − K +(ξ − ξ ′)

]
uN (ξ ′)dξ ′

∣∣∣∣ <
ε

2
+

ε

2
= ε,

so that

∥∥∥∥
∫

R

[
K (ξ − ξ ′; ξ) − K +(ξ − ξ ′)

]
uN (ξ ′)dξ ′

∥∥∥∥
L∞

< ε.

Lastly, for any ε > 0 we can choose N0 large enough so that

∥∥∥A+ + K̂ +(i�)

∥∥∥
Mn(C)

<

ε
2

for |m − �| < 1√
N0

, and also large enough so that for N > N0,

∫

|m−�|≥ 1√
n

|ûN (i�)| d� <
ε

2 supν∈R

∥∥∥(A+ + K̂ +(iν))

∥∥∥
, because the ũN become increasingly localized

123



Journal of Dynamics and Differential Equations

about � = m. This gives that

∥∥T
+uN

∥∥
L∞ ≤

1
√

2π

∥∥∥T̂ +uN

∥∥∥
L1

=
1

√
2π

∥∥∥
(

A+ + K̂ +(i�)
)

ûN

∥∥∥
L1

=
∫

|m−�|≥ 1√
n

∣∣∣∣
(

A+ + K̂ +(i�)
) ûN (i�)

√
2π

∣∣∣∣ d�

+
∫

|m−�|< 1√
n

∣∣∣∣
(

A+ + K̂ +(i�)
) ûN (i�)

√
2π

∣∣∣∣ d�

≤ sup
ν∈R

∥∥∥
(

A+ + K̂ +(iν)
)∥∥∥

Mn(C)

∫

|m−�|≥ 1√
n

|ûN (i�)| d�

+
ε

2

∫

|m−�|< 1√
n

∣∣∣∣
ûN (i�)
√

2π

∣∣∣∣ d�

<
ε

2
+

ε

2
= ε.

Therefore, for any ε > 0, for N > N0 large enough that the previous inequalities hold,

we get that

‖T uN ‖L∞ ≤
∥∥(A(ξ) − A+)uN

∥∥
L∞ +

∥∥∥∥
∫

R

(K (ξ − ξ ′; ξ) − K +(ξ − ξ ′))uN (ξ ′)dξ ′
∥∥∥∥

L∞

+
∥∥T

+uN

∥∥
L∞

≤ ε + ε + ε = 3ε,

which implies that

lim
N→∞

‖T uN ‖L∞ = 0, with ‖uN ‖L∞ = 1.

Thus {uN } is a Weyl sequence for T , which implies that T is not Fredholm, showing the

necessity of Condition (ii)(b). ��

3 Spectral Flow and the Fredholm Index

We establish results that allow us to compute the index of the nonlocal operator

T : U (ξ) �→ A(ξ)U (ξ) +
∫

R

K (ξ − ξ ′; ξ)U (ξ ′)dξ ′,

defined in Sect. 2.1, in many specific situations. Assuming exponential localization of con-

volution kernels, stronger than in Sect. 2, the Fredholm index is given by the spectral flow of

an operator with the same limits at infinity. The approach here is somewhat closely follow-

ing [18], which in turn is relying on ideas from [30, 34]. The argument in [18] needs to be

modified for two reasons: a change in the form of the operator, and a change in the domain

of the operator (from L2 to L∞, C0). The latter affects the argument only in Lemma 3.8, and

the former is the cause of the rest of the modifications. Technically, one needs to carefully

inspect the space of allowed perturbations so that spectral crossings along relevant paths are

generic.
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In order to state and prove the following theorem, we require two additional assumptions

on the convolution kernel which were not needed in Sects. 2.1, 2.2.

Hypothesis 3.1 The generalized convolution kernel K is exponentially localized in its first

argument—that is, for some η > 0, we have K ∈ C0(R, W 1,1
η (R, Mn(C))), where

W 1,1
η (R, Mn(C)) =

{
f ∈ W 1,1(R, Mn(C))

∣∣∣ max
1� j,k�n

(∥∥∥ f j,k(·)eη|·|
∥∥∥

L1

+
∥∥∥ f ′

j,k(·)e
η|·|

∥∥∥
L1

)
< ∞

}
.

Hypothesis 3.2 The Fourier transforms

ν �→ K̂ ±(ν) + A±

extend to bounded analytic functions in the strip Sη = {ν ∈ C | |�(ν)| < η}.

Theorem 2 Let T refer either to TA or TAC as defined in (2.1). Suppose Hypotheses 2.1, 3.1,

and 3.2 are satisfied, as well as condition (ii) of Theorem 1. Let AC (·)be a continuous function,

possibly different from A(·) if the latter is not continuous, with (AC )−1(·) ∈ L∞(R, Mn(C)),

such that limξ→±∞ AC (ξ) = A±. Suppose that for the operator T C defined by AC and K ,

there exist only finitely many values ξ0 ∈ R for which T C is not hyperbolic; that is, for which

det(K̂ξ0(i�) + AC (ξ0)) = 0 for some � ∈ R.

Then the Fredholm index of T is given by

ind T = −cross(A),

where cross(A) denotes the net number of roots, counted with multiplicity, of the character-

istic equation

dξ (ν) = det
(

K̂ξ (ν) + AC (ξ)
)

(3.1)

that cross the imaginary axis from left to right as ξ is increased from −∞ to +∞; see (3.5)

below for a more precise definition.

The remainder of this section will be devoted to more precisely stating and proving Theo-

rem 2. In particular, we will prove the following theorem, from which Theorem 2 follows. For

notational simplicity, in the following we identify the symbol A with its associated operators

TA and TAC , suppressing the difference in domains. Because the indices of TA, TAC depend

only on the limits A±, K ±(·), we denote the Fredholm index of TA by ι(A−, A+), and the

Fredholm index of TAC by ιc(A
+, A−). We also define, for a constant-coefficient operator

A0 = (A0, K 0(·)) the function

�A0(ν) = K̂ 0(ν) + A0 (3.2)

and the characteristic equation

d0(ν) = det(�A0) = 0. (3.3)

Theorem 3 Let {Aρ}, for ρ ∈ R, be a continuously varying one-parameter family of constant-

coefficient operators (Aρ, K ρ), with limit operators A± = limρ→±∞ Aρ . We suppose that:

(i) the limit operators A± are hyperbolic in the sense that for all � ∈ R,

d±(i�) = det
(
K̂ ±(i�) + A±)

	= 0,
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(ii) �Aρ defined in (3.2) is a bounded analytic function in the strip Sη = {λ ∈ C
∣∣ |�(λ)| <

η} for each ρ ∈ R, and

(iii) there are finitely many values of ρ for which Aρ is not hyperbolic.

Then

ι(A−, A
+) = ιc(A

−, A
+) = −cross({Aρ})

is the net number of roots of dρ(ν) = 0, counted with multiplicity, which cross the imaginary

axis from left to right as ρ is increased from −∞ to +∞; again, see (3.5) below for a more

precise definition.

In the proof, we approximate the family {Aρ} by a generic family. To do so, we introduce

the set P := P(R, W 1,1
η (R, Mn(C)) × Mn(C)), the Banach space of continuous paths for

which conditions (i) and (ii) of Theorem 3 are satisfied. We also consider the dense set

P1 := C1
(
R, W 1,1

η (R, Mn(C)) × Mn(C)
)

∩ P . We then first prove that the set of paths

with only simple crossings is dense in P . Then, using the proof that for a map with only

simple crossings, the Fredholm index is given by the crossing number, the result will follow.

Notation and Definitions For a continuously varying one-parameter family {Aρ} of

constant-coefficient operators, a crossing for {Aρ} is a real number ρ j for which Aρ j is

not hyperbolic. The set

N H({Aρ}) = {ρ ∈ R | the constant-coefficient operator A
ρ is not hyperbolic}

is the set of all crossings for {Aρ}. Condition (iii) in Theorem 3 is satisfied only if N H({Aρ})
is a finite set, which we then can write as {ρ1, ..., ρm}. We also have that for any {Aρ} satisfying

the conditions of Theorem 3 and for any ρ j ∈ N H({Aρ}), the equation

dρ j
:= det(�A

ρ j ) = 0 (3.4)

has finitely many roots in the strip Sη, due to the analyticity and boundedness of �Aρ , and

due to the fact that dρ j
(i�)

|�|→∞−−−−→ det(Aρ j ) 	= 0. Then the crossing number, cross({Aρ}),
can be defined as the net number of roots which cross the imaginary axis as ρ goes from −∞
to +∞, as follows.

Fix any ρ j ∈ N H({Aρ}) and let {ν j,l}
k j

l=1 denote the roots of dρ j
(ν) on the imaginary

axis, listing multiple roots repeatedly according to their multiplicity. Let M j be the sum of

their multiplicities. For ρ near ρ j , with ±(ρ − ρ j ) > 0, this equation has exactly M j roots,

counting multiplicity, near the imaginary axis, M
L±
j with negative real part and M

R±
j with

positive real part. Then the crossing number is defined as

cross(A) =
m∑

j=1

(
M

R+
j − M

R−
j

)
. (3.5)

For {Aρ} ∈ P1, a crossing ρ j is simple if there is exactly one simple root ν∗ of dρ j
on the

imaginary axis, which crosses the imaginary axis with nonvanishing speed as ρ goes through

ρ j . For such a crossing, the root can be locally continued as a function of ρ, giving a function

ν(ρ) ∈ C1(R, C). Non-vanishing speed of crossing then corresponds to �(
.
ν(ρ j )) 	= 0.

For a path in P1 with only simple crossings, let ν j (ρ) be the function defined near a

crossing ρ j such that dρ(ν j ) = 0 and �(ν j (ρ j )) = 0. Then we have

cross({Aρ}) =
m∑

j=1

�(
.

ν j (ρ j )).
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We next prove that the set of paths with simple crossings is dense in P .

Lemma 3.3 Let {Aρ} ∈ P , with limit operators A± = limρ→±∞ Aρ , such that N H(A) is a

finite set. Then, for ε > 0, there exists {Ãρ} ∈ P1 such that

(i) Ã± = A±,

(ii)
∥∥Ãρ − Aρ

∥∥
W

1,1
η ×Mn(C)

< ε for all ρ ∈ R, and

(iii) {Ãρ} has only simple crossings.

Remark 3.4 If ε is chosen small enough in the above lemma, then cross({Aρ}) = cross({Ãρ}),
since the roots of dρ , which is a holomorphic function, vary continuously in the Hausdorff

topology.

In order to prove Lemma 3.3, we define submanifolds of Mn(C). For 0 ≤ k ≤ n, the sets

Gk ⊂ Mn(C) and H ⊂ Mn(C) × Mn(C) are given by

Gk = {M ∈ Mn(C)
∣∣ rank(M) = k},

H = {(M1, M2) ∈ (Mn(C))2
∣∣ rank(M1) = n − 1,

M2 is invertible, and rank(M1 M−1
2 M1) = n − 2}.

The sets Gk and H are analytic submanifolds of Mn(C) and (Mn(C))2 respectively, of

complex dimension

dimC(Gk) = n2 − (n − k)2, dimC(H) = 2n2 − 2;

see [30].

For an operator A = (A, K (·)), we rewrite its convolution kernel K more generally as

K (ξ) + B1δs(ξ − ξ1) + B2δs(ξ − ξ2), where B1, B2 are real matrices, δs(·) = 1√
π

e−|·|2 , and

ξ1, ξ2 are fixed positive real numbers such that ξ1/ξ2 is irrational. For an operator of the form

considered in Lemma 3.3, B1, B2 = 0.

We then consider the following maps:

F, G : (W 1,1
η (R, Mn(C)) × (Mn(C))3) × R → Mn(C)

F × G : (W 1,1
η (R, Mn(C)) × (Mn(C))3) × R → Mn(C) × Mn(C)

D : (W 1,1
η (R, Mn(C)) × (Mn(C))3) × T → Mn(C) × Mn(C)

given by

F(A, �) = K̂ (i�) + A + B1δ̂se−i�ξ1 + B2δ̂se−i�ξ2

G(A, �) = K̂ ′(i�) − B1e−i�ξ1
(
ξ1δ̂s(i�) + δ̂′

s(i�)
)
− B2e−i�ξ2

(
ξ2δ̂s(i�) + δ̂′

s(i�)
)

F × G(A, �) = (F(A, �), G(A, �))

D(A, �) = (F(A, �1), F(A, �2)),

where T is the set

T = {(�1, �2) ∈ R2 | �1 < �2}.
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Proposition 3.5 Suppose that A = (A, K ) ∈ Mn(C) × W 1,1
η (R, Mn(C)) satisfies the condi-

tions

(i) F(A, �) /∈ Gk, 0 ≤ k ≤ n − 2, � ∈ R,

(i i) (F × G)(A, �) /∈ Gn−1 × Gk, 0 ≤ k ≤ n − 1, � ∈ R,

(i i i) (F × G)(A, �) /∈ H, � ∈ R,

(iv) D(A, �1, �2) /∈ Gn−1 × Gn−1, (�1, �2) ∈ T ,

for all ranges of k, �, �1, and �2. Then the constant-coefficient operator (2.10) has at most

one � ∈ R such that i� is a root of det �A(ν) = 0, and the root is simple.

Proof We omit the proof here, as it is identical to [18, Prop. 4.3]. ��

Proposition 3.6 The maps F, F ×G, and D have surjective derivative with respect to the first

argument A at each point (A, �) ∈ W 1,1
η (R, Mn(C))×(Mn(C))3×R and W 1,1

η (R, Mn(C))×
(Mn(C))3 × T , respectively.

Proof From its definition, we see that the derivative of F with respect to A is In , which is

surjective onto Mn(C), and the derivative of F × G with respect to (A, B1, B2) is given by

the matrix
(

In δ̂s(i�)e
−i�ξ1In δ̂s(i�)e

−i�ξ2In

0n e−i�ξ1(ξ1δ̂s(i�) + δ̂′
s(i�))In e−i�ξ2(ξ2δ̂s(i�) + δ̂′

s(i�))In

)
. (3.6)

Because (ξ1δ̂s(i�) + δ̂′
s(i�)) and (ξ2δ̂s(i�) + δ̂′

s(i�)) are never both equal to 0 at the same

value of �, this operator in (3.6) is surjective, onto Mn(C) × Mn(C).

Now, fixing (�1, �2) ∈ T , we will have that one of the quantities ξ1(�1 −�2) or ξ2(�1 −�2)

is not a multiple of 2π . Supposing without loss of generality that it is ξ1(�1 − �2), then we

have that the derivative of D with respect to (A, B1) is

(
In δ̂s(i�1)e

−i�1ξ1In

In δ̂s(i�2)e
−i�2ξ1In

)
,

which is also surjective onto Mn(C) × Mn(C). ��

In order to complete the proof of Lemma 3.3, we use the notion of transversality for smooth

manifolds. A smooth map f : X → Y from two manifolds is transverse to a submanifold

Z ⊂ Y on a subset S ⊂ X if

rg(D f (x)) + T f (x)Z = T f (x)Y whenever x ∈ S and f (x) ∈ Z,

where Tp(M) denotes the tangent space of M at a point p.

Theorem 4 (Transversality density theorem) Let V, X , Y be Cr manifolds, � : V →
Cr (X , Y) a representation, and Z ⊂ Y a submanifold and ev� : V ×X → Y the evaluation

map. Assume that:

(i) X has finite dimension N and Z has finite codimension Q in Y;

(ii) V and X are second countable;

(iii) r > max(0, N − Q);

(iv) ev� is transverse to Z.

Then the set {V ∈ V | �V is transverse to Z} is residual in V .
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The proof of this theorem can be found in [1].

Proposition 3.7 There exists a residual (and hence dense) subset of P1 such that for any

{Aρ} in this subset, all conditions from Proposition 3.5 are satisfied for each Aρ , ρ ∈ R.

Proof We apply the Transversality Density Theorem 4 to show that there is a residual subset

of P1 such that all the maps F, (F × G), D are transverse to the manifolds appearing in

Proposition 3.5 on (ρ, �) ∈ R2 and (ρ, �1, �2) ∈ R × T , respectively. We show the proof for

F , the others being similar.

We let V = P1, X = R2 and Y = Mn(C), with submanifold Z = Gk , for 0 ≤ k ≤ n − 2,

in the hypotheses of Theorem 4. Then for {Aρ} ∈ P1, we let �{Aρ } : R2 → Mn(C) be

defined by

�{Aρ }(ρ, �) = F(Aρ, �),

so that the evaluation map ev� : R2 → Mn(C) is

ev�(A, ρ, �) = F(Aρ, �).

Then, taking r = 1, N = 2, Q = 2(n − k)2, the third condition of Theorem 4 is satisfied for

any 0 ≤ k ≤ n − 2. By Proposition 3.6, the evaluation map is also transverse to Gk for any

0 ≤ k ≤ n − 2.

Repeating this for the other two maps, and taking intersections, there then exists a residual

subset (hence dense) of P1 such that for any {Aρ} in the set, all conditions from Proposition 3.5

are satisfied. ��

Proof of Lemma 3.3 By Proposition 3.7, and density, we may assume without loss of gener-

ality that the family {Aρ} in Proposition 3.3 satisfies the conditions from Proposition 3.5 for

each ρ ∈ R. For each such Aρ , there is at most one � ∈ R such that ν = i� is a root of

det �Aρ = 0, and the root is simple.

By this assumption, there exist ε, L > 0 such that any root λ(ρ, ν) with |�(λ)| < ε is

simple. Also, by hyperbolicity at infinity, there are no roots with |�(λ)| < ε for ρ /∈ [−L, L],
choosing L sufficiently large, possibly taking ε less than the ε in the statment of Lemma 3.3.

Then any root with |�(λ)| < ε can be parameterized as a C1 function of ρ, on a maximal

open interval I ⊂ R such that |λ| < ε. Label the set of such parameterizations {λi (ρ)}. Note

that there can be no more than countably many such parameterizations.

Then by Sard’s theorem, almost every γ ∈ (−ε, ε) is a regular value for every �(λi (ρ)).

Fix one such γ0 ∈ (0, ε).

Define for t ∈ R the operator St : (W 1,1
η (R, Mn(C)) × Mn(C)) → (W 1,1

η (R, Mn(C)) ×
Mn(C)) by

St (A
0) = St ((A0, K 0(·))) = (A0, K 0(·)ei t(·)).

One can check that �St (A0)(ν) = �A0(ν − t), ν ∈ C, so that St shifts all roots of the

characteristic equation to the right by an amount t . Now, let the smooth nonnegative function

γ : R → R equal 0 outside [−L + 1, L + 1], equal γ0 on [−L, L], and never exceed γ0

in between. Then the family {S−γ (ρ)(A
ρ)} can be seen to satisfy conditions (i) and (ii) of

Lemma 3.3, and additionally, the roots λi (ρ) − γ (ρ) cross the imaginary axis tranversely.

This proves Lemma 3.3. ��

Lemma 3.8 Let {Aρ} ∈ P1 be such that N H({Aρ}) is a finite set, and such that it has only

simple crossings. Then

ι(A+, A
−) = ιc(A

+, A
−) = −cross({Aρ}).
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Proof The proof of this lemma follows identically as in [18], from analogues of Propositions

4.7 and 4.8, there, and the cocycle property, replacing L2 with L∞, C0 where necessary; we

refer to [18, 30] for proofs. We note that the proof eventually reduces to establishing that

the operator ( d
dξ

− i�)( d
dξ

+ ω)−1 is Fredholm index -1 on exponentially decaying spaces

C0
γ (R, Cn), L∞

γ (R, Cn), for γ < η and ω, � > 0, which can be explicitly verified. ��

Proof of Theorem 3 From Lemma 3.3, we have that, generically, paths cross the axis with

only finitely many crossings, all of which are simple. Lemma 3.8 then gives us that for such

a path of operators, the Fredholm index is given by the crossing number. Putting this all

together, we see that Theorem 3 is proved. ��

4 Nonlocal Center Manifolds in C
0-based Spaces

We consider the following nonlinear, nonlocal equation:

− u + K ∗ u + F(u) = 0, (4.1)

where K is a matrix convolution kernel and F(u)(x) = f (u(x)), f ∈ Ck(U, Rn) a pointwise

nonlinearity, k ≥ 1, for U a neighborhood of 0 ∈ Rn . We denote T u = −u+K ∗u. Assuming

that f (0) = 0, f ′(0) = 0, we are interested in small solutions u(x), ‖u‖L∞ < δ � 1. To

leading order, one expects that the linearization predicts behavior of small solutions. This

fact is commonly captured in center manifold theorems or Lyapunov-Schmidt reduction

techniques. For the nonlocal Eq. (4.1), such a reduction was found in [19], parameterizing the

set of (possibly weakly) bounded solutions to this equation over the kernel of the linearization.

Different from [19], we wish to pursue that same goal but relying on C0-based instead of

L2-based spaces. We refer to this construction, that we also describe in more detail below,

as a center manifold for nonlocal equations.

As is standard in center manifold constructions, we first use a cut-off function to construct

a modified nonlinearity, so that we can use a fixed-point argument in spaces allowing for

mild exponential growth. We then show that the set of small bounded solutions to (4.1) can

be described by solutions to a reduced differential equation. This equation is posed on the

abstract finite-dimensional vector space given by the kernel of the linearization, allowing for

explicit computations of Taylor jets in a straight-forward fashion, using only moments of K

and the Taylor series of f ; see [19, §2.6]. The key to constructing the reduced vector field is

this: the analogy of a flow in phase space is the shift operator u(·) �→ u(· + x) in function

space. This linear shift operator, acting on the nonlinear set of bounded solutions, induces a

nonlinear flow when projected onto the kernel. This flow can then be differentiated to obtain

a reduced vector field.

To obtain optimal regularity, we perform a center manifold reduction for the equation with

a slightly different nonlinearity,

− v + K ∗ v + K ∗ G(v) = 0, (4.2)

with the same assumptions on G as F . Assuming that K has a derivative, as assumed through-

out in Sects. 2–3, we find that small bounded solutions v ∈ C0 to (4.2) are automatically

small and bounded in C1. Equations (4.1) and (4.2) are equivalent through the change of

variables v = u − f (u); starting with (4.1), we obtain (4.2) with g(v) = (Id − f )−1(v) − v.

By the inverse function theorem, g is as smooth as f , g ∈ Ck(U, Rn). We note, however, that,

assuming f ∈ Ck , this Ck-change of variables would a priori only yield a Ck−1 vector field,

so that from the perspective of regularity theory, the two formulations may not be equivalent.
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The formulation (4.2) yields optimal regularity of the center manifold, while recovering the

regularity in [19] for the u formulation (4.1).

4.1 Hypotheses for Center Manifold Existence

We require localization of the kernel and smallness of the nonlinearity near the trivial solution:

Hypothesis 4.1 (Exponentially localized convolution) We assume that the matrix convolution

operator is exponentially localized and differentiable, K ∈ W 1,1
η0

(R, Mn(R)) for some η0 >

0.

Hypothesis 4.2 (Small nonlinearity) We asssume that the nonlinearity is small near the origin

in the sense that g ∈ Ck(U, Rn) for some neighborhood U of 0 ∈ Rn , 1 � k < ∞, g(0) = 0,

and g′(0) = 0.

In order to state our main result, we define the Banach space C0
σ (R, Rn), for any σ ∈

R, to be the space {v ∈ C0(R, Rn) | ‖v(·)eσ |·|‖C0 < ∞}, and let C1
σ (R, Rn) be defined

analogously. We will often refer to these spaces with σ = −η, simply by C0
−η or C1

−η for

brevity.

By Hypothesis 4.1, T is a bounded operator on C0
−η(R, Rn), 0 < η < η0, suppressing

notationally the dependence on η. Moreover, as we will see below, the kernel E0 of T is finite-

dimensional and independent of η for η0 sufficiently small, in the sense that the bounded

inclusions ιη,η′ : C0
−η → C0

−η′ , η < η′, provide kernel isomorphisms.

One can readily see, for example from [19, §2.5], that there exists a projection operator

Q : C0
−η → C0

−η onto the kernel E0 of T satisfying Qιη,η′ = ιη,η′Q. This projection will

play an essential role in our construction of the reduced flow below.

Next, define the translation operator τξ , for ξ ∈ R, by

(τξ · v)(x) := v(x − ξ).

Again, slightly abusing notation, we use the same symbol for the shift on different function

spaces. Clearly τξ is a bounded operator on C0 and C0
−η for fixed ξ .

We will also use a modified nonlinearity, cutting off g outside a small neighborhood of

the origin. Therefore, define gε : Rn → Rn through

gε(v) = g (χ(‖v‖/ε) · v) ,

where χ ∈ C∞(R≥0, R) is a smoothed version of the indicator function of [0, 1],

χ(t) =

{
1 for 0 � t ≤ 1

0 for t ≥ 2
, χ(t) ∈ [0, 1].

Denote by G and Gε the superposition operators associated with g and gε, respectively. One

readily verifies that the Lipschitz constant of gε is small for ε small. Other modifications

such as cut-off outside of the nonlinearity or cut-off operators are also allowed as long as the

modified nonlinearity possesses a globally small Lipshitz constant.
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4.2 Existence of a Center Manifold

We are thus ready to state the main center manifold reduction result. In doing so we study

solutions to both the unmodified and modified nonlocal equations,

T v + K ∗ G(v) = 0, (4.3)

T v + K ∗ G
ε(v) = 0. (4.4)

Theorem 5 Assume Hypotheses 4.1 and 4.2 on the kernel K and nonlinearity g. Recall the

definition of the kernel E0 of T , the projection Q on the kernel, the shift τξ , and the modified

nonlinearity Gε . Consider Eqs. (4.3) and (4.4).

Then for all η > 0 sufficiently small, there exist ε, δ > 0, and a map

� : E0 ⊂ C0
−η(R, Rn) → ker Q ⊂ C0

−η(R, Rn),

with graph

M := {v0 + �(v0) | v0 ∈ ker T } ⊂ C0
−η(R, Rn),

such that the following hold:

(i) (smoothness and tangency) � ∈ Ck, with k as in Hypothesis 4.2, �(0) = 0, D�(0) =
0;

(ii) (global center manifold reduction) M consists precisely of the solutions in C0
−δ(R, Rn)

of the modified Eq. (4.4);

(iii) (local center manifold reduction) any solution v ∈ C0
−δ(R, Rn) of the unmodified

Eq. (4.3) with supx∈R |v(x)| ≤ ε is contained in M;

(iv) (translation invariance) the shift τξ , ξ ∈ R, acts on M and induces the reduced flow

�ξ : E0 → E0 through �ξ = Q ◦ τξ ◦ �;
(v) (reduced vector field) the reduced flow �ξ (v0) is of class Ck in v0, ξ and generated by

a reduced vector field h of class Ck on the finite-dimensional vector space E0.

In particular, small solutions to u′ = h(u) on E0 are in one-to-one correspondence with

small bounded solutions of (4.3).

We refer to the discussion in [4, 19] for further properties of flows on the center manifold,

such as dependence on parameters, the computation of Taylor expansions, symmetries and

reversibility, Hamiltonian and gradient-like structure, or normal forms.

We reiterate here that the use of C0-based spaces allows us to obtain optimal regularity

of the center manifold and the reduced vector field when compared to the results in [19]. We

also note that the cut-off procedure outlined here is significantly easier than the construction

in [20] and may well prove more versatile in applications to more complicated, nonlocal

nonlinearities.

4.3 Proof of Theorem 5

The proof generally follows the strategy in [19]. We collect properties of the nonlinearity,

first, and then study Fredholm properties of the linearization. We then prove existence and

regularity of the parameterization of the center manifold using contraction principles on

scales of Banach spaces. Lastly, we establish existence and smoothness of the reduced vector

field by showing additional smoothness of solutions using bootstraps and then investigating

the flow induced by translations of bounded solutions.

We start by collecting some properties of the superposition operator induced by gε:
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• Gε is continuous from C0
−ζ to C0

−η for ζ, η > 0; moreover, since g ∈ C1(U), Gε is

Lipschitz in u if η ≥ ζ , with LipC0
−ζ →C0

−η
(G) ≤ ‖gε‖C1 = oε(1);

• Gε is k times Frechet differentiable from C0
−ζ to C0

−η for 0 < kζ < η;

• Gε(0) = 0 and, when defined, DvG
ε(0) = 0;

• Gε is translation-invariant; that is, τξ ◦ Gε = Gε ◦ τξ ;

see for instance [43]. We next collect information on the linearization in exponentially

weighted spaces. Consider the linear operator

T : C0
−η → C0

−η, T (v) = −v + K ∗ v,

and its associated characteristic function

d(ν) = det(In + K̂ (ν)), ν ∈ C.

The following result determines Fredholm properties in terms of roots of d on the imaginary

axis. In fact, the sum of multiplicities of roots of d(i�) on � ∈ R is finite. To see this, one first

exploits that K̂ and thereby d are analytic so that roots have locally finite multiplicities, by

exponential localization of K . One then notes that K̂ (i�) decays as |�| → ∞ by regularity

of K , so that d does not vanish for large �.

Proposition 4.3 Assuming Hypothesis 4.1, the operator T is Fredholm with index M < ∞,

where M is the sum of the multiplicities of roots of d(i�) = det(In + K̂ (i�)), � ∈ R.

Proof We start by first conjugating T with the multiplication operator v(x) �→ cosh(ηx) ·
v(x) to obtain an operator on C0 of the form considered in Theorem 2. We note that this

theorem refers to operators on complex function spaces, but the corresponding statement for

real operators is obtained immediately by restricting to real subspaces. By Theorem 2, the

conjugated operator is Fredholm, with index equal to the number of roots of its characteristic

equation that cross the imaginary axis, counted with multiplicity. This quantity is exactly

equal to the number of roots M of det(I + K̂ (i�)), counted with multiplicity, for � ∈ R, so

the proposition follows. ��

We now define the bordered operator

T̃ : C0
−η → C0

−η × E0, T̃ (v) = (T (v), Q(v)),

which, when solving T̃ v = ( f , v0), forces Qv = v0 for a given v0 ∈ E0, the kernel of T .

Fredholm bordering theory guarantees that T̃ is Fredholm, since a finite number of dimen-

sions are being added onto the range, and has index 0, since M = dim(ker T ). Furthermore, it

is now one-to-one, since T v = 0 and Qv = 0 imply v = 0. Therefore the bordered operator

is in fact invertible with bounded inverse, such that
∥∥T̃ −1

∥∥
L(C0

−η,C0
−η)

≤ C(η),

for a constant C(η), with C(η) continuous in η for 0 < η < η0.

We are now able to set up a fixed point equation using the bordered equation

T̃ (v) + G̃
ε(v, v0) = 0, (4.5)

where G̃ε(v, v0) = (Gε(v),−v0); note that this is equivalent to the original equation. Rewrit-

ing (4.5), we find for a given v0 ∈ E0,

v = −T̃
−1(G̃(v, v0)). (4.6)
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We view this equation as a fixed-point equation on C0
−η with parameter v0. We claim that

the map −T̃ −1(G̃(·, v0)) is a contraction mapping. To see this, we use that g(0) = 0 and

g′(0) = 0 to find that

δ0(ε) := sup
v∈C0

−η

∥∥G
ε(v)

∥∥
C0

−η
= o(ε)

δ1(ε) := LipC0
−η→C0

−η
(Gε) = oε(1),

which in turn implies that

∥∥T̃
−1(G̃(v, v0))

∥∥
C0

−η
≤ C(η)

(
δ0(ε) + ‖v0‖C0

−η

)

∥∥T̃
−1(G̃(v1, v0)) − T̃

−1(G̃(v2, v0))
∥∥

C0
−η

≤ C(η)δ1(ε) ‖v1 − v2‖C0
−η

for all v, v1, v2 ∈ C0
−η and v0 ∈ E0.

Then, letting η ∈ (0, η0) and η̃ ∈ (0,
η
k
), for ε sufficiently small, we have C(η)δ1(ε) < 1

for η ∈ [̃η, η], so that T̃ −1(G̃(·, v0)) defines a contraction mapping on C0
−η, and has a unique

fixed point v = �(v0). Since the fixed point iteration is Lipschitz in v0, the map � is also

Lipschitz, with �(0) = 0 because the fixed point is unique. For each η, this then defines a

Lipshitz map � : E0 → ker Q such that

�(v0) = v0 + �(v0).

Note that � commutes with translations τξ by uniqueness of the fixed point.

We next turn to smoothness of �, following ideas in [43].

Proposition 4.4 Under the same assumptions as Theorem 5, for each 1 ≤ p ≤ k and for

each η ∈ (pη̃, η), the map � is C p from E0 to C0
−η.

In order to prove this, we recall the following result from [43] on contractions on scales

of embedded Banach spaces.

Let X , Y, Z and � be Banach spaces with norms denoted by ‖·‖X , ‖·‖Y , ‖·‖Z and ‖·‖�,

with continuous embeddings

X
J
↪→ Y

I
↪→ Z.

Consider the fixed point equation

y = f(y, λ), (4.7)

where f : Y × � → Y satisfies the following conditions:

(i) If : Y × � → Z has continuous partial derivative Dy(If) : Y × � → L(Y, Z) with

Dy(If)(y, λ) = If(1)(y, λ) = f
(1)
1 (y, λ)I, for all (y, λ) ∈ Y × �,

for some f(1) : Y × � → L(Y) and f
(1)
1 : Y × � → L(Z).

(ii) f0 : X × � → Y, (y0, λ) �→ f0(y0, λ) = f(J y0, λ) has continuous partial derivative

Dλf0 : X × � → L(�, Y).

(iii) There exists κ ∈ [0, 1) such that

‖f(y, λ) − f(ỹ, λ)‖Y ≤ κ ‖y − ỹ‖Y , for all y, ỹ ∈ Y, for all λ ∈ �,
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and ∥∥∥f(1)(y, λ)

∥∥∥
L(Y)

≤ κ,

∥∥∥f
(1)
1 (y, λ)

∥∥∥
L(Z)

≤ κ, for all (y, λ) ∈ Y × �.

(iv) Let y = ỹ(λ) ∈ Y be the unique solution of (4.7) for λ ∈ �. Suppose that ỹ(λ) =
J ỹ0(λ) for some continuous ỹ0 : � → X .

These conditions allow consideration of the following equation in L(�, Y) :

� = f(1)(ỹ(λ), λ)� + Dλf0(ỹ0(λ), λ), (4.8)

which has a unique solution �̃(λ) ∈ L(�, Y) for any λ ∈ � from condition (iii). The

following result is proved in [43]:

Theorem 6 Assume conditions (i)-(iv). Then the solution map ỹ : � → Y of (4.8) is Lipschitz

continuous, and I ỹ : � → Z is of class C1, with

DλI ỹ(λ) = I�̃(λ), for all λ ∈ �. (4.9)

We turn now to the proof of Proposition 4.4.

Proof (of Proposition 4.4) This argument is a straightforward analogue of the proof of Lemma

6 from [43], as well as appendix A from [19]. We begin by letting p = 1 and fixing η ∈
(̃η, η]. Then apply Theorem 6 with X = Y = C0

−η̃, Z = C0
−η,� = E0 and f(y, λ) =

−T̃ −1(Gε(y; λ)). One can check that assumptions (i)-(iv) are verified, so that � : E0 → C0
−η

is of class C1 with derivative �(1)(v0) := D�(v0) ∈ L(E0, C0
−η) the unique solution of

� = Dyf(�(v0), v0)� + Dλf(�(v0), v0) := F1(�, v0). (4.10)

Now, the mapping F1 : L(E0, C0
−η) × E0 → L(E0, C0

−η) is a uniform contraction for each

η ∈ [̃η, η], so the fixed point of (4.10) belongs in fact to L(E0, C0
−η̃). The mapping �(1) :

E0 → L(E0, C0
−η) is continuous if η ∈ (̃η, η].

If k ≥ 2, we now continue by induction. Let 1 ≤ p < k, and suppose that for all q

with 1 ≤ q ≤ p and for all η ∈ (qη̃, η] the mapping � : E0 → C0
−η is of class C p , with

�(q)(u0) := Dq�(v0) ∈ L(q)(E0, C0
−qη̃) for each v0 ∈ E0 and �(q) : E0 → L(q)(E0, C0

−η)

continuous if η ∈ (qη̃, η]. Suppose in addition that �(p)(v0) is the unique solution of an

equation that is of the form

�(p) = Dyf(�(v0), v0)�
(p) + Hp(v0) := Fp(�

(p), v0), (4.11)

with H1(u0) = Dλ(f(�(u0), u0) and, for p ≥ 2, Hp(u0) is given as a finite sum of terms of

the form

D
(q)
y f(�(v0), v0)(Dr1�(v0), ..., Drq �(v0)),

with 2 ≤ q ≤ p, 1 ≤ ri < p for all i = 1, ..., q, and r1 + ... + rq = p. By

similar reasoning as before, we note that Hp(u0) ∈ L(p)(E0, C0
−pη̃). Therefore, Fp :

L(p)(E0, C0
−pη̃) × E0 → L(p)(E0, C0

−pη̃) is well defined and a uniform contraction for

η ∈ [pη̃, η]. However, the term Dyf(�(v0))�
(p) is not continuously differentiable, either

with respect to �(p) or the parameter u0, so we apply Theorem 6 with three different Banach

spaces. Let η ∈ ((p + 1)̃η, η],σ ∈ (̃η,
η

(p+1)
), and ζ ∈ ((p + 1)σ, η). We need to show that

the hypotheses of Theorem 6 are satisfied with X = L(p)(E0, C0
−pσ ), Y = L(p)(E0, C0

−ζ ),

and Z = L(p)(E0, C0
−η), � = E0 and f = Fp . Condition (iii) holds because C(η)δ1(ε) < 1
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for η ∈ [̃η, η]. Condition (iv) holds by the induction hypothesis and because σ > η̃. Now,

the map Dyf(�(v0), v0) is continuous from E0 into L(C0
−ζ , C0

−η), because � : E0 is con-

tinuous and η > ζ (see [43], Lemma 4). Further, by the same, Dyf(�(v0), v0) is C1 from

E0 into L(C0
−pσ , C0

−ζ ), because ζ > (p + 1)σ and � ∈ C1. It thus remains to show that

Hp : E0 → C0
−ζ is of class C1. This again follows by the same reasoning as [43], Lemma

7. Then we can use Theorem 6 and conclude that �(p) : E0 → L(p)(E0, C0
−η) is of class C1

and hence � : E0 → C0
−η is of class C p+1 if η ∈ ((p + 1)̃η, η]. ��

4.4 Existence of a ReducedVector Field

The next step in the proof of Theorem 5 is the construction of the reduced vector field. As

mentioned in the introduction, this is obtained by differentiating the action of the shift operator

projected onto the kernel. Therefore, to start with, we would like to show that the solutions

in the center manifold in fact belong to C1
−η, so that the shift map can be differentiated.

For v ∈ C0
−η a solution of (4.3), we have

v(x) = (K ∗ (Id + G
ε)(v))(x). (4.12)

Now, the map (Id + Gε) is, as a superposition operator, a Ck map from C0
−ζ to C0

−η, as

proved in [43], for 0 < kζ < η. The map u �→ K ∗ u is a bounded linear map from C0
−η

to C1
−η, due to the fact that K ∈ W 1,1

η . Then we have that v ∈ C1
−η, with the composition

K ∗ ((Id + Gε) ◦ (Id + �)) a Ck map from E0 to C1
−η.

Now, consider the action of the shift operator

R × C1
−η → C0

−η

(x, u) �→ τxv = v(· + x).

We have that for a given x , τx is a bounded linear operator which maps bounded solutions

of (4.1) to bounded solutions. The following commutative diagram shows how τx induces a

flow on the kernel:

E0
Id+�

�ϕx

C0
−ζ

Id+Gε

C0
−η

K∗
C1

−η

τx

E0

ιζ,η◦(Id+�)

C0
−η

Q

The diagram commutes because the composition K ∗ (Id + Gε) is the identity on the

image of Id +�. Now, τx is bounded linear, as well as continuously differentiable in x , with

derivative equal to the bounded linear map v(· + x) �→ v′(· + x). Then the composition

Q ◦ τx ◦ K ∗ ((Id + Gε) ◦ (Id + �))(·) is also continuously differentiable in x , since Q is a

bounded linear projection. The maps � and (Id+Gε) are each Ck on their respective function

spaces, so that ϕx inherits the regularity of the composition, and
dϕx

dx
|x=0 is thus a Ck vector
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field on E0,

dϕx

dx
|x=0 := h(x). (4.13)

Likewise, solutions to dv
dx

= h(x), v(0) = v0 yield trajectories ϕx (v0) and solutions (Id +
�)(ϕx (v0)) to the nonlocal equation.

Thus small bounded solutions to (4.1) can be obtained through solutions to a reduced dif-

ferential equation on the finite-dimensional kernel, which is in turn obtained by differentiating

the reduced flow at x = 0.

4.5 ReducedVector Field in Original Coordinates

The reduced vector field corresponding to the original coordinates can be found by repeating

the above procedure with the map (Id+g)◦K∗ instead of just K∗, and ισ,η◦(Id+g)◦(Id+�)

in the place of ιζ,η ◦ (Id + �). In other words, the shift action on the u- rather than the

v-coordinates is differentiated. This will yield a Ck−1 vector field, since the change-of-

coordinate map (Id+g) is only Ck−1 from C1
−η to C1

−σ , 0 < (k +1)η < σ . This nevertheless

recovers the smoothness of the reduced vector field in [19], since their Ck reduced vector

field corresponded to a Ck+1 pointwise nonlinearity.

5 Application of Center Manifolds: a C1 Lyapunov-Center Theorem

As an application to Theorem 5, we consider the following equation:

0 = −u + k ∗ (Au + N (u)), (5.1)

where A ∈ GLn(R), u ∈ C0(R, Rn), k ∈ W 1,1(R, Mn(R)), with k(−x) = k(x), and

N (u)(x) = f (u(x)) a pointwise nonlinearity given by f ∈ C1(V, Rn), V a neighborhood

of 0 ∈ Rn , with f (0) = f ′(0) = 0.

The assumption that k be even is intended to be reminiscent of a reversibility condition for

nonlinear ODEs. In this context, Lyapunov-Center theorems are a well-known set of results

for reversible systems. In essence, they say that if the linearized problem at a given equilibrium

has purely imaginary eigenvalues iω∗ that are non-resonant in a certain sense, then there exists

a family of periodic solutions nearby for the full nonlinear problem. Moreover, this family

is parameterized roughly by the positive real amplitude and shift parameters. We seek here

to establish such a theorem in a nonlocal, spatial dynamics setting, where eigenvalues now

correspond to roots of d(ν) = det(In + k̂(ν)A). Our main emphasis is on proving that the

family of periodic solutions comprises all small bounded solutions when ±iω∗ are the only

roots on the imaginary axis and simple, with minimal assumptions on the regularity of the

nonlinearity.

Hypothesis 5.1 Assume that there exists ω∗ > 0 such that d(iω∗) = det(In + k̂(iω∗)A) = 0,

and that d ′(iω∗) 	= 0. Additionally assume that d(iω) 	= 0 for ω /∈ ω∗Z.

Theorem 7 Assuming Hypothesis 5.1, there exists δ > 0, a continuous frequency function

ω : [0, δ) → R with ω(0) = ω∗, and a 2-dimensional family of periodic solutions to (5.1),

uc : [0, δ) × [0, 2π) → C0(R, Rn)

(a, τ ) �→ uc (ω(a)(· + τ); a) ,
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with

a �→ uc(·; a) ∈ C0(R, Rn) continuous, uc(y + 2π; a) = uc(y; a), and uc(y; 0) = 0.

This theorem, combined with Theorem 5, will allow us to prove the following:

Theorem 8 (Nonlocal Lyapunov-Center theorem) Assume the conditions of Hypothesis 5.1.

Assume also that d(iω) 	= 0 for |ω| 	= ω∗, and that k ∈ W 1,1
η0

for η0 > 0. Then there exists

ε > 0 such that all solutions u to (5.2) satisfying ‖u‖C0 < ε are periodic and given by the

family found in Theorem 7.

Remark 5.2 (Necessity of linear conditions) It is well known that resonances can destroy

families of periodic orbits with frequencies that possess higher harmonics. On the other

hand, the presence of other roots gives non-uniqueness of periodic families already in the

linear case. Lastly, the presence of multiple roots, d ′(iω∗) = 0 usually leads to existence

of invariant tori, heteroclinic, and homoclinic orbits; see for instance [25] on the reversible

Hamiltonian Hopf bifurcation. From this perspective, the assumptions of Theorems 7 and 8

are necsessary, even for ODEs.

Remark 5.3 (Coherent structures and group velocities) In many contexts, the vanishing of

d ′(iω∗) can be associated with a vanishing group velocity. Consider for example the Kawahara

equation in a frame with speed c > 0,

ut = (−αuxxxx + uxx + cu − u2)x ,

with dispersion relation for solutions u(t, x) = ei(kx−
t) of the linearized equation,


 = αk5 + k3 − ck.

Studying periodic wave trains that are stationary in this frame, we look at −αuxxxx + uxx +
cu −u2 = 0, with characteristic equation d(iω) = −αω4 −ω2 + c. A root d(iω∗) = 0 gives

a root of the dispersion relation with 
 = 0 and k = ω∗. The group velocity, d
/dk at this

root now vanishes precisely when d ′(iω∗) = 0.

From this perspective, our main result establishes existence of small-amplitude traveling

waves as predicted by the linearization, and the absence of any other, possibly non-periodic

waves, as long as the group velocity does not vanish in the chosen coordinate frame. We

show this absence of non-periodic small traveling waves, such as solitary waves, for minimal

assumptions on the regularity of the nonlinearity, noting that continuous differentiability is

necessary to give sufficient meaning to the linearization at the origin. In the case when group

velocities vanish, existence of nonperiodic waves has been established in many situations,

including for instance reductions to KdV or NLS type modulation equations.

We start the remainder of this section with the proof of Theorem 7, which is essentially

proved in four steps:

Step 1: Reduce (5.1) to a 1-dimensional equation using Lyapunov-Schmidt reduction;

Step 2: Set up a contraction argument for the reduced equation;

Step 3: Prove contraction properties, yielding a 1-parameter family of solutions;

Step 4: Extend the resulting 1-parameter family of solutions to a 2-parameter family by

adding a shift parameter.

Theorem 8 will then follow almost immediately using the center manifold theorem.

The difficulty in steps 2 and 3 lies in the fact that for a C1 nonlinearity, the reduced

equation cannot be solved with the Implicit Function Theorem, since the linear terms vanish.
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Dividing by the parameter to eliminate the trivial solution does produce linear terms, but

loses regularity, so that a more hands-on contraction argument rather than an implicit func-

tion theorem is needed to establish existence and uniqueness, taking into account different

smoothness in variables and parameters.

5.1 Lyapunov–Schmidt Reduction and Derivation of the Reduced Equation

Let ũ(x) = u(ωx). Then, changing variables, Eq. (5.1) phrased in terms of ũ becomes:

0 = −ũ + kω ∗ (Aũ + N (̃u)), (5.2)

where kω(·) = 1
ω

k( 1
ω
·). We let F(ω, u) = −u + kω ∗ (Au + N (u)), and consider F(ω, ·) as

an operator on C0
2π,even(R, Rn), the set of C0 functions that are 2π-periodic and even. Note

that F is a well-defined operator from this function space into itself.

Proposition 5.4 The linearization Lω∗ := Du F(ω∗, 0) is Fredholm index 0, with a 1-

dimensional kernel.

Proof We have that Du F(ω∗, 0)v = −v + kω∗ ∗ Av. The operator u �→ kω∗ ∗ u is compact,

because it maps into C1
2π,even(R, Rn), which is compactly embedded in C0

2π,even(R, Rn).

Then because Du F(ω∗, 0) is the sum of the identity operator and a compact operator, it is

Fredholm, with Fredholm index 0.

We turn now to the kernel. By a calculation, in the space of Fourier series, the linearization

of F at (ω∗, 0) is given by L̂û( j) = (−In + k̂(iω∗ j)A)û( j). Since we have d(iω∗) = 0,

d ′(iω∗) 	= 0, then for j = 1, the matrix (In + k̂(iω∗)) has a 1-dimensional kernel, spanned

by a vector v∗, |v∗| = 1. For j 	= 1, the operator is invertible, since d(iω∗ j) 	= 0, j 	= 1, by

assumption. Therefore the kernel of Lω∗ can be parameterized as {av∗ cos(x) | a ∈ R}, and

is 1-dimensional. ��

Note that since Lω∗ is Fredholm index 0, and since det(−In + AT k̂(iω∗))T = det(−In +
k̂(iω∗)A)T = det(−In + k̂(iω∗)) = 0, then there also exists a vector vad ∈ Rn, |vad | = 1,

such that ker L∗
ω∗ = {cvad cos(x) | c ∈ R}.

Now, let u = av∗ cos(x) + u1(x), where u1(·) ∈ (ker Lω∗)
⊥, and let P be the L2-

orthogonal projection onto the range of Lω∗ defined by

Pu = u −
1

π
〈u(x), vad cos(x)〉L2([0,2π ],Rn) vad cos(x).

Then let

F1(ω, a, u1) = P F (ω, av∗ cos(x) + u1(x))

F0(ω, a, u1) = (1 − P)F (ω, av∗ cos(x) + u1(x)) ,
(5.3)

with F1 : R × R × (ker(Lω∗))
⊥ → Ran(Lω∗), F0 : R × R × (ker(Lω∗))

⊥ → coker(Lω∗).

Since the cokernel of Lω∗ is one-dimensional, we let Ps = 1
π

〈·, vad cos(x)〉L2([0,2π ], so that

Ps F0 is scalar. Note that Ps is an isomorphism from coker(Lω∗) to R, with Ps(1 −P) = Ps .

Solutions to the system

0 = F1(ω, a, u1)

0 = Ps F0(ω, a, u1)
(5.4)

are thus equivalent to solutions to F(ω, u) = 0.
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We now exploit Fredholm properties of the linearization to solve F1 near the trivial solu-

tion:

Proposition 5.5 There exists a neighborhood U of (ω0, 0) and a C1 function ψ : U × R →
Ran(Lω∗), such that u1 = ψ(ω, a) is the unique solution to F1(ω, a, ·) = 0. Moreover,

we have ψ(ω, 0) = 0 and a neighborhood of (ω∗, 0) and a constant C1 such that on that

neighborhood, ‖∂ωψ(ω, a)‖C0 ≤ C1|a|.

Proof We will use the Implicit Function Theorem, for which we will need to establish that

F1 is C1 with respect to ω, a, u1, and Du1 F1(ω∗, 0, 0) is bounded invertible.

First, to show that F1 is C1, we know that F1 is C1 in a and u1 since N is C1, and the remain-

ing terms are linear. As to differentiability in ω, first note that since k ∈ W 1,1(R, Mn(R)), k is

absolutely continuous. One can also check that
∫ ω2

ω1
∂ω(kω ∗ u)dω < ∞ for any ω1, ω2 > 0,

since ‖∂ωkω‖L1 = 1
ω

∥∥k − k′∥∥
L1 . Then we will have that F1 is differentiable with respect to

ω, with ∂ω F1u = (∂ωkω) ∗ (Au + N (u)). To show that ∂ω F1 is continuous in ω, it suffices

to show that the function ∂ωkω = 1
ω2 (k′( 1

ω
·) − k( 1

ω
·)) is continuous in L1 in ω. This can be

done by finding a compact interval outside of which the tails of k and k′ are small enough,

and then approximating k and k′ inside sufficiently well by continuous functions. Since all

three partial derivatives are continuous, the function F1 is jointly C1 with respect to ω, a, u1.

As to Du1 F1(ω∗, 0, 0), this is the restriction of Du1 F(ω∗, 0, 0), which is Fredholm index 0,

to the complement of its kernel, projected onto its range. It will thus be both one-to-one and

onto, hence bounded invertible.

As a consequence, by the Implicit Function Theorem, there exists a neighborhood U of

(ω0, 0) and a C1 function ψ : U ×R → Ran(Lω∗) uniquely solving F1(ω, a, ψ(ω, a)) = 0.

It remains to establish the properties of ψ stated. The first property is true because u = 0

solves the original equation, and because ψ is unique. To justify the second property, by

differentiating the equation F1(ω, a, u1) = 0 with respect to ω and using the chain rule, we

obtain

∂ωψ(ω, a) = ∂u1 F1(ω, a, ψ(ω, a))−1∂ω F1(ω, a, ψ(ω, a)),

provided the inverse exists. However, because the set of invertible linear maps is open, the

inverse will exist on some neighborhood U1 of (ω∗, 0); moreover, there exists a uniform

bound for a closed subset of that neighborhood. Now, note that the function

∂ω F1(ω, a, u1) = P(−a cos(x) + u1(x)) + (∂ωkω) ∗ (A(−a cos(x) + u1(x))

+N (−a cos(x) + u1(x)),

while no longer C1 in ω, is still C1 in a and u1, with ∂ω F1(ω, 0, ψ(ω, 0)) = 0. Hence we can

write |∂ω F1(ω, a, u1)| ≤ a supa,ω |∂a∂ω F1(ω, a, u1)|, and since ∂a∂ω F1(ω, a, u1) is jointly

continuous in ω, a, the desired property holds. ��

5.2 Contraction Properties of the Reduced Equation

We now study the one-dimensional reduced equation

0 = Ps F0(ω, a, ψ(ω, a)),

which we can rewrite as

0 = Ps(Lω − Lω∗) (av∗ cos(x) + ψ(a, ω)(x)) + Ps(kω ∗ N (av∗ cos(x) + ψ(a, ω)(x))),

(5.5)
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since Ps(1 − P) = Ps , PsLω∗ = 0, and Lω∗av∗ cos(x) = 0.

We would like to find a one-parameter family of solutions (ω, a) to this equation near

(ω∗, 0). Typically, one would use the Implicit Function Theorem; however, the nonlinearity

N is only C1, and both first partial derivatives of the right hand side vanish at (ω∗, 0). Because

a = 0 is a solution of (5.5) for any ω, the entire equation can be divided by a, but since

the nonlinearity N is only C1, the resulting equation is then only continuous. We thus use a

direct contraction argument.

Setup of Contraction Argument We divide (5.5) by a and claim that we obtain an equation

of the form

ω − ω∗ = R(ω, a) (5.6)

for some function R(ω, a). In fact, the principal term, after dividing, is Ps(Lω −
Lω∗) (v∗ cos(x)). We would like to identify the linear term in (ω − ω∗) and show that it

does not vanish. We find that the linear term in Ps(Lω − Lω∗) (v∗ cos(x)) is α(ω − ω∗) =
Ps

d
dω

(kω ∗ A cos(x))
∣∣
ω=ω∗

· v∗(ω − ω∗). Then, provided the coefficient α is nonzero,

Eq. (5.5) can be rearranged to the form (5.6).

Proposition 5.6 The linear coefficient α = Ps
d

dω
(kω ∗ A cos(x))

∣∣
ω=ω∗

· v∗ does not vanish,

under the assumption that d(iω∗) = 0, d ′(iω∗) 	= 0, and k(−x) = k(x).

Proof By changing variables, one can calculate that

d

dω
(kω ∗ A cos(x))

∣∣
ω=ω∗

· v∗ =
d

dω

(
1

2

(
Aei x

∫

R

k(y)e−iωydy

+Ae−i x

∫

R

k(y)eiωydy·
))

|ω=ω∗ · v∗

=
d

dω

(
1

2
√

2π

(
k̂(−iω)Aei x + k̂(iω)Ae−i x

))
|ω=ω∗ · v∗

=
d

dω

(
1

√
2π

k̂(iω)A

) ∣∣
ω=ω∗

· v∗ cos(x),

because k is even. Then

α = Ps

(
d

dω

(
k̂(iω)
√

2π
A

) ∣∣
ω=ω∗

· v∗ cos(x)

)

=
1

√
2π

〈
d

dω
(̂k(iω)A)

∣∣
ω=ω∗

v∗ cos(x), vad cos(x)

〉

L2([0,2π ],Rn)

=
1

√
2π

〈
d

dω
k̂(iω)A

∣∣
ω=ω∗

v∗, vad

〉

Rn

,

so it remains to show that the latter is nonzero.

By the hypothesis, we have

d(iω∗) = det(−In + k̂(iω∗)A) 	= 0, and d ′(iω∗) = det(̂k′(iω∗)A) 	= 0.

Let e0 be the first standard basis vector in Rn . Because d(iω∗) = 0, there exists an invertible

matrix T such that ker(T (−In + k̂(iω∗)A)T −1) = e0; that is,

T
(
−In + k̂(ν)A

)
T −1 =

(
b1(ν − iω∗)

∣∣∣B2 + O((ν − iω∗))
)
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for b1 a nonzero vector and B2 a n × (n − 1) matrix. Then by termwise expansion,

det
(
T

(
−In + k̂(ν)A

)
T −1

)
= (ν − iω∗) det

(
b1

∣∣∣B2

)
+ O((ν − iω∗)

2).

By the assumption that d ′(iω∗) 	= 0, we must have that det
(
b1|B2

)
	= 0. Then b1 is not in

the range of B2 and therefore not in the range of T (−In + k̂(iω∗)A)T −1. Lastly, noticing

that

b1 =
d

dν

(
T

(
−In + k̂(ν)A

)
T −1

) ∣∣∣
ν=iω∗

· e0,

we get that k̂′(iω∗)Av∗ is a nontrivial element of the cokernel of (−In + k̂(iω∗)A),

since e0 corresponds to v∗ in the original coordinates. This fact then implies that

〈 d
dω

k̂(iω)A
∣∣
ω=ω∗

v∗, vad〉Rn 	= 0, as desired. ��

Then, since α, the coefficient of (ω − ω∗), is nonzero, we rewrite the reduced Eq. (5.5) in

the form

(ω − ω∗) = R(ω, a) = Ps R̃(ω, a),

where

R̃(ω, a) =
−1

α

(
1

a

[
(kω − kω∗) ∗ ψ(ω, a) + kω ∗ N (av∗ cos(x) + ψ(ω, a))

]

− (kω − kω∗) ∗ Av∗ cos(x) − (ω − ω∗)
d

dω

(
kω ∗ Av∗ cos(x)

)∣∣∣
ω=ω∗

)

:= R̃1(ω, a) + R̃2(ω, a) + R̃3(ω).

Contraction Properties

The remainder of the section will be dedicated to showing that the function R(·, a) is a

contraction mapping in ω on a sufficiently small neighborhood of ω∗, for a sufficiently small.

Proposition 5.7 For any ε sufficiently small, there exists a∗ sufficiently small such that for

any a < a∗, R(·, a) is a map from the interval (ω∗ − ε, ω∗ + ε) into itself.

Proof One can readily calculate |R(ω, a)| = |Ps R̃(ω, a)|R ≤ 2
∥∥R̃(ω, a)

∥∥
L∞ , so we inves-

tigate
∥∥R̃(ω, a)

∥∥
L∞ for simplicity.

Consider first R̃1. We have

∥∥R̃1

∥∥
L∞ =

∥∥∥∥
1

α

1

a
(kω − kω∗) ∗ ψ(ω, a)

∥∥∥∥
L∞

≤ |ω − ω∗|(sup
ω

‖∂ωkω‖L1)

∥∥∥∥
1

a
ψ(ω, a)

∥∥∥∥
L∞

.

Since ‖∂ωkω‖L1 is continuous in ω and hence bounded on a neighborhood of ω∗, we would

thus like to show that
∥∥ 1

a
ψ(ω, a)

∥∥
L∞ is small in a neighborhood of (ω∗, a). We can expand

ψ in a at a = 0, noting that ψ(ω, 0) = 0, to get ψ(ω, a) = a∂aψ(ω, 0) + ψ1(ω, a), with

the remainder term ψ1 being jointly C1 in ω, a and uniformly o(a) on a neighborhood of ω∗.

We then note that ∂aψ(ω∗, 0) = 0, by the chain rule:

∂ψ

∂a
(ω∗, 0) = (∂u1 F1(ω∗, 0, ψ(ω∗, 0)))−1∂a F1(ω∗, 0, ψ(ω∗, 0))

= L
−1
ω∗ (P(N ′(0)v∗ cos(x))) = 0.
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Therefore, ∂aψ(ω, 0) is equal to 0 at ω = ω∗, and continuous. We also have that 1
a
ψ1(ω, a)

is oa(1), uniformly in ω on a neighborhood of ω∗, since ψ1(ω, a) is locally uniformly o(a).

Therefore there exists ε1 such that for |ω − ω∗| < ε1, and a sufficiently small,

∥∥R̃1

∥∥
L∞ ≤

1

α
|ω − ω∗|(sup

ω
‖∂ωkω‖L1)

∥∥∥∥
1

a
ψ(ω, a)

∥∥∥∥
L∞

<
ε

6
.

As for R̃2, we note that

‖kω ∗ N (av∗ cos(x) + ψ(ω, a))‖L∞ ≤ ‖kω‖L1 ‖N (av∗ cos(x) + ψ(ω, a))‖L∞ .

We know that ‖kω‖L1 can be bounded on a neighborhood of ω∗ since it is continuous in ω.

Now, we have N (0) = 0, and ∂
∂a

(N (av∗ cos(x) + ψ(ω, a)))|a=0 = N ′(0) ∂
∂a

ψ(ω, a)|a=0 =
0, since N ′(0) = 0. Thus we will have ‖N (av∗ cos(x) + ψ(ω, a))‖L∞ = o(a), uniformly

in a neighborhood of ω∗, since N and ψ are C1.

Then, given any ε > 0, for a sufficiently small,

∥∥R̃2

∥∥
L∞ ≤

1

α
sup
ω

‖kω‖L1

∥∥∥∥
1

a
N (av∗ cos(x) + ψ(ω, a))

∥∥∥∥
L∞

<
ε

6
.

We claim that R̃3 is at least quadratic in (ω − ω∗). Since (kω ∗ Av∗ cos(x))(·) = (k ∗
Av∗ cos(ωx))( 1

ω
·), and the latter is smooth in ω, we can expand in ω and find that the

expansion starts at quadratic order. Then there exists ε2 such that for |ω−ω∗| < ε2,
∥∥R̃3

∥∥
L∞

is less than ε2
6

.

Thus, for any ε < min(ε1, ε2), with a sufficiently small, for |ω − ω∗| < ε,

∥∥R̃(ω, a)
∥∥

L∞ ≤
∥∥R̃1

∥∥
L∞ +

∥∥R̃2

∥∥
L∞ +

∥∥R̃3

∥∥
L∞ <

ε

6
+

ε

6
+

ε

6
=

ε

2
,

so that |R((ω − ω∗) + ω∗, a)| < ε. ��

It remains to show that R(·, a) is a contraction mapping.

Lemma 5.8 There exists ε > 0 and a∗ > 0 such that for a < a∗, the map R(ω, a) is a

contraction mapping from (ω∗ − ε, ω∗ + ε) to itself.

Proof We investigate the Lipschitz constant of R. We have

R(ω1, a) − R(ω2, a) =
−1

α

1

a
Ps

[
(kω1 − kω2) ∗ ψ(ω2, a)

+ (kω1 − kω∗) ∗ (ψ(ω1, a) − ψ(ω2, a))

+ (kω1 − kω2) ∗ N (av∗ cos(x) + ψ(ω2, a))

+ kω1 ∗ (N (av∗ cos(x) + ψ(ω1, a)) − N (av∗ cos(x) + ψ(ω2, a)))

+ (kω1 − kω∗) ∗ Av∗ cos(x) − (ω1 − ω∗)
d

dω
(kω ∗ Av∗ cos(x))

∣∣
ω=ω∗

−
(
(kω2 − kω∗) ∗ Av∗ cos(x)

− (ω2 − ω∗)
d

dω
(kω ∗ Av∗ cos(x))

∣∣
ω=ω∗

)]
.

We again estimate norms in L∞, accounting for the factor of 2. For the first term, as before,

we have∥∥∥∥
1

a
(kω1 − kω2) ∗ ψ(ω2, a)

∥∥∥∥
L∞

≤ |ω1 − ω2|
(

sup
ω

‖∂ωkω‖L1

) ∥∥∥∥
1

a
ψ(ω2, a)

∥∥∥∥
L∞

.
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By the argument above, for the values of (ω, a) considered, we already have

1

α
(sup

ω
‖∂ωkω‖L1)

∥∥∥∥
1

a
ψ(ω, a)

∥∥∥∥
L∞

<
1

6
,

so that

∥∥∥∥
1

α

1

a
(kω1 − kω2) ∗ ψ(ω2, a)

∥∥∥∥
L∞

≤
1

6
|ω1 − ω2|.

For the second term, we have

∥∥ 1
α
(kω1 − kω∗) ∗ (ψ(ω1, a) − ψ(ω2, a))

∥∥
L∞ ≤ |ω1 − ω2| · |ω1

−ω∗| 1
α
(supω ‖∂ωkω‖L1) 1

a
Lipω(ψ(ω, a)).

The term Lipω(ψ(ω, a)) is bounded by |∂ωψ(ω, a)|, which is bounded by C1|a|, so that
1
a

Lipω(ψ(ω, a)) ≤ C1. Then for |ω1 −ω∗| sufficiently small, the whole term will have small

Lipschitz constant: there exists ε3 such that for |ω1 − ω∗| < ε3,

∥∥∥∥
1

α
(kω1 − kω∗) ∗ (ψ(ω1, a) − ψ(ω2, a))

∥∥∥∥
L∞

<
1

12
|ω1 − ω2|.

For the third term, we have
∥∥∥∥

1

α
(kω1 − kω2) ∗ N (av∗ cos(x) + ψ(ω2, a))

∥∥∥∥
L∞

≤ |ω2 − ω1|
1

α
sup
ω

d

dω
‖kω ∗ N (av∗ cos(x) + ψ(ω2, a))‖L∞

≤ |ω1 − ω2|
1

α
sup
ω

‖∂ωkω‖L1 ‖N (av∗ cos(x) + ψ(ω2, a))‖L∞ .

As discussed previously, 1
a

‖N (av∗ cos(x) + ψ(ω2, a))‖L∞ is oa(1), and the rest of the terms

are bounded. Then for a sufficiently small,
∥∥ 1

α
(kω1 − kω2) ∗ N (av∗ cos(x) + ψ(ω2, a))

∥∥
L∞ <

1
12

|ω1 − ω2|.
For the fourth term, note that

Lipω(
1

a
N (av∗ cos(x) + ψ(a, ω))) ≤

1

a
sup |N

′
(av∗ cos(x) + ψ(ω, a))| Lipωψ

≤
1

a
sup |N

′
(av∗ cos(x) + ψ(ω, a))| C1|a|

≤ C1 sup |N
′
(av∗ cos(x) + ψ(ω, a))|.

Because N ′(0) = 0, with N ′ continuous, and the argument av∗ cos(x)+ψ(ω, a) equals 0

at (ω∗, 0), there exists a neighborhood of (ω∗, 0) for which 1
α

C1

∥∥kω1

∥∥
L1 sup |N ′

(av∗ cos(x)+
ψ(ω, a))| < 1

12
. Then on that neighborhood,

kω1 ∗ (N (av∗ cos(x) + ψ(ω1, a)) − N (av∗ cos(x) + ψ(ω2, a))) <
1

12
|ω1 − ω2|.

As to the last difference of terms, which is independent of a, note that because the term is

quadratic in (ω − ω∗), then there exists ε4 for which the Lipschitz constant is less than 1
12

for |ω − ω∗| < ε4.

Now, fix ε < min(ε1, ε2, ε3, ε4), and a0 sufficiently small such that (−a0, a0) × (−ε, ε)

is in all neighborhoods mentioned above, and so that for a < a0, by Lemma 5.7, the map
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R(·, a) maps Bε(ω∗) to itself. Then we can find a∗, possibly smaller, such that for a < a∗,

∥∥R̃(ω1, a) − R̃(ω2, a)
∥∥

L∞ < (
ε

6
+

ε

12
+

ε

12
+

ε

12
+

ε

12
)|ω1 − ω2| =

ε

2
|ω1 − ω2|,

so that

|R(ω1, a) − R(ω2, a)| < ε|ω1 − ω2|.

Then for all a < a∗, R(·, a) is a contraction in (ω − ω∗) on (−ε, ε). ��

5.3 Proof of Theorems 7 and 8

Using the above contraction properties, we can now prove Theorems 7 and 8.

Proof(of Theorem 7) We show existence of a two-parameter family of solutions to Eq. (5.1).

Let a < a∗. Then by Lemma 5.8 and the Banach fixed point theorem, there exists a

unique fixed point of ω = R(ω, a). Then for all a < a∗, there exists ω(a) such that

F(ω(a), a, ψ(ω(a), a)) = 0.

The family of solutions u(x; a) = av∗ cos(x) + ψ(ω(a), a)(x) is then a one-parameter

family of solutions to (5.2) near a = 0, which in turn yields a family of solutions uc(x; a) =
u(ω(a)x; a) to the original Eq. (5.1). In order to obtain a two-parameter family of solutions,

we use the fact that the original Eq. (5.1) is translation-invariant. This ensures that the function

uc(·+ τ ; a) is a solution for any τ . Lastly, the properties uc(y; 0) = 0, ω(0) = ω∗ are easily

verified by examining properties of ψ and R. ��

This establishes a two-parameter set of periodic solutions to (5.1). However, to prove

Theorem 8, we need to further characterize this set of solutions topologically:

Proposition 5.9 There exists a neighborhood of the origin Up ⊂ R2 and a continuous map

S : Up → C0
−η(R, Rn) whose range consists of the family of continuous periodic solutions

to (5.1) found in Theorem 7.

Proof First, identifying R2 with C, let s1 : C\{0} → R>0 × [0, 2π) be defined by s1(z) =
(|z|, arg(z)), and let s2 : R>0 × [0, 2π) → C0

−η(R, Rn) be defined by s2(r , θ) = uc(x +
θ; r). The composition s2 ◦ s1 can be seen to be continuous and one-to-one from C\{0} to

C0
−η(R, Rn). Then we would like to extend s2 ◦ s1 continuously to C. Let

S(z) =

{
(s2 ◦ s1)(z), z 	= 0,

0, z = 0.

We can see that S is continuous at 0 because ‖uc(· + arg(z); |z|)‖C0 approaches 0 as |z|
approaches 0; s is also still one-to-one. Since there exists a∗ > 0 such that uc(· + ω(a)τ, a)

is a solution to (5.2) for any a > 0, τ ∈ R, then S is a continuous, one-to-one map from the

neighborhood {|z| < a∗} to the set of continuous periodic solutions to (5.1). ��

With this characterization, we now turn to the proof of Theorem 8.

Proof(of Theorem 8) Letting Ñ (u) = A−1 N (u), K (x) = k(x) · A, then Eq. (5.1) is in the

appropriate form for Theorem 5. The kernel E0 of T u = −u + K ∗ u in this case is two-

dimensional, since d(ν) has two single roots on the imaginary axis. Then by Theorem 5,

there exists δ > 0, a center manifold M ⊂ C0
−δ and a map � : E0 → M, with �(0) =

0, D�(0) = 0, such that M = {u0 + �(u0) | u0 ∈ ker T }. By property (iv) of the
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theorem, M contains all solutions u to (5.1) with ‖u‖C0 < ε for some ε > 0. Then, taking

ε∗ < min(ε, a∗), the family of solutions {uc(· + τ ; a) | τ ∈ R, a ∈ [0, ε∗)} is contained, as

a set, in M.

The composition of maps Q ◦ S, where Q is the projection onto E0 as defined in Sect. 4,

and S is the map from Proposition 5.9, is then a continuous, one-to-one map from the

neighborhood Up of 0 in R2 to E0. Note that Q is one-to-one because it is invertible on M.

Its restriction to a closed neighborhood of 0 contained in Up will therefore have continuous

inverse and hence be open. Then the image of Up in E0 contains a ball of positive radius in

E0, which, since E0 is finite-dimensional, contains a ball in E0 under the C0 norm. Lastly,

since ‖Qu‖C0 ≤ ‖u‖C0 , any solution to (5.1) with sufficiently small C0 norm is in the image

of Up in the M. Hence any sufficiently small solution to (5.1) is periodic, which proves

Theorem 8. ��

6 Discussion

We have established Fredholm properties for a nonlocal operator with a multiplication oper-

ator as its principal part, finding an additional source of noncompactness corresponding to

zeros of the principal part. Using this theory, we established existence of finite-dimensional

center manifolds for nonlocal equations on C0-based spaces, allowing for optimal regularity

of the manifold in a set of coordinates. This allowed us to prove a nonlocal Lyapunov-Center

theorem in the C1 case. We describe briefly below possible further directions of this work,

and some apparent difficulties therein.

General Nonlinearities The work here focuses on pointwise substitution operators as a

simple class allowing for optimal regularity; a natural extension is to consider general Frechet

operators on function spaces. One limitation is establishing the bootstrapping step for these

operators, which involves smoothness of the inverse of (Id + Gε).

Optimal Regularity Without Changing Coordinates A natural question is whether optimal

regularity can be obtained in the original equation without changing variables, possibly in

different function spaces. The inherent difficulty is that differentiating the shift operator

requires that the trajectory be differentiable. It is not clear how regularity could be obtained

in these coordinates using for instance bootstrapping. On the other hand, it seems plausible

that vector fields are simply optimally regular only in this particular choice of coordinates:

changing coordinates for an ODE with C1 vector field with a C1 diffeomorphism of course

only results in a continuous vector field, albeit with a well defined C1 flow.

Extension to a Cylinder The systems studied here are in one spatial variable ξ ∈ R. As in

local spatial dynamics, one would like to extend the theory to the 2-dimensional, cylindrical

case (as in [28] by Kirchgassner). One would have to find conditions under which the kernel

of the linearization is finite-dimensional. Much loftier and less clear, but no less interesting,

would be an extension to 2 or more unbounded spatial variables, where the time-like flow

would correspond to a more general symmetry.

Regularity of the Kernel The present argument relies on regularity of the convolution

kernel—enough to map L p into W 1,p . It is conceivable that this assumption could to be

relaxed slightly, such as to a kernel mapping L p to W θ,p, θ > 0, exploiting repeated boot-

strapping.

Localization of the Kernel Computing Fredholm indices and constructing center manifolds

requires exponential localization of the kernel. Inspecting however the way multiplicities and

crossing numbers are computed, or the way Taylor expansions of reduced vector fields are
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determined, one finds that only finite, possibly high moments of the kernel enter the calcula-

tion. One may therefore suspect that moment conditions would be sufficient to establish some,

possibly weaker result. It seems however difficult to guarantee the robustness with respect

to parameters and the fact that center manifolds contain all bounded solutions without such

strong localization assumptions (or additional structure such as monotonicity). Existence of

small bounded solutions alone, can indeed be deduced from appropriate moment conditions

alone in many scenarios; see for instance [36]

Extension to Other Function Spaces Lastly, the choice of C0-based spaces here was a

natural choice of spaces where pointwise nonlinearities do not lose regularity as substitution

operators. Regularity questions when studying for instance equations in cylindrical domains

may well require different function spaces, such as spaces with Hölder regularity. It is con-

ceivable that the strategy pursued here may well generalize, although cut-off procedures may

be more involved.
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