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Abstract

We develop tools for the analysis of fronts, pulses, and wave trains in spatially extended
systems with nonlocal coupling. We first determine Fredholm properties of linear operators,
thereby identifying pointwise invertibility of the principal part together with invertibility
at spatial infinity as necessary and sufficient conditions. We then build on the Fredholm
theory to construct center manifolds for nonlocal spatial dynamics under optimal regularity
assumptions, with reduced vector fields and phase space identified a posteriori through the
shift on bounded solutions. As an application, we establish uniqueness of small periodic
wave trains in a Lyapunov center theorem using only C!-regularity of the nonlinearity.
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1 Introduction

Describing the emergence of coherent structures and self-organized collective behavior in
large complex systems is both central to our understanding of dynamical behavior and theoret-
ically challenging. Recently, interest has grown in studying systems with nonlocal coupling,
with motivation from neuronal networks, biology, material science, and ecology [2, 6, 13, 14,
17, 22, 26, 33, 4042, 44, 45]. Nonlocal coupling can take many forms but, in a continuum
modeling context, can be quite generally represented by integral operators, rather than dif-
ferential operators in local differential equation models. Phenomena in nonlocally coupled
systems are often qualitatively different from phenomena in differential equations, notably
including effects ranging from singularity formation [24, 39, 45], to rapid synchronization
[11], pinning [3], or acceleration of fronts [8, 31]. Relatedly, mathematical techniques from
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differential equations are not immediately applicable to nonlocally coupled systems and
limitations of techniques often point to new phenomena [3, 9, 42].

In the present work, we focus on developing techniques that adapt tools from the study
of differential equations to nonlocal systems, identifying in particular potential limitations
such as the lack of regularity or the loss of compactness. Our focus is on coherent structures,
particularly traveling waves—periodic wave trains, solitary waves and pulses, fronts, and
other types of solutions arising from the inherent self-organizing capabilities of large systems.
In the analysis of existence, stability, and bifurcations of such states, one desires a robust
functional-analytic framework which the present work aims to contribute to. The class of
equations we study arises as steady-state or traveling-wave equations of a time-dependent
system. Our contributions can be organized into three categories. We study, for a class of
nonlocal equations:

e Fredholm theory for linearization at coherent structures;
e Center manifold theory for bifurcation of coherent structures from the trivial state;
e A Lyapunov-Center theorem for nonlocal systems.

In fact, technical results in these three areas build on each other, with center manifold the-
ory relying on Fredholm theory, and uniqueness in Lyapunov-Center theorems relying on
center manifold theory. We describe the above contributions in more detail below, briefly
summarizing results as well as connections to local theory.

1.1 Fredholm Properties

Fredholm theory is instrumental in the study of bifurcation theory in local as well as nonlocal
settings. For instance, in situations where a given coherent structure exists but the lineariza-
tion of the system is not invertible, a Fredholm linearization may allow one to establish
continuation and bifurcation results using Lyapunov-Schmidt reduction. Fredholm proper-
ties for a nonlocal operator on L*(R, C") corresponding to traveling wave solutions of a
time-dependent nonlocal equation were first established in [18]. Here, we consider instead
the somewhat broader class of operators of the form

TU@E) =AGUE) + Ke * U, (1.1)

withé € R, U (&) € C", corresponding to steady-state solutions of a time-dependent nonlocal
equation. As in [18], the convolution kernel is inhomogeneous, &€ —dependent, with limits at
Fo00, but possesses some smoothing properties. In contrast to [18], the principal part of the
operator is a multiplication operator rather than a differential operator, and we investigate
Fredholm properties of 7 on a larger class of function spaces, L (R, C"), 1 < p < o0, as
well as CO(IR, C"), the latter with an eye toward proving center manifold properties in later
sections. We note however that Fredholm properties are useful beyond the study of small-
amplitude structures: they have been used to investigate eigenvalue problems near the edge
of the essential spectrum [18] or to construct a Conley-Floer homology theory for gradient-
like problems [5] and thus establish existence of large-amplitude front solutions for nonlocal
systems.

Our results identify necessary and sufficient conditions for the operators of the form (1.1)
to be Fredholm (Theorem 1), and show how to compute the index (Theorem 2). Informally,
Theorem 1 states that within a large class of operators,

T is invertible at spatial infinity;

7T is Fredholm <= { The multiplication operator A(-) is invertible.
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The first condition, loss of invertibility at infinity, is a well-known source of non-compactness,
also in local problems [18, 32]. The second condition arises from the change in principal
part and loss of regularity, and may contribute to possible bifurcations such as depinning of
fronts in the nonlocal setting [3] or synchronization transitions in coupled oscillators [10].

Nonlocal Center Manifolds Center manifold theory has long been used to study small-
amplitude solutions of nonlinear equations. Originally set in finite dimensions [27], then
extended to Banach space settings [23] and ill-posed equations [28], the reduction of large or
infinite-dimensional systems to a low-dimensional submanifold can allow for, for instance,
existence and uniqueness arguments where they otherwise are not possible. We are concerned
here with the construction of small, bounded stationary or traveling-wave solutions for non-
linear, nonlocal equations. For local equations, for instance PDEs set on x € R or x in a
cylinder, such solutions can be studied using spatial dynamics and existing center manifold
results. Constructing such stationary or traveling-wave solutions for nonlocal equations poses
new challenges, in particular since an initial-value problem formulation, even an ill-posed
one as for elliptic equations, is not readily available. Analytical results therefore were lim-
ited to special kernels that allow for a reformulation as an ODE [16]. This obstruction was
removed in [19], with a center manifold theory for nonlocal systems of the form

0=-U+K=*U+ FU), (1.2)

for exponentially localized K. There, the need for a phase space is sidestepped: instead of
parameterizing initial conditions over a center subspace, entire trajectories are parameterized
in function space over the kernel of the linearization, which is finite-dimensional. The crux of
this idea is that the analogue of a flow in phase space is the shift operator in function space—
the shift operator 7¢ “flows” a trajectory u(-) forward to the shifted trajectory u(- 4 &). This
flow, the action of the shift operator, can then be pulled back to the kernel and differentiated,
in order to obtain a reduced vector field.

Along with establishing a center manifold comes the question of optimal regularity. In
traditional settings, one seeks to establish C* regularity of center manifolds for C* vector
fields, or C* regularity for C*% vector fields [23], for finite-dimensional or Banach space
settings [15, 21, 27, 35, 43]. The phrase "Ck manifold" refers, equivalently in that case, to
regularity of the map parameterizing the set of center solutions, as well as to the regularity
of the reduced vector field. Analogous ’optimal regularity’ results were precluded in [19],
through the use of an H!-function space setting: although the proof there establishes C¥
regularity of the manifold for a C*¥ nonlinearity on H', a pointwise nonlinearity must be a
CK+1 function in order for the substitution operator to be a C* operator on H'. We remedy
this loss of regularity by relying on a C° function-space setting, where pointwise substitution
operators do not lose regularity.

Our contribution in Theorem 5 then is twofold:

o Optimal regularity: We construct nonlocal center manifolds on C spaces, yielding C*
manifolds and reduced vector fields for C¥ pointwise nonlinearities after a C¥ change of
coordinates.

e Local cutoff: Our construction on C” spaces does not rely on the modified cutoff function
necessary in the H !-setting [20], simplifying the argument and allowing easier adaptation
to different nonlinearities.

We delineate in Sect.4 of this paper this construction of the nonlocal center manifold on
CV-based spaces, a key ingredient of which is the Fredholm theory from Sects.2 and 3. We
note that the C¥ change of coordinates is not necessary to achieve the C* map parameterizing
the center manifold, only the reduced vector field, since it allows bootstrapping of the center
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solutions. We remark also that we are able to recover the smoothness from [19] when changing
back to the original coordinates. Of course, the existence of a C k reduced vector field in
some coordinates, may well be useful and desirable since it allows for arguments based
on uniqueness or sharp Taylor expansions that yield results which are valid independent of
coordinates choices.

Lyapunov-Center Theorem In Hamiltonian and reversible systems, one can often conclude
the existence of nonlinear oscillations from oscillations in the linear part. Such Lyapunov-
Center theorems have been established in many contexts [7, 12, 29, 37]. First, existence of
a one-parameter family of periodic trajectories near an equilibrium of the nonlinear flow is
guaranteed by a pair of nonresonant imaginary eigenvalues +iw. Uniqueness of this family
within the class of small periodic solutions can then be guaranteed by Lyapunov-Schmidt
reduction, if there is exactly one simple pair of imaginary eigenvalues. Further, if a center
manifold exists, one can show uniqueness of the family within the class of all small bounded,
not necessarily periodic solutions to the nonlinear system.

As an application of the center manifold on C? spaces, we prove here a Lyapunov-Center
theorem for a system

0= —u+kx*(Au+ N(u)) (1.3)

with A a constant matrix, k an exponentially localized kernel, and N () a C! pointwise
nonlinearity, N (0) = N’(0) = 0. In the nonlocal case, reversibility corresponds to evenness
of the convolution kernel k, and eigenvalues in the classical systems correspond to roots of
the equation 0 = d(v) = det(l, +7c\(v)A). Our result, Theorem 8, can thus informally be
stated:

d(v) has a unique pair of roots & iw, on iR,
d'(iwy) #0
= all small bounded solutions to (1.3) are periodic.

In the context of spatial dynamics, the result establishes absence of small-amplitude coherent
structures, such as solitary waves or nanopterons, for wave speeds different from group veloc-
ities under a non-resonance condition, with optimal regularity assumptions; see Remark 5.3.

Technically, the C! case requires careful analysis because the principal term in the reduced
equation is essentially quadratic. The argument also relies on the ability to establish a center
manifold for a C' nonlinearity, which is made possible by the C°-based center manifold
construction.

Outline of the Paper We establish in Sect. 2 necessary and sufficient conditions for Fred-
holm properties of a class of nonlocal operators. We characterize Fredholm indices of these
operators in Sect. 3 via relative Morse indices, requiring stronger localization of the kernel
than in the previous section.

In Sect.4, we prove existence of center manifolds for nonlocal systems on C%-based
spaces, using the methods in [19], and establish regularity of the reduced vector field. We
use this center manifold theory in Sect.5 to prove a Lyapunov-Center theorem for nonlocal
systems.

We note that sections may be read independently from each other—taking major results
of the others for granted, and occasionally notation, they are essentially self-contained.
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2 Fredholm Properties of a Nonlocal Operator

We establish Fredholm properties for a class of nonlocal operators whose principal part is
a multiplication operator, with a lower-order integral operator perturbation. Such operators
may arise in studying space-dependent equilibria of nonlocal differential equations. The
nonlocal coupling here is not a true convolution, except in the limit at spatial infinity. Such
operators arise from linearizations at heteroclinic profiles in otherwise translation invariant
systems, or from translation-invariant problems considered in weighted spaces. Our main
focus in this section is to establish Fredholm properties for these operators on L and C9,
and outline adaptations to L”, p > 1. In subsequent sections, Fredholm properties on C°
will be used to extend results in [19] on nonlocal center manifolds to C%-based spaces. This
class of operators are related to those in [18] but slightly more general and interesting in their
own right due to additional sources of loss of compactness.

2.1 Setup and Notation

We denote by L', L the usual L? spaces L'(R, C") and L*®(R, C"), and we let CO(R, C")
be the space of continuous functions with finite norm,

[fllco = max sup|f;(x)l.
SIS xeR
We let M,,(C) be the set of n x n complex matrices. Lastly, we introduce the weighted L>
space

L}(R, M, () = {f € L* R, C") | IV 1+ &2 fl];2 < oo}

Also define the complex Fourier Transform on L3R, CM) by
Fiey = —— [ e
V2 Jr '
note that the standard Fourier transform evaluates fon iR.
A Class of Nonlocal Operators
We consider operators of the form

T:L*[R,C" — LR, C"

U@) — ABUEG) +/RK(E — £ HUEHAE, @D
with A(-) € L®(R, M, (C)), K(¢ —-, &) € WHoR, WLI(R, M, (T)). We further require,
in order to ensure properties of the adjoint, that K (- + &, -) € whoRr, whHR, M, (C))).
The integral kernel K¢(-) = K (-, ) can be thought of as an inhomogeneous convolution
K + U. We denote the pair (A, K) =: A, and we denote the operator by 74 or simply 7,
when unambiguous. We also consider the analogous class of operators 7 4c on CO(R, CM),
for which all assumptions are the same except that we must have A(-) € COR, M, (T)).

With suitable assumptions on limits and regularity, we wish to establish Fredholm prop-
erties for operators in this class: we first identify necessary and sufficient conditions for the
operator to be Fredholm and then, with stronger localization assumptions, relate the Fredholm
index to a spectral flow.

We give two examples where such generalized convolution kernels arise.
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Linearized Nonlocal Allen—Cahn Equation
The reaction-diffusion Allen—Cahn equation can be posed nonlocally as

W dcutkew + fw, 22)

with f k =1, for instance a normalized Gaussian, and constant effective diffusivity d > 0.
Considering stationary solutions, and then linearizing the equation about an interface-like
solution uy, u.(x) — u4 for x — 400, one obtains

Tu=d(—u+kxu)+ f'(uy) - u. 2.3)
Neural Fields Similarly, one can consider simple models for neural fields with an assump-
tion of homogeneity, that is, translation invariance,

otk F@) 2.4)
— =—u x F(u), .
dt

where x lives in physical or feature space, and u denotes a possibly averaged state of the
neural field. The state could be scalar- or vector-valued, and the convolution kernel is often
assumed Gaussian, or, for technical reasons, to possess rational Fourier transform.

Again considering stationary solutions u, and linearizing, one obtains

Tu=—u-+kx[F'(uy) - ul. 2.5)

2.2 Fredholm Properties

We state the main result and hypotheses.

Hypothesis 2.1 (Limits at infinity) We assume that there exist two matrices AT € M,(C)
such that

AE) —> AT, £ - +o0.

We also assume that there exist two functions K* € WHI(R, M,(C)) N L%(R, M, (C))
such that

Jim K6 - KO =0

and lim |KC.-+& - K=, =0.

Remark 2.2 The examples discussed above can be shown to satisfy these hypotheses, given
somewhat mild assumptions on the kernel, and assuming that u, € L°°, with limits at infinity,
so that f/(u(x)) = f'(uEx)), x — too.

Theorem 1 Given T4 in the class of operators defined in Sect.2.1 that satisfies Hypothe-
sis 2.1, the following are equivalent:

(i) T4 is Fredholm.
(ii) T satisfies

(a) Hyperbolicity at Infinity: det(?(-\i(iﬁ) + AT L0 forall € e R;
(b) Pointwise Invertibility of Principal Part: Al () € LR, M, (C)).
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Furthermore, when T is Fredholm, its index depends only on the limits A* and K*(-)
defined in Hypothesis 2.1.
If A is continuous, the analogous result holds for T 4c.

Note that the above theorem essentially suggests that loss of compactness happens for two
reasons—noncompactness of the domain, and pointwise lack of invertibility in the principal
part. The former is a well-known source of non-compactness, but the latter is not present in
the results of [18], where the principal part is a differential operator.

2.3 Proof of Theorem 1, Sufficiency of Conditions for Fredholm

We first state some propositions which will be used in the proof.

Proposition 2.3 There exists C > 0 such that for all U € L, the following estimate holds:

I

Proof Consider the operator
K:L'®R,C"— W' (®, C"

U@ — /RK*(&/ — &, 8N UE)AE,

< CllU g1y (2.6)

L>®

where K* denotes the conjugate transpose of the matrix K.
We have that

K*(¢—1¢.8)

) U1 L1
L'@)

by the factthat K (-+&, -) € whoor, wi I(R M,,(C))). Therefore, K is abounded operator
from L' (R, C") to W (R, C"). Since K is bounded, its adjoint C* is also bounded as an
operator from (W1 (R, C"))* to L>®(R, C").

Formally, KC* is defined only as an abstract operator on (Wl'l)*; however, elements of
L can be considered elements of (W !1)* via the measure associated to the L function.
Whenever the argument of K* corresponds to an L function in this way, the adjoint operator
K* must coincide with the operator

||EU||W1.1 < <SLElp |K*(-+&, .)||L1 +s1;p ‘dg

=ClUlg .

U(E)ﬁ/[RK(S—E’;E)U(E’)d%"- 2.7

The boundedness of the adjoint operator then implies the boundedness of the operator
(2.7) on L®°, which gives for U € L the bound in 2.3 as desired. O

We will also need the following lemma:

Lemma 2.4 (Abstract closed range lemma) Suppose that X, Y, and Z are Banach spaces,
that T is a bounded linear operator, and that R : X — Z is a compact linear operator.
Assume that there exists a constant ¢ > 0 such that

IUllx =cUITUlly +IRUlIz), forallU € X.

Then T has closed range and finite-dimensional kernel.
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Proof See [38]. o

Proposition 2.5 For the operator T 4, there exist constants ¢ > 0 and L > 0 so that
Ul < clU i ry.omy + 174Ul L) 2.8)
The same holds for T 4c.

In particular, this will allow us to use Lemma 2.4 since the composition Z o R of
the restriction operator Ry, : L (R, C") — L*°([—L, L], C") and the inclusion operator
T:L®(-L,L],C") — (W-I([—L, L], C")* is compact. The same argument applies for
the analogous operators on C? since the latter is a closed subspace of L.

Proof Let T refer either to 74 or 7 4c. Following [18], we divide the proof into four steps.
Step 1: We first show that

Ul < e1(NU L. cny + 1T Ul o). 2.9)

For each U, we have

17Ul = HA(é)U(E) +/RK(§ & HUE)dE

L>®

= HA@) <U(E)+A71(§)/RK(€ —S’;S)U(S')dé’)

Lo

HU(&) + A*(s)/
R

R
2 AT @)
UE A @) /R K — & 5UE)dE’

>c

LOO
>c (IIU($)||L°° — 1A @)l - H/RK(E — & HUENE

> c(lUG) e = IUE w1y,

for some ¢, ¢’ > 0, which implies the estimate (2.9).
Step 2: We now consider a constant-coefficient operator

)

Thp:UE)— AU &)+ (KO U) (&), (2.10)

with A invertible and K°(-) € WhI(R, M, (C))NL3 (R, M, (C)), satisfying the hyperbolic-
ity condition det(KO(l 0)+A9) # Oforall ¢ € R. Note that the condition K € LZ(R M, (C))
guarantees that K € H'. We will show directly that 7 40 is bounded invertible, since L* is

less amenable to the properties of Fourier multipliers.
We define the inverse of 7 40 on L= (R, M,(C)) by

(T40) ') = (AU + Ky % U, (2.11)

where Kipy 1 1s the inverse Fourier transform of ((A? + I/(\O(i )~ —Hh.
That 7, 40 is an inverse can be shown directly by calculating

T40(T ) U = U + (A%Kiny + K°A™! + (K % Kiny)) * U

the function (A°Kiny + K°A™! + (K * Kiny)) is the Fourier inverse of the 0 function, so
vanishes almost everywhere, giving 7 40 (’TAo)_lU = U. One can likewise show the same
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for (7 Ao)’lT _40. We would then like to show that the inverse function (7, Ao)’1 is bounded.
We do this by showing that Kj,y, € H ! sothat Kipy € L', leading to boundedness of ’Z:Zol.
___We have by a matrix identity that (A° + K0(i€))~! — (A% =1 = —(A%) 1K O(i0)(A® +
KO9(i¢))~!. Then

) H@(iz)‘

A0 4 KO(iv *I—AO*" <
[+ Koo~ =] < (s s

teR

(A%~ (AO + @(iﬁ))_l H
M, (C)

=a Ko, .
HEEO], o

an

d
H 4 (A + B0y = (4%
drl

M, (C)

< sup (‘ (A" + 1?)(1'5))72”

M,(C)  teR

= C2 |(KOY (D)

) | &y o)

M, (C)

M,©

so that H?m\v " < (C1 + () HI/(\OHHI, andfm\v € H!. Then Kipy € L%(R, M,(C)) C
L'(R, M, (C)).
For ¢; := (H (A%~! HM © T ||Kinv||L1), this gives the estimate

Ul < 2 |TpU||; . forallU e L. (2.12)

Step 3: We now want to show that there exists L > O such thatif U(§) = Ofor || < L—1,
we have

UllLee < 3 TU | L. (2.13)

First, suppose that we have two functions UT(§) = 0,6 < L —1,and U™ (§) =0, & >
—(L —1).

Then, note that since K, A satisfy Hypothesis 2.1, we may find L large enough, so that
for U%,

[ (ke-gi0-x*c-enurene| < Siwsis
LOO
I(A* = AU ||~ < %nuinm,

sowehave LU || < |T*U* | < e| Ul + | TU*| 1, which gives |UF || <
c||TU*| L, choosing ecy < 1, where the implicit notation 7+ refers to the map

TE:UE) > AREUE) + /R K*(E - £HUE)HdE.

Finally, given U such that U = 0, |€| < L — 1, we can decompose U = U™ + U, taking
UtE)=U®E), foré > 0,and UT (&) = 0 otherwise, and U~ (£§) = U (&) for & < 0, and
U~ (&) = 0 otherwise.

Then we have

1UNLee < NUT NIz + 10U NIpoe < c(ITUF (Lo 4+ 1 TU ™ [10)
=2¢||TU|z= =: 3l TU ||,

as desired.
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Step 4: Finally, let x be a smooth cutoff function equal to 0 outside [—L, L] and equal to
1 for || < L — 1. Then we have

Ul < IxUlizee + (1 = x)Ull oo
<callxUlwix + 17 (xU)liLe) + c3lI7(1 — x)UllLe (by steps 1 and 3 )
< cUlUlwrrq—r,Lyy + 17Ul Le),

which concludes the proof of Proposition 2.5. O
Corollary 2.6 The operators T4 and T 4c have closed range and finite-dimensional kernel.

Proof Let R = Zo Ry, X,Y = LR, C"), Z = (W ([—L, L], C"))*. The result then
follows for 74 from Lemma 2.4 and Proposition 2.5. For 74c, let R : C'R,C") —
(WLI([=L, L], C™))* be defined analogously, and let X, Y = C%R, C"), and the same is
true. m}

Adjoint Properties In order to show that the cokernels of 74 and 7 4c are finite-
dimensional, we consider the kernels of the adjoint operators Tj, ch. Consider first
T; : (LR, C")* — (L=(R, C"))*. Abstractly, the adjoint 77 is defined only as an
operator on (LR, C"))* = (L*®[R, C))*)", where (L*°(R, C))* can be identified with
the space of absolutely continuous finite Borel measures on R. However, we see that for an
n-tuple u of measures in the kernel of Tj, we must have

/U(S)~du=—f [fRK(s—s/;sm*(s’w(&’)ds/] w1

for all U € L°°, where - refers here to the dot product on C". Note that every component
of the matrix-valued function K (§ — &’; £)A~1(¢’) is an L™ function of &, with L® norm
bounded over &’. Then for any i, j, the function [(K(§ — &'; S)A_l)ij(g/)dﬂ,i is in fact
an L™ function of &’. Therefore, since (2.14) must hold for every U, we see by equat-
ing terms that the n-tuple of measures p is given by an element of L (R, C") through
(w)i = (f(K(S — £ 6)A N ENe) - d,u) A, where A is the Lebesgue measure and e; is the
ith standard basis vector in C”.

The same is true for TZC' Since the dual of CO(R, C) can be identified with the space of
finite, finitely-additive complex measures on R, we can again identify the dual of CO(R, C")
with n-tuples of measures, and we must have for all u € (COR, C™)*, U € CY, that

JEGRTE —/[/RK@—s’;sm—‘@’)v@’)ds’] dp.

Now, K (-—£&', ) € CO(R, M,,(C)) ¢ WHI(R, M, (C)), with C? norm bounded over &’ € R.
Therefore, for all i, j, [(K(& — &';6)A™1(&));;d; is well-defined and an L function
of &’. Then, by the same calculation as above, the n-tuple of measures p corresponds to an
element of L®(R, C") by ()i = ([ (K (€ — &1 £)A &)e;) - dpe) &

For such an n-tuple of measures that corresponds to an L (R, C") function, the actions
of both the operators 7 and ch coincide with the action of the operator

T 1 UE) > AEUE) + / K*(E' — &)U ENaE
on the L™ function, where K*, A* refer to the conjugate transposes of the matrices K, A.

Then for both 74 and 7 4c, the kernel of the adjoint operator will be finite-dimensional
provided that the kernel of 7}’ is finite-dimensional on L.
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Lemma 2.7 The operator T}'. satisfies Hypothesis 2.1 and condition (ii) from Theorem 1
whenever T4 (or T 4c ) does.

Proof We note that the conditions that K (¢ — -, &) € WL°®R, WhI(R, M,(C)) and
K(+E& ) € WorRr wh(R, M, (C))) exactly guarantee that Hypothesis 2.1 is read-
ily satisfied by both 74 (or 7 4c) and 7}~. Condition (ii)(a) holds for 7%, since A*(§) is
invertible whenever A(§) is, and we can see that condition (ii)(b) holds by noting that for
a hyperbolic 7 40, we have that det((K%(i¢) + A%)) = (—1)" det((K°(i€) + A%)*), so T+
will be hyperbolic exactly when (7, L*DQ)jE are. O

Limit Operators and the Fredholm Index
The last part of Theorem 1 concerns the indices of the operators, when they are Fredholm.
In particular, it will be useful later to have the following fact:

Proposition 2.8 If 74 (or T 4c) is Fredholm, its index depends only on At and K*.

Proof Suppose T4, and T4, (or TAlc , ’TAzc respectively) satisfy Hypothesis 2.1 and are
Fredholm. We use in the following that, as a consequence of the necessary part of Theorem 1
which is proved below, we may assume that condition (ii) from Theorem 1 is met. Suppose
A1, Ay are given by (A1, K1), (A2, K»), with the same limits AT, K*.

Two Fredholm operators 77 and 75 have the same index if there exists an invertible operator
B such that T1 — T, B is compact. The multiplication operator U (§) — A, ! &AL EUE)

is invertible, so we would like to show that 7g := 74, — T4, A5 A} is compact. We will do
this by showing it is the operator-norm limit of a sequence of compact operators. Essentially,
we would like to cut off the operator outside |£| < L, and show that 7% is the limit of the
truncated operators as L — 00.

More formally, let 7FU = E; 0 I o Ry, o (xXTRU), where

Ry WHR@R, C") — Wh®([—L, L], C") (or C', C) is the restriction operator,
T Wheo([=L, L], C") — L®(—L, L], C") (or C', C°) is the inclusion operator,
Er : L®([—L,L],C" — L®(R, C") (or C°, C°) extends by 0 outside [—L, L], and
x ¥ is a smooth characteristic function equal to 1 on

[-(L—1),L — 1], and O outside [-L, L].

The operator Z;, is compact, and the operators Ry, Er, and multiplication by XL are
bounded, so 7, RL is a compact operator.

We now show that 7% is the operator limit of the sequence {7, RL}, L — oo.Lete > 0,and
note that ||-|| .« may refer equivalently to the supremum norm on L* or €Y. We have

TRU (§) = (Ta, — Ta, Ay AU (&)

= fR (K1~ 0UE) - Ka( —§59)45" €A1V E | ag.
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Let Ag(¢") =T, — A5 (§)A1(€"). Then

(@ -Thu| = sw 1mUE)

[§]>(L—1)
- (o
|E\>(L b}

+ ‘/ Ky =& §)ARENUED
R

Since K; and Kj each converge to K* in L!, we can find L > 0 that SUP|g | (L—1)
(K1 — K2)(-, &)l < %.Then

/(Kl_
R

&
= sup (K1 = K)C Ol WUz < 51Uz -
HE

sup
§[>L—1

We can then find M| large enough that SUPg/~ ||AR(.§/) ||M © < m, since
! S
AR(&") goestoOas |€'| — oo. We can also find M, large enough that | f\§|>M K>(¢; &)de| <

£ for all |£] > (L — 1), since K, varies continuously in L' with &,
4max(1,sup€/HAR(E’)HM,,(c))

with limits at infinity. Then take L > M| + M + 1.
sup

‘We have
[§1>(L—1) /

= (L
|S\>(L D &"1<My

+ ‘ / Kot — & 5) AR (€U (€ )de!
|&|>M,

)

< sup (supHAR(s@H‘/ Kz(gté)dz‘
[E]>(L—=1) \&eR |¢]>M>

+ sup |ArE)] ||K2(~,s)||L1> Ul Lo

&'>M,

< (j +§) U o -

Putting this together, for L sufficiently large, we get
[T —Thu| = s (/(K] -

L= lg>w-n \lJRr
+ URKQ@ — D AREIUE)

& &
<(5+3) 1Whe =€ U=

)
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So 7k is the operator-norm limit of the sequence {7, RL}, L — oo. Then since it is the limit of
a sequence of compact operators, 7g must be compact. Therefore the Fredholm indices of
T4 and 7 4c depend only on the limiting operators. O

Given this, we are finally ready to prove Theorem 1.

Proof of Theorem 1, Sufficiency Assume Hypothesis 2.1 and conditions (a) and (b) from The-
orem 1, and let 7 refer either to 74 or 7 4c. From Corollary 2.6, we conclude that 7 has
closed range and finite-dimensional kernel.

Using Lemma 2.7, 7 then satisfies the same hypotheses as 7, meaning the same con-
clusions apply, and 7%, has finite-dimensional kernel. Since the kernel of 7 corresponds to
the kernel of ’TL*OO, then 7 have finite-dimensional kernel also.

These together imply that 7 is a Fredholm operator.

Lastly, by Proposition 2.8, the Fredholm index of 7" depends only on the limits AT, K*.

Then the sufficiency part of Theorem 1 is proven. O

Remark 2.9 The above argument extends readily to L”, 1 < p < oo, with only minor
modifications. In particular, replace L> and (W!-1)* with L? and (W !-9)* everywhere they
appear, with é + % = 1. Also replace L' and W'! with L¢ and W' in the proof of
Proposition 2.3, and the main inequality in the proof of Proposition 2.3 with |KU||%,,, <
C ||U||'{,,, where

€ = sup K€ — . |17 sup [K*¢ — €.
¢
r/q

sup
LY@) ¢

d . d .
+sup d*K &-2¢.8) —K"(¢—-¢.8) :
I d§ L@

which is verified by a short calculation using Holder’s inequality. Lastly, in the proof of
Proposition 2.8, replace |||/« with ||-||1L’,, and Supg~ (1)) with f§>(L71) | - |” whenever
they appear, and note that the inequality |a + b|? < 2P (|a|? + |b|?) introduces a factor of 2.
The rest holds without further modification.

We do note that for 1 < p < oo, the requirement that K+ L% can be dropped, since step
2 in the proof of Proposition 2.5 can be proved instead using properties of Fourier multipliers.

2.4 Proof of Theorem 1, Necessity of Conditions for Fredholm

We now prove the necessity of conditions (ii)(a) and (ii)(b) in Theorem 1. The proof
relies on construction of two Weyl sequences: first, when the principal part has a zero, a
sequence becoming concentrated around the zero; second, when the limiting operators are
not invertible, a sequence concentrating at the kernel in Fourier space, whose support in
physical space is pushed out to infinity. These sequences are constructed for L™ and C?, but
can be easily modified for the L? case.

Construction of Weyl Sequence for Condition (ii)(b) Assume that condition (ii)(b) is not
met; that is, A1 ¢ LR, M, (C)). We will construct a Weyl sequence first for 7 4, then for
T yc.

First, consider 7.4, so that A(-) is in L but not necessarily C°. Since A~! ¢ L, then for
each N e N there exists a set £y C R of positive measure such that inf =1 |[A(§)v| < ﬁ
If the measure of Ey is greater than %, redefine it as a subset so that its measure is equal
to % Since A(§) € L*(R, M,(C)), by Lusin’s theorem, there exists for each N € N an

@ Springer



Journal of Dynamics and Differential Equations

Any € COR, M, (C)), and Qy C R, so that Ay(£) = A(£) on Qy, with the measure of
R\ Qy equal to half the measure of E . Let E ~N = EnxNQy.Because each Ay is continuous,
we can define vy (§) supported on E N, piecewise constant, so that |[A(§)vy ()| < %, as
follows:

Ay is uniformly continuous on each [k, k + 1] C R, k € N. Cover [k, k + 1] N E,, with
disjoint intervals Ay ; of length at most &; such that [(An(§) — An(§0))v| < ﬁ for any
& — &l < &, |v] = 1. Choose &; € Ag,; N EN, and let vg;, |vg,i| = 1 be such that
|AN i)kl < - Let

_ {Uk,i, §€ALiNEN
uy(§) = .
0, otherwise.

Then u y is a measurable function, with ||uy ||« = 1, for which |[A(§)vy (§)] < % for all .

For T ¢ the construction is somewhat simpler. Since in this case A(-) is continuous
with A1 ¢ L, there exists for all N € N an interval Ey with positive measure so that
infy=1 [A§)v| < ﬁ for all £ € E,. Again, redefine Ey possibly as a subinterval so that
m(En) < % Let &y € Ep, and let vy, |vg] = 1, be a vector such that |A(Ey)vg| < ﬁ
Then there exists a subinterval £ ~ of Ex with positive measure such that |A(£)vg| < % for

£ e EN. Let xn be a smooth function supported on EN with || xnllco = 1. Then let

un (&) = xn&)vo.

Note that in both constructions, we get that u is supported on a set of measure Sy <

R
Proof (Necessity of Condition (ii)(b)) We will now prove that {uy} is a Weyl sequence. Let
T refer either to 74 or 7 4c, and let {uy} be the corresponding sequence defined above.
Let ||-|| o refer equivalently to the norm on L or CY. Since NAE)unE)llpe < %, we
can choose Ny large enough so that [|A(&)un(§)ll « < % for all N > Ny. Note also that
lunllpr < <§;\// — 0, and, by the assumptions on K, that sup |K(“§ —£.8) H M, ©) < O
Then we can find Ny, possibly larger, so that for N > Ny,

H /R K — & uyE)de

< sup [ K (€ =8|, o Nl < 5.
L  §§

Putting this together, there exists No large enough so that for N > Np,

ITunllpe < I1Aunllpo + H/RK(E — & Hun&)ag’

LOO
e n e
<-4+-=¢
2 2
Then {uy} forms a Weyl sequence for 7, and 7 is not Fredholm, showing the necessity
of condition (ii)(a). ]

Construction of Weyl Sequence for Condition (ii)(a) Next, assume that Condition (ii)(a)
is not satisfied; i.e., there exists m € R such that

det(KE(im) + A%) = 0.

We construct one Weyl sequence for both 74 and 7 4c. Without loss of generality suppose
det(K+(im) + AT) = 0. Then there exists a vector v € R", |v| = 1, so that (K+(im) +
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AM)v =0. Let

u(g) = e~ 45Ty,

—_ N2
MN(“:‘_):M(S

).

Note that @y (i€) = N+/2e~ N €= o=iN*y and [[iinll,1 = /27 for all N.

Proof (Necessity of condition (ii)(a)) We now prove {uy} is a Weyl sequence. Again, let 7
refer to either 74 or 7 4c, and |||| L to the norm on L™ or C? equivalently. We have

ITunllp~ = HA(S)MN(S) +/RK(S =& &y (E)dE)
< [@A® - ADun|

+ H/R(K(S — €16 — K76 —§Nun(E)ag’

L>®

T un ]
L

Let ¢ > 0. Choose Ny large enough that for N > Nj,
e

sup un ()] < :
£<n max(1, sup; -, || A(§) — A*+[?)

which we may do by the choice of uy, and so that sup; . y |AE) — AT| < e, which we
may do by Hypothesis 2.1. Then for N > Ny,

[(AE) — A un©)|

= max (;up [(AE) — AD)un (&), ;up [(A®) - A+)MN(S)|)

< max (sup |AGE) — AT | sup un], sup |A(E) — AT sup |uN|)
§=<n E<n E>n E>n

< €.

Next, choose M large enough so that

sup [K (&) —K*()|,: <e.
E>M

Note that

/R[K(S —&458) -~ K¢ —€)]unE)dg’

is equal to the larger of
LOO

’

sup ‘ fR [K(E—&58) — K€ — €] uy E)de’

§<M

sup
E>M

)

/R [K(E — &6 — K* (& — £)]un(€)de’

and by the choice of M,

sup
E>M

&
< sup |K(, &) —KTO)| i llunllz~ < 5
E>M

A[K(S —&58) - KT )] un(E)dg’

1
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On the other hand, we have

sup ’/R [K(E 858 — KT —&)]unE)ag'

§=M

= sup ‘/ [KE—§.86)— KT —&)]unE)HdE
§'<E+L

E<M

+ f [K(E—&.8) — KT (& —&)]unEag
E'>E+L
Since K (-, £) € WHo(R, W-1(M,,(C))), with limits at infinity, we can find L (¢) so that
/ IK(5.§) = K¥(©)ld¢’ < 3. forall &
I¢1>L
yielding

sup | [KE -8 — KT - &) ]unEHds'|

g<M Jerse+L

-L
=< (Slslp/ |K (&) — K+($/)Id$/) lunllpe < %

Also, because u is shifted to the right by N2, but is only stretched by a factor of N, we can
e

choose Ny large enoughsothatfor N > Ng, sup |un(§)| < ,
g<L+M 2supg |[K (- §) — K+

yielding

sup /E o, [KE =€ =K 6 = &)]un (€)ag

§<M
+ &
=sup [K(. &) = KT, sup jun @l = 3.
& E<L+M
This, combined with the above, gives
e €
sup | [ [KG —58) — K™ (€~ §)]un)de| < 5+ 5 =
E<M |JR
so that
H/ [K(E—€58) — K¢ —&)]unE)dE <e.
R LOC
Lastly, for any ¢ > 0 we can choose Ny large enough so that HA+ + ﬁ(if)’ © <
§ for |m — €] < ﬁ and also large enough so that for N > N, 1
Im—L1= 7
e
lun(it)|det < , because the iy become increasingly localized

2sup, cp H (A+ + ﬁ(iu))’
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about £ = m. This gives that

[T un] 1~ = = | 7],

1

«/_

= E (4

\/ﬁ
+ /m—£<\% (A+ + ﬂ(iﬁ))
sup H (AJr + I?Tr(iv)

veR

+ 8/
2 m—t<

8+8
< — — =
2 2

4 K+(i£)) uAN’

Ll

de

IA

iy (i) de
M,,((C)/ i lan (i 0)]

un (i)
V2m

de

Therefore, for any ¢ > 0, for N > N large enough that the previous inequalities hold,
we get that

ITunlipe < [(AE) = AD)un| o + H/R(K(E — &8 — KT (6 —§)uy(§)ag’

LOC
+ [T un]
<e+e+¢e=23¢
which implies that

lim | Tuyle =0, with luy|ze = 1.
N—o00

Thus {uy} is a Weyl sequence for 7, which implies that 7 is not Fredholm, showing the
necessity of Condition (ii)(b). O

3 Spectral Flow and the Fredholm Index

We establish results that allow us to compute the index of the nonlocal operator

T:UE) = ABUE) +fRK(E - &1 HUENdE,

defined in Sect.2.1, in many specific situations. Assuming exponential localization of con-
volution kernels, stronger than in Sect. 2, the Fredholm index is given by the spectral flow of
an operator with the same limits at infinity. The approach here is somewhat closely follow-
ing [18], which in turn is relying on ideas from [30, 34]. The argument in [18] needs to be
modified for two reasons: a change in the form of the operator, and a change in the domain
of the operator (from L2 to L®, C9). The latter affects the argument only in Lemma 3.8, and
the former is the cause of the rest of the modifications. Technically, one needs to carefully
inspect the space of allowed perturbations so that spectral crossings along relevant paths are
generic.
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In order to state and prove the following theorem, we require two additional assumptions
on the convolution kernel which were not needed in Sects. 2.1, 2.2.

Hypothesis 3.1 The generalized convolution kernel K is exponentially localized in its first
argument—that is, for some n > 0, we have K € COR, W,;’l R, M, (C))), where

WIR, M (©) ={f WHE M) | max ([sa0e],

o) <o}

+ | £xCrem]

Hypothesis 3.2 The Fourier transforms
vi> K jE(v) + A*
extend to bounded analytic functions in the strip S, = {v € C| [R(v)| < n}.

Theorem 2 Let T refer either to Ty or T sc as defined in (2.1). Suppose Hypotheses 2.1, 3.1,
and 3.2 are satisfied, as well as condition (i) of Theorem 1. Let A€ (-) be a continuous function,
possibly different from A(-) if the latter is not continuous, with (ASY71() € L®(R, M, (C)),
such that limg _, 40 AC (&) = A*. Suppose that for the operator T€ defined by A€ and K,
there exist only finitely many values &y € R for which T is not hyperbolic; that is, for which
det(Kg, (i€) + A€ (%0)) = 0 for some £ € R.

Then the Fredholm index of T is given by

ind 7 = —cross(A),
where cross(A) denotes the net number of roots, counted with multiplicity, of the character-
istic equation

df (v) = det (Eg(v) + AC (s)) 3.1)

that cross the imaginary axis from left to right as & is increased from —oo to +00; see (3.5)
below for a more precise definition.

The remainder of this section will be devoted to more precisely stating and proving Theo-
rem 2. In particular, we will prove the following theorem, from which Theorem 2 follows. For
notational simplicity, in the following we identify the symbol .4 with its associated operators
T4 and 7T 4c, suppressing the difference in domains. Because the indices of 74, 7 4c depend
only on the limits A*, K*(-), we denote the Fredholm index of 74 by t(A~, A¥), and the
Fredholm index of T 4c by (¢ (A", A7). We also define, for a constant-coefficient operator
A% = (A%, KO(.)) the function

A o) =K0) + A° (3.2)
and the characteristic equation
d’(v) = det(A 4) = 0. (3.3)
Theorem 3 Let { AP}, for p € R, be a continuously varying one-parameter family of constant-
coefficient operators (AP, K), with limit operators A* = lim,_, 1.~ A”. We suppose that:
(i) the limit operators A* are hyperbolic in the sense that for all £ € R,

dE(i0) = det (K= (i0) + A*) £ 0,
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(ii) A e defined in (3.2) is a bounded analytic function in the strip S, = {, € C | M| <
n} for each p € R, and
(iii) there are finitely many values of p for which AP is not hyperbolic.

Then
AT, AT) = 1. (A™, AT) = —cross({A”))

is the net number of roots of d” (v) = 0, counted with multiplicity, which cross the imaginary
axis from left to right as p is increased from —oo to +00; again, see (3.5) below for a more
precise definition.

In the proof, we approximate the family {.A”} by a generic family. To do so, we introduce
the set P := P(R, W,}’I(R, M, (C)) x M,(C)), the Banach space of continuous paths for
which conditions (i) and (ii) of Theorem 3 are satisfied. We also consider the dense set
Pl .= ! (R, Wnl'l(R, M, (C)) x M, ((C)) N P. We then first prove that the set of paths
with only simple crossings is dense in P. Then, using the proof that for a map with only
simple crossings, the Fredholm index is given by the crossing number, the result will follow.

Notation and Definitions For a continuously varying one-parameter family {A4”} of
constant-coefficient operators, a crossing for {.A”} is a real number p; for which A?/ is
not hyperbolic. The set

NH({A”}) = {p € R | the constant-coefficient operator .A” is not hyperbolic}

is the set of all crossings for {.4”}. Condition (iii) in Theorem 3 is satisfied only if N H ({4”})

is a finite set, which we then can write as { o1, ..., p;; }. We also have that for any {.A”} satisfying
the conditions of Theorem 3 and for any p; € N H ({.A”}), the equation
dy; = det(A 40;) =0 (3.4

has finitely many roots in the strip ;, due to the analyticity and boundedness of A 4», and

due to the fact that d,; (i£) M det(A”7) # 0. Then the crossing number, cross({.A”}),
can be defined as the net number of roots which cross the imaginary axis as p goes from —oo
to 400, as follows.

Fix any p; € NH({A”}) and let {v; [}l | denote the roots of dj,; (v) on the imaginary
axis, listing multiple roots repeatedly according to their multlpllclty Let M  be the sum of
their multiplicities. For p near p;, with £(p — p;) > 0, this equation has exactly M roots,
counting multiplicity, near the imaginary axis, M].Li with negative real part and Mfi with
positive real part. Then the crossing number is defined as

m

cross(A) = (Mf+ _ Mf-) . (3.5)

Jj=1

For {A”} € P!, acrossing p; j is simple if there is exactly one simple root v of d,; on the
imaginary axis, which crosses the imaginary axis with nonvanishing speed as p goes through
p ;. For such a crossing, the root can be locally continued as a function of p, giving a function
v(p) € C'R, C). Non-vanishing speed of crossing then corresponds to R (v(p;)) # 0.

For a path in P! with only simple crossings, let v i (p) be the function defined near a
crossing p; such that d,(v;) = 0 and R(v;(p;)) = 0. Then we have

cross({A”}) = Zm(":i (0j))-

j=1
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We next prove that the set of paths with simple crossings is dense in P.

Lemma 3.3 Let {A”} € P, with limit operators At = lim,— 400 A”, such that NH(A) is a
finite set. Then, for ¢ > 0, there exists {AP} € P! such that

(i) AX = A%,

(i) | AP — A° ”W,}" x M,y (C)

(iii) {.Zp} has only simple crossings.

< eforall p € R, and

Remark 3.4 If ¢ is chosen small enough in the above lemma, then cross({.A4”}) = cross({.4”}),
since the roots of d”, which is a holomorphic function, vary continuously in the Hausdorff
topology.

In order to prove Lemma 3.3, we define submanifolds of M,,(C). For 0 < k < n, the sets
Gy € M,,(C)and H ¢ M,,(C) x M,,(C) are given by
Gy = {M € M,(C) | rank(M) = k},
H = (M1, M2) € (M,(©))* | rank(M) = n — 1,
M, is invertible, and rank(M M5 ' M) = n — 2.

The sets G and H are analytic submanifolds of M, (C) and (M, (C))? respectively, of
complex dimension

dimc(Gy) = n? — (n — k)2, dime (H) = 2n% — 2;

see [30].

For an operator A = (A, K(-)), we rewrite its convolution kernel K more generally as
K (&) + B18;(€ — &) + B85 (€ — &), where By, B, are real matrices, §,(-) = %e""z, and
&1, & are fixed positive real numbers such that &1 /& is irrational. For an operator of the form
considered in Lemma 3.3, By, B = 0.

We then consider the following maps:

F.G: (W R, My(C)) x (My(©)*) x R — M, (C)
FxG: Wy (R, My(C)) x (Ma(C))’) x R = M,(C) x My(C)
D (W (R, My(C) x (My(C))) x T — My(C) x My(C)
given by
F(A L) = R(if) + A+ B8, 81 4 By3,eite
G(A.0) = K'(6) = Bie™" ! (£15,(i0) +3,0)) = Bae™"® (£25,i0) +5,(i0))

FxG(A ) = (F(A 0,G(A D)
D(A, £) = (F(A, ), F(A, £2)),

where T is the set

T ={(t,6) e R? | £ < L)
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Proposition 3.5 Suppose that A = (A, K) € M,,(C) x W,}*l(R, M, (C)) satisfies the condi-
tions

(i) F(A, 0) ¢ Gy, 0<k<n-2teR,
(1) (F x G)A, 0 ¢ Gy—1 x Gy, 0O<k<n-1£€eR,
(iii) (F x G)(A, £) ¢ H, L eR,

(iv) D(A, £y, £2) ¢ Gu—1 X Gp—1, (61,6) €T,

forall ranges of k, £, €1, and £>. Then the constant-coefficient operator (2.10) has at most
one £ € R such that il is a root of det A oA (v) = 0, and the root is simple.

Proof We omit the proof here, as it is identical to [18, Prop. 4.3]. O

Proposition 3.6 The maps F, F x G, and D have surjective derivative with respect to the first
argument A ateach point (A, £) € WWM (R, M, (C)) x (M, (C))3 xR and Wr}’ (R, M, (C))x
(M, (C))? x T, respectively.

Proof From its definition, we see that the derivative of F with respect to A is I,, which is
surjective onto M, (C), and the derivative of F x G with respect to (A, Bj, By) is given by
the matrix

(3.6)

I, 85 (i0)e T, 85 (i0)e~ e,
0, e (E8, (1) + 8GO, e & (55,(i0) + 8.0, )

Because (513; i) +32(i£)) and (52?3} i) + ISZ(iZ)) are never both equal to 0 at the same
value of ¢, this operator in (3.6) is surjective, onto M, (C) x M, (C).

Now, fixing (€1, £2) € T, we will have that one of the quantities &1 (£1 —£2) or &2 (€1 —£2)
is not a multiple of 27r. Supposing without loss of generality that it is & (¢; — £3), then we
have that the derivative of D with respect to (A, By) is

I, 8(i€)e 0181,
I, 85(ilr)e 028511, )°

which is also surjective onto M,,(C) x M, (C). O

In order to complete the proof of Lemma 3.3, we use the notion of transversality for smooth
manifolds. A smooth map f : X — Y from two manifolds is transverse to a submanifold
Z C YonasubsetS C X if

rg(Df(x)) + TryZ = Trx)Y whenever x € Sand f(x) € Z,

where T, (M) denotes the tangent space of M at a point p.

Theorem 4 (Transversality density theorem) Let V, X,Y be C" manifolds, ¥V : V —
C"(X,Y) arepresentation, and Z C Y a submanifold and evy : V x X — ) the evaluation
map. Assume that:

(i) X has finite dimension N and Z has finite codimension Q in Y;
(ii) V and X are second countable;
(iii) r > max(0, N — Q),
(iv) evy is transverse to Z.

Then the set {V € V | Wy is transverse to Z} is residual in V.
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The proof of this theorem can be found in [1].

Proposition 3.7 There exists a residual (and hence dense) subset of P such that for any
{ AP} in this subset, all conditions from Proposition 3.5 are satisfied for each A”, p € R.

Proof We apply the Transversality Density Theorem 4 to show that there is a residual subset
of P! such that all the maps F, (F x G), D are transverse to the manifolds appearing in
Proposition 3.5 on (p, £) € RZand (p, £1,0) e Rx T, respectively. We show the proof for
F, the others being similar.

WeletV =P, x = RZand Y = M, (C), with submanifold Z = Gy, for0 < k <n—2,
in the hypotheses of Theorem 4. Then for {47} € P!, we let W40y ¢ R? - M,(C) be
defined by

Wiary(p, €) = F(AL, 0),
so that the evaluation map evy : R? > M,(C) is
evy (A, p, L) = F(AP, 0).

Then, takingr =1, N =2, Q =2(n — k)z, the third condition of Theorem 4 is satisfied for
any 0 < k < n — 2. By Proposition 3.6, the evaluation map is also transverse to Gy for any
0<k<n-2.

Repeating this for the other two maps, and taking intersections, there then exists a residual
subset (hence dense) of P such that for any {A”}in the set, all conditions from Proposition 3.5
are satisfied. O

Proof of Lemma 3.3 By Proposition 3.7, and density, we may assume without loss of gener-
ality that the family {.A”} in Proposition 3.3 satisfies the conditions from Proposition 3.5 for
each p € R. For each such A”, there is at most one £ € R such that v = £ is a root of
det A 40 = 0, and the root is simple.

By this assumption, there exist &, L > 0 such that any root A(p, v) with |9(A)| < € is
simple. Also, by hyperbolicity at infinity, there are no roots with [R(A)| < e forp ¢ [—L, L],
choosing L sufficiently large, possibly taking ¢ less than the ¢ in the statment of Lemma 3.3.
Then any root with |[X(L)| < & can be parameterized as a C ! function of p, on a maximal
open interval I C R such that |A| < ¢. Label the set of such parameterizations {A; (p)}. Note
that there can be no more than countably many such parameterizations.

Then by Sard’s theorem, almost every y € (—¢, ¢) is a regular value for every (%;(p)).
Fix one such yg € (0, ¢).

Define for ¢t € R the operator S; : (Wnl’l(R, M, (C)) x M, (C)) — (Wnl’1 R, M,(C)) x
M, (C)) by

S, (A% = 8, ((A%, K°())) = (A%, KO()el ).

One can check that Ag 40)(v) = A o(v —1),v € C, so that S; shifts all roots of the
characteristic equation to the right by an amount #. Now, let the smooth nonnegative function
y : R — R equal 0 outside [-L + 1, L + 1], equal yp on [—L, L], and never exceed yp
in between. Then the family {S_, (5)(A”)} can be seen to satisfy conditions (i) and (ii) of
Lemma 3.3, and additionally, the roots A; (p) — y(p) cross the imaginary axis tranversely.
This proves Lemma 3.3. O

Lemma 3.8 Let {A”} € P! be such that N H({AP)}) is a finite set, and such that it has only
simple crossings. Then

AT, A7) = 1. (AT, A7) = —cross({A”)}).
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Proof The proof of this lemma follows identically as in [18], from analogues of Propositions
4.7 and 4.8, there, and the cocycle property, replacing L? with L, C° where necessary; we
refer to [18, 30] for proofs. We note that the proof eventually reduces to establishing that
the operator (% - iZ)(% + w)~! is Fredholm index -1 on exponentially decaying spaces
C](/) R, CM", L;jo(]R, C"), for y < nand w, £ > 0, which can be explicitly verified. O

Proof of Theorem 3 From Lemma 3.3, we have that, generically, paths cross the axis with
only finitely many crossings, all of which are simple. Lemma 3.8 then gives us that for such
a path of operators, the Fredholm index is given by the crossing number. Putting this all
together, we see that Theorem 3 is proved. O

4 Nonlocal Center Manifolds in C°-based Spaces

We consider the following nonlinear, nonlocal equation:
—u+ K *xu+ Fu) =0, 4.1

where K is a matrix convolution kernel and F(u) (x) = f(u(x)), f € CkU,R") a pointwise
nonlinearity, k > 1, for i/ aneighborhood of 0 € R". Wedenote 7u = —u+ K *u. Assuming
that f(0) = 0, f'(0) = 0, we are interested in small solutions u(x), |lu| > < § < 1. To
leading order, one expects that the linearization predicts behavior of small solutions. This
fact is commonly captured in center manifold theorems or Lyapunov-Schmidt reduction
techniques. For the nonlocal Eq. (4.1), such a reduction was found in [19], parameterizing the
set of (possibly weakly) bounded solutions to this equation over the kernel of the linearization.
Different from [19], we wish to pursue that same goal but relying on C%-based instead of
L?-based spaces. We refer to this construction, that we also describe in more detail below,
as a center manifold for nonlocal equations.

As is standard in center manifold constructions, we first use a cut-off function to construct
a modified nonlinearity, so that we can use a fixed-point argument in spaces allowing for
mild exponential growth. We then show that the set of small bounded solutions to (4.1) can
be described by solutions to a reduced differential equation. This equation is posed on the
abstract finite-dimensional vector space given by the kernel of the linearization, allowing for
explicit computations of Taylor jets in a straight-forward fashion, using only moments of K
and the Taylor series of f; see [19, §2.6]. The key to constructing the reduced vector field is
this: the analogy of a flow in phase space is the shift operator u(-) — u(- + x) in function
space. This linear shift operator, acting on the nonlinear set of bounded solutions, induces a
nonlinear flow when projected onto the kernel. This flow can then be differentiated to obtain
areduced vector field.

To obtain optimal regularity, we perform a center manifold reduction for the equation with
a slightly different nonlinearity,

— v+ Kxv+ K*xG@w) =0, 4.2)

with the same assumptions on G as F. Assuming that K has a derivative, as assumed through-
out in Sects.2-3, we find that small bounded solutions v € C to (4.2) are automatically
small and bounded in C'. Equations (4.1) and (4.2) are equivalent through the change of
variables v = u — f(u); starting with (4.1), we obtain (4.2) with g(v) = (Id — f)‘1 (v) —v.
By the inverse function theorem, g is as smoothas f, g € C k@, R™). We note, however, that,
assuming f € CK, this C*-change of variables would a priori only yield a C¥~! vector field,
so that from the perspective of regularity theory, the two formulations may not be equivalent.
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The formulation (4.2) yields optimal regularity of the center manifold, while recovering the
regularity in [19] for the u formulation (4.1).

4.1 Hypotheses for Center Manifold Existence

We require localization of the kernel and smallness of the nonlinearity near the trivial solution:

Hypothesis 4.1 (Exponentially localized convolution) We assume that the matrix convolution
operator is exponentially localized and differentiable, K € W,}dl R, M, (R)) for some ny >
0.

Hypothesis 4.2 (Small nonlinearity) We asssume that the nonlinearity is small near the origin
in the sense that g € C*(U, R") for some neighborhood U of 0 € R", 1 < k < 00, g(0) = 0,
and g'(0) = 0.

In order to state our main result, we define the Banach space Cg (R, R"), for any o €
R, to be the space {v € CO(R,R") | [[v(-)e|lco < oo}, and let C} (R, R") be defined
analogously. We will often refer to these spaces with o = —n, simply by an or CL p for
brevity.

By Hypothesis 4.1, 7 is a bounded operator on an R, R"),0 < n < ng, suppressing
notationally the dependence on 1. Moreover, as we will see below, the kernel & of 7 is finite-
dimensional and independent of n for 5o sufficiently small, in the sense that the bounded
inclusions ¢, , : an — C° .. n < 1, provide kernel isomorphisms.

One can readily see, for example from [19, §2.5], that there exists a projection operator
Q: an — an onto the kernel & of 7 satisfying Qt, ,» = t; Q. This projection will
play an essential role in our construction of the reduced flow below.

Next, define the translation operator ¢, for § € R, by

(tg - v)(x) '=v(x = §&).

Again, slightly abusing notation, we use the same symbol for the shift on different function
spaces. Clearly 7z is a bounded operator on C* and Cg,’ for fixed &.

We will also use a modified nonlinearity, cutting off g outside a small neighborhood of
the origin. Therefore, define g¢ : R” — R” through

8" () =g (x(lvl/e) - v),

where x € C*°(R>¢, R) is a smoothed version of the indicator function of [0, 1],

0 = lfor0<r<1 ) < [0.1]
= 0forr>2 A T

Denote by G and G° the superposition operators associated with g and g°, respectively. One
readily verifies that the Lipschitz constant of g is small for & small. Other modifications
such as cut-off outside of the nonlinearity or cut-off operators are also allowed as long as the
modified nonlinearity possesses a globally small Lipshitz constant.
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4.2 Existence of a Center Manifold

We are thus ready to state the main center manifold reduction result. In doing so we study
solutions to both the unmodified and modified nonlocal equations,

Tv+K %G) = 0, 4.3)
Tv+K %G5 (v) = 0. 4.4)

Theorem 5 Assume Hypotheses 4.1 and 4.2 on the kernel K and nonlinearity g. Recall the
definition of the kernel & of T, the projection Q on the kernel, the shift t¢, and the modified
nonlinearity G¢. Consider Eqs. (4.3) and (4.4).

Then for all n > 0 sufficiently small, there exist ¢, § > 0, and a map

W&l R R") - kerQc €2 (R,RY,
with graph

M = {vo + W(vo) | vo € ker T} € C2, (R, R"),
such that the following hold:

(i) (smoothness and tangency) W € C k. with k as in Hypothesis 4.2, V(0) =0, D¥(0) =
O’.
(ii) (global center manifold reduction) M consists precisely of the solutions in Cga R, R™)
of the modified Eq. (4.4);
(iii) (local center manifold reduction) any solution v € ng R, R"™) of the unmodified
Eq. (4.3) with sup, g [v(x)| < € is contained in M;
(iv) (translation invariance) the shift ¢, & € R, acts on M and induces the reduced flow
D 1 & — & through Pg = Qo 1e 0o W5
(v) (reduced vector field) the reduced flow ®¢(vo) is of class C K in v, & and generated by
a reduced vector field h of class C* on the finite-dimensional vector space &.

In particular, small solutions to u' = h(u) on &y are in one-to-one correspondence with
small bounded solutions of (4.3).

We refer to the discussion in [4, 19] for further properties of flows on the center manifold,
such as dependence on parameters, the computation of Taylor expansions, symmetries and
reversibility, Hamiltonian and gradient-like structure, or normal forms.

We reiterate here that the use of C%-based spaces allows us to obtain optimal regularity
of the center manifold and the reduced vector field when compared to the results in [19]. We
also note that the cut-off procedure outlined here is significantly easier than the construction
in [20] and may well prove more versatile in applications to more complicated, nonlocal
nonlinearities.

4.3 Proof of Theorem 5

The proof generally follows the strategy in [19]. We collect properties of the nonlinearity,
first, and then study Fredholm properties of the linearization. We then prove existence and
regularity of the parameterization of the center manifold using contraction principles on
scales of Banach spaces. Lastly, we establish existence and smoothness of the reduced vector
field by showing additional smoothness of solutions using bootstraps and then investigating
the flow induced by translations of bounded solutions.

We start by collecting some properties of the superposition operator induced by g°:
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G¢ is continuous from C°  to Cg,] for ¢,n > 0; moreover, since g € clw, G is
Lipschitz in u if > ¢, with Lipcot_)co @) < 1g°ller = 0e(1);
- -

for0 < k¢ < n;

Gt is k times Frechet differentiable from C° ¢ to cY
e G°(0) = 0 and, when defined, D,G®(0) = 0;
e G° is translation-invariant; that is, 7s 0 G® = G® o 1¢;

n

see for instance [43]. We next collect information on the linearization in exponentially
weighted spaces. Consider the linear operator

7:C% >, T)=—-v+K=xv,
and its associated characteristic function
d(v) = det(I, + K(v)), v € C.

The following result determines Fredholm properties in terms of roots of d on the imaginary
axis. In fact, the sum of multiplicities of roots of d (i) on £ € R is finite. To see this, one first
exploits that K and thereby d are analytic so that roots have locally finite multiplicities, by
exponential localization of K. One then notes that K(it) decays as |¢| — oo by regularity
of K, so that d does not vanish for large ¢.

Proposition 4.3 Assuming Hypothesis 4.1, the operator T is Fredholm with index M < oo,
where M is the sum of the multiplicities of roots of d(i£) = det(L,, + K (i€)), £ € R.

Proof We start by first conjugating 7" with the multiplication operator v(x) +> cosh(nx) -
v(x) to obtain an operator on CY of the form considered in Theorem 2. We note that this
theorem refers to operators on complex function spaces, but the corresponding statement for
real operators is obtained immediately by restricting to real subspaces. By Theorem 2, the
conjugated operator is Fredholm, with index equal to the number of roots of its characteristic
equation that cross the imaginary axis, counted with multiplicity. This quantity is exactly
equal to the number of roots M of det(/ + f(?()), counted with multiplicity, for £ € R, so
the proposition follows. O

We now define the bordered operator
7:¢% - x&, T =(TW).QWw),

which, when solving Tv= (f, vo), forces Qu = vy for a given vy € &, the kernel of 7.

Fredholm bordering theory guarantees that 7T is Fredholm, since a finite number of dimen-
sions are being added onto the range, and has index 0, since M = dim(ker 7). Furthermore, it
is now one-to-one, since 7v = 0 and Qv = 0 imply v = 0. Therefore the bordered operator
is in fact invertible with bounded inverse, such that

I 7! ”c(cﬁn,cﬁn) = C),

for a constant C (1), with C(n) continuous in n for 0 < n < ng.
We are now able to set up a fixed point equation using the bordered equation

T W)+ G (v, v9) =0, 4.5)

where G¢ (v, vo) = (G°(v), —vp); note that this is equivalent to the original equation. Rewrit-
ing (4.5), we find for a given vg € &,

v=-T""G, ). (4.6)
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We view this equation as a fixed-point equation on C 9,7 with parameter vg. We claim that

the map -7 _1(5 (-, vp)) is a contraction mapping. To see this, we use that g(0) = 0 and
g'(0) = 0 to find that

So@) = sup [G* )]0 = o(e)

v Cg,]
81(e) := Lipcgﬁcgn(g’f) = 0¢(1),

which in turn implies that
||7V'_1(ng(v, vo))HC(l,7 =Cm (80(8) + ||U0||an)
|77 Gwr. o) = T Gz vo)) o, = CODSL(e) oy = w2l

forall v, vy, vy € CQ,] and vg € &.

Then, letting 77 € (0, ng) and 7 € (0, ﬁ), for ¢ sufficiently small, we have C()§1(¢) < 1

for n € [7, 7], so that 7! (5 (-, vp)) defines a contraction mapping on Cg,’, and has a unique

fixed point v = P (vp). Since the fixed point iteration is Lipschitz in vy, the map @ is also
Lipschitz, with ®(0) = 0 because the fixed point is unique. For each », this then defines a
Lipshitz map ¥ : & — ker Q such that

D (vo) = vo + Y (vp).

Note that ® commutes with translations 7z by uniqueness of the fixed point.
We next turn to smoothness of &, following ideas in [43].

Proposition 4.4 Under the same assumptions as Theorem 5, for each 1 < p < k and for
each n € (p7,7), the map V is CP from & to Cg,}.

In order to prove this, we recall the following result from [43] on contractions on scales
of embedded Banach spaces.

Let X, Y, Z and A be Banach spaces with norms denoted by ||-[ x , I-ly , |- z and ||-]| o,
with continuous embeddings

rLyd z
Consider the fixed point equation
y =1y, 2), 4.7
where f: ) x A — Y satisfies the following conditions:
(i) Zf: Y x A — Z has continuous partial derivative Dy (Zf) : Y x A — L(), Z) with
Dy@h(y, 1) = TV (y, 1) = £ (y, T, forall (y,1) €V x A,

for some fV : Y x A — £()) and fgl) VX A= L(Z).

(i) fo : X x A = Y, (yo, A) — fo(yo, L) = £(Tyo, 1) has continuous partial derivative
D;fy: X x A — L(A,DY).

(iii) There exists k € [0, 1) such that

£y, 1) — £, My <« lly =3ly. forally,y ey, forallie A,
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and

0] =0 100

(iv) Let y = Y(1) € Y be the unique solution of (4.7) for A € A. Suppose that y(A) =
Jyo(2) for some continuous yj : A — X.

<k, forall(y,A)e A.
ﬁ(z)_K orall (y,A) € Y x

These conditions allow consideration of the following equation in L(A, )) :
® =t F0). 1O + DifoGo(M). 1), (4.8)

which has a unique solution C:)(A) € L(A,Y) for any A € A from condition (iii). The
following result is proved in [43]:

Theorem 6 Assume conditions (i)-(iv). Then the solutionmap 'y : A — Y of (4.8) is Lipschitz
continuous, and Iy : A — Z is of class C', with

DyIY(A) =IO, forall x € A. (4.9)
We turn now to the proof of Proposition 4.4.

Proof (of Proposition 4.4) This argument is a straightforward analogue of the proof of Lemma
6 from [43], as well as appendix A from [19]. We begin by letting p = 1 and fixing n €
(7, 7). Then apply Theorem 6 with X = ¥ = €%, 2 = C%,, A = & and f(y, 1) =
—7-1 (G®(y; 1)). One can check that assumptions (i)-(iv) are verified, so that ® : £y — an
is of class C! with derivative ®) (vg) := D®(vg) € L(&, CY,) the unique solution of

® = Dyf(®(v0), v0)O + Duf(P(vp), vo) := F1 (O, vp). (4.10)

Now, the mapping Fj : L(&y, C 9,]) x & — L(&, C 9,7) is a uniform contraction for each
n € [7, 7], so the fixed point of (4.10) belongs in fact to £(&, cﬁﬁ). The mapping oM .
& — L(&, an) is continuous if n € (7, 7].

If k > 2, we now continue by induction. Let 1 < p < k, and suppose that for all ¢
with 1 < g < p and for all n € (g7, 77] the mapping @ : & — an is of class C?, with
@ (ug) := DId(vg) € L (&, C°3) for each vy € & and @ : & — LD (&, CY,)
continuous if n € (¢7, 77]. Suppose in addition that ®P)(vg) is the unique solution of an
equation that is of the form

O = Dyf(®(v0). 1)OP) + Hy(v0) 1= Fp(©P, vp), .11

with Hy(ug) = D (P (uo), uo) and, for p > 2, Hj, (up) is given as a finite sum of terms of
the form

D{VE(® (vp). v0)(D" @ (vp). ... D" D (vp)),
with2 < g < p,1 <rp, < pforalli =1,..,9,and 1y + ... +r, = p. By
similar reasoning as before, we note that H,(ug) € £P (&, CY pﬁ)' Therefore, F), :
L) (&, C° Pﬁ) x & — LP(&, C° pﬁ) is well defined and a uniform contraction for

n € [p7, 7). However, the term Dyf(d>(v0))d>(p) is not continuously differentiable, either
with respect to ®?) or the parameter u, so we apply Theorem 6 with three different Banach
spaces. Let n € ((p + D7, 77],0 € (7], (p%l)), and ¢ € ((p + 1)o, n). We need to show that

the hypotheses of Theorem 6 are satisfied with X' = £ (&, €Y ,,), ¥ = LV (&, C? ),
and Z = L") (&, C?,), A = & and f = F,,. Condition (iii) holds because C(n)3;(¢) < 1
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for n € [7, 77]. Condition (iv) holds by the induction hypothesis and because o > 7. Now,
the map Df(®P(vp), vo) is continuous from & into z:<c9{, an), because © : & is con-
tinuous and n > ¢ (see [43], Lemma 4). Further, by the same, Df(® (vo), vo) is C ! from
& into £(C9pg, Cg[), because £ > (p + 1)o and ® € C!. It thus remains to show that
Hp : & — cY ¢ is of class C!. This again follows by the same reasoning as [43], Lemma
7. Then we can use Theorem 6 and conclude that ®P) : & — £P) (&, an) is of class C!

and hence & : &) — an is of class CP*lif n e ((p + D7, 7). O

4.4 Existence of a Reduced Vector Field

The next step in the proof of Theorem 5 is the construction of the reduced vector field. As

mentioned in the introduction, this is obtained by differentiating the action of the shift operator

projected onto the kernel. Therefore, to start with, we would like to show that the solutions

in the center manifold in fact belong to C l_n, so that the shift map can be differentiated.
Forv € an a solution of (4.3), we have

v(x) = (K * Id 4+ G%)(v)) (x). (4.12)

Now, the map (Id + G?) is, as a superposition operator, a C¥ map from C° ¢ to C 9,7, as
proved in [43], for 0 < k¢ < n. The map u — K = u is a bounded linear map from an
to C ln’ due to the fact that K € W,%' ! Then we have that v € CL - with the composition
K % ((Id 4+ G%) o (Id + W)) a C¥ map from & to Cln.

Now, consider the action of the shift operator

1 0
RxC =y = CZ,
(x,u) = v =v(-+x).
We have that for a given x, 7, is a bounded linear operator which maps bounded solutions

of (4.1) to bounded solutions. The following commutative diagram shows how 7, induces a
flow on the kernel:

Id+w 1d+G° Kx

0 0 1
&o C_g Cf,7 Cf,7
Px O Tx
g yo(ld+W)
&o an
Q

The diagram commutes because the composition K * (Id + G°) is the identity on the
image of Id + W. Now, 7, is bounded linear, as well as continuously differentiable in x, with
derivative equal to the bounded linear map v(- + x) + v'(- + x). Then the composition
Qo 1y oK x ((Id + G%) o (Id + W))(-) is also continuously differentiable in x, since Q is a
bounded linear projection. The maps ® and (Id 4+ G¢) are each C¥ on their respective function

spaces, so that ¢, inherits the regularity of the composition, and ‘Zﬁ‘ |x—o is thus a C¥ vector
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field on &,

doy
dx

Likewise, solutions to % = h(x), v(0) = vy yield trajectories ¢y (vo) and solutions (Id +
®)(¢x (vo)) to the nonlocal equation.

Thus small bounded solutions to (4.1) can be obtained through solutions to a reduced dif-
ferential equation on the finite-dimensional kernel, which is in turn obtained by differentiating
the reduced flow at x = 0.

[x=0 := h(x). (4.13)

4.5 Reduced Vector Field in Original Coordinates

The reduced vector field corresponding to the original coordinates can be found by repeating
the above procedure with the map (Id+g) o K * instead of just K*, and (5 ;0 Id+g) o (Id+W)
in the place of ¢, ; o (Id + W). In other words, the shift action on the u- rather than the
v-coordinates is differentiated. This will yield a C¥~! vector field, since the change-of-
coordinate map (Id+ g) is only C*=! from Cln to Cla, 0 < (k+1)n < o.This nevertheless
recovers the smoothness of the reduced vector field in [19], since their C¥ reduced vector
field corresponded to a C¥+! pointwise nonlinearity.

5 Application of Center Manifolds: a C' Lyapunov-Center Theorem

As an application to Theorem 5, we consider the following equation:
0=—u-+k*(Au+ N(u)), 5.1

where A € GL,(R),u € COR,R"), k € W'I(R, M, (R)), with k(—x) = k(x), and
N(u)(x) = f(u(x)) a pointwise nonlinearity given by f € C'V,R"), Va neighborhood
of 0 € R", with f(0) = f/(0) = 0.

The assumption that k be even is intended to be reminiscent of a reversibility condition for
nonlinear ODEs. In this context, Lyapunov-Center theorems are a well-known set of results
for reversible systems. In essence, they say thatif the linearized problem at a given equilibrium
has purely imaginary eigenvalues i .. that are non-resonant in a certain sense, then there exists
a family of periodic solutions nearby for the full nonlinear problem. Moreover, this family
is parameterized roughly by the positive real amplitude and shift parameters. We seek here
to establish such a theorem in a nonlocal, spatial dynamics setting, where eigenvalues now
correspond to roots of d(v) = det(Il, + 'k\(v)A). Our main emphasis is on proving that the
family of periodic solutions comprises all small bounded solutions when +iw, are the only
roots on the imaginary axis and simple, with minimal assumptions on the regularity of the
nonlinearity.

Hypothesis 5.1 Assume that there exists w, > 0 such that d(iw,) = det(I, +E(iw*)A) =0,
and that d' (iwy) # 0. Additionally assume that d(iw) # 0 for o ¢ w,Z.

Theorem 7 Assuming Hypothesis 5.1, there exists 5 > 0, a continuous frequency function
w : [0,8) = Rwith w(0) = w,, and a 2-dimensional family of periodic solutions to (5.1),

ue 2 [0,8) x [0,27) - COR,R™
(at) = uc(w@(+r1)a),

@ Springer



Journal of Dynamics and Differential Equations

with
ar> u.(-;a)e CO(R, R™) continuous, u.(y +2mw;a) = uc(y;a), and uc(y; 0) = 0.
This theorem, combined with Theorem 5, will allow us to prove the following:

Theorem 8 (Nonlocal Lyapunov-Center theorem) Assume the conditions of Hypothesis 5.1.
Assume also that d(iw) # 0 for |w| # wy, and that k € W,;(;] for no > 0. Then there exists
& > 0 such that all solutions u to (5.2) satisfying |ullco < € are periodic and given by the
family found in Theorem 7.

Remark 5.2 (Necessity of linear conditions) It is well known that resonances can destroy
families of periodic orbits with frequencies that possess higher harmonics. On the other
hand, the presence of other roots gives non-uniqueness of periodic families already in the
linear case. Lastly, the presence of multiple roots, d’(iws) = 0 usually leads to existence
of invariant tori, heteroclinic, and homoclinic orbits; see for instance [25] on the reversible
Hamiltonian Hopf bifurcation. From this perspective, the assumptions of Theorems 7 and 8
are necsessary, even for ODEs.

Remark 5.3 (Coherent structures and group velocities) In many contexts, the vanishing of
d' (iw,) canbe associated with a vanishing group velocity. Consider for example the Kawahara
equation in a frame with speed ¢ > 0,

Uy = (—Olyyxyx + Uyy + Clit — ”2))“
with dispersion relation for solutions u(t, x) = el kx=Q0) of the linearized equation,
Q= ak’ + k> — ck.

Studying periodic wave trains that are stationary in this frame, we look at —auyyxx + Uyy +
cu — u? = 0, with characteristic equationd (iw) = —aw*—w?+c. Arootd(iwy) =0 gives
a root of the dispersion relation with € = 0 and k = w,.. The group velocity, dS2/dk at this
root now vanishes precisely when d’(iw,) = 0.

From this perspective, our main result establishes existence of small-amplitude traveling
waves as predicted by the linearization, and the absence of any other, possibly non-periodic
waves, as long as the group velocity does not vanish in the chosen coordinate frame. We
show this absence of non-periodic small traveling waves, such as solitary waves, for minimal
assumptions on the regularity of the nonlinearity, noting that continuous differentiability is
necessary to give sufficient meaning to the linearization at the origin. In the case when group
velocities vanish, existence of nonperiodic waves has been established in many situations,
including for instance reductions to KdV or NLS type modulation equations.

We start the remainder of this section with the proof of Theorem 7, which is essentially
proved in four steps:

Step 1: Reduce (5.1) to a 1-dimensional equation using Lyapunov-Schmidt reduction;

Step 2: Set up a contraction argument for the reduced equation;

Step 3: Prove contraction properties, yielding a 1-parameter family of solutions;

Step 4: Extend the resulting 1-parameter family of solutions to a 2-parameter family by
adding a shift parameter.

Theorem 8 will then follow almost immediately using the center manifold theorem.

The difficulty in steps 2 and 3 lies in the fact that for a C! nonlinearity, the reduced
equation cannot be solved with the Implicit Function Theorem, since the linear terms vanish.
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Dividing by the parameter to eliminate the trivial solution does produce linear terms, but
loses regularity, so that a more hands-on contraction argument rather than an implicit func-
tion theorem is needed to establish existence and uniqueness, taking into account different
smoothness in variables and parameters.

5.1 Lyapunov-Schmidt Reduction and Derivation of the Reduced Equation

Let #7(x) = u(wx). Then, changing variables, Eq. (5.1) phrased in terms of % becomes:
0= —U + ke * (AU + N(@)), (5.2)
where k, () = Lk(L1). We let F(w, u) = —u + ko * (Au + N (u)), and consider F (o, -) as

an operator on an even (RS R™), the set of CO functions that are 27 -periodic and even. Note

that F' is a well-defined operator from this function space into itself.

Proposition 5.4 The linearization L,, = D,F(ws,0) is Fredholm index 0, with a I-
dimensional kernel.

Proof We have that D, F (w, 0)v = —v + kq, * Av. The operator u +> ky,, * u is compact,
because it maps into Czln,even (R, R™), which is compactly embedded in ngr,euen (R, R™).

Then because D, F(w,, 0) is the sum of the identity operator and a compact operator, it is
Fredholm, with Fredholm index 0.

We turn now to the kernel. By a calculation, in the space of Fourier series, the linearization
of F at (wy, 0) is given by Zi(j) = (=L, + k(iwsj)A)u(j). Since we have d(iwy) = 0,
d'(iwy) # 0, then for j = 1, the matrix (I,, + @) has a 1-dimensional kernel, spanned
by a vector vy, |v«| = 1. For j # 1, the operator is invertible, since d(iw4j) # 0, j # 1, by
assumption. Therefore the kernel of £, can be parameterized as {av, cos(x) | a € R}, and
is 1-dimensional. O

Note that since £,,, is Fredholm index 0, and since det(—1I,, + ATIm)T = det(—1I, +
k(iw)A)T = det(—=1I, + k(iws)) = 0, then there also exists a vector vgg € R, |vgq| = 1,
such that ker EZ‘)* = {cvgq cos(x) | c € R}.

Now, let u = avycos(x) + uj(x), where u(-) € (ker Lw*){ and let P be the L2-
orthogonal projection onto the range of £, defined by

1
Pu=u— P (u(x), Vad €08(x)) 12(10, 271, R") Vad COS(X).

Then let
Fi(w,a,u1) = PF (w, avy cos(x) + u(x))

(5.3)
Fo(w,a,u;) = (1 —P)F (w, avycos(x) +up(x)),

with F1 : R x R x (ker(ﬁw*))l — Ran(L,,), Fo : R x R x (ker(L‘,w*))L — coker(Ly,).

Since the cokernel of £, is one-dimensional, we let Py = % (-, vgq cos(x)) L2([0.277]> SO that

Py Fy is scalar. Note that Py is an isomorphism from coker(L,,, ) to R, with Ps(1 —P) = P;.
Solutions to the system
0= Fi(w,a,u
1( 1) (5.4)
0="PsFo(w,a,uy)
are thus equivalent to solutions to F'(w, u) = 0.
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We now exploit Fredholm properties of the linearization to solve F] near the trivial solu-
tion:

Proposition 5.5 There exists a neighborhood U of (g, 0) and a C' function  : U x R —
Ran(L,,,), such that uy = ¥ (w, a) is the unique solution to Fi(w, a,-) = 0. Moreover,
we have ¥ (w,0) = 0 and a neighborhood of (w4, 0) and a constant Cy such that on that
neighborhood, |0,V (w, a)|lco < Cilal.

Proof We will use the Implicit Function Theorem, for which we will need to establish that
Fi is C! with respect to w, a, u1, and D, Fi(w, 0, 0) is bounded invertible.

First, to show that F} is C!, we know that F; is C' ina and u; since N is C!, and the remain-
ing terms are linear. As to differentiability in w, first note that since k € WLL(R, M, (R)), k is
absolutely continuous. One can also check that fa‘:z 0y (ke * u)dw < oo for any wy, wy > 0,

since [|0pkyll 1 = % ||k —k || L Then we will have that F is differentiable with respect to
w, with 0, Fiu = (0,ky) * (Au + N (u)). To show that 9, F] is continuous in w, it suffices
to show that the function 0k, = ﬁ(k/(i-) — k(%-)) is continuous in L! in w. This can be
done by finding a compact interval outside of which the tails of k and k' are small enough,
and then approximating k and k" inside sufficiently well by continuous functions. Since all
three partial derivatives are continuous, the function Fj is jointly C' with respect to w, a, u.
Asto Dy, Fi(wy, 0, 0), this is the restriction of Dy, F (wx, 0, 0), which is Fredholm index 0,
to the complement of its kernel, projected onto its range. It will thus be both one-to-one and
onto, hence bounded invertible.

As a consequence, by the Implicit Function Theorem, there exists a neighborhood U of
(wp, 0) anda C functiony : U xR — Ran(L,,, ) uniquely solving Fi(w, a, ¥ (w, a)) = 0.

It remains to establish the properties of v stated. The first property is true because u = 0
solves the original equation, and because v is unique. To justify the second property, by
differentiating the equation Fi(w, a, u1) = 0 with respect to w and using the chain rule, we
obtain

do¥ (@, a) = By, Fi(w, a, ¥ (0,a) " 3, Fi (0, a, ¥ (0, a)),

provided the inverse exists. However, because the set of invertible linear maps is open, the
inverse will exist on some neighborhood U; of (w4, 0); moreover, there exists a uniform
bound for a closed subset of that neighborhood. Now, note that the function

0pF1(w,a,u1) = P(—acos(x) + uj(x)) + (0pky) * (A(—acos(x) + ui(x))
+N(—acos(x) + uj(x)),

while no longer Clinw,isstill C' ina and u;, with 3, F) (w, 0, ¥ (w, 0)) = 0. Hence we can
write [0, Fi (w, a, u1)| < asup, , 10,9, F1(w, a, uy)|, and since 9,9, Fi (w, a, uy) is jointly
continuous in w, a, the desired property holds. O

5.2 Contraction Properties of the Reduced Equation

We now study the one-dimensional reduced equation
0="PsFo(w,a, ¥ (w,a)),
which we can rewrite as

0="Ps(Ly — Lu,) (@vscos(x) + V¥ (a, w)(x)) + Ps(ky * N(avs cos(x) + ¥ (a, w)(x))),
(5.5)
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since Ps(1 —P) = Py, PsLy, =0, and L, av, cos(x) = 0.

We would like to find a one-parameter family of solutions (w, a) to this equation near
(wx, 0). Typically, one would use the Implicit Function Theorem; however, the nonlinearity
Nisonly C 1 and both first partial derivatives of the right hand side vanish at (w,, 0). Because
a = 0 is a solution of (5.5) for any w, the entire equation can be divided by a, but since
the nonlinearity N is only C', the resulting equation is then only continuous. We thus use a
direct contraction argument.

Setup of Contraction Argument We divide (5.5) by a and claim that we obtain an equation
of the form

w— wy = R(w, a) (5.6)

for some function R(w,a). In fact, the principal term, after dividing, is Ps(L, —
Ly,) (vi cos(x)). We would like to identify the linear term in (v — w,) and show that it
does not vanish. We find that the linear term in P (L, — Ly, ) (Vs cos(x)) is a(w — wy) =
Py -L 75 (ko x A cos(x)) |w - Vx(@w — wy). Then, provided the coefficient « is nonzero,
Eq. (5.5) can be rearranged to the form (5.6).

Proposition 5.6 The linear coefficient « = P; % (kg * A cos(x)) |w=w - V4 does not vanish,
under the assumption that d(iw,) = 0, d'(iwy) # 0, and k(—x) = k(x).

Proof By changing variables, one can calculate that

d 1 [ —iw
7(1{ % Acos(x)) |, _ o, Vs %G (Ae”‘/Rk(y)e Ydy

+Ae ﬂx‘/\ k(y)elwvdy )) lo=w, * Uk

d ( ! (Rimac™ + Riw) A~ )) oo, U
2321
= % (Emwm) |, U COS(X),

because k is even. Then

(& (S )
o =P T Nir wzw*-v*cosx)

1 [d ~.
= E<%(k(lw)A)|
_L<i7€( )A} >

= — do 1 w:(u*v*’vad Rn,

so it remains to show that the latter is nonzero.
By the hypothesis, we have

ooy VX cos(X), Vaq cos(x)>

L2([0,27],R")

dioy) = det(=I, + k(w)A) #0,  and d'(iwy) = det(k (iws)A) # 0.

Let ¢q be the first standard basis vector in R”. Because d (iw,) = 0, there exists an invertible
matrix 7 such that ker(7 (=L, + k(iws) A)T 1) = ep; that is,

T (—I, + kA T~ = (bl(v —iwy) ‘Bg L O — ia)*)))
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for b1 a nonzero vector and By an x (n — 1) matrix. Then by termwise expansion,
det (T (1, + k0 A) T71) = v — i) det (b1]B2) + O — iw)?).

By the assumption that d’(iw,) # 0, we must have that detgal IBQ) # 0. Then by is not in
the range of B; and therefore not in the range of 7(—1I, + k(iw) AT, Lastly, noticing
that

. €0,
V=iwy

d ~ .
br= (T (=L, +kMmA) T N

we get that P(iw*)Av* is a nontrivial element of the cokernel of (—I, + 'k\(iw*)A),
since ep corresponds to v, in the original coordinates. This fact then implies that
(Lk(iw)A|,_, Vi, Vag)rr # 0, as desired. O

WO=wy

Then, since «, the coefficient of (w — w,), is nonzero, we rewrite the reduced Eq. (5.5) in
the form

(@ — i) = R(w, a) = PsR(w, a),

where

Rw.a) = %(é[(kw — ko) * Y (@, @) + ko % N(avs cos(x) + ¥ (o, a))]

— (ky — kg,) * Avi cos(x) — (0 — a)*)i(kw * Avy cos(x))‘ )
dw W=y
= Ri(0,a) + Ry(w, @) + R3(®).

Contraction Properties
The remainder of the section will be dedicated to showing that the function R(-, a) is a
contraction mapping in w on a sufficiently small neighborhood of w,, for a sufficiently small.

Proposition 5.7 For any ¢ sufficiently small, there exists a, sufficiently small such that for
any a < ay, R(-, a) is a map from the interval (v, — €, wy + €) into itself.

Proof One can readily calculate |R(w, a)| = IPsi(w, a)lr <2 ||§(u), a) ||L°°’ SO we inves-
tigate H R(w,a) ”Lj" for simplicity.
Consider first Rj. We have

~ 11
IR = Hﬁacw ko) * V(@)
ada

1
< | — wxl(sup [[dukoll 1) H SV(@a)
w

L> L>®

Since ||0wke |71 1s continuous in @ and hence bounded on a neighborhood of w,., we would
thus like to show that || %W(w, a)| [0 is small in a neighborhood of (wy, a). We can expand
V¥ in a at a = 0, noting that ¥ (w, 0) = 0, to get ¥ (w, a) = ad, ¥ (w, 0) + ¥ (w, a), with
the remainder term 1y being jointly C! in w, a and uniformly o(a) on a neighborhood of w,.
We then note that 9, ¥ (w4, 0) = 0, by the chain rule:

a
%(w*, 0) = (B, Fi (@4, 0, ¥ (@4, 0))) ' 84 Fi (@4, 0, ¥ (24, 0))

= £, (P(N(0)v, cos(x))) = 0.
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Therefore, 3,V (w, 0) is equal to 0 at @ = w,, and continuous. We also have that %lﬁl (w, a)
is 04(1), uniformly in w on a neighborhood of w, since V| (w, a) is locally uniformly o(a).
Therefore there exists €1 such that for |w — w,| < €1, and a sufficiently small,

&
< —=.
Lo 6

~ 1 1
1Rl e < Lo — wul(sup Nuko 1) H”“‘“’ 0
o w a

As for ]32, we note that
lke % N(avi cos(x) + ¥ (w, a)llpeo < kol 1 1N (avy cos(x) + ¥ (@, @)l oo -

We know that ||k, ||;1 can be bounded on a neighborhood of w, since it is continuous in w.
Now, we have N (0) = 0, and %(N(av* cos(x) + ¥ (w, a)))la=0 = N/(O)%zjf(a), a)lg=0 =
0, since N’(0) = 0. Thus we will have || N (avs cos(x) + ¥ (@, @) | .~ = o(a), uniformly
in a neighborhood of w,, since N and ¢ are C 1

Then, given any ¢ > 0, for a sufficiently small,

&
< —.

lN(av* cos(x) + ¥ (w, a))
a L>® 6

~ 1
IRl o < o Sup llko Il 1

We claim that Eg is at least quadratic in (w — wy). Since (kg * Avicos(x))(-) = (k *
Av, cos(a)x))(%-), and the latter is smooth in w, we can expand in w and find that the

expansion starts at quadratic order. Then there exists €2 such that for |w — wy| < €2, } §3 || 100
is less than .
Thus, for any ¢ < min(eq, &2), with a sufficiently small, for |® — w«| < ¢,
~ ~ ~ ~ e & & &
B0, | < Rl + Rl | < S+ 242 =2,
so that |[R((w — wy) + wy, a)| < &. ]

It remains to show that R(-, a) is a contraction mapping.

Lemma 5.8 There exists ¢ > 0 and a, > 0 such that for a < ay, the map R(w,a) is a
contraction mapping from (wy — €, ws + €) to itself.

Proof We investigate the Lipschitz constant of R. We have

—11
R(wi,a) — R(w2,a) = XEPY[(kwI — kap) * Y (w2, a)

+ (ko — ko) * (Y (@1, @) — ¥ (w2, a))

+ (kw; — k) * N(avy cos(x) + ¥ (w2, a))

+ ko, * (N (avy cos(x) + ¥ (w1, a)) — N(avkcos(x) + ¥ (w2, a)))
+ (ko — ko, ) * Avycos(x) — (w1 — a)*)% (kg * Avy cos(x)) |w=w*
— ((sz — kg, ) * Avy cos(x)

— (- w*)% (ko % Av, cOS(Y)) }w:w*)].

We again estimate norms in L°°, accounting for the factor of 2. For the first term, as before,
we have

1
= ke = ko) % (w2, @)

1
< o1 — w2 (Sup ”awkw”Ll) Hglﬁ(wz,a)
w

L>® L>®
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By the argument above, for the values of (w, ) considered, we already have

1 1
—(sup [|0wke |l £1) H*W(w,a) < -,
od o a 6

L>®

=

11 1
so that H**(kwn — kay) * Y (w2, a) —|w; — w2].
o a L>® 6

For the second term, we have
| Lk, = ko) * (P (@1, @) = Y (@2, @) | o < 01 — 2] - |
—wi| 2 (sup,, [8uko |l 1) S Lip,, (¥ (@, @)).

The term Lip,, (¥ (w, a)) is bounded by |9, (w, a)|, which is bounded by Cilal, so that
éLipw(w((u, a)) < C1. Then for |w] — w,| sufficiently small, the whole term will have small
Lipschitz constant: there exists €3 such that for |w; — w«| < €3,

1
H;(kwl —ko,) * (Y (01, a) — Y (w2, a))

1
< —lw; —wyl.
‘Loc 12

For the third term, we have

‘;(kwl — ka,) * N(avy cos(x) + ¥ (w2, a))
LOC

1 d
< |z — wi|=sup — |lky * N(avy cos(x) + ¥ (w2, a))ll L
o o dw

1
<|wy — wzl; sup [|0pke L1 N (@vy cos(x) + ¥ (w2, a)) |l -
w

As discussed previously, % IN (avs cos(x) 4+ ¥ (w2, a))ll = is 04(1), and the rest of the terms
L (kay — k) * N(av, cos(x) + ¥ (@2, )|, <

are bounded. Then for a sufficiently small,
5 lor — wn).
For the fourth term, note that

Lipw(éN(av* cos(x) + ¥ (a, w))) < é sup [N’ (avy cos(x) + ¥ (@, )| Lip, ¥

IA

1 /
- Sup [N (avscos(x) + ¥ (w, a))| Cilal

Cy sup [N (avy cos(x) + ¥ (w, a))|.

IA

Because N'(0) = 0, with N’ continuous, and the argument av, cos(x) + v (w, a) equals 0
at (wy, 0), there exists a neighborhood of (wy., 0) for which éC1 || ke, H 11 SUp [N (avy cos(x)+
Y(w,a))| < ﬁ Then on that neighborhood,

ke, * (N(avy cos(x) + ¥ (wi, a)) — N(avy cos(x) + ¥ (w2, a))) < élwl — .

As to the last difference of terms, which is independent of a, note that because the term is
quadratic in (w — w,), then there exists &4 for which the Lipschitz constant is less than ﬁ
for |w — wy| < &4.

Now, fix ¢ < min(ey, €2, €3, €4), and ap sufficiently small such that (—agp, ag) x (—¢, €)
is in all neighborhoods mentioned above, and so that for a < ag, by Lemma 5.7, the map
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R(-, @) maps B¢ (w,) to itself. Then we can find a.., possibly smaller, such that for a < ay,

[R@1,@) = R@n, @) e < G+ 5+ 5+ 4 )] =2 |
@O Wl =L TR TR T TR T e T e et

so that
|IR(w1, a) — R(w2, a)| < glwi — w|.

Then for all a < ay, R(-, a) is a contraction in (w — wy) on (—¢, €). ]

5.3 Proof of Theorems 7 and 8

Using the above contraction properties, we can now prove Theorems 7 and 8.

Proof(of Theorem 7) We show existence of a two-parameter family of solutions to Eq. (5.1).

Let a < a.. Then by Lemma 5.8 and the Banach fixed point theorem, there exists a
unique fixed point of @ = R(w, a). Then for all a < ax, there exists w(a) such that
F(w(a),a, y(w(a),a)) = 0.

The family of solutions u(x; a) = avy cos(x) + ¥ (w(a), a)(x) is then a one-parameter
family of solutions to (5.2) near a = 0, which in turn yields a family of solutions u.(x; a) =
u(w(a)x; a) to the original Eq. (5.1). In order to obtain a two-parameter family of solutions,
we use the fact that the original Eq. (5.1) is translation-invariant. This ensures that the function
u(-+t; a) is a solution for any t. Lastly, the properties u.(y; 0) = 0, v (0) = w, are easily
verified by examining properties of ¥ and R. O

This establishes a two-parameter set of periodic solutions to (5.1). However, to prove
Theorem 8, we need to further characterize this set of solutions topologically:

Proposition 5.9 There exists a neighborhood of the origin U, C R? and a continuous map
§S:U,—>C gn(R, R™) whose range consists of the family of continuous periodic solutions
to (5.1) found in Theorem 7.

Proof First, identifying R? with C, let 57 : C\{0} - R.g x [0, 27) be defined by s1(z) =
(|z], arg(z)), and let s : R.o x [0,27) — an(R, R”™) be defined by s3(r, 0) = u.(x +
0; r). The composition s, o 51 can be seen to be continuous and one-to-one from C\ {0} to
an (R, R™). Then we would like to extend s, o 51 continuously to C. Let

sz{mom@xz¢a
0, z=0.

We can see that S is continuous at 0 because ||u.(- + arg(z); |z|)l|co approaches 0 as |z]
approaches 0; s is also still one-to-one. Since there exists a, > 0 such that u.(- + w(a)z, a)
is a solution to (5.2) for any a > 0, T € R, then S is a continuous, one-to-one map from the
neighborhood {|z| < a.} to the set of continuous periodic solutions to (5.1). O

With this characterization, we now turn to the proof of Theorem 8.

Proof(of Theorem 8) Letting ]V(u) = A"'N(@u), K(x) = k(x) - A, then Eq. (5.1) is in the
appropriate form for Theorem 5. The kernel & of 7Tu = —u + K * u in this case is two-
dimensional, since d(v) has two single roots on the imaginary axis. Then by Theorem 5,
there exists § > 0, a center manifold M C Cga and amap V¥ : & — M, with V(0) =
0, D¥(0) = 0, such that M = {ug + W(ug) | up € ker7}. By property (iv) of the
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theorem, M contains all solutions u to (5.1) with |lullco < & for some ¢ > 0. Then, taking
&x < min(e, ay), the family of solutions {u.(- + 7;a) | T € R, a € [0, €4)} is contained, as
a set, in M.

The composition of maps Q o S, where Q is the projection onto &) as defined in Sect. 4,
and S is the map from Proposition 5.9, is then a continuous, one-to-one map from the
neighborhood U, of 0 in R2 to &p. Note that Q is one-to-one because it is invertible on M.
Its restriction to a closed neighborhood of 0 contained in U}, will therefore have continuous
inverse and hence be open. Then the image of U, in & contains a ball of positive radius in
&y, which, since & is finite-dimensional, contains a ball in & under the C° norm. Lastly,
since || Qu||co < ||ul| o, any solution to (5.1) with sufficiently small C° norm is in the image
of U, in the M. Hence any sufficiently small solution to (5.1) is periodic, which proves
Theorem 8. O

6 Discussion

We have established Fredholm properties for a nonlocal operator with a multiplication oper-
ator as its principal part, finding an additional source of noncompactness corresponding to
zeros of the principal part. Using this theory, we established existence of finite-dimensional
center manifolds for nonlocal equations on C%-based spaces, allowing for optimal regularity
of the manifold in a set of coordinates. This allowed us to prove a nonlocal Lyapunov-Center
theorem in the C! case. We describe briefly below possible further directions of this work,
and some apparent difficulties therein.

General Nonlinearities The work here focuses on pointwise substitution operators as a
simple class allowing for optimal regularity; a natural extension is to consider general Frechet
operators on function spaces. One limitation is establishing the bootstrapping step for these
operators, which involves smoothness of the inverse of (Id + G°).

Optimal Regularity Without Changing Coordinates A natural question is whether optimal
regularity can be obtained in the original equation without changing variables, possibly in
different function spaces. The inherent difficulty is that differentiating the shift operator
requires that the trajectory be differentiable. It is not clear how regularity could be obtained
in these coordinates using for instance bootstrapping. On the other hand, it seems plausible
that vector fields are simply optimally regular only in this particular choice of coordinates:
changing coordinates for an ODE with C! vector field with a C! diffeomorphism of course
only results in a continuous vector field, albeit with a well defined C I fow.

Extension to a Cylinder The systems studied here are in one spatial variable & € R. As in
local spatial dynamics, one would like to extend the theory to the 2-dimensional, cylindrical
case (as in [28] by Kirchgassner). One would have to find conditions under which the kernel
of the linearization is finite-dimensional. Much loftier and less clear, but no less interesting,
would be an extension to 2 or more unbounded spatial variables, where the time-like flow
would correspond to a more general symmetry.

Regularity of the Kernel The present argument relies on regularity of the convolution
kernel—enough to map L? into W' It is conceivable that this assumption could to be
relaxed slightly, such as to a kernel mapping L” to W%7, 6 > 0, exploiting repeated boot-
strapping.

Localization of the Kernel Computing Fredholm indices and constructing center manifolds
requires exponential localization of the kernel. Inspecting however the way multiplicities and
crossing numbers are computed, or the way Taylor expansions of reduced vector fields are
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determined, one finds that only finite, possibly high moments of the kernel enter the calcula-
tion. One may therefore suspect that moment conditions would be sufficient to establish some,
possibly weaker result. It seems however difficult to guarantee the robustness with respect
to parameters and the fact that center manifolds contain all bounded solutions without such
strong localization assumptions (or additional structure such as monotonicity). Existence of
small bounded solutions alone, can indeed be deduced from appropriate moment conditions
alone in many scenarios; see for instance [36]

Extension to Other Function Spaces Lastly, the choice of C%-based spaces here was a
natural choice of spaces where pointwise nonlinearities do not lose regularity as substitution
operators. Regularity questions when studying for instance equations in cylindrical domains
may well require different function spaces, such as spaces with Holder regularity. It is con-
ceivable that the strategy pursued here may well generalize, although cut-off procedures may
be more involved.
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