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Abstract. We propose an iterative method to find pointwise exponential growth rates in linear
problems posed on essentially one-dimensional domains. Such pointwise growth rates capture point-
wise stability and instability in extended systems and arise as spectral values of a family of matrices
that depends on a spectral parameter, obtained via a scattering-type problem. Different from meth-
ods in the literature that rely on computing determinants of this nonlinear matrix pencil, we propose
and analyze an inverse power method that allows one to locate robustly the closest spectral value
to a given reference point in the complex plane. The method finds branch points, eigenvalues, and
resonance poles without a priori knowledge.
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nances, branch points
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1. Introduction. Studying stability and instability of nonlinear waves and co-
herent structures informs our understanding of spatially extended nonlinear systems,
with examples of applications that are of particular relevance to the present work
ranging from instability in fluids [10], spatial ecology [42], and biology [11], to mate-
rial science [17]. In models one analyzes stability of coherent structures using a variety
of methods: explicitly [28, 33], perturbatively [12], based on topological arguments
[4], or, most often, using numerical methods that approximate the infinite domains
by finite-domain boundary-value problems [3]. The analysis is commonly split into
two parts, separating the stability in the far field, with typically simple, spatially
constant or periodic states, and the core region. The far field is usually more eas-
ily tractable, while detailed information on the core is rarely available explicitly or
even asymptotically. In function spaces, the distinction between core and far field is
reflected in the distinction between point and essential spectra of the linearization,
respectively; see [16, 26, 35] for an overview and references therein. Essential spectra
can be determined by algebraic computations after Fourier transform (or by solving
boundary-value problems after Bloch wave transforms in the case of asymptotically
periodic states). Point spectra can be well approximated by problems in bounded
domains with exponential convergence away from absolute spectra [36].

Our focus here is on essentially one-dimensional systems, with one unbounded
spatial direction, where spatial-dynamics methods have helped establish a wealth of
results on existence and stability. Our interest is in identifying pointwise temporal
growth rates, that is, exponential growth rates in time when initial conditions are
compactly supported and growth is measured in a bounded region of space. One
finds that such growth rates correspond to singularities in the spectral parameter \lambda of
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EIGENVALUE METHODS FOR POINTWISE STABILITY 593

the resolvent Green's function G\lambda (x, y) and we refer to those here as pointwise spectral
values. Such pointwise spectral values cannot generally be identified as eigenvalues
in an appropriate function space: they include resonances, that is, eigenvalues hidden
by the essential spectrum, and branch points of the dispersion relation. Also, pertur-
bation results for pointwise spectral values are more subtle: unlike spectra, they are
in general not upper semicontinuous with respect to system parameters.

Nevertheless, we propose here an iterative method that identifies pointwise spec-
tral values using methods very much inspired by the power method, which is at the
heart of computational methods for most eigenvalue problems. As a specific objective,
we focus on a basic algorithmic challenge: given a reference point \lambda 0 \in \BbbC :

Find the pointwise spectral value \lambda closest to \lambda 0!
Questions of this type arise when investigating resonances in Schr\"odinger operators
and in nonlinear optics, although algorithms of the nature proposed here do not
appear to have been used in the literature. Even in constant- or periodic-coefficient
problems, such tasks present challenging problems, relating to many questions in fluid
mechanics [10, 47], material science [17], and ecology [42]. Current methods require
an intricate parameter continuation of eigenvalue problems and may at times miss
leading pointwise growth rates; see, for instance, [9, 45].

Our focus on pointwise spectral values originates in work on pointwise Green's
functions in the context of shock stability [49]. We are further motivated by the inher-
ently pointwise nature of the analysis of coherent structures and the Evans function
in many examples [1], the vast literature in fluid dynamics concerned with convective
and absolute (pointwise) instabilities [10], and, last, the role of pointwise stability in
the selection of fronts propagating into unstable states [2, 22]. Our point of view is
shaped by the perspective of nonlinear eigenvalue problems, that is, matrix or op-
erator families that depend nonlinearly on a spectral parameter and where spectral
parameter values for which the inverse of the operator is not analytic are the object
of interest. This point of view allows us to simultaneously treat far field and core,
to preserve structure of eigenvalue problems, and to develop iterative methods that
provably converge to leading eigenvalues. Theoretically, our first contribution is a for-
mulation of the problem of finding pointwise spectral values as a nonlinear eigenvalue
problem, where local power series are readily computed from a homological equa-
tion. Our second contribution develops an inverse power method for this nonlinear
eigenvalue problem that provably converges to the nearest spectral value. We prove
in particular that, curiously, the method detects eigenvalues even past the radius of
convergence of the local power series expansion.

The approach developed here is complementary to Evans function methods. The
Evans function is a popular and well-developed analytical and computational tool
for the analysis of point spectra and resonances, a Wronskian-type complex analytic
function that enables one to find eigenvalues as roots of an analytic function, exploiting
for instance winding number computations to count numbers of unstable eigenvalues
and to thereby establish robustly stability or instability; see for i,nstance, [1, 35]. The
Evans function is computed either via differential forms or, more directly, taking a
determinant of bases of bounded solutions to the linearized equation at spatial \pm \infty .
It can in fact be related to an operator-theoretic, nonpointwise Fredholm determinant
[19]. The in many ways most challenging problems arise when studying point spectra
located near or embedded in essential spectra. The approach here provides a more
canonical computational view of these spectral problems while, at the same time,
emphasizing the pointwise character of the stability questions of interest. By avoiding
determinants, it has potential to perform better in large systems.
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594 ARND SCHEEL

Outline. The remainder of the paper is organized as follows. We set up a some-
what general framework for eigenvalue problems and formulate the nonlinear pointwise
eigenvalue problem in section 2. We discuss an inverse power method for nonlinear
eigenvalue problems and its convergence properties in section 3, and discuss imple-
mentation, both for the inverse power method and for the derivation of the nonlinear
eigenvalue problem on the Grassmannian, in section 4. We conclude with example
computations of pointwise spectral values in constant and variable-coefficient prob-
lems in section 5 and a brief summary in section 6.

2. Pointwise nonlinear eigenvalue problems from linearization of hete-
roclinic profiles.

2.1. First-order ODEs from eigenvalue problems. We consider eigenvalue
problems that arise in the linearization of traveling waves of the form

ux =A(x;\lambda )u, x\in \BbbR , u\in \BbbC N ,(2.1)

with matrix coefficients A(x;\lambda )\in \BbbC N\times N , continuous in x, and analytic in \lambda . We focus
on the simplest case of asymptotically constant coefficients

lim
x\rightarrow \pm \infty 

A(x;\lambda ) =A\pm (\lambda ).(2.2)

These equations arise when casting the linearization in the comoving frame as a first-
order ODE, substituting e\lambda t for time dependence.

Example 2.1. We explain the transformations in the case of a simple example,
the scalar nonlinear diffusion equation

wt =wxx +w - w3(2.3)

with traveling fronts w = w\ast (x  - ct) connecting w = w - at x =  - \infty to w = w+ at
x=+\infty , w\pm \in \{  - 1,0,1\} . The linearization at such a front satisfies

wt =wxx + cwx + (1 - 3w2
\ast )w=:\scrL w,(2.4)

which leads to the formulation in the form (2.1),

ux =A(x;\lambda )u, A(x;\lambda ) =

\biggl( 
0 1

 - 1 + 3w2
\ast (x) + \lambda  - c

\biggr) 
(2.5)

with

A\pm (\lambda ) =

\biggl( 
0 1

 - 1 + \lambda  - c

\biggr) 
if w\pm = 0 or A\pm (\lambda ) =

\biggl( 
0 1

2 + \lambda  - c

\biggr) 
if | w\pm | = 1.(2.6)

Such a formalism has been extended to many other situations, including asymptot-
ically periodic coefficients A\pm = A\pm (x;\lambda ) = A\pm (x+ L\pm ;\lambda ) or ill-posed equations on
an infinite-dimensional state space u \in X for problems in infinite cylinders or modu-
lated waves and it would be interesting to pursue the methods developed here in such
contexts as well [30, 37, 39]. We note that we explicitly allow nonlinear, polynomial
dependence of A(x;\lambda ) on \lambda for cases with higher-order time derivatives, for instance,
the wave equation, or for cases where the spectral parameter is replaced by a polyno-
mial to resolve branch points in the dispersion relation; see, for instance, Examples
2.10 and 2.11, below.
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EIGENVALUE METHODS FOR POINTWISE STABILITY 595

One can in great generality relate properties of the operator \scrT (\lambda ) = \mathrm{d}
\mathrm{d}x  - A(x;\lambda )

to properties of the linearization of the traveling wave; in our example the operator
\scrL , both in function spaces and in a pointwise sense; see for instance [22, 35, 39]. We
will therefore focus on properties of the (linear) operator pencil \scrT without trying to
relate back to the traveling-wave linearization in any generality.

It is not hard to see [32, 39] that \scrT (\lambda ) is Fredholm as a closed, densely defined
operator on, say, L2(\BbbR ,\BbbC N ) with domain of definition H1(\BbbR ,\BbbC N ) if and only if the
asymptotic matrices A\pm (\lambda ) are hyperbolic, that is, specA\pm (\lambda )\cap i\BbbR = \emptyset . The Fredholm
index is then given by the difference of Morse indices,

ind (T (\lambda )) = i\mathrm{M}(A - (\lambda )) - i\mathrm{M}(A+(\lambda )),(2.7)

where i\mathrm{M}(A) counts the eigenvalues of A with positive real part with multiplicity;
see, for instance, [39] and references therein. For well-posed equations, \scrL  - \lambda and
thereby \scrT (\lambda ) are invertible for Re\lambda \gg 1, such that the Morse index there is constant,
i\mathrm{M}(A+(\lambda ) \equiv i\infty = i\mathrm{M}(A - (\lambda ). Fredholm properties, that is, closedness of range and
dimensions of kernel and cokernel, of \scrT (\lambda ) and of \scrL  - \lambda agree.

In the Fredholm 0 region, the analytic Fredholm theorem guarantees that general-
ized multiplicities of isolated eigenvalues of \scrL are finite. In fact, generalized multiplic-
ities of an eigenvalue \lambda of \scrL agree with the multiplicity of an eigenvalue of \scrT (\lambda ) when
the latter is defined as follows; see [20, 31, 46] for the introduction of this concept and
context, respectively.

Definition 2.2 (algebraic multiplicities and Jordan chains). Suppose \scrT (\lambda \ast ) is
Fredholm of index 0 with nontrivial kernel. We say a polynomial u(\lambda ) of order p is a
root function if T (\lambda )u(\lambda ) = \scrO ((\lambda  - \lambda \ast )

p+1). For root functions u(\lambda ) =
\sum p

j=0 uj(\lambda  - 
\lambda \ast )

j, we refer to the uj, j < p, as generalized eigenvectors. Note that up is always an
eigenvector, that is, T (\lambda \ast )up = 0. We define the algebraic multiplicity of \lambda \ast as the
dimension of the (linear) space of root functions (of arbitrary degree p).

A quick calculation verifies that the definitions here agree with the usual defini-
tions of algebraic multiplicity in the case of standard eigenvalue problems.

Example 2.3. In our example, a generalized eigenvector to \lambda = 0 of \scrL solves
\scrL w1 + w0 = 0, \scrL w0 = 0. Defining uj = (wj ,wj,x), j = 0,1, we find immediately
from algebraic manipulation that \scrT (0)u0 = 0 and \scrT (0)u1+\scrT \prime (0)u0 = 0, showing how
Jordan chains are equivalent.

Since we did not formally introduce a general class of operators \scrL , we only state
informally that in addition to Fredholm properties, algebraic multiplicities of eigen-
values in the Fredholm index 0 region also coincide for \scrL  - \lambda and \scrT (\lambda ).

2.2. The Grassmannian and pointwise formulations of eigenvalue prob-
lems. Our aim here is to develop a pointwise-in-x formulation of the spectral problem
for \scrT (\lambda ). Such formulations have been used extensively in the context of Schr\"odinger
operators and developed also more generally in connection with stability of nonlinear
waves in [49]. We start by considering the ODE (2.1) in the Fredholm index 0 regime,
where i\mathrm{M}(A\pm (\lambda )) = i\infty . The linear equation induces a flow on k-dimensional (com-

plex) subspaces Gr(k,N). We write E
\mathrm{s}/\mathrm{u}
\pm (\lambda ) as the generalized eigenspaces of A\pm (\lambda ) to

eigenvalues \nu with Re\nu < 0 and Re\nu > 0, respectively. These subspaces are invariant
under A\pm (\lambda ), respectively, and thereby invariant under the flow to u\prime =A\pm (\lambda )u. One
finds that E\mathrm{s}

+(\lambda ) is unstable and E\mathrm{u}
 - (\lambda ) is stable for the dynamics on Gr(N  - i\infty ,N)

and Gr(i\infty ,N), respectively, that is, eigenvalues of the linearization at those equilib-
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596 ARND SCHEEL

ria all have a positive or negative real part, respectively. One can then find unique
subspaces E\mathrm{s}

+(x;\lambda ) and E\mathrm{u}
 - (x;\lambda ), continuous in x and locally analytic in \lambda , which

are invariant under the flow on the Grassmannian induced by (2.1) and converge to
E\mathrm{s}

+(\lambda ) and E\mathrm{u}
 - (\lambda ) for x \rightarrow +\infty and x \rightarrow  - \infty , respectively. In particular, \lambda is an

eigenvalue if and only if E\mathrm{s}
+(0;\lambda )\cap E\mathrm{u}

 - (0;\lambda ) \not = \{ 0\} is nontrivial.

Lemma 2.4 (analytic bases). For any fixed compact region \Omega \subset \BbbC , where E\mathrm{s}/\mathrm{u}
\pm (0;\lambda )

are analytic, there exist analytic bases w\mathrm{u}
j (\lambda ), 1\leq j \leq i\mathrm{M}, and w\mathrm{s}

j(\lambda ), i\mathrm{M} +1\leq j \leq N,

that span E
\mathrm{s}/\mathrm{u}
\pm (0;\lambda ), respectively.

Proof. The existence of such bases is an immediate consequence of [43, Rem.
2], which guarantees the existence of an analytic complement and thereby analytic

projections onto E
\mathrm{s}/\mathrm{u}
\pm (0;\lambda ), respectively, and [29, 22, section II.4.2], which concludes

the existence of analytic bases for subspaces given as the range of an analytic pro-
jection. A more constructive approach was described in [24], constructing analytic

bases to E
\mathrm{s}/\mathrm{u}
+ (\lambda ), first, lifting them to nearby subspaces at x=\pm L, L\gg 1, and then

transporting bases with the flow to the ODE (2.1).
We describe a third approach here that relates to our specific choice of bases

below. Write E(\lambda ) for an analytic family of subspaces, either E\mathrm{s}
+(0;\lambda ) or E\mathrm{u}

 - (0;\lambda ),
choose a complement F0 for E0 := E(\lambda 0), and choose a basis w1, . . . ,wm in E(\lambda 0).
Write P0 for the projection along F0 onto E(\lambda 0). The subspace E(\lambda ) is then given as
the graph of a map H(\lambda ) : E0 \rightarrow F0, whenever E(\lambda ) \cap F0 = \{ 0\} . We claim that the
coefficients of H(\lambda ) have isolated poles of finite order, only, whenever E(\lambda )\cap F0 \not = \{ 0\} .
For this, fix \lambda 1, where H(\lambda ) is singular, and choose E1, F1 complementary subspaces
so that E(\lambda ) = graph (H1(\lambda )), H1(\lambda ) :E1 \rightarrow F1 analytic for \lambda \sim \lambda 1. The map H(\lambda ) is
then explicitly found from H(\lambda ) = (1 - P0)(id +H1(\lambda ))(P0(id +H1(\lambda ))

 - 1, where the
inverse yields a meromorphic function with isolated poles.

We therefore find basis vectors Wj(\lambda ) =wj +H(\lambda )wj , 1\leq j \leq m, for all \lambda except
for a finite set of points where the Wj have poles. For each of the Wj , we can however
remove the pole singularity at a point \lambda \ell multiplying the singular basis vector Wj by
(\lambda  - \lambda \ell )

p, where p is the maximal order of the pole in the components of Wj . We
thereby obtain analytic vectors \~Wj which form a basis for all \lambda .

The same result applies in the case where bases have branch points which are
resolved writing \lambda = \varphi (\gamma ). Subspaces that are analytic in \gamma then have analytic
bases.

Definition 2.5 (pointwise eigenvalue problem). We define the trivialization of
the bundles E\mathrm{s}

+(0;\lambda ) and E\mathrm{u}
 - (0;\lambda ) through maps

\iota \mathrm{u}(\lambda ) :\BbbC iM \rightarrow E\mathrm{u}
 - (0;\lambda ), u \mapsto \rightarrow 

i\mathrm{M}\sum 
j=1

ujw
\mathrm{u}
j (\lambda ),

\iota \mathrm{s}(\lambda ) :\BbbC N - iM \rightarrow E\mathrm{s}
+(0;\lambda ), u \mapsto \rightarrow 

N\sum 
j=i\mathrm{M}+1

ujw
\mathrm{s}
j(\lambda ),

where the bases w
\mathrm{s}/\mathrm{u}
j (\lambda ) were constructed in Lemma 2.4. We then define the intersec-

tion map

\iota \mathrm{s}\mathrm{e}\mathrm{c}(\lambda ) :E
\mathrm{u}
 - (0;\lambda )\times E\mathrm{s}

+(0;\lambda )\rightarrow \BbbC N , (w\mathrm{u},w\mathrm{s})\rightarrow w\mathrm{u}  - w\mathrm{s},

and its trivialization

\iota (\lambda ) = \iota \mathrm{s}\mathrm{e}\mathrm{c}(\lambda ) \circ (\iota \mathrm{u}(\lambda ), \iota \mathrm{s}(\lambda )) .(2.8)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/0

2/
24

 to
 1

28
.1

01
.5

9.
17

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



EIGENVALUE METHODS FOR POINTWISE STABILITY 597

We also define the associated Evans function

\scrE (\lambda ) = det \iota (\lambda ).(2.9)

Proposition 2.6. The nonlinear eigenvalue problems \scrT (\lambda ) and \iota (\lambda ) are equiva-
lent in the sense that geometric and algebraic multiplicities in a region \Omega , where \scrT (\lambda )
is Fredholm index 0. In particular, the algebraic multiplicity of eigenvalues of \scrT (\lambda )
equals the order of the root of the Evans function \scrE (\lambda ) = det \iota (\lambda ).

Proof. We claim that root functions for \scrT and \iota are in 1-1 correspondence. Indeed,
given a root function u0(\lambda ) for \iota , we can construct functions u(x;\lambda ) by solving the
initial-value problem at x= 0 and find bounded solutions up to the order of the root
function. Conversely, restricting root functions for \scrT to x = 0 yields root functions
for \iota . For finite-dimensional nonlinear eigenvalue problems as the one defined by \iota ,
the algebraic multiplicity is as defined in Definition 2.2 and agrees with the order of
the root of the determinant [46].

We are also interested in a version of Proposition 2.6 concerned with the analytic
extension of \iota (\lambda ) past the essential spectrum. As an analytic function, \iota has a uniquely
defined analytic extension to some open set \Omega \subset \BbbC . The motivation for considering
this extension is rooted in the relation between this extension of \iota and pointwise
singularities of the Green's function.

Proposition 2.7 (singularities of the pointwise Green's functions and \iota ). Con-
sider the Green's function of \scrT (\lambda ), the solution to \scrT (\lambda )G(x, y;\lambda ) = \delta (x - y)id. Then
G(x, y;\lambda ) with x, y fixed, arbitrary, possesses an analytic extension in \lambda into the re-
gion where \iota (\lambda ) - 1 possesses an analytic extension. On the other hand, G(x, y;\lambda ) is
not analytic when

(i) E\mathrm{u}
 - (0;\lambda ) or E\mathrm{s}

+(0;\lambda ) are not analytic, or when
(ii) E\mathrm{u}

 - (0;\lambda ) and E\mathrm{s}
+(0;\lambda ) intersect nontrivially.

Note that the poles of \iota (\lambda ) do not necessarily contribute to singularities of \iota (\lambda ) - 1.
Case (ii) corresponds to zeros of an extension of the Evans function, yielding reso-
nances or embedded eigenvalues, both of which we refer to as an extended point
spectrum, following [34, 36]. Analyticity of E\mathrm{u}

 - (0;\lambda ) and E\mathrm{s}
+(0;\lambda ) follows from ana-

lyticity of E\mathrm{u}
 - (\lambda ) and E\mathrm{s}

+(\lambda ) with sufficiently rapid convergence of the matrices A(x;\lambda )
by results usually referred to as ``gap lemmas"" [18, 27]. Absent such conditions, sub-
spaces E\mathrm{u}

 - (0;\lambda ) and E\mathrm{s}
+(0;\lambda ) may exhibit essential singularities [38]. Singularities of

the asymptotic subspaces correspond to branch point singularities at infinity, since
subspaces are obtained from algebraic equations; see [22] for an extensive discussion
of those singularities, referred to there as right-sided pointwise growth modes.

Proof of Proposition 2.7. Setting without loss of generality y = 0, we need to
solve \scrT (\lambda )G(x,0;\lambda ) = \delta (x)v, v \in \BbbC N . Clearly, this requires a solution to the ODE
defined by \scrT with a jump at x = 0 of size v. In the region where \scrT is invertible,
such a solution can be obtained uniquely by solving \iota (\lambda )(w\mathrm{u}, - w\mathrm{s}) = v and extending
the initial condition u - =

\sum i\mathrm{M}
j=1w

\mathrm{u}
j uj to x < 0 and extending the initial condition

u+ =
\sum N

j=i\mathrm{M}+1w
\mathrm{s}
juj to x > 0. This construction clearly shows analyticity of G given

analyticity of \iota  - 1 and, on the other hand, that conditions (i) and (ii) are necessary
for analyticity of G.

Information on the Green's kernel G translates via Laplace transform directly into
pointwise information on solutions to e\scrL t which we state here only informally. Given
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598 ARND SCHEEL

compactly supported initial conditions w0(x), sup| y| \leq K(e\scrL tu0)(y) decays uniformly for
any K if \iota (\lambda ) is analytic in \{ Re\lambda \} > 0. Conversely, the supremum grows exponentially
if \iota (\lambda ) has a singularity in \{ Re\lambda > 0\} since direct Laplace transform of the heat kernel
would otherwise imply analyticity of G; see, for instance, [22, Cor. 2.3]. In a way
similar to the case of a point spectrum, one can associate Jordan chains to points \lambda 
where \iota is not invertible.

In the following, we assume that a meromorphic realization of \iota via meromorphic
choices of bases, that is, of trivializations \iota \mathrm{u}/\mathrm{s}, has been fixed in the region where
E\mathrm{u}

 - (0;\lambda ) and E\mathrm{s}
+(0;\lambda ) are analytic.

Definition 2.8 (spectral values). We say \lambda 0 is a spectral value of \iota if \iota  - 1(\lambda ) is
not analytic at \lambda 0. Equivalently, conditions (i) or (ii) in Proposition 2.7 are violated.

Remark 2.9 (removing branch points). Singularities stemming from singularities
of the asymptotic subspaces are branch points and can be removed using a polynomial
reparametrization of the spectral parameter, \lambda = \varphi (\gamma ). Considering the new spectral
problem with eigenvalue parameter \gamma , all of the above considerations apply again.

Example 2.10. As a simple first example, we consider

wt =wxx  - 2 sign(x)wx,

which leads to the spatial ODE

ux = v, vx = 2sign(x)v+ \lambda u(2.10)

with

E\mathrm{s}
+(\lambda ) =

\biggl( 
1

1 - 
\surd 
1 + \lambda 

\biggr) 
, E\mathrm{u}

 - (\lambda ) =

\biggl( 
1

 - 1 +
\surd 
1 + \lambda 

\biggr) 
,

and

\scrE (\lambda ) = 2
\Bigl( 
1 - 

\surd 
1 + \lambda 

\Bigr) 
.

We find a zero at \lambda = 0, case (iii) above, and a branch point at \lambda = - 1, case (i). Note
that the branch point corresponds to a spectral value of \iota , which can be removed by
passing to a Riemann surface, that is, replacing \lambda = - 1 + \gamma 2 in (2.10).

Example 2.11. Returning to Example 2.1, we consider the (explicit) case of layers
w\ast (x) = tanh(x/

\surd 
2) connecting w\pm = \pm 1 at x = \pm \infty . The eigenvalue problem

wxx + (1 - 3 tanh2(x/
\surd 
2))w = \lambda w can be converted into the first-order system ux =

A(x;\lambda )u with asymptotic matrices A\pm (\lambda ) =

\biggl( 
0 1

\lambda + 2 0

\biggr) 
. We have i\infty = 1 and stable

and unstable subspaces are well defined outside of \{ \lambda \leq  - 2\} . Solving the ODE
explicitly, one finds the solution, substituting \gamma =

\surd 
\lambda + 2,

u\mathrm{u}
1(x) =

\biggl( 
u+(x)
u+

\prime (x)

\biggr) 
, u\mathrm{s}

2(x) =

\biggl( 
u+( - x)

 - u+
\prime ( - x)

\biggr) 
,

where

u+(x) = (1 + e
\surd 
2x)2e

 - 
\surd 

2\gamma (
\surd 

2 - 3\gamma +
\surd 

2\gamma 2)

2 - 3
\surd 

2\gamma +2\gamma 2 x
(2 - 3

\surd 
2\gamma + 2\gamma 2

+ 4e
\surd 
2x( - 2 + \gamma 2) + e2

\surd 
2x(2 + 3

\surd 
2\gamma + 2\gamma 2)),
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EIGENVALUE METHODS FOR POINTWISE STABILITY 599

such that

\iota (\lambda ) =

\biggl( 
u\mathrm{u}
1(0) u\mathrm{s}

2(0)
(u\mathrm{u}

1)
\prime (0) (u\mathrm{s}

2)
\prime (0)

\biggr) 
=

\biggl( 
 - 1 + 2\gamma 2  - 1 + 2\gamma 2

 - 2\gamma ( - 2 + \gamma 2) 2\gamma ( - 2 + \gamma 2)

\biggr) 
,

\scrE (\lambda ) = det(\iota (\lambda )) = - 4\gamma ( - 2 + \gamma 2)( - 1 + 2\gamma 2).

Clearly, \iota is analytic in \gamma \in \BbbC in this case, with zeros alias eigenvalues at \gamma =
0,\pm 

\surd 
2,\pm 1/

\surd 
2. Only positive values of \gamma correspond to eigenfunctions, negative val-

ues to resonance poles (exponentially growing solutions), and \gamma = 0 to an embedded
eigenvalue at the edge of the essential spectrum. Note that all roots of \scrE are simple in
this case. We see that \iota is analytic on the Riemann surface defined by \gamma . We empha-
size that our choice of u+(x) is by no means unique. One can clearly multiply u\mathrm{u}

1 and
u\mathrm{s}
2 by nonvanishing analytic functions \alpha \pm (\lambda ). In fact, canonical computations of the

bases may well lead to choices where \alpha \pm (\lambda ) have poles in the complex plane, which
one then simply removes by multiplying by suitable polynomials. A simple example
of such a scaling is when one insists on a normalization u+(0) = 1, introducing a sin-
gularity (1 - 2\gamma 2) - 1 with two poles. Less fortunate choices may introduce factors that
exhibit additional branch points or other singularities, in the parametrization. An ex-
ample for such a difficulty arises when attempting the common normalization \scrE \rightarrow 1
for \lambda \rightarrow \infty , which one could accomplish by normalizing u+(0) = ( - 1 + 2\gamma 2)/\gamma 5/2,
clearly introducing additional branch singularities. Another natural choice of nor-
malization would be | u\mathrm{u}

1(0)| = 1, which would, in addition to singularities, introduce
terms involving \=\gamma , destroying analyticity entirely.

Example 2.12 (lack of continuity). In function spaces, one readily concludes
that invertibility is an open property in the spectral parameter, also under large
classes of perturbations, which establishes upper semicontinuity of the spectrum under
perturbations. This is, in general, not true for singularities of the pointwise resolvent
as can be seen in the following example, borrowed from [22],

ut = - ux + \varepsilon v, vt = vx,(2.11)

which leads to the first order spatial spectral ODE

ux = - \lambda u+ \varepsilon v, vx = \lambda v,(2.12)

and globally analytic stable and unstable subspaces,

E\mathrm{s}
+(\lambda ) =

\biggl( 
1
0

\biggr) 
, E\mathrm{u}

 - (\lambda ) =

\biggl( 
\varepsilon 
2\lambda 

\biggr) 
,

that intersect nontrivially at \lambda = 0, \scrE (\lambda ) = 2\lambda . For \varepsilon = 0, however, the basis of E\mathrm{u}
 - (\lambda )

is degenerate at \lambda = 0 so that a reparametrization is needed, for instance,

E\mathrm{s}
+(\lambda ) =

\biggl( 
1
0

\biggr) 
, E\mathrm{u}

 - (\lambda ) =

\biggl( 
0
1

\biggr) 
.

As a result, the intersection is always trivial and \scrE (\lambda ) = 1. Put in the context of
perturbation theory, the pointwise resolvent does not have a singularity for \varepsilon = 0, but
upon arbitrarily small perturbations, such a singularity can be created.

The effect is of course also visible in the (explicit) solution to the equation, which
for \varepsilon = 0 simply advects compactly supported initial conditions to the left (u-equation)
and to the right (v-equation), which constitutes an effective superexponential point-
wise decay to zero. Coupling with \varepsilon \not = 0 causes u to converge to a constant, effectively
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600 ARND SCHEEL

integrating the initial mass in the v-equation. The effect appears also in less obvious
examples, including for instance diffusion in (2.11) or more general coupled amplitude
equations [13].

We return to this example in section 5, demonstrating how our algorithm correctly
identifies the subtle dependence on the presence of a coupling term.

Example 2.13 (branch poles versus branch points). In the trivial example wt =
wxx, one finds E\mathrm{s}

+(\lambda ) = (1,
\surd 
\lambda )T , E\mathrm{u}

 - (\lambda ) = (1, - 
\surd 
\lambda )T , so \scrE (\lambda ) = 2

\surd 
\lambda , which is both

not analytic at \lambda = 0 due to a branch point in the eigenspaces and vanishes, so that \iota  - 1

possesses a singularity of type
\surd 
\lambda 
 - 1

. Passing to the Riemann surface by introducing
\gamma =

\surd 
\lambda , corresponding to considering utt = uxx, one finds a simple pole at \gamma = 0.

Considering wt = wxx in x > 0 with Robin boundary condition n1w + n2wx = 0
at x= 0, one forms the Evans function from E\mathrm{b}\mathrm{c} = (n2, - n1)

T and E\mathrm{s}
+(\lambda ) = (1,

\surd 
\lambda )T

so that \scrE (\lambda ) = n2

\surd 
\lambda  - n1, which still possesses a branch point singularity at \lambda = 0,

but does not vanish when n1 \not = 0. On the Riemann surface, we find a root \gamma = n1/n2,
which corresponds to an eigenvalue when n1n2 > 0 and to a resonance otherwise.

We refer to [26] for many more examples and context.

2.3. Determinants and numerical methods. We briefly comment on other
numerical approaches related to this pointwise formulation with the aim of differ-
entiating our approach from others in the literature. Finding spectral values, that
is, points \lambda where the inverse of \iota (\lambda ) is not analytic, can be reduced to taking a
determinant of \iota and finding roots of the resulting analytic function---after first iden-
tifying branch points as a source of nonanalyticity in the far field. For this, one
needs to overcome several obstacles, starting with the computation of analytic bases
in stable and unstable subspaces. One can track subspaces using differential forms,
at the expense of a possibly high-dimensional system, or computing orthogonalized
stable bases, at the expense of losing analyticity; see for instance [24] and references
therein. Analyticity can be restored on the level of a determinant [25, 48], thereby
yielding efficient methods for computing subspaces and finding eigenvalues through
winding number computations [23]. In fact, from this point of view the pointwise
nature of the computation can be relaxed to improve numerical stability, still exploit-
ing a determinant formulation and computing winding numbers [5]. There do not
appear to be algorithms that do not involve a separate treatment of core and far
field, and most algorithms rely to some extent on determinants and winding num-
ber computations. In contrast, the approach that we present in the next section,
treats core and farfield simultaneously and avoids determinants and winding num-
bers altogether, thus presenting a useful ad hoc tool for the initial study of stability
problems.

3. Inverse power methods for locally analytic operator pencils. Moti-
vated by the previous derivation of nonlinear eigenvalue problems, we study families
of matrices \iota (\lambda )\in \BbbC N\times N in a domain \lambda \in U \subset \BbbC , and wish to find values \lambda \ast such that
the inverse \iota (\lambda ) - 1 is not analytic at \lambda = \lambda \ast . We assume that \lambda is meromorphic on
a Riemann surface, that is, \iota (\varphi (\gamma )) is meromorphic in \gamma , where \varphi resolves potential
branch points. We do not assume that \varphi is a priori known. There are many methods
available that find poles of \iota (\lambda ) - 1 in the case where \iota is analytic; see, in particular,
[21] for a recent review. Many methods ultimately rely on particular polynomial in-
terpolations of \iota (\lambda ) and subsequent root finding or linearization of the matrix pencil
[6]. Much of the suitability of a method depends on what is known about \iota or, in
other words, how it is actually computed. In our case, one usually starts computing
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EIGENVALUE METHODS FOR POINTWISE STABILITY 601

\iota at a fixed point \lambda 0, computing stable and unstable subspaces, and choosing bases.
The main difficulty now is to continue these bases to nearby values of \lambda in an analytic
fashion. A key obstacle is that a naive parametrization of the subspace as a graph
over the reference subspace at \lambda = \lambda 0 may fail at isolated points, leading to singu-
larities in \iota induced by the parametrization, as exemplified in Example 2.11 when
normalizing u+(0) = 1. Alternatively, orthogonalizing bases for the parametrization
destroys analyticity; see, again, Example 2.11.

Our approach only relies on local power series from the graph parametrization,
yet finds spectral values of \iota even past the radius of convergence of the power series
and potential singularities induced by the parametrization. The local power series,
as we shall explain in the next chapter, is readily computable solving homological
Sylvester equations.

To set up the analysis, we fix a reference value \lambda 0 with the goal of finding spec-
tral values of \iota (\lambda ) closest to \lambda 0. We assume without loss of generality that \lambda 0 = 0
possibly redefining \lambda . We assume that the matrix function \iota has a local expansion in
a convergent power series with radius of convergence R,

\iota (\lambda ) =

\infty \sum 
k=0

\iota k\lambda 
k, | \lambda | <R.(3.1)

If \iota 0 is not invertible, \lambda = 0 is already a spectral value and we therefore assume
henceforth that \iota 0 is invertible. Consider then the infinite-matrix operator acting on
infinite sequences u= (uj)j=1,2,...,

\scrA : u \mapsto \rightarrow \scrA u, (\scrA u)j =

\biggl\{ 
 - \iota  - 1

0 (\iota 1u1 + \iota 2u2 + . . .) , j = 1,
uj - 1, j > 1,

or \scrA =

\left(       
 - \iota  - 1

0 \iota 1  - \iota  - 1
0 \iota 2  - \iota  - 1

0 \iota 3 \cdot \cdot \cdot 
1 0 0 \cdot \cdot \cdot 
0 1 0 \cdot \cdot \cdot 
0 0 1 \cdot \cdot \cdot 
...

...
...

. . .

\right)       .(3.2)

The form of \scrA is motivated by the case where \iota is a polynomial and \scrA can act on finite
sequences. The polynomial \iota can then be thought of as the characteristic equation
to a multiterm recursion, which in turn can be written as a first-order recursion in
a higher-dimensional ambient space. Iterating \scrA is, in this case, simply the inverse
power method for this matrix representation.

Eigenfunctions solve \scrA u = zu. Inspecting the components of this equation with
j > 1, we find uj+1 = z - 1uj , so that uj = z - ju0 for some vector u0 \in \BbbC N . Setting
\lambda = z - 1, the first equation in \scrA u= zu gives

 - \iota  - 1
0

\bigl( 
\iota 1\lambda + \iota 2\lambda 

2 + \cdot \cdot \cdot 
\bigr) 
u0 = z(\lambda u0),

which after multiplying by \iota 0 and rearranging gives

\iota (\lambda )u0 = 0.

In other words, we ``linearized"" the nonlinear matrix pencil, that is, spectral values \lambda 
of the nonlinear pencil \iota now correspond to spectral values z = \lambda  - 1 of the (regular)
eigenvalue problem for \scrA .
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602 ARND SCHEEL

To access regular spectral values, one now has access to traditional methods for
eigenvalue problems. The idea we pursue here is to iteratively compute \scrA ku0 and
expect that iterates grow with the spectral radius of \scrA , aligning with the eigenvector
to the largest eigenvalue, for random initial vectors u0. Such convergence does depend
on the nature of the spectrum of \scrA and we will study three cases of interest in the
subsequent three sections, characterized in terms of the spectral value of \iota (\lambda ) in the
sense of Definition 2.8:

(i) the singularity of \iota (\lambda ) - 1 closest to \lambda 0 = 0 is a pole and lies within the radius
of convergence R; section 3.1;

(ii) the singularity of \iota (\lambda ) - 1 closest to \lambda 0 = 0 is a pole and lies within a ball where
\iota (\lambda ) is meromorphic; section 3.2;

(iii) the singularity of \iota (\lambda ) - 1 closest to \lambda 0 = 0 is a branch point singularity; section
3.3.

3.1. Isolated point spectrum. Clearly, \scrA is rank-1, hence a compact pertur-
bation of the right-shift operator, so that one can readily compute explicitly Fredholm
properties in typical function spaces. Defining for instance \ell p\rho for \rho > 0 as the space
of sequences such that (uj\rho 

 - j)j \in \ell p, we find

spec\mathrm{e}\mathrm{s}\mathrm{s},\ell p\rho (\scrA ) = \{ | z| \leq \rho  - 1\} .

On the other hand, the first row \scrA 1 : \ell 
p
\rho \rightarrow \BbbR is bounded only when \rho <R. Choosing

\rho arbitrarily close to R, we can thereby find eigenvalues of \scrA within \{ | z| > R\} as
point spectrum. Equivalently, any spectral value \lambda of the operator pencil \iota (\lambda ) that
lies within the radius of convergence of the power series can be found as an eigenvalue
in the point spectrum of \scrA in an appropriately chosen weighted space. In particular,
if \iota (\lambda ) possesses a spectral value \lambda with | \lambda | < R, the power method applied to \scrA 
generically identifies the smallest eigenvalue of \scrA .

Proposition 3.1 (inverse power method---point spectrum within radius of con-
vergence). Assume that the nonlinear matrix pencil \iota (\lambda ) with radius of convergence
R > 0 possesses a unique smallest spectral value \{ | \lambda 0| < R\} . In particular, \iota (\lambda ) - 1 is
analytic in | \lambda | < | \lambda 0| + \delta , \lambda \not = \lambda 0, for some \delta > 0. Then the associated inverse power
iteration

uk+1 =\scrA uk,

defined on \ell p\rho with 1\leq p\leq \infty and | \lambda 0| < \rho <R, converges for initial vectors u0 in the
complement V of a strict subspace of \ell p\rho to eigenvalue and eigenvector in the sense
that

uk/| uk| \rightarrow u\ast , \scrA u\ast = \lambda  - 1
0 u\ast , \iota (\lambda 0)(u\ast )1 = 0.

In particular, V contains sequences u with uj = 0, j \geq 2, and u1 \in V0, the complement
of a strict subspace of \BbbC N .

Remark 3.2.

(i) By the analytic Fredholm theorem, eigenvalues of\scrA in \{ | z| <\rho  - 1\} are isolated
and of finite algebraic multiplicity. Shifting \lambda \mapsto \rightarrow \lambda  - \lambda \mathrm{s} by a small generic
shift would therefore guarantee that the assumption of the proposition holds.

(ii) Straightforward extensions of this result can establish that iteration of generic
two-dimensional subspaces yield the eigenspace of \scrA to the two smallest ei-
genvalues, showing as a consequence the convergence of a QR-type iteration
scheme.
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EIGENVALUE METHODS FOR POINTWISE STABILITY 603

(iii) The rate of convergence can be readily obtained from the proof as the ratio
between \lambda 0 and the next smallest spectral value \lambda 1. We may compute for
instance the sequence of approximate spectral values \lambda 0,k via

\lambda  - 1
0,k = \langle uk+1, uk\rangle /\langle uk, uk\rangle 

with, say, \langle u, v\rangle = (u1, v1), the standard complex scalar product in \BbbC N . One
finds from the proof below that uk = \lambda  - k

0 u\ast +\scrO (\lambda  - k
1 ), so that

\lambda  - 1
0,k = \lambda  - 1

0 +\scrO ((\lambda 1/\lambda 0)
 - k).(3.3)

Proof. By the analytic Fredholm theorem, we can decompose X = \ell p\rho =X0 +X1

into \scrA -invariant subspaces so that \scrA | X0
= \lambda  - 1

0 id + N with N nilpotent, X0 finite
dimensional, and the spectral radius of \scrA | X1

is strictly less than \lambda  - 1
0 . Within X0, we

can analyze the iteration in Jordan normal form and find convergence of vectors to
the eigenspace. The component in X1 will decay exponentially due to the renormal-
ization.

It remains to show that choosing sequences with support on the first entry is
sufficient to achieve growth. We therefore need to show that there exists a vector in
the kernel of the adjoint \scrA \ast  - z whose first component does not vanish. For any such
vector w, we quickly find, writing \iota M (\lambda ) =

\sum M
\ell =0 \iota \ell \lambda 

\ell ,

wj =

j - 1\sum 
k=0

zj - 1 - k\iota Tk v1 = zj - 1((\iota j - 1)T (z - 1)v1,

for some vector v1. In order for w \in \ell q\rho  - 1 , we need wj\rho 
j \in \ell q, in particular wjz

 - j \rightarrow 0,

so that in fact \iota (z - 1)v1 = 0, that is, v1 belongs to the kernel of the adjoint. Clearly,
wj = 0 for all j if v1 = 0, so that for a nontrivial element in the kernel v1 \not = 0 and
therefore w1 = \iota T0 v1 \not = 0 using invertibility of \iota 0. This concludes the proof.

3.2. Extended point spectrum. We now turn to the case where \iota (\lambda ) does not
have spectral values in \{ | \lambda | < R\} . We assume however, here that \iota (\lambda ) does have a
meromorphic continuation in \{ | \lambda | <M\} and a spectral value in this disk. Note that,
by uniqueness of the extension of \iota , the notion of spectral value in this larger disk is
well defined, while the notion of eigenvalue for the associated operator \scrA is not well
defined since infinite sums do not converge when substituting a potential eigenvector
to an eigenvalue with | z| >R into the expression for the first component (\scrA u)1.

Proposition 3.3 (inverse power method---point spectrum within meromorphic
domain). Assume that the nonlinear matrix pencil \iota (\lambda ) meromorphic in | \lambda | < M
possesses a unique smallest spectral value with \{ | \lambda 0| <M\} , that is, \iota (\lambda ) - 1 is analytic
in | \lambda | <M, \lambda \not = \lambda 0. Then, for any K \geq 1, the associated inverse power iteration

uk+1 =\scrA uk

with compactly initial data, (u0)j = 0 for all j > K, converges for all initial vectors
(u0)1\leq j\leq K \in \BbbC K except for a finite-codimension subspace, locally uniformly. More
precisely, for any K0, the restriction to the first K0 components RK0

u= (u1, . . . , uK0
)

converges to the restriction of a formal eigenvector,

RK0uk/| RK0uk| \rightarrow RK0u\ast 

and

RK0(\scrA uk  - \lambda  - 1
0 uk)\rightarrow 0 for k\rightarrow \infty .
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604 ARND SCHEEL

Remark 3.4.

(i) Similarly to the comments in Remark 3.2, one can generalize to multiple
leading eigenvalues using iteration of subspaces with appropriate orthogonal-
ization strategies.

(ii) Convergence is again exponential, with the rate given by the ratio between
\lambda 0 and the next smallest spectral value \lambda 1 as in (3.3).

To prepare for the proof, we introduce a pointwise description of iterates. We wish
to obtain a pointwise representation of \scrA k, that is, for the matrix entries ((\scrA k\delta jm)\ell =
((\scrA k)\ell m for fixed \ell and m. We wish to use Dunford's resolvent identity and start with
an expression for the resolvent (z  - \scrA ) - 1. We therefore fix m arbitrary and solve

((z  - \scrA )u)m = f, ((z  - \scrA )u)j = 0, j \not =m,

explicitly. We find, solving the equation for all j > 1,

uj = z - ju0, j <m, uj = z - ju0 + zm - j - 1f, j \geq m.(3.4)

Inserting into the equation for m= 1 gives

0 = - \iota  - 1
0

\bigl( 
\iota 1z

 - 1 + \iota 2z
 - 2 + \cdot \cdot \cdot 

\bigr) 
u0  - u0  - \iota  - 1

0

\bigl( 
\iota mz - 1 + \iota m+1z

 - 2 + \cdot \cdot \cdot 
\bigr) 
f

= \iota (\lambda )u0  - \lambda 1 - m
\bigl( 
\iota (\lambda ) - \iota m - 1(\lambda )

\bigr) 
f,

where \iota p(\lambda ) = \iota 0 + \cdot \cdot \cdot + \iota p\lambda 
p is the Taylor jet up to order p. Solving this matrix

equation with matrix entries in the field of meromorphic functions for u0 gives

u0 = \lambda 1 - m\iota (\lambda ) - 1
\bigl( 
\iota (\lambda ) - \iota m - 1(\lambda )

\bigr) 
f,(3.5)

which together with (3.4) defines the pointwise resolvent uj =\scrR (z;\scrA )jmf when the
right-hand side is supported in the mth component. We write \scrR (z;\scrA ) for the infinite
matrix 1\leq j,m<\infty .

From the form of (3.4)--(3.5), we obtain the following lemma.

Lemma 3.5. The pointwise resolvent ((z  - \scrA ) - 1)jk possesses an analytic exten-
sion into a connected component of the region \{ z = 1/\lambda \} , where \iota (\lambda ) is meromorphic
and \iota (\lambda ) - 1 is analytic. Moreover, if \iota (\lambda ) - 1 has a pole at \lambda 0, then the components
((z  - \scrA ) - 1)j1 of the pointwise resolvent have a singularity at z = z0.

Proof. We only need to show that the pointwise resolvent cannot be analytic
when \iota (\lambda ) - 1 is not analytic. This follows by setting m= 1 in (3.5) so that, with (3.4),

uj = \lambda j
\bigl( 
id - \iota (\lambda ) - 1\iota 0

\bigr) 
f.

Here, the term \lambda jf is analytic, and the term \lambda j\iota (\lambda ) - 1\iota 0f has a singularity since \iota 0\lambda 
j

is invertible.

From the form of (3.4)--(3.5), it is clear that the pointwise resolvent possesses an
analytic extension into the region where \iota (\lambda ) - 1 is analytic and \iota (\lambda ) is meromorphic.

Proof of Proposition 3.3. Choosing a contour \Gamma = \{ | z| =R\} with R large, oriented
counterclockwise, one obtains from Dunford's calculus that

uk :=\scrA kf =
1

2\pi i

\int 
\Gamma 

zk(z  - \scrA ) - 1fdz.
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EIGENVALUE METHODS FOR POINTWISE STABILITY 605

For f compactly supported, and evaluating both sides in a compact region j \leq J , we
may deform the contour \Gamma in the region where the pointwise resolvent ((z  - \scrA ) - 1)jk
is analytic, that is, within the region where it is meromorphic but outside of the
extended point spectrum. We choose to deform the contour into \~\Gamma = \Gamma 0 \cup \Gamma 1, where
\Gamma 1 = \{ | z| =R2 < | \lambda 0|  - 1\} and \Gamma 0 = \{ \lambda  - 1

0 + z| | z| = \varepsilon \} for some sufficiently small \varepsilon > 0.
For the contribution from \Gamma 1, one readily finds componentwise decay | uk

j | \leq CRk
2 .

The contribution from \Gamma 0 can be evaluated computing residuals after expanding the
pointwise resolvent in a Laurent series, which gives a contribution

\sum \ell 0
\ell =0Qjk

k\lambda k
0 . From

this splitting, the claim follows readily, in complete analogy to the finite-dimensional
convergence of the power method.

Remark 3.6 (zeros of meromorphic functions). The strategy employed here can
of course be most easily tested as an algorithm to find roots of meromorphic functions
f(\lambda ) in the plane z \in \BbbC . More precisely, our algorithm finds the zero \lambda \ast of f(\lambda ) closest
to a fixed reference point \lambda 0 using only the Taylor expansion of f at \lambda 0. One simply
iterates

uk =
 - 1

f(\lambda 0)

\biggl( 
f \prime (\lambda 0)uk - 1 +

1

2
f \prime \prime (\lambda 0)uk - 2 +

1

6
f \prime \prime \prime (\lambda 0)uk - 3 + \cdot \cdot \cdot 

\biggr) 
,

u0 = 1, uj = 0 for j < 0,

and obtains \lambda \ast  - \lambda 0 = limk\rightarrow \infty uk/uk+1. Our result here states that this iterative
algorithm identifies zeros past the radius of convergence of the local power series.
Of course, this approach is useful only when access to Taylor series coefficients is
preferred to simple evaluation of a function.

3.3. Branch points. A third typical possibility appears when the largest sin-
gularity of (z - \scrA ) - 1 is a branch point singularity. We say that \iota has a branch pole of
order p for some p\in \BbbN at \lambda 0 if \iota (\lambda 0 + \gamma q) - 1 is componentwise meromorphic in \gamma near
\gamma = 0 with a simple pole at \gamma = 0 for p= q, but is not meromorphic for 1\leq q < p. We
focus here on the case p= 2.

For any \lambda 0 \not = 0, let S\theta (\lambda 0) be the sector \{ \lambda | arg((\lambda  - \lambda 0)/\lambda 0) < \theta \} and Br =
\{ \lambda | | \lambda | <R\} .

Proposition 3.7 (inverse power method---branch points within meromorphic
domain). Given \lambda 0 \not = 0, | \lambda 0| = M , \delta > 0, and \theta < \pi /2, define \Omega = BM+\delta \setminus S\theta (\lambda 0)).
Assume that the nonlinear matrix pencil \iota (\lambda ) is pointwise meromorphic in \Omega and has
a branch pole of order 2 at \lambda 0.

Then the associated inverse power iteration

uk+1 =\scrA uk

with compactly supported initial data, (u0)j = 0, j > K, asymptotically exhibits point-
wise exponential growth with rate 1/\lambda 0 with an algebraic correction,

uk
j = \lambda  - k

0 k - 1/2Pju
0
\bigl( 
1 + \scrO 1(k

 - 1)
\bigr) 

for some nonvanishing linear map Pj defined on compactly supported sequences.

Remark 3.8.

(i) For higher-order branch points with Riemann surface covering \lambda = \lambda 0 + \gamma p,
one finds in an equivalent fashion asymptotics with growth \lambda  - k

0 k1 - 1/p.
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606 ARND SCHEEL

(ii) Another case of interest arises in x-dependent problems when \iota possesses a
branch point singularity but \iota  - 1 is continuous. In this case, for p = 2, one
finds pointwise rates \lambda  - k

0 k - 3/2 in analogy to the pointwise decay for the heat
equation on the half-line with Dirichlet boundary condition.

(iii) From the asymptotics for uk with rate \lambda  - k
0 k - \alpha , one readily derives asymp-

totics of \lambda 0,k as in Remark 3.2(iii),

\lambda 0,k \sim \lambda 0 +
\alpha \lambda 0

k
.(3.6)

In particular, predictions for the branch point converge algebraically, with
rate k - 1, regardless of the order of the branch point and \alpha , but with a pref-
actor \lambda 0 which is small for good initial guesses, suggesting effective shift
strategies. Iterating a finite number K of iterates to find a new initial guess
\lambda K
0 and restarting with the new initial guess \lambda K

0 , one finds exponential con-
vergence in k. We demonstrate this strategy in section 5.

Proof. The inverse power operator \scrA associated with \iota is invertible in z \in \Omega \prime ,
where \Omega \prime = 1/\Omega contains all inverses \lambda  - 1 of elements in \Omega . We can therefore write, in
a pointwise sense,

uk =\scrA kf =
1

2\pi i

\int 
\Gamma 

zk(z  - \scrA ) - 1fdz

for \Gamma = \partial \Omega \prime . Here, we use that the singularity of \iota (\lambda ) at \lambda 0 due to the simple pole in \gamma 
is integrable, \scrO (\lambda  - 1/2), leading to an integrable singularity of (z - \scrA ) - 1 on \Gamma . In the
following, we assume for simplicity that \lambda 0 = 1, the general case being easily obtained
from there by scaling and complex rotation. Expanding the pointwise resolvent of \scrA 
near z\ast = 1/\lambda 0 = 1, we write (z  - \scrA ) - 1 = (z  - 1) - 1/2\scrB 0 +\scrO (1), which gives

uk =
1

2\pi i

\int 
\Gamma 

zk
\Bigl( 
(z  - 1) - 1/2\scrB 0 +\scrO (1)

\Bigr) 
fdz,

Ignoring contributions from \Gamma , where | z| < 1  - \delta for some \delta > 0, we parametrize
\Gamma = \Gamma + \cup \Gamma + with \Gamma + = \{ z = 1 - e\mathrm{i}\theta \tau ,0\leq \tau \leq \delta , and find

uk \sim e\mathrm{i}\theta 

2\pi i

\int \delta 

0

(1 - e\mathrm{i}\theta \tau )k
\Bigl( 
( - e\mathrm{i}\theta \tau ) - 1/2\scrB 0 +\scrO (1)

\Bigr) 
fd\tau 

 - e - \mathrm{i}\theta 

2\pi i

\int \delta 

0

(1 - e - \mathrm{i}\theta \tau )k
\Bigl( 
( - e - \mathrm{i}\theta \tau ) - 1/2\scrB 0 +\scrO (1)

\Bigr) 
fd\tau 

= - 1

\pi 

\int \delta 

0

(1 - \tau )k(\tau  - 1/2\scrB 0 +\scrO (1))fd\tau = k - 1/2Pf
\bigl( 
1 + \scrO 1(k

 - 1
\bigr) 
.

4. Implementation of algorithms. Practically, we wish to start with an ``ex-
plicit"" matrix-valued family A(x;\lambda ) and asymptotic matrices A\pm (\lambda ) as in (2.1), all
polynomials in \lambda . In order to apply the inverse power method as described above, we
need to

(i) find a basis for E\mathrm{u}
 - (\lambda 0) and for E\mathrm{s}

+(\lambda 0);
(ii) compute Taylor expansions for E\mathrm{u}

 - (\lambda ) and for E\mathrm{s}
+(\lambda ) at \lambda = \lambda 0;

(iii) assemble the map \iota (\lambda ) represented by a power series and implement the in-
verse power iteration.

We describe these somewhat practical issues in the next three sections.
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EIGENVALUE METHODS FOR POINTWISE STABILITY 607

4.1. Finding invariant subspaces and computing Taylor jets. We describe
how to obtain invariant subspaces, expand in \lambda , and continue using Newton's method.

Schur decomposition. A typical starting point for spectral computations is the
region where stable and unstable subspaces actually correspond to the k most unsta-
ble and N  - k most stable eigenvalues, respectively. Of course, we are particularly
interested in situations where this splitting is no longer valid at the relevant eigenvalue
\lambda , but subspaces at these values are the analytic continuation from values where the
splitting is valid. We use a Schur decomposition sorting by real parts of eigenvalues
to find an orthonormal basis and an orthonormal complement to E\mathrm{u}

 - and E\mathrm{s}
+ from

the matrices A\pm (\lambda 0), all arranged in orthonormal matrices U
\mathrm{s}/\mathrm{u}
\pm .

Taylor jets. Computing Taylor jets for subspaces is a special case of comput-
ing Taylor expansions for invariant manifolds, which one readily sees by appending
the trivial equation \lambda \prime = 0. We outline the relevant steps, here. We first shift the
polynomial pencil evaluating derivatives at \lambda 0 and then conjugate with U \mathrm{s}/\mathrm{u} so that
(U \mathrm{s}/\mathrm{u})TA\pm (\lambda + \lambda 0)U

\mathrm{s}/\mathrm{u} possesses the trivial invariant subspace spanned by the first
k or N  - k coordinate vectors at \lambda = 0, respectively. In the following, we therefore
outline how to compute expansions near \lambda = 0 for a polynomial pencil of degree p
with block form corresponding to the decomposition \BbbC N = E0 \oplus E1 into canonical
eigenspaces,

A(\lambda ) =

\biggl( 
A00(\lambda ) A01(\lambda )
A10(\lambda ) A11(\lambda )

\biggr) 
,

A10(0) = 0, A00 k\times k - matrix, A11 (N  - k)\times (N  - k) - matrix.

We write the invariant subspace as a graph of H(\lambda ) : E0 \rightarrow E1, H(0) = 0, giving the
column representation E\mathrm{s}/\mathrm{u} \sim U \mathrm{s}/\mathrm{u}(F0+H(\lambda )F0)(U

\mathrm{s}/\mathrm{u})T , where the N\times k-matrix F0

forms the canonical basis in E0. Invariance of graph(H), that is,

A(\lambda )

\biggl\{ \biggl( 
F0

H(\lambda )F0

\biggr) 
, F0 \in E0

\biggr\} 
=

\biggl\{ \biggl( 
F1

H(\lambda )F1

\biggr) 
, F1 \in E0

\biggr\} 
,

is equivalent to requiring that for each F0 \in E0, there exists F1 \in E0 so that

A(\lambda )

\biggl( 
F0

H(\lambda )F0

\biggr) 
=

\biggl( 
F1

H(\lambda )F1

\biggr) 
.

This gives the matrix identity

A10(\lambda ) +A11(\lambda )H(\lambda ) =H(\lambda )A00 +H(\lambda )A01(\lambda )H(\lambda ).(4.1)

Expanding H and the Ajk in \lambda via

Ajk(\lambda ) =

p\sum 
\ell =0

A\ell 
jk\lambda 

\ell , H(\lambda ) =

\infty \sum 
\ell =0

H\ell \lambda \ell ,

we find that A0
10 = 0, H0 = 0, and, at order \ell ,

A0
11H

\ell  - H\ell A0
00 =R\ell , R\ell =

\ell  - 1\sum 
j=1

\Bigl( 
HjA\ell  - j

00  - A\ell  - j
11 Hj

\Bigr) 
 - A\ell 

10 +
\sum 

i+j+k=\ell 
0\leq j\leq p

1\leq i,k\leq \ell  - 1

HiAj
01H

k.

(4.2)
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608 ARND SCHEEL

At each order \ell = 1,2, . . ., this equation can be solved for H\ell by solving a linear
Sylvester equation for H\ell , with the linear operator explicit on the left-hand side.
The Sylvester equation can be solved effectively putting A00 and A11 into upper
triangular form using Schur decomposition. For finite- (low-) order p, the right-hand
side requires \scrO (\ell ) matrix multiplications so that the overall effort is quadratic in the
maximal order \ell .

Newton's method and continuation. We note that the formulation here also lends
itself to direct Newton and continuation approaches, which we shall exploit when
restarting the inverse power iteration. An approximate invariant subspace solves (4.1)
for some \lambda \ast with a small residual. Using Newton's method, solving again a Sylvester
equation at each step, we can find a nearby actual invariant subspace. We can also
implement continuation in \lambda , choosing for instance a generic complex path between
two spectral parameter values \lambda 0 and \lambda 1 of the form

\lambda (\tau ) = \lambda 0 + \tau (\lambda 1  - \lambda 0) + i\rho (\lambda 1  - \lambda 0)\tau (1 - \tau ), \rho \in [ - 1,1] fixed.

For a generic choice of \rho , the path would avoid isolated poles of H or branch point
singularities of the subspace so that arc length continuation would successfully find
the desired invariant subspace at \lambda 1, even if that subspace is not actually the unstable
subspace.

4.2. Assembling \iota . We illustrate how to assemble \iota in the simple case of a
discretization based on the second-order trapezoidal rule. Let (uj)j=1...n+1 be the
values at grid points xj and u\mathrm{b}\mathrm{c} = (u\mathrm{u}, u\mathrm{s}) \in \BbbC k \times \BbbC N - k a vector parametrizing
boundary conditions. The differential equation is then encoded in the Nn\times N(n+2)-
matrix corresponding to 1

h (uj+1  - uj) =
1
2 (A(xj+1;\lambda ) +A(xj ;\lambda )) with zero columns

at the end corresponding to u\mathrm{b}\mathrm{c} = (u\mathrm{u}, u\mathrm{s}). We add 2N rows corresponding to u1 =

U\mathrm{u}(\lambda )u\mathrm{u} and u1 = U \mathrm{s}(\lambda )u\mathrm{s}, where U \mathrm{s}/\mathrm{u}(\lambda ) are bases for E
\mathrm{u}/\mathrm{s}
\pm (\lambda ). The resulting

N(n+ 2)\times N(n+ 2)-square-matrix is the desired nonlinear matrix family \iota (\lambda ). It is
sparse at any order \lambda with entries in N\times 2N blocks along the diagonal at orders \ell \leq p
and with nonzero entries only in the bottom right 2N \times N -corner for orders \ell > p.

For constant coefficients, the differential equation can of course be ignored and \iota 
is simply given by the N \times N -matrix (U\mathrm{u}(\lambda )| U \mathrm{s}(\lambda )).

We implemented the family \iota (\lambda ) = \iota 0 + \iota 1\lambda + \cdot \cdot \cdot as a sparse matrix \iota = (\iota 0| \iota 1| 
\iota 2| . . . | \iota M ) allowing easy extraction of orders of iota for the inverse power iteration.

4.3. Implementing the inverse power method. We initiate the inverse power
iteration iterating \scrA in (3.2) with a random complex starting N -vector u1. Note that
the method involves shifting only, in all but the first component. In the first compo-
nent, we apply the pencil expansion terms \iota \ell and solve a linear equation with matrix
\iota 0. Having precomputed expansions up to an order M , we can then perform M it-
erates exactly. Predictions for the eigenvalue are obtained from the first component
\lambda \mathrm{p} = \langle u1, u1\rangle /\langle u1, u2\rangle . Stopping criteria are formulated in terms of tolerances for the
change in \lambda \mathrm{p} and the first components \| \lambda \mathrm{p}u2 - u1\| . After M iterations or when initial
tolerances are met, we restart the pencil iteration: we shift the symbol \iota to the new
predicted value \lambda \mathrm{p}, shifting polynomials explicitly and recomputing eigenspaces using
either continuation or a Newton method with predictor from a Taylor expansion, as
described in section 4.1. For these subsequent iterations, we use a lower truncation or-
der of the pencil Mfi\mathrm{n}\mathrm{e} \ll M with frequent restarts until a fine tolerance is met. Shifts
using step sizes roughly \tau (\lambda \mathrm{p}  - \lambda \mathrm{o}\mathrm{l}\mathrm{d}) with \tau \sim 0.8 . . .0.95 turn out to be most robust
avoiding both the problem of noninvertibility of \iota 0 at the sought-after eigenvalue and
problems of continuing and computing eigenspaces at branch points.
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EIGENVALUE METHODS FOR POINTWISE STABILITY 609

Since convergence near branch points is slow and algebraic, we also implemented
a Newton method to find the exact location of branch points for constant coefficient
problems. Branch points solve the system

A(\lambda )u - \nu u= 0, \langle e0, u\rangle  - 1 = 0,
A(\lambda )v - \nu v - u= 0, \langle e0, v\rangle = 0,

where e0 is an approximate element of the kernel of A(\lambda ) - \nu and the scalar products
are understood as Hermitian (complex valued) forms. The inverse power iteration
provides good initial guesses for \lambda . We find an initial guess for u by computing
the intersection of E\mathrm{s}

+ and E\mathrm{u}
 - at the initial guess and computing eigenvalues \nu and

eigenvectors u for A(\lambda ) restricted to this intersection.

5. Numerical examples. We demonstrate convergence and effectiveness of the
algorithms in several examples.

Pointwise growth modes---constant coefficients and branch points of the dispersion
relation. In our first example, we compute the branch point \lambda \mathrm{d}\mathrm{r} = 0 associated with
the spatial eigenvalue \nu \mathrm{d}\mathrm{r} = - 1 in

wt =wxx + 2wx +w(5.1)

with unique double root \lambda \mathrm{d}\mathrm{r} = 0 and associated \nu \mathrm{d}\mathrm{r} =  - 1, and with starting guess
\lambda 0 = 1. Convergence is, as expected, algebraic with rate 1/k but iteration is stable for a
very large number iterations, k\sim 104; see Figure 5.1. We find the predicted algebraic
convergence with rate k - 1 from Proposition 3.7 up to 104 iterates, demonstrating
that high-order Taylor expansions can be effective in this context of analytic matrix
pencils. Of course, one would in practice restart the computation once sufficient initial
accuracy is achieved; see below and Figure 5.2. We also confirmed this algebraic rate
of convergence in the Swift--Hohenberg equation,

wt = - (\partial xx + 1)2w,(5.2)

with double root \lambda \mathrm{d}\mathrm{r} = 0 and associated \nu \mathrm{d}\mathrm{r} = i or \nu \mathrm{d}\mathrm{r} =  - i, with starting value
\lambda 0 = 1 + i. Convergence is with the predicted rate k - 1, although \iota (0) has a two-
dimensional kernel associated with the two spatial roots \nu =\pm i; see Figure 5.1, center
panel. The Newton method described above indeed identifies both roots. The last

0 1 2 3 4

-4

-3

-2

-1

0

0 1 2 3

-4

-3

-2

-1

0

0 1 2 3

-4

-3

-2

-1

0

Fig. 0.1: Left: Convergence to \lambda \mathrm{d}\mathrm{r} = 0 in convection-diffusion with starting value \lambda 0 = 1 and linear
fit with slope  - 1 corresponding to an algebraic convergence rate k - 1. Center: Convergence to
\lambda \mathrm{d}\mathrm{r} = 0 in the Swift-Hohenberg (SH) equation and to \lambda \mathrm{d}\mathrm{r} = i\omega \mathrm{d}\mathrm{r} in the Cahn-Hilliard (CH) equation
with starting values 1+i and 0.5+i (CH only). Right: Algebraic convergence to \lambda \mathrm{d}\mathrm{r} = 0 for multiple
double roots in KdV and beam equation , as well as exponential convergence in the coupled transport
equation (CPW); see text for details.

Fig 5.1. Left: Convergence to \lambda \mathrm{d}\mathrm{r} = 0 in convection-diffusion (5.1) with starting value \lambda 0 = 1
and linear fit with slope  - 1 corresponding to an algebraic convergence rate k - 1. Center: Conver-
gence to \lambda \mathrm{d}\mathrm{r} = 0 in the Swift--Hohenberg (SH) equation (5.2) and to \lambda \mathrm{d}\mathrm{r} = i\omega \mathrm{d}\mathrm{r} in the Cahn--Hilliard
(CH) equation (5.3) with starting values 1 + i and 0.5 + i (CH only). Right: Algebraic convergence
to \lambda \mathrm{d}\mathrm{r} = 0 for multiple double roots in KdV (5.4) and beam equation (5.5), as well as exponential
convergence in the coupled transport equation (CPW); see text for details.
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610 ARND SCHEEL
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Fig 5.2. Left: Convergence to \lambda \mathrm{d}\mathrm{r} = 0 in the Swift--Hohenberg (SH) equation (5.2) with restarts
after 20 initial iterations, \lambda 0 = 1+ i; restarts after additional 5 and 15 iterations, respectively, and
Newton after just one restart, demonstrating exponential convergence with restarts and practically
immediate convergence with Newton for good initial guesses. Center: Fourth-order convergence in
the grid size to the eigenvalue \lambda \ast = 0 with L= 10 for (5.7). Right: Exponential convergence in the
domain size L for dx= 0.005 for (5.7).

example, shown in Figure 5.1, right panel, is the linearization at a constant state
in the Cahn--Hilliard equation, exhibiting a spinodal decomposition instability. We
consider the linearization in a comoving frame such that the double roots \lambda \mathrm{d}\mathrm{r} = i\omega \mathrm{d}\mathrm{r}

have zero real part [40]:

wt = - wxxxx  - wxx + c\mathrm{l}\mathrm{i}\mathrm{n}wx,

c\mathrm{l}\mathrm{i}\mathrm{n} =
2

3
\surd 
6

\Bigl( 
2 +

\surd 
7
\Bigr) \sqrt{} \surd 

7 - 1, \lambda \mathrm{d}\mathrm{r} =\pm i
\Bigl( 
3 +

\surd 
7
\Bigr) \sqrt{} 2 +

\surd 
7

96
.(5.3)

We also tested convergence for multiple double roots using the Korteweg--De Vries
equation

wt =wxxx, \lambda \mathrm{d}\mathrm{r} = 0, \nu \mathrm{d}\mathrm{r} = 0,(5.4)

and the beam equation,

wtt = - wxxxx, \lambda \mathrm{d}\mathrm{r} = 0, \nu \mathrm{d}\mathrm{r} = 0,(5.5)

finding the same algebraic convergence rate k - 1; see Figure 5.1, right panel. Conver-
gence to double roots in coupled transport equations from Example 2.12,

w1
t = - w1

x + \varepsilon w2, w2
t =w2

x,(5.6)

is exponential as expected, since the dispersion relation does not have a branch point
at \lambda \mathrm{d}\mathrm{r} = 0 but rather stable and unstable eigenspaces intersect nontrivially. For
\varepsilon = 0, subspaces do not intersect and the double root disappears. The algorithm picks
up this sensitivity through a long transient for small values of \varepsilon , before exponential
convergence sets in.

Speed of convergence depends on the distance to the branch point. One therefore
would usually first perform a global search for possible instabilities through identify-
ing the closest branch point to an unstable \lambda 0. As a second step, one would then try
to compute this branch point more precisely through restarting the algorithm with
a nearby initial guess as described in section 4 with restarts once increments in the
predicted value of \lambda \mathrm{d}\mathrm{r} are small. The result is exponential convergence as demon-
strated in Figure 5.2, left panel. Typically, one would perform a minimum number of
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EIGENVALUE METHODS FOR POINTWISE STABILITY 611

iterations, for instance 5, before repeated restarts since more frequent restarts yield
faster convergence. With errors in \lambda \mathrm{d}\mathrm{r} small enough, typically 10 - 3, one would switch
to a Newton method which will give machine accuracy results within 3 steps.

It is at this point interesting to also return to Example 2.13, \lambda w = wxx on x > 0
with boundary condition n1w + n2wx = 0. Our algorithm identifies (correctly) \lambda =
0 as a spectral value of \iota regardless of the choice of n1/2. Removing this branch
point singularity through the choice \lambda = \gamma 2 removes the branch singularity and our
algorithm finds the spectral values \gamma = n1/n2, regardless of whether they correspond
to eigenvalues, \gamma > 0, or resonances, \gamma < 0.

Variable coefficients---branch points, resonances, and eigenvalues. We illustrate
the performance of our algorithm in the case of variable, asymptotically constant
coefficients. We start with a fourth-order discretization with grid size dx of the Allen--
Cahn layer from Example 2.11,

\lambda w=wxx + (1 - 3 tanh2(x/
\surd 
2))w(5.7)

with eigenvalues at 0 and  - 3
2 , and a branch point at  - 2. The center and right

panel in Figure 5.2 demonstrate fourth order convergence of the compute eigenvalue
\lambda \sim \lambda \ast = 0 as dx is decreased in a domain of size L= 10, and exponential convergence
for dx= 0.005 as L increases.

Convergence to the eigenvalue is exponential with rate depending on the distance
from the eigenvalue (more precisely, the relative distance between the nearest and
next-nearest eigenvalue | \lambda 0  - \lambda 1| /| \lambda 0  - \lambda 2| ) with \lambda 1 = 0, \lambda 2 = - 1.75), which we illus-
trate in Figure 5.3, left panel, with L = 10 and dx = 0.05; compare also Proposition
3.1 and its proof. Convergence to the branch point \lambda \mathrm{d}\mathrm{r} = - 2 is algebraic as shown in
Figure 5.3, center panel; compare also Proposition 3.7. However, an initial approach
is fast, in particular for starting values close to the branch point, as reflected in (3.6).
In fact, restarting the algorithm yields exponential convergence. For starting values
close to  - 1.75, the branch point and eigenvalue at \lambda = - 1.5 are at a similar distance
and convergence only sets in after a long transient. We also computed the resonances
at \lambda = - 1.5 and \lambda = 0 with the same convergence rates, simply exchanging stable and
unstable subspaces at \pm \infty , confirming the convergence from Proposition 3.3.

Last, we present a computation of resonances in

\lambda w=wxx + F0sech
2(x)w, F0 = - 0.1, \gamma \mathrm{r}\mathrm{e}\mathrm{s} = - 1

2

\sqrt{} 
F0 +

1

4
, \lambda = \gamma 2.(5.8)

0 50 100 150

-12

-8

-4

0

0 1 2

-4

-2

0

0 1 2
-8

-4

0

Fig 5.3. Left: Exponential convergence to the eigenvalue \lambda = 0 in (5.7) with convergence rate
increasing as \lambda 0 \rightarrow 0. Center: Convergence to the branch point \lambda \mathrm{d}\mathrm{r} = - 2 for different starting values
\lambda 0; see text for details. Right: Convergence to a resonance in (5.8) past the domain of analyticity
of \iota ; see text for details.
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Writing \lambda = \gamma 2 removes the branch point at \lambda = 0 and allows for detection of the
resonance closest to \gamma \mathrm{r}\mathrm{e}\mathrm{s}. We use F0 =  - 1/10, which gives \gamma \mathrm{r}\mathrm{e}\mathrm{s} = ( - 1 +

\sqrt{} 
3/5)/2 \sim 

 - 0.1127. The stable subspace at \gamma 0 > 0 is given by (1, \gamma 0)
T . Writing eigenspaces

as graphs over this subspace yields a pole at \gamma =  - 1/\gamma 0. In particular, for \gamma 0 = 12,
the series expansion of the boundary condition has a pole at \gamma =  - 1/12 \sim  - 0.0833,
between \gamma 0 and \gamma \mathrm{r}\mathrm{e}\mathrm{s}, so that \gamma \mathrm{r}\mathrm{e}\mathrm{s} is not located within the radius of convergence of \iota 
when choosing this initial value. Figure 5.3, right panel, demonstrates convergence in
this situation as predicted by Proposition 3.3. Convergence is slow and can again be
accelerated using restarts, as is clear from the rates of convergence for initial guesses
closer to \gamma \mathrm{r}\mathrm{e}\mathrm{s}.

Computation times are all less than 10 seconds, with the exception of the example
in Figure 5.1, left panel, where a very large number of iterations was performed
and a very high order of the Taylor expansion needs to be precomputed, leading to
computation times of roughly 3 minutes on a laptop.

Large problems. Elliptic problems in cylindrical domains (x, y)\in \BbbR \times \Omega yield, after
discretization in the y-direction, high-dimensional problems of the form (2.1), N \gg 1.
We demonstrate that the methods here are capable of treating such problems with
the example of a Schr\"odinger eigenvalue problem with a localized potential trap and
absorbing boundary conditions,

wxx +wyy + \varepsilon V (x, y)w= \lambda w, (x, y)\in \BbbR \times ( - \pi ,\pi ), w(x,\pm \pi ) = 0,

V (x, y) = sech2
\Bigl( \sqrt{} 

x2 + y2
\Bigr) 
.(5.9)

One readily finds the essential spectrum at ( - \infty , - 1
4 ] terminating in a branch point

at  - 1
4 , which we resolve by considering the problem on the Riemann surface with new

eigenvalue parameter \gamma =
\sqrt{} 
\lambda + 1

4 and branch cut of the square root at the negative

real line, which gives

wxx +wyy + \varepsilon V (x, y)w=

\biggl( 
\gamma 2  - 1

4

\biggr) 
w, (x, y)\in \BbbR \times ( - \pi ,\pi ), w(x,\pm \pi ) = 0.

(5.10)

For \varepsilon \gtrsim 0, the eigenvalue problem possesses a unique eigenvalue \lambda \ast (\varepsilon ) with expansion

\lambda \ast (\varepsilon ) = \gamma \ast (\varepsilon )
2  - 1

4
, \gamma \ast (\varepsilon ) = \gamma 1\varepsilon +\scrO (\varepsilon 2), \gamma 1 =

1

2\pi 

\int 
x,y

V (x, y) cos2(y/2) = 0.567402 . . . ,

(5.11)

using [44] with technical adaptations as in [14]. Eigenfunctions have asymptotics

u(x, y)\sim cos(y/2)e - \nu | x| for | x| \rightarrow \infty with \nu = \gamma =
\sqrt{} 

\lambda + 1
4 .

For \varepsilon \lesssim 0, the eigenvalue changes into a resonance pole at \lambda \ast (\varepsilon ) with the same ex-
pansion (5.11). The eigenfunction exhibits asymptotic growth u(x, y)\sim cos(y/2)e\nu | x| +

\scrO (e - \eta | x| ) for | x| \rightarrow \infty with \nu = \gamma =
\sqrt{} 
\lambda + 1

4 and \eta =\scrO (1) as \varepsilon \rightarrow 0.

Truncating the unbounded strip to (x, y)\in ( - L,L)\times ( - \pi ,\pi ) with, say, Dirichlet
boundary conditions at x = \pm L yields truncation errors for eigenvalues, \varepsilon > 0, of
order e - 2\nu L, thus requiring L \gg 1/\varepsilon . The essential spectrum breaks into clusters of
eigenvalues with gaps \scrO (L - 2) starting at \lambda = - 1/4; see [36]. Resonances \lambda \ast (\varepsilon ), \varepsilon < 0,
cannot be found easily in such truncations.
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2 4 6 8 10 12
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-0.1

0

0.1

0.2

-0.2 0 0.2 0.4 0.6

-0.1

0

Fig 5.4. Left: Exponential convergence of computed eigenvalues in (5.9) with domain size L
to limits \lambda \ast = 0.076763657389 (\varepsilon = 1.5) and \lambda \ast =  - 0.24923674 (\varepsilon = 0.05); slopes from linear fit
 - 3.11 (\varepsilon = 1.5) and  - 2.04 (\varepsilon = 0.05) correspond well to theoretical predictions  - 3.14 and  - 2.054,
respectively. Center and left: Smooth continuation of eigenvalues \lambda = \gamma 2  - 1/4 into resonance poles
as functions of \varepsilon , with starting value \gamma = 0.1. Best linear approximation at \varepsilon = 0 from \varepsilon = 10 - 3 gives
\gamma \sim 0.56709\cdot \varepsilon which compares well with (5.11). Also shown are results for a fourth-order Schr\"odinger
equation with the same potential, (5.13), with linear expansion \gamma \sim 0.802428 \cdot \varepsilon , \lambda = \gamma 2  - 1

16
, again

in excellent agreement with theory (5.14).

In our approach, we rewrite (5.10) in the form

ux =A(x;\lambda )u, A(x;\lambda ) =

\biggl( 
0 1

 - \partial yy  - \varepsilon V (x, y) + \gamma 2  - 1
4 0

\biggr) 
,(5.12)

and discretize \partial yy, using fourth-order centered finite differences and Dirichlet bound-
ary conditions. We tested spatial discretizations at \varepsilon = 1.5, finding that the y-
discretization error is well below 10 - 8 with Ny = 300, based on a reference eigenvalue
with Ny = 450. We used comparable discretization in x, so that dx\sim dy\sim 0.02.

Determinants of \iota 0 evaluated to infinity for even moderate grids and any attempt
at finding eigenvalues using winding number arguments for determinants would likely
require renormalizations, using for instance Fredholm determinants, for which, how-
ever, numerical computations are not well developed [7].

The asymptotic boundary conditions used in our formulation imply convergence
with a uniform rate when \varepsilon \sim 0 as L \rightarrow \infty . Boundary conditions are accurate with
rate e - 2L given by the convergence rate of V , leading to a predicted error e( - 2 - 2\gamma )L,
matching well the numerically observed error shown in Figure 5.4 (left panel).

We used L = 8, Ny = 300, Nx = 800, dy \sim dx = 0.02, to compute the eigenvalue
for different values, of \varepsilon . For starting values, \lambda 0 = 0.1 and we found convergence
with errors on the order of 10 - 6 within 40 primary iterations. Clearly, a continuation
approach would be more effective for computing the resulting curves of eigenvalues
and resonances shown in Figure 5.4 (center and left panel)---the rapid convergence for
fixed starting values, however, demonstrates the broader applicability of our approach.
Asymptotics near \varepsilon = 0 agree very well with the prediction from (5.11); see Figure 5.4
for comparison.

In the slightly harder problem with fourth-order dispersion,

 - (\partial xx + \partial yy)
2
+ \varepsilon V (x, y)w= \lambda w, (x, y)\in \BbbR \times ( - \pi ,\pi ), w(x,\pm \pi ) = 0,

V (x, y) = sech2
\Bigl( \sqrt{} 

x2 + y2
\Bigr) 
.(5.13)

One can mimic the theoretical prediction near the edge of the essential spectrum
\lambda \mathrm{b}\mathrm{p} = - 1

16 and find the expansion for the eigenvalue and resonance at \varepsilon = 0,

\gamma =
\surd 
2\gamma 1\varepsilon +\scrO (\varepsilon 2),

\surd 
2\gamma 1 = 0.802428 . . .(5.14)

with \gamma 1 from (5.11).
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We also computed eigenvalues for the potential V (x, y) = 1
2 sech

2(x2 ), in particular
\lambda = 0 with eigenfunction cos(y2 ) sech (

x
2 ), confirming the convergence rates documented

above when an explicit eigenvalue is known.
Computation times are several minutes on a laptop. Memory requirements limit

the system size since matrices are full in the index for the y-component. A sparse
approximation of \iota , even for constant-in-x problems would be desirable.

Spreading speeds. Localized disturbances of an unstable state grow temporally
and spread spatially. The spatial spreading can be captured via the study of pointwise
instabilities in comoving frames; see [22] for background. Using the algorithms above,
one would compute branch points in a constant-coefficient problem

\lambda w=\scrP (\partial x)w or ux =A(\lambda )u.

One would then track double roots \lambda \mathrm{d}\mathrm{r} with associated spatial exponent \nu \mathrm{d}\mathrm{r} using
numerical continuation as a function of c in

\lambda w=\scrP (\partial x)w+ cwx or ux = \~A(\lambda , c)u.(5.15)

Increasing c, one tracks \lambda \mathrm{d}\mathrm{r}(c) and finds the largest value c\mathrm{l}\mathrm{i}\mathrm{n} of c so that Re\lambda \mathrm{d}\mathrm{r}(c) = 0.
One would then, for this specific value of c, verify that there are no unstable double
roots, leaving open, however, the possibility of instabilities for yet larger values of c.

We mention here a more direct method that directly yields critical values c\mathrm{l}\mathrm{i}\mathrm{n} in
the case where the associated branch point \lambda \mathrm{d}\mathrm{r} is real. One therefore simply considers
(5.15) with \lambda = 0,

ux = \~A(0, c)u,(5.16)

as a nonlinear eigenvalue problem in c! ``Eigenvalues"" c correspond to values of c where
pointwise growth is neutral, \lambda \mathrm{d}\mathrm{r} = 0, and thus yield all candidates for linear spreading
speeds, with the largest one typically being most relevant. We verified numerically
that this algorithm performs very well in the extended Fisher-KPP equation,

wt = - \varepsilon 2wxxxx +wxx +w - w3 with linearization wt = - \varepsilon wxxxx +wxx +w,

and spreading speeds

c\mathrm{l}\mathrm{i}\mathrm{n} =
1

9

\sqrt{} 
6 - 6

\surd 
1 - 12\varepsilon 2

\varepsilon 2

\Bigl( \sqrt{} 
1 - 12\varepsilon 2 + 2

\Bigr) 
for \varepsilon 2 <

1

12
.

We note that spreading speeds may be (and indeed are in this example for \varepsilon 2 > 1
12 )

associated with complex values \lambda \mathrm{d}\mathrm{r} = i\omega \mathrm{d}\mathrm{r}, which are not detected by this procedure.
The algorithm rather yields complex speeds c\mathrm{l}\mathrm{i}\mathrm{n} which do not appear to be relevant
to the stability problem.

6. Summary and outlook. We proposed an inverse power method as a ver-
satile tool to locate spectral values of differential operators on the real line. The
method identifies all singularities of the pointwise Green's function, including eigen-
values, resonances, and branch points, finding in particular the closest singularity to
a given reference point \lambda \ast . Pointwise methods have been used mostly in connection
with the Evans function, effectively taking determinants. We hope that our view point
provides a robust alternative to such determinant-based methods and will then prove
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EIGENVALUE METHODS FOR POINTWISE STABILITY 615

useful particularly in large systems. In future work, we plan to investigate effective
strategies for large systems, when bases for stable and unstable subspaces yield full
matrices for \iota , and the case of periodic coefficients. On the other hand, it appears to
be difficult to adapt this formalism to yield spreading speeds also in the oscillatory
case \omega \mathrm{d}\mathrm{r} \not = 0, and to multidimensional problems. Similarly, the pointwise formulation
adapted here relies strongly on a ``local"" formulation in x, excluding to some extent
spatially nonlocal coupling that does not permit a formulation as a first-order spatial
ODE through linearization of the matrix pencil in \partial x; see, however, [14, 15, 41] for
techniques that recover ``pointwise"" descriptions in this nonlocal setting. Similarly,
effective computational tools to analyze multidimensional problems in this pointwise
context do not appear to be available; see, for instance, [8] for a discussion of pointwise
instabilities in constant-coefficient, multidimensional problems.

Code. Code used for the computations in the examples is available at the repos-
itory https://github.com/arnd-scheel/nonlinear-eigenvalue
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