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Abstract

In recent years, computability theorists have extensively studied generically and coarsely computable sets. This study of
approximate computability was originally motivated by asymptotic density problems in combinatorial group theory. We
generalize the notions of generic and coarse computability of sets, introduced by Jockusch and Schupp, to arbitrary structures
by defining generically and coarsely computable and computably enumerable structures. There are two directions in which
these notions could potentially trivialize: either all structures could have a densely computable copy or only those having
a computable (or computably enumerable) copy. We show that some particular classes of structures realize each of these
extremal conditions, while other classes realize neither of them. To further explore these concepts, we introduce a graded
family of elementarity conditions for substructures, in which we require that the dense sets under consideration be ‘strong’
substructures of the original structure. Here, again, for a given class, the notion could trivialize in the same two directions
and we show that both are possible. For each class that we investigate, there is some natural number » such that requiring X,
elementarity of substructures is enough to trivialize the class of generically or densely computable structures, witnessing the
essentially structural character of these notions.
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1 Introduction and preliminaries

Results about complexity of problems in computable structure theory typically depend on the
behaviour of the hardest instances of the problem, which are not always common. One such
motivating problem, the word problem, came from algebra. A standard construction of a finitely
presented group with undecidable word problem [13] involves not just getting the right example of a
group; the particular words within this group on which it is difficult to decide equality to the identity
are very special words (and are even called by this term in some expositions).

The idea of studying generic properties of finitely presented groups goes back to Gromov’s 1987
seminal paper [8] on hyperbolic groups. Gromov [7] further developed this idea by introducing
the density model of random groups, where a certain density parameter controlled the number of
defining relations put in a random group. Further research on generic group-theoretic properties was
carried on by Olshanskii, Champetier, Arzhantseva, Zuk, P-A. Cherix and others.

In 2003, Kapovich, Myasnikov, Schupp and Shpilrain [11] investigated generic-case complexity
of decision problems in group theory. They showed that for a very large class of finitely generated
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582  Densely computable structures

groups, the classical decision problems, such as the word problem, the conjugacy problem and the
subgroup membership problem, have linear-time generic-case complexity.

In 2012, Jockusch and Schupp [10] introduced two notions of approximate computability,
generically computable and coarsely computable sets. Roughly speaking, a generically computable
set has a computable approximation that almost always gives an answer and is always correct; a
coarsely computable set has a computable approximation that always gives an answer and is almost
always correct. More precisely, a set is generically computable if there is a partial computable
function with values in {0, 1}, the description of the set, with the domain of density one on which the
set agrees with the function. A set is coarsely computable if there is a (total) computable function
with values in {0, 1} such that the set agrees with the function on a subset of density one. These two
notions are distinct from each other. It was shown that they are incomparable even when restricted
to computably enumerable sets. Moreover, Jockusch and Schupp showed that every nonzero Turing
degree contains a set that is neither coarsely computable nor generically computable.

A structure is computable if its domain is a computable set and its relations and functions are
uniformly computable. In this paper, we introduce and investigate generically computable and
coarsely computable structures. In each case, the question is whether some ‘large’ substructure is
relatively computable. Here, again, ‘large’ is in the natural density sense to be precisely defined
below. Assume that all structures are countable with domain w. As usual, we will abbreviate
computably enumerable by c.e. As set of natural numbers is c.e. if and only if it is the domain of
a partial computable function. Roughly speaking, a structure with an r-ary relation R is generically
computable if there is a substructure with a c.e. universe D of density one, such that there exists a
partial computable r-ary function ¢ with values in {0, 1} such that ¢ agrees with R on D’.

The word problem for a finitely presented group G, where

G:<g1,"-7gk|r1,"-7rm)5

asks for an algorithm to decide whether a word w in {gi,...,g, gl_l,..., gk_l} represents the
identity element of G. The classical theorem of Novikov and Boone establishes that there exists
a finitely presented group with undecidable word problem. A group is computable if its domain is
computable and the group operation is computable. It is not hard to prove that a finitely presented
group has a computable isomorphic copy if and only if it has a decidable word problem. Kapovich,
Myasnikov, Schupp and Shpilrain [11] established that a finitely presented group with undecidable
word problem, given by Boone, has, in our sense, a generically computable copy.
There are, roughly, two extremal possibilities for structures in general.

(1) Every countable structure has a generically computable copy; or
(2) Every countable structure with a generically computable copy has a computable copy.

There are also analogous results for coarsely computable structures. We will show that each of these
can be achieved in certain classes and that they do not exhaust all possibilities. We will also explore
these conditions under the added hypothesis that the ‘large’ substructures in question be, in some
weak sense, elementary. Again, we find that there are natural extremal possibilities and that both
they and non-extremal cases are achieved. Finally, we find that as the elementarity hypotheses are
strengthened, all known cases eventually (i.e. when we have X, elementarity for sufficiently large n)
trivialize. This demonstrates that these notions of dense computability are structural—they depend
fundamentally on the semantics of the structure, and not only on the density or algorithmic features
of the presentation.
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Densely computable structures 583

It would be interesting to consider whether any appropriate class of structures (perhaps with
bounded Scott rank or some similar condition) would trivialize at some level, but we do not yet
have a solution for this general problem. To our thinking, this recalls the feature of computable
categoricity by which every structure with a I1,11 Scott sentence is Ag—categorical [12].

While we are concerned with initiating a systematic study of generic and coarse computability
within computable structure theory, in computability theory in recent years, the study of generically
and coarsely computable sets and related notions has led to a rich and interesting program of
research; see [9] for a partial survey. Andrews, Astor, Cai, Cholak, Diamondstone, Downey,
Hirschfeldt, Igusa, Jockusch, Kuyper, Lempp, McNicholl, Shupp and other researchers studied
several computability-theoretic aspects of various notions of approximate computability.

In [6], Downey, Jockusch and Schupp studied some variations of the notions of generically and
coarsely computable sets, e.g. whether a set contains a density one computable subset, i.c. has a
computable approximation that always gives an answer, is almost always correct and is always correct
when the answer is positive. In particular, they showed that every c.e. set can be approximated by a
computable subset with arbitrarily close lower density. They also showed that a c.e. Turing degree is
non-low (i.e. its jump is strictly above the Turing degree of the halting set) if and only if it contains
a c.e. set of density one with no density one computable subset.

Downey, Jockusch, McNicholl and Schupp [5] classified the asymptotic densities of A‘Z) (limit
computable) sets according to their levels in the Ershov hierarchy, i.e. according to the number of
changes in their computable approximations. They showed that, with respect to density, the Ershov
hierarchy collapses in certain sense to levels 0, 1,2 and w.

As stated before, our goal is to distinguish which results in computable structure theory depend
on ‘special’ (and potentially extremely rare) cases, and which are less sensitive to them. To achieve
this goal in the context of decision problems on groups, Kapovich, Myasnikov, Schupp and Shpilrain
[11] proposed using notions of asymptotic density to state whether a partial computable function
could solve ‘almost all’ instances of a problem.

Jockusch and Schupp [10] generalized this approach to the broad context of computability theory
in the following way.

DEFINITION 1.1
LetS C w.

(1) The density of S up to n, denoted by p,(S), is given by
1SN {0,1,2,...,n}|
n+1 '

(2) The asymptotic density of S, denoted by p(S), is given by lim,—, o0 0, (S).

A set S is generically computable if there is a partial computable function ¢ : @ — {0, 1}, such
that ¢ = cg on the domain of ¢, and such that the domain of ¢ has asymptotic density 1.

A set S is coarsely computable if there is a fotal computable function /2 : @ — {0, 1} such that
agrees with cg on a set of asymptotic density 1. Equivalently, there is a computable set H such that
the symmetric difference SAH has asymptotic density 0.

We will need the following result from [10].

THEOREM 1.2 (Jockusch—Schupp).
There is a generically computable set that is not coarsely computable, and there is a coarsely
computable set that is not generically computable.
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584  Densely computable structures

For instance, the word problem for finitely generated groups is not generically computable, while
it is coarsely computable.

We would like to extend the notions of being generically computable and coarsely computable
from sets to structures. Assume that .4 is a given structure with universe w and with finitely many
functions {f; : i € I}, each f; of arity p;, and finitely many relations {R; : j € J}, each R; of arity 7;.
We would like to define what it means for .4 to be generically computable, or ‘nearly computable’
with respect to some other notion related to density. The idea is that A is generically computable if
there is a substructure D with a c.e. universe D that has asymptotic density one, for which there exist
partial computable functions {¢; : i € I} and {; : j € J} such that ¢; agrees with f; on D/, and
¥; agrees with cg, on D'/. Similarly, a structure \A is coarsely computable if there is a computable
structure £ and a dense set D such that the structure D with universe D is a substructure of both A
and of £ and all relations and functions agree on D. A more interesting variant of this notion requires
that D is a X' elementary submodel of A, and, more generally, a ¥, elementary submodel of A .
That is, if we say that A is ‘nearly computable’ when it has a dense substructure D that is c.e., then
the substructure should be similar to .A by some model-theoretic criterion.

To be precise, we say that D is a X, elementary substructure (submodel) of A if for any infinitary
X, formula 6 (xy, .. .,x,) and any n-tuple of elements dy, . ..,d, € D, we have

AEO,....d)) & DEO,....dy).

We are aware of the slight tension in using the term ‘elementary’ to refer to L, properties, but
believe the term to be justified by its usage; at issue is the condition that the substructure should
satisfy the same formulas as the superstructure.

We note that being a Xy elementary substructure is the same as being a substructure since B
is a substructure of A if and only if the domain of B is contained in the domain of A, and A
and B satisfy the same quantifier-free sentences with constants from 3. Moreover, the classical and
infinitary notions of elementarity coincide at the X' level.

We say that the structure A is X,-generically c.e. if there is an asymptotically dense c.e. set D
such that:

(a) Disa X, clementary substructure of A;
(b) There exist partial computable functions {¢; : i € [} such that ¢; agrees with f; on DP/;
(c) Each R; restricted to D'/ is a c.e. relation.

We similarly define the notion of a X, coarsely c.e. structure.

EXAMPLE 1.3

Let A = (4, E) be a countable directed graph consisting of infinitely many finite chains of distinct
lengths. Let C(A) be the set of lengths of the chains. The structure A is c.e. if 4 is a c.e. set and E
is a c.e. relation. For a c.e. structure A, C(A) will be a 23 set. Then A is generically computable
if there is an asymptotically dense c.e. set D such that a partial computable function agrees with
cgonD.

We will also be interested in the question of whether a structure A has a generically computable
copy and, more generally, a X,-generically c.e. copy. In this example, we will show that any such
structure A will have a generically computable copy. Build the generically computable copy as
follows. Let D = {dy < d; < ---} be an asymptotically dense, co-infinite computable set and
put edges from d», to dp,,+1 for each n. Then use w \ D to fill out the needed (c,, — 1) vertices at the
front of each chain to obtain a copy of A.
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Densely computable structures 585

Suppose now that D is a X elementary substructure of such a graph A. Then for each a € 4,
the chain containing a must be included in D. For example, if @ is in the chain agEaEasEasz, then
A E (x)xEa. Thus D = (Ix)xEa and, therefore, ag € D. Similarly, A &= (Jy)(Fz)(¢Ey A yEz)
and, therefore, a; and a3 must be in D. Thus, a structure .4 will be X'|-generically c.e. if there is an
asymptotically dense set c.e. set D such that D = (D, E) is a X'|-elementary substructure of A, and
EN (D x D) isac.e. relation of A. Then the structure A will have a X|-generically c.e. copy if and
only if there exist C € C(A) and a c.e. structure D with C(D) = C.

Finally, suppose that D = (D,E) is a X, elementary substructure of .A. This will imply that
C(D) = C(A) and hence D = A. It follows that A is X,-generically c.e. if and only if A is a c.e.
structure. Thus, a structure A has a X»-generically c.e. copy if and only if it has a c.e. copy.

EXAMPLE 1.4

Fix a prime p, and consider a p-group A = @,ecZ(p") for some infinite set C. If A is computable,
then Cisa 23 set and, furthermore, C has a computable Khisamiev s -function, the details of which
are given below in Section 4. Conversely, for any 23 set C with a computable s;-function, there is
such a computable structure A isomorphic to @,ccZ(@").

Any such structure A will have a generically computable copy. Let A = @;.,{a;), where
o(a;) = p™. Then consider the subgroup B = @®;, (p"'a;), which is isomorphic to @®;-,Z(p).
We observe that B is not a X elementary subgroup, since for each n; > 1, the element p"i~!
has height (n; — 1) in A but has height 1 in 5. The structure 55 has a computable copy, and we can
construct a generically computable copy of A with the corresponding subgroup on an asymptotically
dense set.

Suppose now that D is a X| elementary subgroup of A. By x (3) we denote the character of B.
Then x(B) € x(A). If A is Xi-generically c.e., then x(A) has a Z‘g subset that possesses a
computable si-function. Thus if 4 has a X|-generically c.e. copy, then C must have a Eg subset
with a computable s1-function.

Finally, suppose that 55 is a X, elementary subgroup of .A. Then we claim that x (B) = x (A). To
see this, let n € C. Then in A, there exists an a such that o(a) = p" and (a) is a pure subgroup of A.
However, this is a Eg sentence, and therefore B also has such an element a. If {n; : i < w} is a set of
distinct elements, then, in fact, B = A.

These notions prove quite interesting for certain families of structures. We will examine in some
detail the notions of generically computable and coarsely computable structures, and the variations
described above for injection structures and equivalence structures.

The outline of this paper is as follows. In Section 2, we present some background on asymptotic
density and generalize the notion of generic computability from sets to structures. We show that a
set A C w has asymptotic density & if and only if the set 4 x 4 has density 8% in w x w. We show
that there is a computable dense set C € w X w such that for any infinite c.e. set 4, the product
A x A is not a subset of C. These results guide us in our choice of the definition of a generically
computable structure. We also introduce, for n > 0, a X,-generically c.e. structure using the notion
of a X, elementary substructure.

In Section 3, we first present results about computable and c.e. injection structures including
some complexity results about their orbits and characters. Then we establish results about injection
structures that have generically computable and X'1-generically c.e. isomorphic copies. We show that
an injection structure A has a generically computable copy if and only if it has an infinite orbit or its
character has an infinite subset. We also show that an injection structure A has a X'|-generically c.e.
copy if and only if it has a computable copy.
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586 Densely computable structures

In Section 4, we present results about generically computable and X,,-generically c.e. equivalence
structures. We obtain a surprising result that every equivalence structure A has a generically
computable isomorphic copy. We further give a natural characterization of equivalence structures
with X, -generically c.e. isomorphic copies, in terms of the properties of their characters or of their
infinite classes. In particular, we show that an equivalence structure .4 has a X'| -generically c.e. copy
if and only if it has an infinite substructure that is isomorphic to a c.e. structure. We also show that .4
has a X»-generically c.e. copy if and only if it has a c.e. copy. First, we extend an important lemma
from [1] to show that any c.e. equivalence relation on a c.e. set, with no infinite equivalence classes
and with unbounded character, has a computable Khisamiev s1-function.

In Section 5, we introduce the notions of coarsely computable and X,-coarsely c.e. structures.
Our notion of a coarsely computable structure is a natural extension of the notion of a coarsely
computable set. It follows that generically computable and coarsely computable structures are
incomparable. While every generically computable injection structure has a coarsely computable
copy, there is a generically computable injection structure that is not coarsely computable. We show
that there are equivalence structures that have no X'j-coarsely c.e. copies and that there are injection
structures that have no coarsely computable copies. For injection structures, a X'|-generically c.e.
structure, or a X|-coarsely c.e. structure, is always isomorphic to a computable structure. An
equivalence structure is X3-coarsely c.e. if and only if it has a c.e. copy.

2 Asymptotic density and generically computable structures

In this section, we provide some background on the notions of generically computable and coarsely
computable sets. We extend these notions to structures by defining more general notions of
generically computable and X,-generically c.e. structures, and also of coarsely computable and
X -coarsely c.e. structures. In subsequent sections, we will examine these notions when applied
to injection structures and to equivalence structures.

The asymptotic density of a set A C w is defined as follows.

DEFINITION 2.1

e The upper asymptotic density of A is limsup, (Amn)l
e The lower asymptotic density of 4 is liminf, Ltm] (A;m)l .

The asymptotic density of 4 is lim,, ‘(Anﬂ, if this exists.

We say that a set A4 is dense if its asymptotic density is 1.

It is easy to see that 4 has asymptotic density ¢ if and only if 4 has both upper and lower density §;
A has density 1 if and only if it has lower density 1; and 4 has density 0 if and only if it has upper
density 0. Downey, Jockusch and Schupp [6] proved that there is a c.e. set of density 1 with no
computable subset of nonzero density.

The following observation will be useful. Note that the set 4 has upper density 1 if and only if
there is a sequence ng < n; < --- such that lim; ‘AQZ"’l =1.

LEMMA 2.2
If 4 is a c.e. set with upper density 1, then 4 has a computable subset with upper density 1.

PROOF. Suppose that 4 is a c.e. set with upper density 1. Let (45)se, be a computable enumeration
of A. Define computable sequences ng,ny,ns,... and sg,si,s2,... as follows. Let ng = so = 0.
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Densely computable structures 587

Let s; be the least s such that, for some n < s, we have [n N A4g| > %n, and let n; be the least
such n. Given ng and sg, let s;4 be the least s such that, for some n with n; < n < s, we have

|(n —ng) NAg| > 2 (n — ny), and let nr4 be the least such n. The computable dense set B C 4

. . 25+ .
is defined so that, for each i, if ny < i < ngy1, theni € B & i € 4 It follows from the

M1+
. . S . k_
construction that, for each k, the density of B in {i : i > ny} is at least 22—kl, so that B has upper
density 1. O

In order to study binary relations and the corresponding structures, we need to look at notions
such as generic computability for such relations.

LEMMA 2.3

Let 4 € w. Then A4 has asymptotic density & if and only if 4 x A has asymptotic density 8% in
o X w. In particular, 4 is asymptotically dense in w iff 4 x 4 is asymptotically dense in w x w. More
generally, if 4 has asymptotic density § 4, and B has asymptotic density §p, then 4 x B has asymptotic
density 84 - 8p.

PROOF. Let 84(n) = 40 and let §(n) = (X000 Since (4 x )N (n x n) = (ANn) x (ANn),

n
it follows that |(4 x 4) N (n x n)| = |4 N n|* and hence 8(n) = 84(n)%. If lim, 84(n) = § exists,
then lim, 8(n) = lim, 8,(4)? = §2. Conversely, if lim, §(n) = L = 82 exists, then lim, 84(n) =

lim,, /3,(4) = VL = 6.

For the second part, let §4(n) = @ and §p(n) = ‘ZL"' and suppose that §4 = lim, §4(n) and

ép = lim,, 8, (B) both exist. Then §(n) = [(A x B) N (n x n)| = §4(n) x 5g(n) solimé(n) = 84 - g
n

is the asymptotic density of 4 x B. ]

A similar result holds for the density of 4" in @”. On the other hand, we have the following result.
Let Wy, W1, ... be an effective enumeration of all c.e. sets.

THEOREM 2.4
There is a computable dense set C € w x w such that for any infinite c.e. set A C w, the product
A x A is not a subset of C.

PROOF. Define C as follows. For any pair (a, ) with max{a, b} = m, proceed as follows. For each
e < m, look for the first element n > 2¢, which has been enumerated in ¥, by stage m; call this n, if
it exists. Then put (a,b) € C, unless either @ = n, or b = n, for some e < m. If W, is infinite, then
it contains some element 7, > 2¢, which is the first to come into W, at some stage s., and then there
will be another n € W, that is greater than s, but (n.,n) will not be in C. The set C is dense since
there are at most i elements less than 2! of the form n, for any e < i, so C contains at least (2 — i)?
elements out of the 2% possible pairs up to 2. O

Considering Lemma 2.3 and Theorem 2.4, our definition of a generically computable structure
with a binary relation calls for a dense set D in the domain so that the characteristic function on the
relation agrees with some partial computable function restricted to D x D, rather than with some
partial computable function restricted to a dense set in w x . The most natural notion seems to
require that the substructure with domain D resembles the given structure A by agreeing on certain
sentences with constants from D, existential sentences in particular. Recall the following definition
of elementary substructures.
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588 Densely computable structures

DEFINITION 2.5
A substructure 55 of the structure A is said to be an elementary substructure, in symbols B < A,
if for any first-order formula 6 (xy,...,x,) and any by,...,b, € B, we have B |= 0(by,...,b,) &
AE6(b,...,by).

Let n > 0. The substructure B is a X, elementary substructure, in symbols B <, A, if for
any infinitary X, formula 6(x,...,x,) any by,...,b, € B, we have B |= 0(by,...,b,) & A =
0(by,...,by).

DEFINITION 2.6

A structure D for a finite language and with universe D is a c.e. structure if D is c.e., each relation
is c.e. and each function is the restriction of a partial computable function to D (hence the partial
computable function is total on D).

DEFINITION 2.7

(1) A structure A is generically computable if there is a substructure D with universe a c.e.
dense set D such that for every k-ary function f and every k-ary relation R, both / | D* and
cr | D are restrictions to D* of some partial computable functions.

(2) Letn > 0. A structure A is X,-generically c.e. if there is a c.e. dense set D such that the
substructure D with universe D is a c.e. substructure and also a X, elementary substructure

of A.

The condition that A is a Xy-generically c.e. structure is equivalent to the condition that A is
generically computable. Clearly, any X, 1-generically c.e. structure is X,-generically c.e.

EXAMPLE 2.8

Consider a structure of the form A4 = (w, 4), where 4 is a unary relation. By ¢4 we will denote the
characteristic function of A. First, suppose that 4 is a generically computable set. Let ¢ be a partial
computable function such that D = dom(¢) is a dense c.e. set and, for every x € D, ¢ (x) = c4(x).
Then the substructure D = (D, 4 N D) can be considered a c.e. substructure of A since ¢ is total on
the set D, and, therefore, A is a generically computable structure. On the other hand, suppose that 4
has a substructure D = (D, 4 N D) where D is a c.e. dense set such that there is a partial computable
function ¢ that agrees with ¢4 on D. The restriction of ¢ to D gives the description of 4 establishing
that the set 4 is generically computable. Similarly, we can show that A is X'|-generically c.e. if and
only if there is a dense c.e. set D such that 4 N D is an infinite c.e. set.

In the following sections, we will study generic computability of specific families of structures,
such as injection structures and equivalence structures and will also investigate the notion of a
coarsely computable structure.

3 Generically computable and X'|-generically c.e. injection structures

We will now focus on injection structures and their dense computability.

DEFINITION 3.1
An injection structure A is a set A together with a one-to-one function f : 4 — A.
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Densely computable structures 589

Without loss of generality, we may assume that 4 C w. Recall that A = (4,f) is computable if
A is computable and f is computable, and A is c.e. if 4 is c.e. and f is the restriction of a partial
computable function to A4.

Let a € A. The orbit Oy (a) of a under 1" is

Or@)={x: @necw)x="0) v a="w])

Orbits are either finite or infinite. Infinite orbits may be of type Z where Or(a) =
{...,f’z(a),f’l(a),a,f(a),fz(a),...} or of type w where for some b not in the range of f,
Or(a) = {b,f(b),f?(b),...}. The character of A is

x(A) = {(k,n) € (w\ {0}) x (w\ {0}) : A has at least n orbits of size k}.

DEFINITION 3.2
AsetK C (w\{0}) x (w\ {0}) is said to be a character if, forall k and n > 1, (k,n+ 1) € K implies
(k,n) e K.

It is easy to see that K is a character if and only if K = x (A) for some injection structure A.

Computable and c.e. injection structures were investigated by the authors together with Morozov
[2] and by Cenzer, Harizanov and Remmel [4], where the following results were shown. By card (X)
or | X| we will denote the cardinality of X.

LEMMA 3.3

For any c.e. injection structure A, we have the following properties.
(1) {(a,k) :a e ran(f®)}isac.e. set.
(2) {(a,k) : card(Ory)) = k}isac.e. set.
(3) {a: Or(a) is infinite} is the intersection of a [T ? set with 4.
4) {a:Or(a) hastype Z}is a Hg set.
(5) {a:Or(a) hastype w}isa Z‘g set.
(6) x(A)isac.e. set.

PROPOSITION 3.4

For any c.e. character K, there is a computable injection structure A = (w,f) with character K and
any specified finite or countably infinite number of orbits of types w and Z. Furthermore, the range
of f"is computable and {a : Or(a) is finite} is computable.

LEMMA 3.5
Any c.e. injection structure is isomorphic to a computable injection structure.

PROOF. Given an infinite c.e. set 4 and a partial computable function f that is an injection on 4,
let A = {p(0),p(1),...} = ran(p), where ¢ is a computable injection from w onto A4, and let
g(n) = ¢~ (f (¢(n))). Then ¢ is an isomorphism from the computable injection structure £ = (w, g)
to A= (4,/), since p(g(n)) = f(p(n)). U

PROPOSITION 3.6
Let A = (w,f) be an injection structure. Then .4 has a generically computable copy if and only if A
has an infinite substructure that is isomorphic to a computable injection structure.

PROOF. Suppose first that A = (w,f) has a generically computable copy C = (w,g), and let H :
C — A be an isomorphism. Now, by definition, there is a dense c.e. set D such that D is a c.e.

220z 1snBny g1, uo sasn g/Asiesueg ‘eluiopled Jo ANsIonun A 8EEY/£9/18G/E/ZE/BI0IE/WO0B0) W00 dnodlwspese)/:SAjY Wolj papEojuMOQ



590 Densely computable structures

substructure of C. The set D must be infinite since it is dense. Then the image B = (H(D),f) is an
infinite substructure of .4, which is isomorphic to D. The result now follows by Lemma 3.5.

Next, suppose that A = (w,f) has an infinite substructure B = (B,f), which is isomorphic
to a computable injection structure with universe w. We may assume that B is co-infinite since
otherwise, A is a computable structure and hence also generically computable. We assume without
loss of generality that (B,f) is itself computable (otherwise, we can simply introduce additional
notation for the computable copy). Now, let D be a co-infinite dense computable set, enumerated as
D = {d, : n € N}. We will build a computable function g such that (D,g) = (B,f). To do this, it
suffices to define g(d,) = dr().

We may extend the isomorphism F' : (B,f) — (D, g) to a permutation of w mapping w \ B to
w\ D. Then we may extend D to a generically computable injection structure C = (w, g) by defining
g(x) to be F(f (F~'(x))), so that F will be an isomorphism between A and C. O

Note that in the proof of Proposition 3.6, we obtain a generically computable copy with a
computable substructure D the domain of which is dense.

PROPOSITION 3.7
An injection structure A = (w,f) has a generically computable copy if and only at least one of the
following holds:

(1) A has an infinite orbit;
(2) x(A) has an infinite c.e. subset.

PROOF. Suppose that A has a generically computable copy. Then, by Proposition 3.6, A has an
infinite substructure D that is isomorphic to a computable injection structure C. There are two cases.

Case L. If C has an infinite orbit, then D has an infinite orbit Oy (a), and that orbit is also infinite
in A.

Case IL. If C has no infinite orbits, then x (C) is an infinite c.e. set and x (C) = x (D). Since every
finite orbit in D is also an orbit in A, it follows that x (D) is an infinite c.e. subset of x (A).

For the other direction, suppose first that .A has an infinite orbit O (a). Then, by Proposition 3.4,
there is a computable injection structure consisting of exactly one orbit of the same type as Oy (a).
Thus, the orbit Or(a) composes an infinite substructure of .4 isomorphic to a computable injection
structure. It follows from Proposition 3.6 that A has a generically computable copy.

Next, suppose that .4 has no infinite orbits and that x (A) has an infinite c.e. subset K. Then,
again, by Proposition 3.4, there is a computable injection structure with character K. So it again
follows from Proposition 3.6 that A4 has a generically computable copy. 0

Next, we consider X'j-generically c.e. injection structures. We first characterize when 5 is a X
elementary substructure of an injection structure .A.

PROPOSITION 3.8
A structure B is a X' elementary substructure of the injection structure A = (w,f) if and only if:
(i) Forall b € B, the orbit of b in B equals the orbit of b in A,
(i) x(A) = x(B), and
(iii) If A has an infinite orbit, then either x (53) is unbounded or /5 has an infinite orbit.

PROOEF. Suppose that BB is a X| elementary substructure of A = (w,f). Certainly, finite orbits and
orbits of type w are equal in B and in A since B is closed under the function f. Since B <; A, if
A= (@) (f(x) = b), then B = (Ix)(f (x) = b), so B is also closed under 1 —1 and this preserves the
orbits of type Z. Since finite orbits are preserved, x (5) € x (A ). The other inclusion follows from
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Densely computable structures 591

B <1 A. That is, let ¢4 (x) be the first-order formula saying [f® (x) = x A (Vj < B)(FP(x) # x)].
Then (k,n) € x (A) if and only if A satisfies the sentence saying:

(3x0, - - s X0 D[(Vi < Mg(xr) A (Vi <j < n) (¥t < k) (x) #x)].

Since this is a X| sentence, it follows that (k,n) € x (A) implies (k,n) € x (B).
Finally, suppose that A has an infinite orbit. Then for each &, A satisfies the sentence ¥, saying:

@) (Vi < DD (x) #x).

Then B = vy for each k as well. Now suppose that x (I3) was bounded below kg. Then there is b
such that (Vi < ko) (f® (b) # b) and, therefore, Oy (b) must be infinite.

For the other direction, suppose that B satisfies conditions (i)—(iii). Let by,...,b,, € B and
consider an arbitrary infinitary Y| formula

y(bls . '5bm) = W(Hxly' . sxn)ei(bl’ e abm,xls- . -:xn),
ieN

where each 6; is quantifier-free. By distributing disjunctions in the usual way, we may assume
without loss of generality that each 6; is a conjunction of equalities and inequalities among some
finite set of images /) (b;) and f® (x7). Since f"is an injection, any equality of the form f ©) (b)) =

£ (x)) allows us to eliminate x; from the formula. Now suppose that 6;(b1, . . ., by, ai, . . . , a,) holds.
If any a; is in the orbit of some b;, then by (i), ¢; € B and a; may be eliminated from 6;. Thus, the
formula reduces to some 91.’ (ai,...,ay). The equalities may be reduced to the form a;, = f () (a)).

If we have a; = Jal (a;), then the orbit of a; has type ¢. Since a; is not in Oy(b;) for any i, and
x(A) = x(B), there must exist ¢ € B, with order type £, not in any of Oy(b;) and that ¢ = ¢; may
be substituted for a;. For the other equalities of the form a, = f @ (a;), we need an orbit in B of size
> ¢, and such an orbit exists by (iii). Thus, we can find ¢; and ¢; in B with ¢;, = f ® (¢j). In the end,
we have c¢q,...,c, € Bsothat B = 0;(by,...,bn,c1,...,cy) and, therefore, B =y (b1,...,b,). O

For injection structures, having a Xj-generically c.e. isomorphic copy has a simple
characterization.

THEOREM 3.9
The following are equivalent for an injection structure A = (w,f).

(a) Ahasa Xj-generically c.e. copy.
(b) x(A)isac.e. set.

(¢) .Ahas acomputable copy.

(d) Ahasa X)-generically c.e. copy.

PROOF. The key is to show that (a) implies (b). Suppose that A has a X-generically c.e. copy
& = (w,g), and let D be a dense c.e. set such that for some g, D = (D, g) is a c.e. structure and
D <1 €. Then x (D) is a c.e. set and, by Proposition 3.8, x (D) = x(£). Since A is isomorphic to &,
it follows that x (A) is a c.e. set. Proposition 3.4 shows that (b) implies (c). The implication from (c)
to (d) is easy, since any computable structure is X,-generically c.e. for any #n. Any X, -generically
c.e. structure is X, -generically c.e., so (d) implies (a). O
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592 Densely computable structures

4 Generically computable and X'|- and X,-generically c.e. equivalence
structures

We will now focus on equivalence structures and their dense computability. Recall that an
equivalence structure A = (4, E) is simply a set 4 with an equivalence relation £ on 4. Equivalence
structures also have a character, defined as follows.

DEFINITION 4.1
The character of an equivalence structure A = (4, E) is

x(A) = {(k,n) € (w\ {0}) x (w\ {0}) : A has at least n equivalence classes of size k}.

We will sometimes just refer to the character of £ when the set 4 is understood. As for injection
structures, it is easy to see that a set K is a character if and only if K = yx (A) for some equivalence
structure A.

Computable and c.e. equivalence structures were studied by the authors and Morozov in [1] and
by Cenzer, Harizanov and Remmel in [2], where the following results were shown. By [a]g, or just
[a] when E is understood, we will denote the equivalence class of a. Let Fin? = {a : [a] is finite}
and Inf* = {a : [a] is infinite}.

LEMMA 4.2

For any c.e. equivalence structure .A we have the following.
(1) {(a,k) :|[a]l = k}isac.e. set.
(2) {(a,k) : |[a]] = k} is the difference of two c.e. sets.
3) Ian isa I'Ig set.
4 xAisa Eg set.

PROPOSITION 4.3
LetK bea Z‘g character.

(1) There is a computable equivalence structure A = (w, E) with character K and with infinitely
many infinite equivalence classes. Furthermore, InfA is a IT ? set.

(2) For any finite m > 1, there is a c.e. equivalence structure A = (w, E) with character K and
with exactly m infinite equivalence classes.

DEFINITION 4.4

The function f : > —  is said to be an s;-function if the following hold:
(1) Foreveryiands, f(i,s) <f(i,s+ 1);
(2) For every i, the limit m; = limy—, o f (i, 5) exists;
(3) Foreveryi,m; < mjy.

The character K is said to possess an si-function f if it has an equivalence class of size m; for
each i. Here are some useful results about the characters of equivalence relations. The first result is
a slight improvement of Lemma 2.1(c) of [3].

LEMMA 4.5
For any c.e. equivalence relation £ on a c.e. set 4, the character x (E) is a Eg set.
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PROOF. The Lemma from [3] applies to a structure with universe w. If £ is only defined on the c.e.
set 4, just let S(x,y) < (E(x,y) Vv x =y). This adds some classes of size 1 to the character, so that
x(S) is XY if and only if x (E) is 7. O

The next lemma is part of Lemma 2.8 of [1].

LEMMA 4.6
For any Eg character K, which is either bounded or possesses a computable s-function, there is a
computable equivalence structure with character K and no infinite equivalence classes.

The next result is an improvement of Lemma 2.6 of [1]. It follows from Lemma 4.6 that it also
holds for structures restricted to c.e. universes.

LEMMA 4.7

Let A = (w, E) be a c.e. equivalence structure with no infinite equivalence classes and an unbounded
character. Then there is a computable s-function f such that .4 contains an equivalence class of size
m; for all i, where m; = limf (i, s).

PROOF. Let E be the p”* stage in the enumeration of E so that £ = UpEP. We will define a uniformly
computable family ] for i < s in such a way that a; = lim,a; exists. We will also define a computable
sequence p;, and let

fG,s) = {{a < ps : aBa}}].
Hence, we will have

mi = lim (|{a < ps : aBPai}| = |[ai]]) -

Stage 0. We set pg = 0 and ag =0,50/(0,0) = 1. In fact, ay will equal 0 for all s.
Stages + 1. After stage s, we have ps and ay, . . ., a; with f (i, s) as above such that

f0,5) <f(l,s8) <--- <f(s,9).

At this stage, we define the least p > p; and the lexicographically least sequence by, . . ., bst]
such that for all i < s, we have

fi,s) < [{a <p:aB’bi}| < |{a <p:aF’biy1}|,

as follows. Let by = ayp = 0. Furthermore, b; = af“ whenever there do not exist a pair a,;j with
j<i, aEPajf and psy < a < p. Then we let af“ = b; for each i, and let py1 = p.

To see that such p exists at stage s + 1, let m be the largest such that [aj] ={a <ps: aEpsajf } for
allj < m, and let b; = af for all i < m. Then we use the assumption that x (A) is unbounded to find

bm+1, e ,b5+1 with

[a5,1] < 1Bmr1 1l < [bmi2]l < -+ < [[bss1]l,

and take p large enough so that [b;] = {a < p : aEPb;}.

Finally, we verify that a; = limga} exists for each i. Since there is no j < 0, it follows from the
construction that a; = 0 for all s. Given ¢ such that a; = limsaj has converged by stage ¢ for all i < &,
let » > ¢ be large enough so that

[a:] = {a < pr: aEa;}
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594  Densely computable structures

for all i < k. Here, we used the assumption that there are no infinite classes. It follows from the
construction that a; = a; 4 foralls > r. O

PROPOSITION 4.8
If A = (w,E) is a c.e. equivalence structure with no infinite equivalence classes, then A is
isomorphic to a computable structure.

PROOF. By Lemma 4.5, A has a Eg character, and by Lemma 4.7, this character possesses a
computable s;-function. Then by Lemma 4.6, there is a computable structure with the same character
and no infinite equivalence classes, and hence isomorphic to 4. 0

This last result also holds for a c.e. equivalence structure £ = (4, E).
We will now consider equivalence structures in the context of generic computability and the
variants thereof.

THEOREM 4.9
If an equivalence structure £ = (w,E) is generically computable, then there is some infinite
computable ¥ € w such that the restriction of £to ¥ x Y is computable.

PROOF. Let 4 be an asymptotically dense c.e. set and ¢ a binary partial computable function, given
in the definition of a generically computable structure. Then, by Lemma 2.2, 4 has a computable
subset Y with upper density 1 (hence infinite) with ¥ x ¥ € dom(¢). Then cg = ¢ on the computable
set Y. U

Note that the set ¥ from the proof of Theorem 4.9 may not preserve the equivalence classes of £.
Recall that a set B C w is called immune if B is infinite and does not contain an infinite c.e. subset.

EXAMPLE 4.10

Let K = {(1,k) : k € C} where C has no infinite Z‘g subset. Also, take an immune set B. Then
define £ so that B is one infinite class, and w \ B has character K. Then, while £ itself need not be
computable, £ has a generically computable copy, where the infinite class is a dense computable set.
Now, let ¥ be an infinite computable subset of w. Since B is immune, Y \ B is infinite, so that ¥ has
infinitely many elements with finite equivalence classes. If (¥, E) has a computable copy, then this
copy has a ES character, which is a subset of C. Thus at least (¥, E) does not preserve equivalence
classes.

The following result was unexpected.

PROPOSITION 4.11
Every equivalence structure £ = (w, E) has a generically computable copy.

PROOF. The proof is by cases. If x (£) is bounded, then £ has a computable isomorphic copy. If £
has an infinite equivalence class, let B be such a class, and let D be a computable dense set. Then we
can define a generically computable copy A = (w, R) of £ so that D is an infinite equivalence class
and (w \ B, E) is isomorphic to (w \ B, R).

Next, suppose that £ has no infinite equivalence class and x (£) is unbounded. Then there must be
infinitely many different & such that £ has an equivalence class of size k. Choose one such class By,
for each £, and let B C w consist of exactly one element from each class By. Then the substructure
(B, E) consists of infinitely many classes of size 1. Note that w \ B is infinite. Now, let D € w be
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a computable, co-infinite set of asymptotic density one, and let /" be a permutation of w mapping
D onto B, and thus mapping w \ D onto w \ B. Then we may define a generically computable copy
(w, R) of &€ by letting xRy < f(x)Ef (). Then for a computable dense set D, the relation R restricted
to D x D is computable since for x,y € D, we have xRy < x = y. (]

For equivalence structures, the X'i-generically c.e. structures have a nice characterization. Note
that any substructure B of an equivalence structure A is also an equivalence structure since the
definitions of reflexive, symmetric and transitive relations are all universal.

PROPOSITION 4.12
A structure B with domain B is a X'} elementary substructure of the equivalence structure A = (w, E)
if and only if:
(1) Forall b € B, if [b] 4 is finite, then [b] 4 = [b]B, and if [b] 4 is infinite, then [D]5 is infinite;
and

(2) Forall k,n > 1, if A has at least n classes of size > k, then B has at least n classes of size
> k.

PROOF. One direction is immediate from the definition of a X; elementary substructure. For
example, if [b] 4 = {a, b, c}, then

AE @)@[b#AxAb#yAx#yAbEx AbEy AxEy].

Thus, B must also satisfy this formula, so [b]g has at least 3 elements and, therefore, [b]g =

{a,b,c} = [b]a.
For the other direction, suppose that B satisfies the two conditions in the statement of the theorem.
Let by,...,b, € B and consider an arbitrary X formula

y(bla' 5bm) = W(axl" . '7xn)9(b17' . '>bWI5xl>" -;xn),
ieN

where each 6; is quantifier-free. By distributing disjunctions in the usual way, we may assume,
without loss of generality, that 6; describes a partition of the set

{bi,....bp,x1,...,xX5}.
Suppose now that
AE6;by,....by,a1,...,a,)
and consider a particular equivalence class (i.e., a particular part of the partition given by 6;)
{bjy,....bj,ai, ... a;).

If necessary, simplify the formula so that no two elements are equal. Let b = b;,. There are three
cases to consider.

(1) Suppose that [b] 4 is finite. Then, by condition (1), [b]p = [b] 4, so that a;,, ..., a;, belong
to [b].

(2) Suppose that [b] 4 is infinite. Then, by condition (2), [b]g is also infinite, hence there
are bj,,...,b; such that the set {b;,...,bj,,ai,...,a;} may be replaced by the set

{bj,...,bj,,bi,..., b} in the partition described by 6.
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(3) Finally, suppose £ = 0 so that the equivalence class is just {a;,, . . ., a;, }. Then, by condition
(3), there is an equivalence class in B with at least £ elements, which is disjoint from
{b1,...,bp} and we may choose {b;,, ..., b; } from such a class.

It follows that elements b/, ..., b, may be chosen so that

BE6:(by,....by, b, ..., b)

and, therefore, B = y (b1, ..., by). [l

THEOREM 4.13
An equivalence structure 4 = (w, E) has a X'1-generically c.e. copy if and only if at least one of the
following conditions holds:

(a) x(A) is bounded.

(b) x(A) has a 23 subcharacter (i.e., a subset that is a character) K with a computable s1-
function.

(¢) A has an infinite class and x (A) has a Eg subcharacter K.

(d) A has infinitely many infinite classes.

PROOF. If A has a X|-generically c.e. copy, then it has a X elementary substructure B that is
isomorphic to a c.e. structure. Thus, one of the cases in the statement of the theorem must hold.
We see this as follows. Suppose that B has bounded character and does not have infinitely many
infinite classes. Then it follows from Proposition 4.12 that A has a bounded character. Thus, we may
suppose that x (B) is unbounded. By Lemma 4.2, K = x(B) is a Eg set, and is a subset of x (A)
by Proposition 4.12. If K does not have a computable s;-function, then B has an infinite class by
Lemma 4.7.

We prove the other direction by considering the four cases.

(a) If x (A) is bounded, then .4 has a computable copy.

In cases (b) and (c), we will assume that x (A) is unbounded and show that there is 5 <1 A, which
is isomorphic to a c.e. structure D, then build a copy C of A with a dense c.e. substructure D and fill
out the rest of C to make it isomorphic to A.

(b) In this case, A has a substructure B with unbounded character K and no infinite classes, which
will, therefore, be a X1 elementary substructure. By Lemma 4.6, there is a computable structure with
character K isomorphic to 3, and we may define a structure D = (D, R) on a computable dense set
D with | \ D| = |w \ B|. Let ¥ be a set isomorphism from w \ D to w \ B and extend R to w \ D
by letting xRy < ¥ (x)Ev (). Then ¢ will extend the isomorphism of D and B to an isomorphism
of A and (w, R). The structure (w, R) is X'|-generically c.e. since it has a dense c.e. X| elementary
substructure D.

(c) This case is similar to part (b) except that B now has an infinite class as well. It is important to
note that we define a c.e. structure D = (D, R) on a computable dense set D, although the relation R
is c.e. and may not be computable.

(d) In this case, the substructure B consisting of the infinite classes will be a X elementary
substructure, and we proceed as in (b) to define a c.e. dense structure D with infinitely many infinite
classes and extend this to a X'|-generically c.e. structure (w, R), which is isomorphic to .A. g

We observe that the argument above also proves that A is X'|-generically c.e. if and only if it has
an infinite substructure B that is isomorphic to a c.e. structure.
Equivalence structures with X»-generically c.e. isomorphic copies have a simple characterization.
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PROPOSITION 4.14
Let B be a X, elementary substructure of an equivalence structure A = (w, E). Then x (A) = x(B),
and if A has an infinite class, either B has an infinite class or x (/3) is unbounded.

PROOF. Let B = (B, E) be a X, elementary substructure of an equivalence structure A = (w, E).

Then x (B) = x (A). This holds because there is a X, formula v, that states that (n, k) € x (A).
Next, suppose that 4 has an infinite equivalence class, but B does not have an infinite class. Then

for each &, A has a class of size at least k, i.e. A |= v t. It follows that x (3) is unbounded. (I

The following result strengthens Proposition 4.14.

THEOREM 4.15

Let B=(B, E) be a substructure of the equivalence structure A= (4, E) such that 53 is closed under E.
Suppose that x (A) = x (B) and that, if A has any infinite classes, then either 5 has an infinite class
or x (B) is unbounded. Then B is an elementary substructure of A.

PROOF. We use the following result from the proof of Theorem 5.2 in [4]. ]

LEMMA 4.16

Let the formula y4 (x) state that the equivalence class of x has at least k& elements. Then the expanded
language of equivalence relations with {yy(x) : k¥ € w} has quantifier elimination, i.e. every formula
is logically equivalent to a quantifier-free formula.

Now suppose that b1,...,b, € B and that A = (Ix)p(x, by,...,b,); we need to show that B =
@), by,...,by).

So let ¢(a,b,...,b,) where by Lemma 4.16 we may assume that ¢ is quantifier-free in the
expanded language. As usual, we may also assume that ¢ is a conjunction of literals of three forms,
where terms s and t come from a, by, ..., by,:

(i) s=tor—s=t
(i) sEt or —sEt;
(i) yx () or =y ()

Simplifying further, for each ¢, there is a single value of & such that we either have yy (£) A= yi+1(8),
which says that [#] has exactly k elements, or we have just yx (7).

If a € B, then we are done. Otherwise, we have two cases.

Case 1: ¢ states that [a] has exactly £ elements.

In this case, since x (A) = x (BB), there must be infinitely many equivalence classes of size k, so
there is an element b not equivalent to any of b1, . . ., b, with an equivalence class of size &, and then
o(b,by,...,by).

Case 2: ¢ states that [a] has at least £ elements.

In this case, since x(A) is unbounded, there must be an element b not equivalent to any of
b1, ..., b, with an equivalence class of size > k, and then ¢(b, by, ..., by).

Together with Proposition 4.14, this implies that 13 is a X, elementary submodel of A if and only
if it is an elementary substructure.

In particular, if 4 has one or more infinite classes, and B is the finite part of A, then B is a X3
elementary submodel of A,

Thus, if B has an unbounded character with no s;-function, then it distinguishes the definition
of X5-generically c.e. we actually used from a potential alternate definition using only finitary X3
formulas.
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598 Densely computable structures

THEOREM 4.17
The following are equivalent for any equivalence structure A = (w, E).

(a) .Ahasa X,-generically c.e. copy.
(b) .Ahasac.e. copy.
(¢) Ahasa X3-generically c.e. copy.

PROOF. To show that (a) implies (b), suppose that .4 has a X,-generically c.e. copy B = (w, E).
Let D be a dense c.e. set such that D = (D,E) is a c.e. structure and also a X elementary
substructure of B. Then x (D) is a 23 set, since D is c.e. and x (D) = x(A) because D is a
X, elementary substructure of B. If x (A) is bounded, then A has a computable copy. So suppose
that A is unbounded. If D has no infinite classes, then x (D) has a computable s;-function. Thus, A
has a computable copy, whether or not it has infinite classes. If D has an infinite class, then A also
has an infinite class and, therefore, has a c.e. copy. The implication from (b) to (¢) is easy, since any
c.e. structure is X, -generically c.e. Any X, -generically c.e. structure is X,-generically c.e., so
(c) implies (a). O

5 Coarsely computable and X, -coarsely c.e. structures

The results on X,-generically c.e. structures lay down a baseline for the deeper results on coarsely
computable injection structures. We will show, in particular, that not every X'|-coarsely c.e. injection
structure has a generically computable copy and that there are injection structures that do not have
coarsely computable copies.

In this section, we define the notions of coarsely computable and X, -coarsely c.e. structures. We
investigate these notions for equivalence structures and for injection structures.

DEFINITION 5.1

(1) A structure A is coarsely computable if there are a computable structure £ and a dense set D
such that the structure D with universe D is a substructure of both .4 and £ and all relations
and functions agree on D.

(2) Letn > 0. A structure A is X-coarsely c.e. if there are a c.e. structure £ and a dense set D
such that the substructure D with universe D is a X, elementary substructure of both A and
of £ and all relations and functions agree on D.

A Xy-coarsely c.e. structure is also called a coarsely c.e. structure. Clearly, every X, |-coarsely
c.e. structure is X,-coarsely c.e., and every coarsely computable structure is coarsely c.e.

PROPOSITION 5.2
Consider a structure A = (w, 4), where 4 is a unary relation. Then

(1) Ais coarsely computable if and only if 4 is coarsely computable.

(2) Aiscoarsely c.e. if and only if there is a dense c.e. set D such that A N D is c.e.

(3) A is Xi-coarsely c.e. if and only if there is a dense c.e. set such that A N D is an infinite
c.e. set.

PROOF. Assume that 4 is coarsely computable and let /" : w — {0, 1} be a total computable function,
let £ = {x : f(x) = 1}, and let D be a dense set such that / agrees with ¢4 on D. Let £ = (w, E). This
is, in fact, a computable structure. Then 4 N D = E N D, so that D = (D, A N D) is a substructure
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Densely computable structures 599

of both A and £. Thus, A is a coarsely computable structure. On the other hand, suppose that there
is a dense set D and a computable structure £ = (w, E) such that £ agrees with A on the set D, i.e.
AN D = END. Then c4 agrees with the total computable function / = cg on the dense set D, and
hence 4 is coarsely computable. The remaining two points follow by similar reasoning. (]

Recall from Theorem 1.2 that the notions of generically computable and coarsely computable sets
are incomparable. This implies that the same is true for structures.

PROPOSITION 5.3
There is a generically computable structure that is not coarsely computable, and there is a coarsely
computable structure that is not generically computable.

PROOF. First, let A4 be a set that is generically computable but not coarsely computable. Then, by
Example 2.8 and Proposition 5.2, the structure (w, 4) is generically computable but not coarsely
computable. A similar argument works when the set 4 is coarsely computable but not generically
computable. (]

It is easy to see that the structure (w, A) is coarsely c.e. if and only if there is a c.e. set £ and a
dense set D suchthat AND =END.

We will compare and contrast coarsely computable, c.e. and X,-coarsely c.e. structures with
generically computable and X, -generically c.e. structures.

PROPOSITION 5.4
Any generically computable injection structure has a coarsely computable copy.

PROOF. Let A = (w,[) be a generically computable injection structure. As noted after Proposition
3.6 above, we may assume that 4 has a dense computable substructure D = (D, f). We may extend
D to a computable structure C = (w, g) by defining g(x) = f(x) forx € D and g(x) = x for x ¢ D.
Then D is a dense computable substructure of both .4 and C, so that A is coarsely computable. [

It is natural to ask whether any generically computable structure actually is coarsely computable.
The next result gives a negative answer to this question. The proof is based on the fact that each
infinite orbit in a computable injection structure is a c.e. set, and the set of elements with finite
orbits is also a c.e. set. This is seen by Lemma 3.3.

Recall that a set is simple if it is c.e. and its complement is immune.

THEOREM 5.5
There is a generically computable injection structure that is not coarsely computable.

PROOF. Let D be an asymptotically dense simple (hence c.e.) set. This is easily constructed by adding
elements to a simple set as follows. Recall that the usual construction produces a c.e. set 4, which
contains at most # elements that are < 2" for each n, with a single element i > 2¢ entering A for
each e, when it enters the e’ c.e. set W,. Just take an arbitrary dense computable set B that contains
exactly (2" — 2n) elements < 2" for each n > 3, and then D = 4 U B will be a dense simple set.

Now, let D = {ag,ay,...} be a computable one-to-one enumeration, and define the function f
on D so that f(a;) = a;+1. Then f is a partial computable function that is total on the set D. That
is, given a € D, just enumerate D until you see that a = g; and then output a;11. Let D = (D,f)
and extend f arbitrarily to an injection structure A = (w,f). We claim that 4 = (w,f) cannot be
coarsely computable.

Suppose, by way of contradiction, that C = (C,g) is a computable injection structure and E is
a dense set such that £ = (E,f) = (F, g). First, we show that D = E modulo finite sets. Observe
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600 Densely computable structures

that D N E must be asymptotically dense and, therefore, £ contains some element ¢;. It follows that
{aj,ai+1,...} € E and thus D \ E is finite. Now, suppose that £ \ D were infinite. There are three
cases to consider. In the first case, £ \ D might contain an infinite orbit. Since g is computable, this
orbit would be an infinite c.e. subset of £ \ D. In the second case, £ might extend D to an orbit
of type Z. In this case, {x : (Eln)g(”) (x) = ap} is an infinite c.e. subset of £ \ D. In the third case,
when neither of the first two cases apply, £ \ D must contain an infinite set of finite orbits. Then
{x € w: (3n)(g"™ (x) = x)} is an infinite c.e. subset of  \ D. In each case, we arrive at a conclusion
that contradicts the fact that D is a simple set.

Thus, we may assume, without loss of generality, that D = E. Similarly, as above, we can show
that w \ D must be finite, contradicting the assumption that D is co-infinite. O

It would be interesting to generalize these results by giving exact conditions on structures under
which generic and coarse computability either coincide or fail to coincide.

The situation is somewhat different for equivalence structures. Of course, we know that every
equivalence structure has a generically computable copy.

PROPOSITION 5.6
Any generically computable equivalence structure is coarsely c.e.

PROOF. Let A = (w, E) be an equivalence structure, and let D be a dense c.e. set such that D =
(D,E) is a c.e. substructure of .A. Then we may extend £ to a c.e. equivalence relation R on w by
letting xRy if and only if (x = y V(x,y € D A xEy)). Thus for x € D, we have [x]g = [x], and for
x ¢ D, we have [x]p = {x}. O

Let £ = (w, E) be the canonical equivalence structure with one class of every finite size k. The
equivalence classes of (w, F) are {0}, {1,2},{3,4,5},... The first k classes have 1 +2 + --- + k =
k(k + 1)/2 elements. Thus, the class [@] has £ + 1 elements. Let K be any set, and let
Ak = UkeK[k(k;])] be the union of the classes of size & for k € K, under E.

Similarly, let C = (w,f) be the injection structure with orbits {0}, {1,2}, {3,4,5},..., so that
f(0)=0,f(1) =2and f(2) = 1, and so on. The first k orbits have 1 +2 + --- + k = k(k + 1)/2
elements.

LEMMA 5.7
If K is a dense set, then Ag is also a dense set.

PROOF. Suppose that the complement of K contains m out of the first # positive numbers. Then the
classes of size k with k € K N {l1,2,...,n} containatmostn + (n — 1) +---+(n—m+1) =
m(2n — m + 1)/2 elements out of a total of 1 +2 + -+ - + n = n(n + 1)/2 elements. Then the ratio

is o5 - % < 2m/n. Thus, if w \ K has density zero, then Ax will have density 1. O

THEOREM 5.8
For any dense co-infinite set K € w — {0}, there is a Xj-coarsely c.e. equivalence structure A with
character {(k,i) : k € K A 1 <i < 2} and no infinite classes.

PROOF. Let £ = (w, E) be the canonical computable equivalence structure described above, with one
class of every finite size k. Let Ak be the dense subset of w, which will have character {(k, 1) : k € K}
under E. Then take w \ Ax and partition it into exactly one class of size k for k£ € K to create the
structure A. Then A agrees with £ on the dense subset Ax. It follows from Proposition 4.12 that
(Ag,E) is a X elementary substructure of both £ and A since x(dx) = {(k,1) : k € K} is
unbounded. Thus, A is X'|-coarsely c.e. O
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THEOREM 5.9
For any dense co-infinite set K € w — {0}, there is a coarsely computable injection structure with
character {(k,i) : k € K A 1 <i < 2} and no infinite orbits.

PROOF. The proof is similar to the proof Theorem 5.8. To obtain the coarsely computable injection
structure, define an injection g that agrees with the canonical function f on the set Ag, and extend
this function on w \ Ak to add one additional orbit of each size k for k € K. Again, this structure
agrees with the computable structure C on the dense set Ax. We note that (4g,f) will not be a X
elementary substructure of A since the character is different from x (A), as it has only one orbit of
size k for k € K, whereas A has two. a

The standard construction of a simple set (i.e., a c.e. set with immune complement) may be
modified to construct a simple set of density zero. Then the complement is a I7 10 set of density
one. The following lemma also gives a relativized version.

LEMMA 5.10

There is an infinite /7 ? set of asymptotic density 1 with no infinite c.e. subset, and an infinite Hg
dense set K with no infinite Eg subset. There is also an infinite E? set of asymptotic density 0 with
no infinite c.e. subset and an infinite Hg set K of density 0 with no infinite Z’g subset.

PROOF. The notion of an immune set that is a I7 ? set (co-c.e.) is well-studied and easily generalized.
The standard construction of an immune 173 set may be modified as follows to obtain a dense set.
Let S1,5,,... be an enumeration of all 23 sets. Define K to omit the leas_t member of S;, which is
greater than 2'. Then K must contain at least (2 — i) many of the first 2' numbers and hence has
density 1. For the second part, consider the set C = {2" — 1,2" — 2 : n > 0}. The set C contains 2i
many of the first 2/ numbers, for each i > 0. Thus, IT ? set K N C contains between i and 2i of the
first 2! numbers and is, therefore, infinite and has asymptotic density 0. Since K N C C K, it has no
infinite c.e. subset. A similar argument works for the Hg set. (]

The authors, together with Morozov, constructed in [1] an unbounded Ag character K with no

computable s-function. (In fact, the set K is DY, i.e. the difference of two c.e. sets.) This result may
be improved to obtain a set of asymptotic density zero.

PROPOSITION 5.11

There is an infinite A(l) set D of asymptotic density 1 such that D x {1} has no computable s -function,
and, therefore, there is no computable structure with character D x {1}. There is also an infinite A(l)
set D of asymptotic density 0 such that D x {1} has no computable s|-function, and, therefore, there
is no computable structure with character D x {1}.

PROOF. Let C, := (w,S,) be the ¢ c.e. equivalence structure. That is, for the " ce. set W,, let
Se be the reflexive, symmetric and transitive closure of {(x,y) : (x,y) € W,}. Let [x]. denote the
equivalence class of x in C,. Define the c.e. relation R by

R(e,x) & card([x].) > 2°.

Then, by a standard uniformization theorem for c.e. relations [see 14, p. 29], there is a partial
computable selector function ¢ such that, for every e,

(Ax)R(e,x) = R(e,p(e)).
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602 Densely computable structures

Now, define D as follows:
keD & (Ve)(2° <k = card([p(e)]e) # k).

Then D is a D‘l) set by Lemma 4.2. Now suppose that k¥ < 2/ and k ¢ D. Then for some e with
2¢ < k, card([p(e)]e) = k. It follows that e < i, so that

card({k <2': k ¢ D}) <i.

It follows that K is asymptotically dense. Now, suppose that A = A, has unbounded character and no
infinite equivalence class. Since x (A) is unbounded, there exists a such that R(e,a). Let a = ¢(e).
Since A has no infinite classes, card([¢p(e)].) = k > 2°¢. Then, by definition, (k,1) € yx(A) but
k ¢ D. Hence x (A) # K. It follows from Lemma 4.6 that K has no computable s -function.

As in the proof of Lemma 5.10, it can be shown that there is also such a set with asymptotic
density 0. g

PROPOSITION 5.12

(1) There is a coarsely computable injection structure with no generically computable copy.
(2) There is a Xj-coarsely c.e. equivalence structure with no X';-generically c.e. copy.

PROOF. Let K € w — {0} be a dense immune set, and let A be the injection structure with character
{(k,i) - k € KA1 < i < 2} from Theorem 5.9 with no infinite orbits. If 3 were a generically
computable copy of A, then B has no infinite orbits, and thus x (B8) = x (A) must have an infinite
c.e. subset C by Proposition 3.6. Then {k : (k,1) € C Vv (k,2) € C}is an infinite c.e. subset of K,
which is a contradiction.

The result for equivalence structures follows similarly from Lemma 5.10 and Theorem 4.13. [

Next, we will show that there are equivalence structures that do not have ¥'|-coarsely c.e. copies
and injection structures that have no coarsely computable copies.

THEOREM 5.13

There is an infinite 17 2 set K C w such that if C = (w, R) is a c.e. equivalence structure such that
{x : |[x]r] = k} has asymptotic density O for any &, and such that if D is a set of asymptotic density
1, then D is not a subset of {x : |[x]g] € K}. Thus, any equivalence structure .4 with character
x(A) € K x {1} cannot be X'|-coarsely c.e.

PROOF. As before, let C, := (w, S,) be the e c.e. equivalence structure. That is, for the e c.e. set
W, let S, be the reflexive, symmetric, transitive closure of {(x,y) : (x,y) € W,}. Let [x]. denote the
equivalence class of x in C,. We need to meet the following requirements.

Requirement R,: If {x : |[x].|] = k} has asymptotic density O for all & , then {x : |[x].| € K} does
not have asymptotic density 1.

We begin the construction with K = @ and remove numbers at certain stages to satisfy the
requirements. At the same time, we need to ensure that X is infinite. So the construction will preserve
an element of K each time that it removes an infinite number of elements. We may assume for the
construction that {x : [x]. is infinite} has upper density 0; otherwise, the conclusion is immediate.

We will show how to satisfy an individual requirement for the case e = 0. Let C = (w,S)), let
S = 8y, and consider the four sets 4; = {x : |[x]s| = i mod 4} fori = 0, 1,2, 3. Since the union of
the sets equals w, at least one of the sets, say 4;, must have upper asymptotic density at least 1/4.
Let us suppose that {x : [[x]g] = k} has asymptotic density 0 for all k, so that we need to take
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action on requirement Rg. Then we will ensure that K N {i : i = j mod 4} = {4 4 j}; i.e. we let
K'= {44} U{k : k # j mod 4} and maintain K N {i : i = j mod 4} = {4 + j} throughout the
construction. Then {x : |[x]s| € K} must have density at most 3/4, so that it cannot contain any set
D has asymptotic density 1.

The general construction of K is in stages. After stage e, we will have designated, for certain
i < e, avalue j(i) and corresponding set 4; = {x : |[x];| = (i) mod 2i*?}, so that for i # h, we have
A; N Ay, = @. We will have removed K; = {m : m = j(i) mod 2"+?} from K, except for 212 + j(i),
for such i. Note that we will have removed at most one set K; mod 2/2 for each i < e, for a total of
at most 2¢ +2¢71 4+ ... + 1 < 2¢t! classes mod 2¢72, resulting in the set K. Thus, there remain
2¢t1 classes mod 2¢12 to work with, each disjoint from the previous classes. At stage e + 1, we
will ensure Requirement R, (if necessary) by removing a set of class sizes from K. If there exists
k such that {x : |[x]c+1]| = k} has positive density, then we take no action. If not, then we select
j=jle+1) <2¢3 such that Ay = {x : |[x]|ex1 = mod 2¢73} has upper density at least 27¢~3
and we let Koy = {m : m = j(e + 1) mod 2¢+3), If K41 meets one of the previous classes K;, then
in fact K.4+1 C Kj, so that we have already removed all but one element of K| from K. Otherwise,
we remove Ko | = {m : m = j mod 2¢13} from K¢, except for 2¢*3 + j, to obtain K¢*1.

Let K = NyK*. It remains to check that K satisfies each Requirement R, and that K is an
infinite set.

First, we show that action is taken infinitely often. Suppose, by way of contradiction, that no action
is taken after stage e. Then K will consist of a finite number of equivalence classes modulo 2¢+2 plus
a finite set. Thus K will be computable. Hence there is some i such that C; consists of exactly one
class of size k for each k € K. Thus, at stage i, when we select j such that {x : |[x];| = j mod 2%}
has positive upper density in C;, and consider K; = {m : m = j mod 2/*?}, we would have K; € K C
K1 But then we would have taken action and removed all but one value of K; from K.

Next we need to check that K is infinite. Since action was taken infinitely often, we have preserved
in K an element 2°+2 + j(i) of K; for infinitely many i. Since the sets {K; : i € w)} are disjoint, this
element is never removed at any later stage. Hence K is infinite.

Now, suppose that {x : |[x].] = k} has asymptotic density 0 for all £, and suppose, by way of
contradiction, that {x : |[x].| € K} has asymptotic density 1. Then at stage e of the construction,
we will have selected j < 2°%2 such that A = {x : |[x]le = j mod 2¢+2} has upper density at least
27¢"2 and defined

K. = {m:m=j mod 2¢T?}.

Since K € K¢~ !, it follows that K, is disjoint from all previous K;. So we will remove all but one
element of K, from K at stage e. It follows that {x : |[x].| € K} has lower density at most 1 — 272,

Finally, suppose that A = (w,S) has character x(A) € K x {1} and is Xj-coarsely c.c. Let
C = (w, R) be a computable equivalence structure, say R = S,. Let D be a set of density 1 such that
the structure D = (D,R) = (D, S) is a X substructure of both A and C. Since D <; A, we have
D C {x: |[x]|s € K}. Since R and S agree on D, and D < C, it follows that D C {x : |[x]|. € K}.
By the assumption on C, this means that {x : [x], = k} has density 0 for each k. It follows from
Requirement R, that {x : |[x].| € K} does not have asymptotic density 1. However, this contradicts
the fact that the subset D has density 1.

An upper bound on the complexity of K may be determined as follows. First, we observe that
{x : |[x]il =} is uniformly X9, and thus C(i,j,e) = {x : |[x];| = j mod 2°} is also uniformly 220.
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604 Densely computable structures
Then the lower density §(C(i, ], e)) > }‘ if and only if
(¥m)@n = m)|CGij.e) Nl = 7.

Thus, this test is 1'[30. So the construction may be done using an oracle for @”'. So the set K; is
uniformly computable in @"”. Since K is the intersection of the sequence (K;);c., it follows that K
isall 2 set. O

Here is a corresponding result for injection structures.

THEOREM 5.14

There is an infinite set K C w such that if C = (w,f) is a computable injection structure for which
the set {x : |Or(x)] = k} has asymptotic density O for any k, and if D is a set of asymptotic
density 1, then D is not a subset of {x : |Or(x)| € K}. Thus, any injection structure A with character
x (A) € K x {1} cannot be coarsely computable.

PROOF. Here we let C, := (w, /) be the e”potential computable injection structure. That is, for the
e c.e. set Wy, let fe(x) be the least y such that (x,y) € W,, if it exists. Let O.(x) be the orbit of x
under f;, if defined. Then we need to meet the following requirements R, for every e € w.

Requirement R,: If C, is an injection structure and {x : |O.(x)| = k} has asymptotic density O for
all &, then {x : |O.(x)| € K} does not have asymptotic density 1.

We begin the construction with K® = » and remove numbers at certain stages to satisfy the
requirements. At the same time, we need to ensure that X is infinite. So the construction will preserve
an element of K each time that it removes an infinite number of elements. We may assume for the
construction that {x : O, (x) is infinite} has upper density 0; otherwise, the conclusion is immediate.

We will show how to satisfy an individual requirement for the case e = 0. Let C = (w, fp), let
f = fo and consider the four sets 4; = {x : |Oy(x)| = i mod 4} fori = 0, 1,2, 3. Since the union
of the sets equals w, at least one of the sets, say 4;, must have upper asymptotic density at least 1/4.
Let us suppose that {x : |O.(x)| = k} has asymptotic density 0 for all &, so that we need to take
action on requirement Ry. Then we will ensure that K N {i : i = j mod 4} = {4 +j}; i.e., we let
K' = {4+ YU {k : k # j mod 4} and maintain K N {i : i = j mod 4} = {4 + j} throughout the
construction. Then {x : |[x]s| € K} must have density at most 3/4, so that it cannot contain any set
D that has asymptotic density 1.

The details of the construction are similar to those given in the proof of Theorem 5.13 and are,
therefore, omitted here. An upper bound on the complexity of K may be determined as follows. First,
we observe that {x : |O;(x)| =} is uniformly >0 and, thus, C(i,j,e) = {x : |0;i(x)| =j mod 2°} is
also uniformly E? . Then the lower density §(C(i, ], e) > }l if and only if

(¥m)@n = m)|CGij.e) Nl = 7.
Thus, this test is 173 . So the construction may be done using an oracle for @”, and it follows that the

Kisa 17? set. O

As was the case for X|-generically c.e. structures, any X'-coarsely c.e. injection structure is
isomorphic to a computable structure.

PROPOSITION 5.15
The following are equivalent for any injection structure A = (w,f):

(a) Ahasa X;-coarsely c.e. copy;
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(b) x(A)isac.e. set;
(¢c) A has a computable copy.

PROOF. Suppose first that 4 = (w,f) is a Xj-coarsely c.e. injection structure. Let B = (w,g)
be a c.e. structure and D be a dense set such that f = g on the set D, and D = (D,f) is a X
elementary substructure of both A and B. Then x (A) = x (D) = x (B) and is, therefore, a c.e. set.
The implication (b)=>(c) follows from Proposition 3.4. O

For X;-coarsely c.e. equivalence structures, the characterization is in two cases.

PROPOSITION 5.16
Let A be an equivalence structure with character K such that at least one of the following holds:

(i) A has an infinite equivalence class,
(i) K is bounded,
(i) K has a computable s-function.
Then the following are equivalent:

(1) Ahasa X,-coarsely c.e. copy;
(2) Kis x?;
(3) Ahasac.e. copy.

PROOF. Let A be an equivalence structure with character K, which satisfies one of the three
conditions above.

Suppose first that A = (w, E) is Xy-coarsely c.e. Let B = (w, R) be a c.e. structure and D be a
dense set such that £ = R on the set D, and D = (D, E) is a X, elementary substructure of both A
and B. Then by, Proposition 4.14, x (A) = x (D) = x (B) and is, therefore, a Eg set.

Next, suppose that K is Eg. Since A satisfies one of the three conditions, it follows from
Proposition 4.3 that 4 is isomorphic to a c.e. structure.

Finally, suppose that A has c.e. copy. Then the copy is itself Xy-coarsely c.e., where the desired
dense setis D = w. a

PROPOSITION 5.17

Let A be an equivalence structure with unbounded character K such that A has no infinite
equivalence class and K does not have a computable si-function. Then the following are
equivalent:

(1) Ahasa X)-coarsely c.e. copy;
(2) Kis Eg and, for some finite &, .4 has infinitely many classes of size k.

PROOF. Let A be an equivalence structure with unbounded character K such that .4 has no infinite
equivalence class and K does not have a computable s{-function. Suppose first that 4 = (w, E) is
X-coarsely c.e. Let B = (w, R) be a c.e. structure and D be a dense set such that £ = R on the set
D, and D = (D,E) is a X, elementary substructure of both A and B. Then, by Proposition 4.14,
x(A) = x(D) = x(B) and is, therefore, a Z‘g set. Since B is c.e., it follows from Lemma 4.7 that
B has an infinite class. Therefore, w \ D is infinite. Now, consider ¢ € w \ D and k = [[a]g|. If
(k,n) € K, then (k,n) € x(D) and thus (k,n + 1) € x(A), so that (k,n + 1) € K. It follows that
(k,m) € K for all m.

Next, suppose that K is Z‘g and, for some £, .4 has infinitely many classes of size k. By Proposition
4.3, there is a c.e. structure C = (w, E) with character K and an infinite class. Let D be a co-infinite
computable dense set. Define D = (D, R) to consist of infinitely many classes of size k. Define R
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on w \ D to be a copy of C. This defines a c.e. structure isomorphic to B. Now, let B = {x € w :
[[x]r] is finite}. The set B is dense since it includes the dense set D. We have that B <, C since K is
unbounded. Now, B = (B, R) has no infinite classes and has character K, so it is isomorphic to .A.
We will now build a copy (w, E) of A by letting £ = R on B, and letting (w \ B) consist of infinitely
many classes of size k. O

Note, in particular, that if K is a Eg set with no computable s;-function and A consists of one
class of size k for each k£ € K, then no proper substructure of .4 can have the same character as A
and, therefore, A cannot be X»-coarsely c.e.

Here is a related result.

THEOREM 5.18
There is a Ag set K with no computable s1-function, which is asymptotically dense.

LEMMA 5.19
If B is a X3 elementary substructure of the equivalence structure A = (w, E) and A has an infinite
class, then B3 has an infinite class.

PROOE. Let B = (B, E) be a X3 elementary substructure of an equivalence structure A = (w, E)
and suppose that A has an infinite equivalence class. Then A satisfies the infinitary X3 formula

Fx) M\ ¥n(x), where ¢, (x) is the Z‘? formula
neN

@) @) [\ D #5 A xiEx]

i<j<n
It follows that B = (3x) A\ n ¥ (x) as well and, therefore, 53 has an infinite class. O

THEOREM 5.20
For any equivalence structure A, A is X3-coarsely c.e. if and only if A has a c.e. copy.

PROOF. Let A = (w, E) be a X3-coarsely c.e. equivalence structure with character K. First, assume
that one of the following conditions is satisfied: .A has an infinite equivalence class, K is bounded
or K has a computable s1-function. Since A is also X-coarsely c.e, it follows from Proposition 5.16
that A has a c.e. copy.

Next, assume that A has no infinite equivalence class and character K is unbounded and does not
have a computable si-function. Let 5 = (w, R) be a c.e. structure and D be a dense set such that
E = Ronthe set D, and D = (D, E) is a X3 elementary substructure of both 4 and 5. Then, by
Proposition 4.14, x(A) = x(D) = x(B). By Proposition 5.19, D and hence B have no infinite
classes. Thus, .4 is isomorphic to B.

Now, assume that A has a c.e. copy with domain w. Then the copy itself'is X'3-coarsely c.e., where
the desired dense set is D = w. g
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