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Abstract

In recent years, computability theorists have extensively studied generically and coarsely computable sets. This study of

approximate computability was originally motivated by asymptotic density problems in combinatorial group theory. We

generalize the notions of generic and coarse computability of sets, introduced by Jockusch and Schupp, to arbitrary structures

by defining generically and coarsely computable and computably enumerable structures. There are two directions in which

these notions could potentially trivialize: either all structures could have a densely computable copy or only those having

a computable (or computably enumerable) copy. We show that some particular classes of structures realize each of these

extremal conditions, while other classes realize neither of them. To further explore these concepts, we introduce a graded

family of elementarity conditions for substructures, in which we require that the dense sets under consideration be ‘strong’

substructures of the original structure. Here, again, for a given class, the notion could trivialize in the same two directions

and we show that both are possible. For each class that we investigate, there is some natural number n such that requiring Σn

elementarity of substructures is enough to trivialize the class of generically or densely computable structures, witnessing the

essentially structural character of these notions.

Keywords: Computability theory, computable model theory, injection structures, equivalence structures, asymptotic density,

dense computability, generic computability, coarse computability

1 Introduction and preliminaries

Results about complexity of problems in computable structure theory typically depend on the

behaviour of the hardest instances of the problem, which are not always common. One such

motivating problem, the word problem, came from algebra. A standard construction of a finitely

presented group with undecidable word problem [13] involves not just getting the right example of a

group; the particular words within this group on which it is difficult to decide equality to the identity

are very special words (and are even called by this term in some expositions).

The idea of studying generic properties of finitely presented groups goes back to Gromov’s 1987

seminal paper [8] on hyperbolic groups. Gromov [7] further developed this idea by introducing

the density model of random groups, where a certain density parameter controlled the number of

defining relations put in a random group. Further research on generic group-theoretic properties was

carried on by Olshanskii, Champetier, Arzhantseva, Zuk, P.-A. Cherix and others.

In 2003, Kapovich, Myasnikov, Schupp and Shpilrain [11] investigated generic-case complexity

of decision problems in group theory. They showed that for a very large class of finitely generated

Vol. 32, No. 3, © The Author(s) 2021. Published by Oxford University Press. All rights reserved.

For permissions, please e-mail: journals.permission@oup.com.

Advance Access Publication on 24 September 2021 https://doi.org/10.1093/logcom/exab057



582 Densely computable structures

groups, the classical decision problems, such as the word problem, the conjugacy problem and the

subgroup membership problem, have linear-time generic-case complexity.

In 2012, Jockusch and Schupp [10] introduced two notions of approximate computability,

generically computable and coarsely computable sets. Roughly speaking, a generically computable

set has a computable approximation that almost always gives an answer and is always correct; a

coarsely computable set has a computable approximation that always gives an answer and is almost

always correct. More precisely, a set is generically computable if there is a partial computable

function with values in {0, 1}, the description of the set, with the domain of density one on which the

set agrees with the function. A set is coarsely computable if there is a (total) computable function

with values in {0, 1} such that the set agrees with the function on a subset of density one. These two

notions are distinct from each other. It was shown that they are incomparable even when restricted

to computably enumerable sets. Moreover, Jockusch and Schupp showed that every nonzero Turing

degree contains a set that is neither coarsely computable nor generically computable.

A structure is computable if its domain is a computable set and its relations and functions are

uniformly computable. In this paper, we introduce and investigate generically computable and

coarsely computable structures. In each case, the question is whether some ‘large’ substructure is

relatively computable. Here, again, ‘large’ is in the natural density sense to be precisely defined

below. Assume that all structures are countable with domain ω. As usual, we will abbreviate

computably enumerable by c.e. As set of natural numbers is c.e. if and only if it is the domain of

a partial computable function. Roughly speaking, a structure with an r-ary relation R is generically

computable if there is a substructure with a c.e. universe D of density one, such that there exists a

partial computable r-ary function φ with values in {0, 1} such that φ agrees with R on Dr.

The word problem for a finitely presented group G, where

G = �g1, . . . , gk | r1, . . . , rm�,

asks for an algorithm to decide whether a word w in {g1, . . . , gk , g−1
1 , . . . , g−1

k } represents the

identity element of G. The classical theorem of Novikov and Boone establishes that there exists

a finitely presented group with undecidable word problem. A group is computable if its domain is

computable and the group operation is computable. It is not hard to prove that a finitely presented

group has a computable isomorphic copy if and only if it has a decidable word problem. Kapovich,

Myasnikov, Schupp and Shpilrain [11] established that a finitely presented group with undecidable

word problem, given by Boone, has, in our sense, a generically computable copy.

There are, roughly, two extremal possibilities for structures in general.

(1) Every countable structure has a generically computable copy; or

(2) Every countable structure with a generically computable copy has a computable copy.

There are also analogous results for coarsely computable structures. We will show that each of these

can be achieved in certain classes and that they do not exhaust all possibilities. We will also explore

these conditions under the added hypothesis that the ‘large’ substructures in question be, in some

weak sense, elementary. Again, we find that there are natural extremal possibilities and that both

they and non-extremal cases are achieved. Finally, we find that as the elementarity hypotheses are

strengthened, all known cases eventually (i.e. when we have Σn elementarity for sufficiently large n)

trivialize. This demonstrates that these notions of dense computability are structural—they depend

fundamentally on the semantics of the structure, and not only on the density or algorithmic features

of the presentation.
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It would be interesting to consider whether any appropriate class of structures (perhaps with

bounded Scott rank or some similar condition) would trivialize at some level, but we do not yet

have a solution for this general problem. To our thinking, this recalls the feature of computable

categoricity by which every structure with a Πα+1 Scott sentence is Δ0
α-categorical [12].

While we are concerned with initiating a systematic study of generic and coarse computability

within computable structure theory, in computability theory in recent years, the study of generically

and coarsely computable sets and related notions has led to a rich and interesting program of

research; see [9] for a partial survey. Andrews, Astor, Cai, Cholak, Diamondstone, Downey,

Hirschfeldt, Igusa, Jockusch, Kuyper, Lempp, McNicholl, Shupp and other researchers studied

several computability-theoretic aspects of various notions of approximate computability.

In [6], Downey, Jockusch and Schupp studied some variations of the notions of generically and

coarsely computable sets, e.g. whether a set contains a density one computable subset, i.e. has a

computable approximation that always gives an answer, is almost always correct and is always correct

when the answer is positive. In particular, they showed that every c.e. set can be approximated by a

computable subset with arbitrarily close lower density. They also showed that a c.e. Turing degree is

non-low (i.e. its jump is strictly above the Turing degree of the halting set) if and only if it contains

a c.e. set of density one with no density one computable subset.

Downey, Jockusch, McNicholl and Schupp [5] classified the asymptotic densities of Δ0
2 (limit

computable) sets according to their levels in the Ershov hierarchy, i.e. according to the number of

changes in their computable approximations. They showed that, with respect to density, the Ershov

hierarchy collapses in certain sense to levels 0, 1, 2 and ω.

As stated before, our goal is to distinguish which results in computable structure theory depend

on ‘special’ (and potentially extremely rare) cases, and which are less sensitive to them. To achieve

this goal in the context of decision problems on groups, Kapovich, Myasnikov, Schupp and Shpilrain

[11] proposed using notions of asymptotic density to state whether a partial computable function

could solve ‘almost all’ instances of a problem.

Jockusch and Schupp [10] generalized this approach to the broad context of computability theory

in the following way.

DEFINITION 1.1

Let S ⊆ ω.

(1) The density of S up to n, denoted by ρn(S), is given by

|S ∩ {0, 1, 2, . . . , n}|
n + 1

.

(2) The asymptotic density of S, denoted by ρ(S), is given by limn→∞ ρn(S).

A set S is generically computable if there is a partial computable function ϕ : ω → {0, 1}, such

that ϕ = cS on the domain of ϕ, and such that the domain of ϕ has asymptotic density 1.

A set S is coarsely computable if there is a total computable function h : ω → {0, 1} such that h

agrees with cS on a set of asymptotic density 1. Equivalently, there is a computable set H such that

the symmetric difference S�H has asymptotic density 0.

We will need the following result from [10].

THEOREM 1.2 (Jockusch–Schupp).

There is a generically computable set that is not coarsely computable, and there is a coarsely

computable set that is not generically computable.
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For instance, the word problem for finitely generated groups is not generically computable, while

it is coarsely computable.

We would like to extend the notions of being generically computable and coarsely computable

from sets to structures. Assume that A is a given structure with universe ω and with finitely many

functions {fi : i ∈ I}, each fi of arity pi, and finitely many relations {Rj : j ∈ J}, each Rj of arity rj.

We would like to define what it means for A to be generically computable, or ‘nearly computable’

with respect to some other notion related to density. The idea is that A is generically computable if

there is a substructure D with a c.e. universe D that has asymptotic density one, for which there exist

partial computable functions {φi : i ∈ I} and {ψj : j ∈ J} such that φi agrees with fi on Dpi , and

ψj agrees with cRj on Drj . Similarly, a structure A is coarsely computable if there is a computable

structure E and a dense set D such that the structure D with universe D is a substructure of both A

and of E and all relations and functions agree on D. A more interesting variant of this notion requires

that D is a Σ1 elementary submodel of A, and, more generally, a Σn elementary submodel of A .

That is, if we say that A is ‘nearly computable’ when it has a dense substructure D that is c.e., then

the substructure should be similar to A by some model-theoretic criterion.

To be precise, we say that D is a Σn elementary substructure (submodel) of A if for any infinitary

Σn formula θ(x1, . . . , xn) and any n-tuple of elements d1, . . . , dn ∈ D, we have

A |� θ(d1, . . . , dn) ⇔ D |� θ(d1, . . . , dn).

We are aware of the slight tension in using the term ‘elementary’ to refer to Lω1ω properties, but

believe the term to be justified by its usage; at issue is the condition that the substructure should

satisfy the same formulas as the superstructure.

We note that being a Σ0 elementary substructure is the same as being a substructure since B

is a substructure of A if and only if the domain of B is contained in the domain of A, and A

and B satisfy the same quantifier-free sentences with constants from B. Moreover, the classical and

infinitary notions of elementarity coincide at the Σ1 level.

We say that the structure A is Σn-generically c.e. if there is an asymptotically dense c.e. set D

such that:

(a) D is a Σn elementary substructure of A;

(b) There exist partial computable functions {φi : i ∈ I} such that φi agrees with fi on Dpi ;

(c) Each Rj restricted to Drj is a c.e. relation.

We similarly define the notion of a Σn coarsely c.e. structure.

EXAMPLE 1.3

Let A = (A, E) be a countable directed graph consisting of infinitely many finite chains of distinct

lengths. Let C(A) be the set of lengths of the chains. The structure A is c.e. if A is a c.e. set and E

is a c.e. relation. For a c.e. structure A, C(A) will be a Σ0
2 set. Then A is generically computable

if there is an asymptotically dense c.e. set D such that a partial computable function agrees with

cE on D.

We will also be interested in the question of whether a structure A has a generically computable

copy and, more generally, a Σn-generically c.e. copy. In this example, we will show that any such

structure A will have a generically computable copy. Build the generically computable copy as

follows. Let D = {d0 < d1 < · · · } be an asymptotically dense, co-infinite computable set and

put edges from d2n to d2n+1 for each n. Then use ω \ D to fill out the needed (cn − 1) vertices at the

front of each chain to obtain a copy of A.
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Suppose now that D is a Σ1 elementary substructure of such a graph A. Then for each a ∈ A,

the chain containing a must be included in D. For example, if a is in the chain a0EaEa2Ea3, then

A |� (∃x)xEa. Thus D |� (∃x)xEa and, therefore, a0 ∈ D. Similarly, A |� (∃y)(∃z)(aEy ∧ yEz)

and, therefore, a2 and a3 must be in D. Thus, a structure A will be Σ1-generically c.e. if there is an

asymptotically dense set c.e. set D such that D = (D, E) is a Σ1-elementary substructure of A, and

E ∩ (D × D) is a c.e. relation of A. Then the structure A will have a Σ1-generically c.e. copy if and

only if there exist C ⊆ C(A) and a c.e. structure D with C(D) = C.

Finally, suppose that D = (D, E) is a Σ2 elementary substructure of A. This will imply that

C(D) = C(A) and hence D = A. It follows that A is Σ2-generically c.e. if and only if A is a c.e.

structure. Thus, a structure A has a Σ2-generically c.e. copy if and only if it has a c.e. copy.

EXAMPLE 1.4

Fix a prime p, and consider a p-group A = ⊕n∈CZ(pn) for some infinite set C. If A is computable,

then C is a Σ0
2 set and, furthermore, C has a computable Khisamiev s1-function, the details of which

are given below in Section 4. Conversely, for any Σ0
2 set C with a computable s1-function, there is

such a computable structure A isomorphic to ⊕n∈CZ(pn).

Any such structure A will have a generically computable copy. Let A = ⊕i<ω�ai�, where

o(ai) = pni . Then consider the subgroup B = ⊕i<ω�pni−1ai�, which is isomorphic to ⊕i<ωZ(p).

We observe that B is not a Σ1 elementary subgroup, since for each ni > 1, the element pni−1

has height (ni − 1) in A but has height 1 in B. The structure B has a computable copy, and we can

construct a generically computable copy of A with the corresponding subgroup on an asymptotically

dense set.

Suppose now that D is a Σ1 elementary subgroup of A. By χ(B) we denote the character of B.

Then χ(B) ⊆ χ(A). If A is Σ1-generically c.e., then χ(A) has a Σ0
2 subset that possesses a

computable s1-function. Thus if A has a Σ1-generically c.e. copy, then C must have a Σ0
2 subset

with a computable s1-function.

Finally, suppose that B is a Σ2 elementary subgroup of A. Then we claim that χ(B) = χ(A). To

see this, let n ∈ C. Then in A, there exists an a such that o(a) = pn and �a� is a pure subgroup of A.

However, this is a Σ0
2 sentence, and therefore B also has such an element a. If {ni : i < ω} is a set of

distinct elements, then, in fact, B = A.

These notions prove quite interesting for certain families of structures. We will examine in some

detail the notions of generically computable and coarsely computable structures, and the variations

described above for injection structures and equivalence structures.

The outline of this paper is as follows. In Section 2, we present some background on asymptotic

density and generalize the notion of generic computability from sets to structures. We show that a

set A ⊆ ω has asymptotic density δ if and only if the set A × A has density δ2 in ω × ω. We show

that there is a computable dense set C ⊆ ω × ω such that for any infinite c.e. set A, the product

A × A is not a subset of C. These results guide us in our choice of the definition of a generically

computable structure. We also introduce, for n > 0, a Σn-generically c.e. structure using the notion

of a Σn elementary substructure.

In Section 3, we first present results about computable and c.e. injection structures including

some complexity results about their orbits and characters. Then we establish results about injection

structures that have generically computable and Σ1-generically c.e. isomorphic copies. We show that

an injection structure A has a generically computable copy if and only if it has an infinite orbit or its

character has an infinite subset. We also show that an injection structure A has a Σ1-generically c.e.

copy if and only if it has a computable copy.
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In Section 4, we present results about generically computable and Σn-generically c.e. equivalence

structures. We obtain a surprising result that every equivalence structure A has a generically

computable isomorphic copy. We further give a natural characterization of equivalence structures

with Σn-generically c.e. isomorphic copies, in terms of the properties of their characters or of their

infinite classes. In particular, we show that an equivalence structure A has a Σ1-generically c.e. copy

if and only if it has an infinite substructure that is isomorphic to a c.e. structure. We also show that A

has a Σ2-generically c.e. copy if and only if it has a c.e. copy. First, we extend an important lemma

from [1] to show that any c.e. equivalence relation on a c.e. set, with no infinite equivalence classes

and with unbounded character, has a computable Khisamiev s1-function.

In Section 5, we introduce the notions of coarsely computable and Σn-coarsely c.e. structures.

Our notion of a coarsely computable structure is a natural extension of the notion of a coarsely

computable set. It follows that generically computable and coarsely computable structures are

incomparable. While every generically computable injection structure has a coarsely computable

copy, there is a generically computable injection structure that is not coarsely computable. We show

that there are equivalence structures that have no Σ1-coarsely c.e. copies and that there are injection

structures that have no coarsely computable copies. For injection structures, a Σ1-generically c.e.

structure, or a Σ1-coarsely c.e. structure, is always isomorphic to a computable structure. An

equivalence structure is Σ3-coarsely c.e. if and only if it has a c.e. copy.

2 Asymptotic density and generically computable structures

In this section, we provide some background on the notions of generically computable and coarsely

computable sets. We extend these notions to structures by defining more general notions of

generically computable and Σn-generically c.e. structures, and also of coarsely computable and

Σn-coarsely c.e. structures. In subsequent sections, we will examine these notions when applied

to injection structures and to equivalence structures.

The asymptotic density of a set A ⊆ ω is defined as follows.

DEFINITION 2.1

• The upper asymptotic density of A is limsupn
|(A∩n)|

n
.

• The lower asymptotic density of A is liminfn
|(A∩n)|

n
.

• The asymptotic density of A is limn
|(A∩n)|

n
, if this exists.

• We say that a set A is dense if its asymptotic density is 1.

It is easy to see that A has asymptotic density δ if and only if A has both upper and lower density δ;

A has density 1 if and only if it has lower density 1; and A has density 0 if and only if it has upper

density 0. Downey, Jockusch and Schupp [6] proved that there is a c.e. set of density 1 with no

computable subset of nonzero density.

The following observation will be useful. Note that the set A has upper density 1 if and only if

there is a sequence n0 < n1 < · · · such that limi
|A∩ni|

ni
= 1.

LEMMA 2.2

If A is a c.e. set with upper density 1, then A has a computable subset with upper density 1.

PROOF. Suppose that A is a c.e. set with upper density 1. Let (As)s∈ω be a computable enumeration

of A. Define computable sequences n0, n1, n2, . . . and s0, s1, s2, . . . as follows. Let n0 = s0 = 0.
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Let s1 be the least s such that, for some n < s, we have |n ∩ As| ≥ 1
2

n, and let n1 be the least

such n. Given nk and sk , let sk+1 be the least s such that, for some n with nk < n < s, we have

|(n − nk) ∩ As| ≥ 2k+1−1
2k+1 (n − nk), and let nk+1 be the least such n. The computable dense set B ⊆ A

is defined so that, for each i, if nk ≤ i < nk+1, then i ∈ B ⇔ i ∈ Ank+1
. It follows from the

construction that, for each k, the density of B in {i : i > nk} is at least 2k−1
2k , so that B has upper

density 1. �

In order to study binary relations and the corresponding structures, we need to look at notions

such as generic computability for such relations.

LEMMA 2.3

Let A ⊆ ω. Then A has asymptotic density δ if and only if A × A has asymptotic density δ2 in

ω ×ω. In particular, A is asymptotically dense in ω iff A × A is asymptotically dense in ω ×ω. More

generally, if A has asymptotic density δA, and B has asymptotic density δB, then A×B has asymptotic

density δA · δB.

PROOF. Let δA(n) = |A∩n|
n

and let δ(n) = |(A×A)∩(n×n)|
n2 . Since (A×A)∩ (n×n) = (A∩n)× (A∩n),

it follows that |(A × A) ∩ (n × n)| = |A ∩ n|2 and hence δ(n) = δA(n)2. If limn δA(n) = δ exists,

then limn δ(n) = limn δn(A)2 = δ2. Conversely, if limn δ(n) = L = δ2 exists, then limn δA(n) =
limn

√
δn(A) =

√
L = δ.

For the second part, let δA(n) = |A∩n|
n

and δB(n) = |B∩n|
n

and suppose that δA = limn δA(n) and

δB = limn δn(B) both exist. Then δ(n) = |(A × B) ∩ (n × n)| = δA(n) × δB(n) so lim
n

δ(n) = δA · δB

is the asymptotic density of A × B. �

A similar result holds for the density of Ar in ωr. On the other hand, we have the following result.

Let W0, W1, . . . be an effective enumeration of all c.e. sets.

THEOREM 2.4

There is a computable dense set C ⊆ ω × ω such that for any infinite c.e. set A ⊆ ω, the product

A × A is not a subset of C.

PROOF. Define C as follows. For any pair (a, b) with max{a, b} = m, proceed as follows. For each

e < m, look for the first element n > 2e, which has been enumerated in We by stage m; call this ne if

it exists. Then put (a, b) ∈ C, unless either a = ne or b = ne for some e < m. If We is infinite, then

it contains some element ne > 2e, which is the first to come into We at some stage se, and then there

will be another n ∈ We that is greater than se but (ne, n) will not be in C. The set C is dense since

there are at most i elements less than 2i of the form ne for any e < i, so C contains at least (2i − i)2

elements out of the 22i possible pairs up to 2i. �

Considering Lemma 2.3 and Theorem 2.4, our definition of a generically computable structure

with a binary relation calls for a dense set D in the domain so that the characteristic function on the

relation agrees with some partial computable function restricted to D × D, rather than with some

partial computable function restricted to a dense set in ω × ω. The most natural notion seems to

require that the substructure with domain D resembles the given structure A by agreeing on certain

sentences with constants from D, existential sentences in particular. Recall the following definition

of elementary substructures.



588 Densely computable structures

DEFINITION 2.5

A substructure B of the structure A is said to be an elementary substructure, in symbols B ≺ A,

if for any first-order formula θ(x1, . . . , xn) and any b1, . . . , bn ∈ B, we have B |� θ(b1, . . . , bn) ⇔
A |� θ(b1, . . . , bn).

Let n ≥ 0. The substructure B is a Σn elementary substructure, in symbols B ≺n A, if for

any infinitary Σn formula θ(x1, . . . , xn) any b1, . . . , bn ∈ B, we have B |� θ(b1, . . . , bn) ⇔ A |�
θ(b1, . . . , bn).

DEFINITION 2.6

A structure D for a finite language and with universe D is a c.e. structure if D is c.e., each relation

is c.e. and each function is the restriction of a partial computable function to D (hence the partial

computable function is total on D).

DEFINITION 2.7

(1) A structure A is generically computable if there is a substructure D with universe a c.e.

dense set D such that for every k-ary function f and every k-ary relation R, both f � Dk and

cR � Dk are restrictions to Dk of some partial computable functions.

(2) Let n ≥ 0. A structure A is Σn-generically c.e. if there is a c.e. dense set D such that the

substructure D with universe D is a c.e. substructure and also a Σn elementary substructure

of A.

The condition that A is a Σ0-generically c.e. structure is equivalent to the condition that A is

generically computable. Clearly, any Σn+1-generically c.e. structure is Σn-generically c.e.

EXAMPLE 2.8

Consider a structure of the form A = (ω, A), where A is a unary relation. By cA we will denote the

characteristic function of A. First, suppose that A is a generically computable set. Let φ be a partial

computable function such that D = dom(φ) is a dense c.e. set and, for every x ∈ D, φ(x) = cA(x).

Then the substructure D = (D, A ∩ D) can be considered a c.e. substructure of A since φ is total on

the set D, and, therefore, A is a generically computable structure. On the other hand, suppose that A

has a substructure D = (D, A ∩ D) where D is a c.e. dense set such that there is a partial computable

function φ that agrees with cA on D. The restriction of φ to D gives the description of A establishing

that the set A is generically computable. Similarly, we can show that A is Σ1-generically c.e. if and

only if there is a dense c.e. set D such that A ∩ D is an infinite c.e. set.

In the following sections, we will study generic computability of specific families of structures,

such as injection structures and equivalence structures and will also investigate the notion of a

coarsely computable structure.

3 Generically computable and Σ1-generically c.e. injection structures

We will now focus on injection structures and their dense computability.

DEFINITION 3.1

An injection structure A is a set A together with a one-to-one function f : A → A.
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Without loss of generality, we may assume that A ⊆ ω. Recall that A = (A, f ) is computable if

A is computable and f is computable, and A is c.e. if A is c.e. and f is the restriction of a partial

computable function to A.

Let a ∈ A. The orbit Of (a) of a under f is

Of (a) = {x : (∃n ∈ ω)[x = f (n)(a) ∨ a = f (n)(x)]}.

Orbits are either finite or infinite. Infinite orbits may be of type Z where Of (a) =
{. . . , f −2(a), f −1(a), a, f (a), f 2(a), . . .} or of type ω where for some b not in the range of f ,

Of (a) = {b, f (b), f (2(b), . . .}. The character of A is

χ(A) = {(k, n) ∈ (ω \ {0}) × (ω \ {0}) : A has at least n orbits of size k}.

DEFINITION 3.2

A set K ⊆ (ω \ {0})× (ω \ {0}) is said to be a character if, for all k and n ≥ 1, (k, n+1) ∈ K implies

(k, n) ∈ K.

It is easy to see that K is a character if and only if K = χ(A) for some injection structure A.

Computable and c.e. injection structures were investigated by the authors together with Morozov

[2] and by Cenzer, Harizanov and Remmel [4], where the following results were shown. By card(X )

or |X | we will denote the cardinality of X .

LEMMA 3.3

For any c.e. injection structure A, we have the following properties.

(1) {(a, k) : a ∈ ran(f (k))} is a c.e. set.

(2) {(a, k) : card(Of (a)) ≥ k} is a c.e. set.

(3) {a : Of (a) is infinite} is the intersection of a Π0
1 set with A.

(4) {a : Of (a) has type Z} is a Π0
2 set.

(5) {a : Of (a) has type ω} is a Σ0
2 set.

(6) χ(A) is a c.e. set.

PROPOSITION 3.4

For any c.e. character K, there is a computable injection structure A = (ω, f ) with character K and

any specified finite or countably infinite number of orbits of types ω and Z. Furthermore, the range

of f is computable and {a : Of (a) is finite} is computable.

LEMMA 3.5

Any c.e. injection structure is isomorphic to a computable injection structure.

PROOF. Given an infinite c.e. set A and a partial computable function f that is an injection on A,

let A = {ϕ(0), ϕ(1), . . .} = ran(ϕ), where ϕ is a computable injection from ω onto A, and let

g(n) = ϕ−1(f (ϕ(n))). Then ϕ is an isomorphism from the computable injection structure E = (ω, g)

to A = (A, f ), since ϕ(g(n)) = f (ϕ(n)). �

PROPOSITION 3.6

Let A = (ω, f ) be an injection structure. Then A has a generically computable copy if and only if A

has an infinite substructure that is isomorphic to a computable injection structure.

PROOF. Suppose first that A = (ω, f ) has a generically computable copy C = (ω, g), and let H :

C → A be an isomorphism. Now, by definition, there is a dense c.e. set D such that D is a c.e.
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substructure of C. The set D must be infinite since it is dense. Then the image B = (H(D), f ) is an

infinite substructure of A, which is isomorphic to D. The result now follows by Lemma 3.5.

Next, suppose that A = (ω, f ) has an infinite substructure B = (B, f ), which is isomorphic

to a computable injection structure with universe ω. We may assume that B is co-infinite since

otherwise, A is a computable structure and hence also generically computable. We assume without

loss of generality that (B, f ) is itself computable (otherwise, we can simply introduce additional

notation for the computable copy). Now, let D be a co-infinite dense computable set, enumerated as

D = {dn : n ∈ N}. We will build a computable function g such that (D, g) ∼= (B, f ). To do this, it

suffices to define g(dn) = df (n).

We may extend the isomorphism F : (B, f ) → (D, g) to a permutation of ω mapping ω \ B to

ω \ D. Then we may extend D to a generically computable injection structure C = (ω, g) by defining

g(x) to be F(f (F−1(x))), so that F will be an isomorphism between A and C. �

Note that in the proof of Proposition 3.6, we obtain a generically computable copy with a

computable substructure D the domain of which is dense.

PROPOSITION 3.7

An injection structure A = (ω, f ) has a generically computable copy if and only at least one of the

following holds:

(1) A has an infinite orbit;

(2) χ(A) has an infinite c.e. subset.

PROOF. Suppose that A has a generically computable copy. Then, by Proposition 3.6, A has an

infinite substructure D that is isomorphic to a computable injection structure C. There are two cases.

Case I. If C has an infinite orbit, then D has an infinite orbit Of (a), and that orbit is also infinite

in A.

Case II. If C has no infinite orbits, then χ(C) is an infinite c.e. set and χ(C) = χ(D). Since every

finite orbit in D is also an orbit in A, it follows that χ(D) is an infinite c.e. subset of χ(A).

For the other direction, suppose first that A has an infinite orbit Of (a). Then, by Proposition 3.4,

there is a computable injection structure consisting of exactly one orbit of the same type as Of (a).

Thus, the orbit Of (a) composes an infinite substructure of A isomorphic to a computable injection

structure. It follows from Proposition 3.6 that A has a generically computable copy.

Next, suppose that A has no infinite orbits and that χ(A) has an infinite c.e. subset K. Then,

again, by Proposition 3.4, there is a computable injection structure with character K. So it again

follows from Proposition 3.6 that A has a generically computable copy. �

Next, we consider Σ1-generically c.e. injection structures. We first characterize when B is a Σ1

elementary substructure of an injection structure A.

PROPOSITION 3.8

A structure B is a Σ1 elementary substructure of the injection structure A = (ω, f ) if and only if:

(i) For all b ∈ B, the orbit of b in B equals the orbit of b in A,

(ii) χ(A) = χ(B), and

(iii) If A has an infinite orbit, then either χ(B) is unbounded or B has an infinite orbit.

PROOF. Suppose that B is a Σ1 elementary substructure of A = (ω, f ). Certainly, finite orbits and

orbits of type ω are equal in B and in A since B is closed under the function f . Since B ≺1 A, if

A |� (∃x)(f (x) = b), then B |� (∃x)(f (x) = b), so B is also closed under f −1 and this preserves the

orbits of type Z. Since finite orbits are preserved, χ(B) ⊆ χ(A ). The other inclusion follows from
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B ≺1 A. That is, let φk(x) be the first-order formula saying [f (k)(x) = x ∧ (∀j < k)(f (j)(x) "= x)].

Then (k, n) ∈ χ(A) if and only if A satisfies the sentence saying:

(∃x0, . . . , xn−1)[(∀i < n)φk(xi) ∧ (∀i < j < n)(∀t < k)(f (t)(xi) "= xj)].

Since this is a Σ1 sentence, it follows that (k, n) ∈ χ(A) implies (k, n) ∈ χ(B).

Finally, suppose that A has an infinite orbit. Then for each k, A satisfies the sentence ψk saying:

(∃x)(∀i ≤ k)(f (i)(x) "= x).

Then B |� ψk for each k as well. Now suppose that χ(B) was bounded below k0. Then there is b

such that (∀i ≤ k0)(f
(i)(b) "= b) and, therefore, Of (b) must be infinite.

For the other direction, suppose that B satisfies conditions (i)–(iii). Let b1, . . . , bm ∈ B and

consider an arbitrary infinitary Σ1 formula

γ (b1, . . . , bm) =
∨

i∈N

∨

(∃x1, . . . , xn)θi(b1, . . . , bm, x1, . . . , xn),

where each θi is quantifier-free. By distributing disjunctions in the usual way, we may assume

without loss of generality that each θi is a conjunction of equalities and inequalities among some

finite set of images f (s)(bi) and f (t)(xj). Since f is an injection, any equality of the form f (s)(bi) =
f (t)(xj) allows us to eliminate xj from the formula. Now suppose that θi(b1, . . . , bm, a1, . . . , an) holds.

If any aj is in the orbit of some bi, then by (i), aj ∈ B and aj may be eliminated from θi. Thus, the

formula reduces to some θ �
i (a1, . . . , an). The equalities may be reduced to the form ah = f (t)(aj).

If we have aj = f (t)(aj), then the orbit of aj has type t. Since aj is not in Of (bi) for any i, and

χ(A) = χ(B), there must exist c ∈ B, with order type t, not in any of Of (bi) and that c = cj may

be substituted for aj. For the other equalities of the form ah = f (t)(aj), we need an orbit in B of size

≥ t, and such an orbit exists by (iii). Thus, we can find ch and cj in B with ch = f (t)(cj). In the end,

we have c1, . . . , cn ∈ B so that B |� θi(b1, . . . , bm, c1, . . . , cn) and, therefore, B |� γ (b1, . . . , bm). �

For injection structures, having a Σ1-generically c.e. isomorphic copy has a simple

characterization.

THEOREM 3.9

The following are equivalent for an injection structure A = (ω, f ).

(a) A has a Σ1-generically c.e. copy.

(b) χ(A) is a c.e. set.

(c) A has a computable copy.

(d) A has a Σ2-generically c.e. copy.

PROOF. The key is to show that (a) implies (b). Suppose that A has a Σ1-generically c.e. copy

E = (ω, g), and let D be a dense c.e. set such that for some g, D = (D, g) is a c.e. structure and

D ≺1 E . Then χ(D) is a c.e. set and, by Proposition 3.8, χ(D) = χ(E). Since A is isomorphic to E ,

it follows that χ(A) is a c.e. set. Proposition 3.4 shows that (b) implies (c). The implication from (c)

to (d) is easy, since any computable structure is Σn-generically c.e. for any n. Any Σn+1-generically

c.e. structure is Σn-generically c.e., so (d) implies (a). �
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4 Generically computable and Σ1- and Σ2-generically c.e. equivalence

structures

We will now focus on equivalence structures and their dense computability. Recall that an

equivalence structure A = (A, E) is simply a set A with an equivalence relation E on A. Equivalence

structures also have a character, defined as follows.

DEFINITION 4.1

The character of an equivalence structure A = (A, E) is

χ(A) = {(k, n) ∈ (ω \ {0}) × (ω \ {0}) : A has at least n equivalence classes of size k}.

We will sometimes just refer to the character of E when the set A is understood. As for injection

structures, it is easy to see that a set K is a character if and only if K = χ(A) for some equivalence

structure A.

Computable and c.e. equivalence structures were studied by the authors and Morozov in [1] and

by Cenzer, Harizanov and Remmel in [2], where the following results were shown. By [a]E, or just

[a] when E is understood, we will denote the equivalence class of a. Let FinA = {a : [a] is finite}
and Inf A = {a : [a] is infinite}.

LEMMA 4.2

For any c.e. equivalence structure A we have the following.

(1) {(a, k) : |[a]| ≥ k} is a c.e. set.

(2) {(a, k) : |[a]| = k} is the difference of two c.e. sets.

(3) Inf A is a Π0
2 set.

(4) χ(A) is a Σ0
2 set.

PROPOSITION 4.3

Let K be a Σ0
2 character.

(1) There is a computable equivalence structure A = (ω, E) with character K and with infinitely

many infinite equivalence classes. Furthermore, Inf A is a Π0
1 set.

(2) For any finite m ≥ 1, there is a c.e. equivalence structure A = (ω, E) with character K and

with exactly m infinite equivalence classes.

DEFINITION 4.4

The function f : ω2 → ω is said to be an s1-function if the following hold:

(1) For every i and s, f (i, s) ≤ f (i, s + 1);

(2) For every i, the limit mi = lims→∞ f (i, s) exists;

(3) For every i , mi < mi+1.

The character K is said to possess an s1-function f if it has an equivalence class of size mi for

each i. Here are some useful results about the characters of equivalence relations. The first result is

a slight improvement of Lemma 2.1(c) of [3].

LEMMA 4.5

For any c.e. equivalence relation E on a c.e. set A, the character χ(E) is a Σ0
2 set.
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PROOF. The Lemma from [3] applies to a structure with universe ω. If E is only defined on the c.e.

set A, just let S(x, y) ⇔ (E(x, y) ∨ x = y). This adds some classes of size 1 to the character, so that

χ(S) is Σ0
2 if and only if χ(E) is Σ0

2 . �

The next lemma is part of Lemma 2.8 of [1].

LEMMA 4.6

For any Σ0
2 character K, which is either bounded or possesses a computable s1-function, there is a

computable equivalence structure with character K and no infinite equivalence classes.

The next result is an improvement of Lemma 2.6 of [1]. It follows from Lemma 4.6 that it also

holds for structures restricted to c.e. universes.

LEMMA 4.7

Let A = (ω, E) be a c.e. equivalence structure with no infinite equivalence classes and an unbounded

character. Then there is a computable s1-function f such that A contains an equivalence class of size

mi for all i, where mi = limsf (i, s).

PROOF. Let Ep be the pth stage in the enumeration of E so that E = ∪pEp. We will define a uniformly

computable family as
i for i ≤ s in such a way that ai = limsa

s
i exists. We will also define a computable

sequence ps, and let

f (i, s) =
∣

∣{a ≤ ps : aEpsas
i }

∣

∣ .

Hence, we will have

mi = lim
s

(
∣

∣{a ≤ ps : aEps ai}
∣

∣ = |[ai]|
)

.

Stage 0. We set p0 = 0 and a0
0 = 0, so f (0, 0) = 1. In fact, as

0 will equal 0 for all s.

Stages + 1. After stage s, we have ps and as
0, . . . , as

s with f (i, s) as above such that

f (0, s) < f (1, s) < · · · < f (s, s).

At this stage, we define the least p > ps and the lexicographically least sequence b0, . . . , bs+1

such that for all i ≤ s, we have

f (i, s) ≤
∣

∣{a ≤ p : aEpbi}
∣

∣ <
∣

∣{a ≤ p : aEpbi+1}
∣

∣ ,

as follows. Let b0 = a0 = 0. Furthermore, bi = as+1
i whenever there do not exist a pair a, j with

j ≤ i, aEpas
j and ps < a ≤ p. Then we let as+1

i = bi for each i, and let ps+1 = p.

To see that such p exists at stage s + 1, let m be the largest such that [as
j ] = {a ≤ ps : aEpsas

j } for

all j ≤ m, and let bi = as
i for all i ≤ m. Then we use the assumption that χ(A) is unbounded to find

bm+1, . . . , bs+1 with

∣

∣[as
m]

∣

∣ < |[bm+1]| < |[bm+2]| < · · · < |[bs+1]| ,

and take p large enough so that [bi] = {a ≤ p : aEpbi}.
Finally, we verify that ai = limsa

s
i exists for each i. Since there is no j < 0, it follows from the

construction that as
0 = 0 for all s. Given t such that ai = limsa

s
i has converged by stage t for all i ≤ k,

let r ≥ t be large enough so that

[ai] = {a < pr : aEpr ai}
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for all i ≤ k. Here, we used the assumption that there are no infinite classes. It follows from the

construction that as
i+1 = ar

i+1 for all s > r. �

PROPOSITION 4.8

If A = (ω, E) is a c.e. equivalence structure with no infinite equivalence classes, then A is

isomorphic to a computable structure.

PROOF. By Lemma 4.5, A has a Σ0
2 character, and by Lemma 4.7, this character possesses a

computable s1-function. Then by Lemma 4.6, there is a computable structure with the same character

and no infinite equivalence classes, and hence isomorphic to A. �

This last result also holds for a c.e. equivalence structure E = (A, E).

We will now consider equivalence structures in the context of generic computability and the

variants thereof.

THEOREM 4.9

If an equivalence structure E = (ω, E) is generically computable, then there is some infinite

computable Y ⊆ ω such that the restriction of E to Y × Y is computable.

PROOF. Let A be an asymptotically dense c.e. set and ϕ a binary partial computable function, given

in the definition of a generically computable structure. Then, by Lemma 2.2, A has a computable

subset Y with upper density 1 (hence infinite) with Y ×Y ⊆ dom(ϕ). Then cE = ϕ on the computable

set Y . �

Note that the set Y from the proof of Theorem 4.9 may not preserve the equivalence classes of E .

Recall that a set B ⊆ ω is called immune if B is infinite and does not contain an infinite c.e. subset.

EXAMPLE 4.10

Let K = {(1, k) : k ∈ C} where C has no infinite Σ0
2 subset. Also, take an immune set B. Then

define E so that B is one infinite class, and ω \ B has character K. Then, while E itself need not be

computable, E has a generically computable copy, where the infinite class is a dense computable set.

Now, let Y be an infinite computable subset of ω. Since B is immune, Y \ B is infinite, so that Y has

infinitely many elements with finite equivalence classes. If (Y , E) has a computable copy, then this

copy has a Σ0
2 character, which is a subset of C. Thus at least (Y , E) does not preserve equivalence

classes.

The following result was unexpected.

PROPOSITION 4.11

Every equivalence structure E = (ω, E) has a generically computable copy.

PROOF. The proof is by cases. If χ(E) is bounded, then E has a computable isomorphic copy. If E

has an infinite equivalence class, let B be such a class, and let D be a computable dense set. Then we

can define a generically computable copy A = (ω, R) of E so that D is an infinite equivalence class

and (ω \ B, E) is isomorphic to (ω \ B, R).

Next, suppose that E has no infinite equivalence class and χ(E) is unbounded. Then there must be

infinitely many different k such that E has an equivalence class of size k. Choose one such class Bk

for each k, and let B ⊆ ω consist of exactly one element from each class Bk . Then the substructure

(B, E) consists of infinitely many classes of size 1. Note that ω \ B is infinite. Now, let D ⊆ ω be
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a computable, co-infinite set of asymptotic density one, and let f be a permutation of ω mapping

D onto B, and thus mapping ω \ D onto ω \ B. Then we may define a generically computable copy

(ω, R) of E by letting xRy ⇔ f (x)Ef (y). Then for a computable dense set D, the relation R restricted

to D × D is computable since for x, y ∈ D, we have xRy ⇔ x = y. �

For equivalence structures, the Σ1-generically c.e. structures have a nice characterization. Note

that any substructure B of an equivalence structure A is also an equivalence structure since the

definitions of ref lexive, symmetric and transitive relations are all universal.

PROPOSITION 4.12

A structure B with domain B is a Σ1 elementary substructure of the equivalence structure A = (ω, E)

if and only if:

(1) For all b ∈ B, if [b]A is finite, then [b]A = [b]B, and if [b]A is infinite, then [b]B is infinite;

and

(2) For all k, n ≥ 1, if A has at least n classes of size ≥ k, then B has at least n classes of size

≥ k.

PROOF. One direction is immediate from the definition of a Σ1 elementary substructure. For

example, if [b]A = {a, b, c}, then

A |� (∃x)(∃y)[b "= x ∧ b "= y ∧ x "= y ∧ bEx ∧ bEy ∧ xEy].

Thus, B must also satisfy this formula, so [b]B has at least 3 elements and, therefore, [b]B =
{a, b, c} = [b]A.

For the other direction, suppose that B satisfies the two conditions in the statement of the theorem.

Let b1, . . . , bm ∈ B and consider an arbitrary Σ1 formula

γ (b1, . . . , bm) =
∨

i∈N

∨

(∃x1, . . . , xn)θ(b1, . . . , bm, x1, . . . , xn),

where each θi is quantifier-free. By distributing disjunctions in the usual way, we may assume,

without loss of generality, that θi describes a partition of the set

{b1, . . . , bm, x1, . . . , xn}.

Suppose now that

A |� θi(b1, . . . , bm, a1, . . . , an)

and consider a particular equivalence class (i.e., a particular part of the partition given by θi)

{bj1 , . . . , bj� , ai1 , . . . , aik }.

If necessary, simplify the formula so that no two elements are equal. Let b = bj1 . There are three

cases to consider.

(1) Suppose that [b]A is finite. Then, by condition (1), [b]B = [b]A, so that ai1 , . . . , aik belong

to [b]B.

(2) Suppose that [b]A is infinite. Then, by condition (2), [b]B is also infinite, hence there

are bi1 , . . . , bik such that the set {bj1 , . . . , bj� , ai1 , . . . , aik } may be replaced by the set

{bj1 , . . . , bj� , bi1 , . . . , bik } in the partition described by θ .
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(3) Finally, suppose � = 0 so that the equivalence class is just {ai1 , . . . , aik }. Then, by condition

(3), there is an equivalence class in B with at least k elements, which is disjoint from

{b1, . . . , bm} and we may choose {bi1 , . . . , bik } from such a class.

It follows that elements b�
1, . . . , b�

n may be chosen so that

B |� θi(b1, . . . , bm, b�
1, . . . , b�

n)

and, therefore, B |� γ (b1, . . . , bm). �

THEOREM 4.13

An equivalence structure A = (ω, E) has a Σ1-generically c.e. copy if and only if at least one of the

following conditions holds:

(a) χ(A) is bounded.

(b) χ(A) has a Σ0
2 subcharacter (i.e., a subset that is a character) K with a computable s1-

function.

(c) A has an infinite class and χ(A) has a Σ0
2 subcharacter K.

(d) A has infinitely many infinite classes.

PROOF. If A has a Σ1-generically c.e. copy, then it has a Σ1 elementary substructure B that is

isomorphic to a c.e. structure. Thus, one of the cases in the statement of the theorem must hold.

We see this as follows. Suppose that B has bounded character and does not have infinitely many

infinite classes. Then it follows from Proposition 4.12 that A has a bounded character. Thus, we may

suppose that χ(B) is unbounded. By Lemma 4.2, K = χ(B) is a Σ0
2 set, and is a subset of χ(A)

by Proposition 4.12. If K does not have a computable s1-function, then B has an infinite class by

Lemma 4.7.

We prove the other direction by considering the four cases.

(a) If χ(A) is bounded, then A has a computable copy.

In cases (b) and (c), we will assume that χ(A) is unbounded and show that there is B ≺1 A, which

is isomorphic to a c.e. structure D, then build a copy C of A with a dense c.e. substructure D and fill

out the rest of C to make it isomorphic to A.

(b) In this case, A has a substructure B with unbounded character K and no infinite classes, which

will, therefore, be a Σ1 elementary substructure. By Lemma 4.6, there is a computable structure with

character K isomorphic to B, and we may define a structure D = (D, R) on a computable dense set

D with |ω \ D| = |ω \ B|. Let ψ be a set isomorphism from ω \ D to ω \ B and extend R to ω \ D

by letting xRy ⇔ ψ(x)Eψ(y). Then ψ will extend the isomorphism of D and B to an isomorphism

of A and (ω, R). The structure (ω, R) is Σ1-generically c.e. since it has a dense c.e. Σ1 elementary

substructure D.

(c) This case is similar to part (b) except that B now has an infinite class as well. It is important to

note that we define a c.e. structure D = (D, R) on a computable dense set D, although the relation R

is c.e. and may not be computable.

(d) In this case, the substructure B consisting of the infinite classes will be a Σ1 elementary

substructure, and we proceed as in (b) to define a c.e. dense structure D with infinitely many infinite

classes and extend this to a Σ1-generically c.e. structure (ω, R), which is isomorphic to A. �

We observe that the argument above also proves that A is Σ1-generically c.e. if and only if it has

an infinite substructure B that is isomorphic to a c.e. structure.

Equivalence structures with Σ2-generically c.e. isomorphic copies have a simple characterization.
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PROPOSITION 4.14

Let B be a Σ2 elementary substructure of an equivalence structure A = (ω, E). Then χ(A) = χ(B),

and if A has an infinite class, either B has an infinite class or χ(B) is unbounded.

PROOF. Let B = (B, E) be a Σ2 elementary substructure of an equivalence structure A = (ω, E).

Then χ(B) = χ(A). This holds because there is a Σ2 formula ψn,k that states that (n, k) ∈ χ(A).

Next, suppose that A has an infinite equivalence class, but B does not have an infinite class. Then

for each k, A has a class of size at least k, i.e. A |� ψ1,k . It follows that χ(B) is unbounded. �

The following result strengthens Proposition 4.14.

THEOREM 4.15

Let B=(B, E) be a substructure of the equivalence structure A=(A, E) such that B is closed under E.

Suppose that χ(A) = χ(B) and that, if A has any infinite classes, then either B has an infinite class

or χ(B) is unbounded. Then B is an elementary substructure of A.

PROOF. We use the following result from the proof of Theorem 5.2 in [4]. �

LEMMA 4.16

Let the formula γk(x) state that the equivalence class of x has at least k elements. Then the expanded

language of equivalence relations with {γk(x) : k ∈ ω} has quantifier elimination, i.e. every formula

is logically equivalent to a quantifier-free formula.

Now suppose that b1, . . . , bn ∈ B and that A |� (∃x)ϕ(x, b1, . . . , bn); we need to show that B |�
(∃x)ϕ(x, b1, . . . , bn).

So let ϕ(a, b1, . . . , bn) where by Lemma 4.16 we may assume that ϕ is quantifier-free in the

expanded language. As usual, we may also assume that ϕ is a conjunction of literals of three forms,

where terms s and t come from a, b1, . . . , bn:

(i) s = t or ¬s = t;

(ii) sEt or ¬sEt;

(iii) γk(t) or ¬γk(t)

Simplifying further, for each t, there is a single value of k such that we either have γk(t)∧¬γk+1(t),

which says that [t] has exactly k elements, or we have just γk(t).

If a ∈ B, then we are done. Otherwise, we have two cases.

Case 1: ϕ states that [a] has exactly k elements.

In this case, since χ(A) = χ(B), there must be infinitely many equivalence classes of size k, so

there is an element b not equivalent to any of b1, . . . , bn with an equivalence class of size k, and then

ϕ(b, b1, . . . , bn).

Case 2: ϕ states that [a] has at least k elements.

In this case, since χ(A) is unbounded, there must be an element b not equivalent to any of

b1, . . . , bn with an equivalence class of size ≥ k, and then ϕ(b, b1, . . . , bn).

Together with Proposition 4.14, this implies that B is a Σ2 elementary submodel of A if and only

if it is an elementary substructure.

In particular, if A has one or more infinite classes, and B is the finite part of A, then B is a Σ3

elementary submodel of A,

Thus, if B has an unbounded character with no s1-function, then it distinguishes the definition

of Σ3-generically c.e. we actually used from a potential alternate definition using only finitary Σ3

formulas.
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THEOREM 4.17

The following are equivalent for any equivalence structure A = (ω, E).

(a) A has a Σ2-generically c.e. copy.

(b) A has a c.e. copy.

(c) A has a Σ3-generically c.e. copy.

PROOF. To show that (a) implies (b), suppose that A has a Σ2-generically c.e. copy B = (ω, E).

Let D be a dense c.e. set such that D = (D, E) is a c.e. structure and also a Σ2 elementary

substructure of B. Then χ(D) is a Σ0
2 set, since D is c.e. and χ(D) = χ(A) because D is a

Σ2 elementary substructure of B. If χ(A) is bounded, then A has a computable copy. So suppose

that A is unbounded. If D has no infinite classes, then χ(D) has a computable s1-function. Thus, A

has a computable copy, whether or not it has infinite classes. If D has an infinite class, then A also

has an infinite class and, therefore, has a c.e. copy. The implication from (b) to (c) is easy, since any

c.e. structure is Σn-generically c.e. Any Σn+1-generically c.e. structure is Σn-generically c.e., so

(c) implies (a). �

5 Coarsely computable and Σn-coarsely c.e. structures

The results on Σn-generically c.e. structures lay down a baseline for the deeper results on coarsely

computable injection structures. We will show, in particular, that not every Σ1-coarsely c.e. injection

structure has a generically computable copy and that there are injection structures that do not have

coarsely computable copies.

In this section, we define the notions of coarsely computable and Σn-coarsely c.e. structures. We

investigate these notions for equivalence structures and for injection structures.

DEFINITION 5.1

(1) A structure A is coarsely computable if there are a computable structure E and a dense set D

such that the structure D with universe D is a substructure of both A and E and all relations

and functions agree on D.

(2) Let n ≥ 0. A structure A is Σn-coarsely c.e. if there are a c.e. structure E and a dense set D

such that the substructure D with universe D is a Σn elementary substructure of both A and

of E and all relations and functions agree on D.

A Σ0-coarsely c.e. structure is also called a coarsely c.e. structure. Clearly, every Σn+1-coarsely

c.e. structure is Σn-coarsely c.e., and every coarsely computable structure is coarsely c.e.

PROPOSITION 5.2

Consider a structure A = (ω, A), where A is a unary relation. Then

(1) A is coarsely computable if and only if A is coarsely computable.

(2) A is coarsely c.e. if and only if there is a dense c.e. set D such that A ∩ D is c.e.

(3) A is Σ1-coarsely c.e. if and only if there is a dense c.e. set such that A ∩ D is an infinite

c.e. set.

PROOF. Assume that A is coarsely computable and let f : ω → {0, 1} be a total computable function,

let E = {x : f (x) = 1}, and let D be a dense set such that f agrees with cA on D. Let E = (ω, E). This

is, in fact, a computable structure. Then A ∩ D = E ∩ D, so that D = (D, A ∩ D) is a substructure
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of both A and E . Thus, A is a coarsely computable structure. On the other hand, suppose that there

is a dense set D and a computable structure E = (ω, E) such that E agrees with A on the set D, i.e.

A ∩ D = E ∩ D. Then cA agrees with the total computable function f = cE on the dense set D, and

hence A is coarsely computable. The remaining two points follow by similar reasoning. �

Recall from Theorem 1.2 that the notions of generically computable and coarsely computable sets

are incomparable. This implies that the same is true for structures.

PROPOSITION 5.3

There is a generically computable structure that is not coarsely computable, and there is a coarsely

computable structure that is not generically computable.

PROOF. First, let A be a set that is generically computable but not coarsely computable. Then, by

Example 2.8 and Proposition 5.2, the structure (ω, A) is generically computable but not coarsely

computable. A similar argument works when the set A is coarsely computable but not generically

computable. �

It is easy to see that the structure (ω, A) is coarsely c.e. if and only if there is a c.e. set E and a

dense set D such that A ∩ D = E ∩ D.

We will compare and contrast coarsely computable, c.e. and Σn-coarsely c.e. structures with

generically computable and Σn-generically c.e. structures.

PROPOSITION 5.4

Any generically computable injection structure has a coarsely computable copy.

PROOF. Let A = (ω, f ) be a generically computable injection structure. As noted after Proposition

3.6 above, we may assume that A has a dense computable substructure D = (D, f ). We may extend

D to a computable structure C = (ω, g) by defining g(x) = f (x) for x ∈ D and g(x) = x for x /∈ D.

Then D is a dense computable substructure of both A and C, so that A is coarsely computable. �

It is natural to ask whether any generically computable structure actually is coarsely computable.

The next result gives a negative answer to this question. The proof is based on the fact that each

infinite orbit in a computable injection structure is a c.e. set, and the set of elements with finite

orbits is also a c.e. set. This is seen by Lemma 3.3.

Recall that a set is simple if it is c.e. and its complement is immune.

THEOREM 5.5

There is a generically computable injection structure that is not coarsely computable.

PROOF. Let D be an asymptotically dense simple (hence c.e.) set. This is easily constructed by adding

elements to a simple set as follows. Recall that the usual construction produces a c.e. set A, which

contains at most n elements that are < 2n for each n, with a single element i > 2e entering A for

each e, when it enters the eth c.e. set We. Just take an arbitrary dense computable set B that contains

exactly (2n − 2n) elements < 2n for each n > 3, and then D = A ∪ B will be a dense simple set.

Now, let D = {a0, a1, . . .} be a computable one-to-one enumeration, and define the function f

on D so that f (ai) = ai+1. Then f is a partial computable function that is total on the set D. That

is, given a ∈ D, just enumerate D until you see that a = ai and then output ai+1. Let D = (D, f )

and extend f arbitrarily to an injection structure A = (ω, f ). We claim that A = (ω, f ) cannot be

coarsely computable.

Suppose, by way of contradiction, that C = (C, g) is a computable injection structure and E is

a dense set such that E = (E, f ) = (E, g). First, we show that D = E modulo finite sets. Observe
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that D ∩ E must be asymptotically dense and, therefore, E contains some element ai. It follows that

{ai, ai+1, . . .} ⊆ E and thus D \ E is finite. Now, suppose that E \ D were infinite. There are three

cases to consider. In the first case, E \ D might contain an infinite orbit. Since g is computable, this

orbit would be an infinite c.e. subset of E \ D. In the second case, E might extend D to an orbit

of type Z. In this case, {x : (∃n)g(n)(x) = a0} is an infinite c.e. subset of E \ D. In the third case,

when neither of the first two cases apply, E \ D must contain an infinite set of finite orbits. Then

{x ∈ ω : (∃n)(g(n)(x) = x)} is an infinite c.e. subset of ω \ D. In each case, we arrive at a conclusion

that contradicts the fact that D is a simple set.

Thus, we may assume, without loss of generality, that D = E. Similarly, as above, we can show

that ω \ D must be finite, contradicting the assumption that D is co-infinite. �

It would be interesting to generalize these results by giving exact conditions on structures under

which generic and coarse computability either coincide or fail to coincide.

The situation is somewhat different for equivalence structures. Of course, we know that every

equivalence structure has a generically computable copy.

PROPOSITION 5.6

Any generically computable equivalence structure is coarsely c.e.

PROOF. Let A = (ω, E) be an equivalence structure, and let D be a dense c.e. set such that D =
(D, E) is a c.e. substructure of A. Then we may extend E to a c.e. equivalence relation R on ω by

letting xRy if and only if (x = y ∨(x, y ∈ D ∧ xEy)). Thus for x ∈ D, we have [x]R = [x], and for

x /∈ D, we have [x]R = {x}. �

Let E = (ω, E) be the canonical equivalence structure with one class of every finite size k. The

equivalence classes of (ω, E) are {0}, {1, 2}, {3, 4, 5}, . . . The first k classes have 1 + 2 + · · · + k =
k(k + 1)/2 elements. Thus, the class [ k(k+1)

2
] has k + 1 elements. Let K be any set, and let

AK =
⋃

k∈K[ k(k−1)
2

] be the union of the classes of size k for k ∈ K, under E.

Similarly, let C = (ω, f ) be the injection structure with orbits {0}, {1, 2}, {3, 4, 5}, . . ., so that

f (0) = 0, f (1) = 2 and f (2) = 1, and so on. The first k orbits have 1 + 2 + · · · + k = k(k + 1)/2

elements.

LEMMA 5.7

If K is a dense set, then AK is also a dense set.

PROOF. Suppose that the complement of K contains m out of the first n positive numbers. Then the

classes of size k with k ∈ K ∩ {1, 2, . . . , n} contain at most n + (n − 1) + · · · + (n − m + 1) =
m(2n − m + 1)/2 elements out of a total of 1 + 2 + · · · + n = n(n + 1)/2 elements. Then the ratio

is m
n

· 2n−m+1
n+1

≤ 2m/n. Thus, if ω \ K has density zero, then AK will have density 1. �

THEOREM 5.8

For any dense co-infinite set K ⊆ ω − {0}, there is a Σ1-coarsely c.e. equivalence structure A with

character {(k, i) : k ∈ K ∧ 1 ≤ i ≤ 2} and no infinite classes.

PROOF. Let E = (ω, E) be the canonical computable equivalence structure described above, with one

class of every finite size k. Let AK be the dense subset of ω, which will have character {(k, 1) : k ∈ K}
under E. Then take ω \ AK and partition it into exactly one class of size k for k ∈ K to create the

structure A. Then A agrees with E on the dense subset AK . It follows from Proposition 4.12 that

(AK , E) is a Σ1 elementary substructure of both E and A since χ(AK) = {(k, 1) : k ∈ K} is

unbounded. Thus, A is Σ1-coarsely c.e. �
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THEOREM 5.9

For any dense co-infinite set K ⊆ ω − {0}, there is a coarsely computable injection structure with

character {(k, i) : k ∈ K ∧ 1 ≤ i ≤ 2} and no infinite orbits.

PROOF. The proof is similar to the proof Theorem 5.8. To obtain the coarsely computable injection

structure, define an injection g that agrees with the canonical function f on the set AK , and extend

this function on ω \ AK to add one additional orbit of each size k for k ∈ K. Again, this structure

agrees with the computable structure C on the dense set AK . We note that (AK , f ) will not be a Σ1

elementary substructure of A since the character is different from χ(A), as it has only one orbit of

size k for k ∈ K, whereas A has two. �

The standard construction of a simple set (i.e., a c.e. set with immune complement) may be

modified to construct a simple set of density zero. Then the complement is a Π0
1 set of density

one. The following lemma also gives a relativized version.

LEMMA 5.10

There is an infinite Π0
1 set of asymptotic density 1 with no infinite c.e. subset, and an infinite Π0

2

dense set K with no infinite Σ0
2 subset. There is also an infinite Σ0

1 set of asymptotic density 0 with

no infinite c.e. subset and an infinite Π0
2 set K of density 0 with no infinite Σ0

2 subset.

PROOF. The notion of an immune set that is a Π0
1 set (co-c.e.) is well-studied and easily generalized.

The standard construction of an immune Π0
2 set may be modified as follows to obtain a dense set.

Let S1, S2, . . . be an enumeration of all Σ0
2 sets. Define K to omit the least member of Si, which is

greater than 2i. Then K must contain at least (2i − i) many of the first 2i numbers and hence has

density 1. For the second part, consider the set C = {2n − 1, 2n − 2 : n > 0}. The set C contains 2i

many of the first 2i numbers, for each i > 0. Thus, Π0
1 set K ∩ C contains between i and 2i of the

first 2i numbers and is, therefore, infinite and has asymptotic density 0. Since K ∩ C ⊆ K, it has no

infinite c.e. subset. A similar argument works for the Π0
2 set. �

The authors, together with Morozov, constructed in [1] an unbounded Δ0
2 character K with no

computable s1-function. (In fact, the set K is D0
1, i.e. the difference of two c.e. sets.) This result may

be improved to obtain a set of asymptotic density zero.

PROPOSITION 5.11

There is an infinite Δ0
1 set D of asymptotic density 1 such that D×{1} has no computable s1-function,

and, therefore, there is no computable structure with character D × {1}. There is also an infinite Δ0
1

set D of asymptotic density 0 such that D × {1} has no computable s1-function, and, therefore, there

is no computable structure with character D × {1}.

PROOF. Let Ce := (ω, Se) be the eth c.e. equivalence structure. That is, for the eth c.e. set We, let

Se be the ref lexive, symmetric and transitive closure of {(x, y) : �x, y� ∈ We}. Let [x]e denote the

equivalence class of x in Ce. Define the c.e. relation R by

R(e, x) ⇔ card([x]e) > 2e.

Then, by a standard uniformization theorem for c.e. relations [see 14, p. 29], there is a partial

computable selector function ϕ such that, for every e,

(∃x)R(e, x) ⇒ R(e, ϕ(e)).
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Now, define D as follows:

k ∈ D ⇔ (∀e)(2e < k ⇒ card([ϕ(e)]e) "= k).

Then D is a D0
1 set by Lemma 4.2. Now suppose that k < 2i and k /∈ D. Then for some e with

2e < k, card([ϕ(e)]e) = k. It follows that e < i, so that

card({k < 2i : k /∈ D}) ≤ i.

It follows that K is asymptotically dense. Now, suppose that A = Ae has unbounded character and no

infinite equivalence class. Since χ(A) is unbounded, there exists a such that R(e, a). Let a = ϕ(e).

Since A has no infinite classes, card([ϕ(e)]e) = k > 2e. Then, by definition, (k, 1) ∈ χ(A) but

k /∈ D. Hence χ(A) "= K. It follows from Lemma 4.6 that K has no computable s1-function.

As in the proof of Lemma 5.10, it can be shown that there is also such a set with asymptotic

density 0. �

PROPOSITION 5.12

(1) There is a coarsely computable injection structure with no generically computable copy.

(2) There is a Σ1-coarsely c.e. equivalence structure with no Σ1-generically c.e. copy.

PROOF. Let K ⊆ ω − {0} be a dense immune set, and let A be the injection structure with character

{(k, i) : k ∈ K ∧ 1 ≤ i ≤ 2} from Theorem 5.9 with no infinite orbits. If B were a generically

computable copy of A, then B has no infinite orbits, and thus χ(B) = χ(A) must have an infinite

c.e. subset C by Proposition 3.6. Then {k : (k, 1) ∈ C ∨ (k, 2) ∈ C} is an infinite c.e. subset of K,

which is a contradiction.

The result for equivalence structures follows similarly from Lemma 5.10 and Theorem 4.13. �

Next, we will show that there are equivalence structures that do not have Σ1-coarsely c.e. copies

and injection structures that have no coarsely computable copies.

THEOREM 5.13

There is an infinite Π0
4 set K ⊆ ω such that if C = (ω, R) is a c.e. equivalence structure such that

{x : |[x]R| = k} has asymptotic density 0 for any k, and such that if D is a set of asymptotic density

1, then D is not a subset of {x : |[x]R| ∈ K}. Thus, any equivalence structure A with character

χ(A) ⊆ K × {1} cannot be Σ1-coarsely c.e.

PROOF. As before, let Ce := (ω, Se) be the eth c.e. equivalence structure. That is, for the eth c.e. set

We, let Se be the ref lexive, symmetric, transitive closure of {(x, y) : �x, y� ∈ We}. Let [x]e denote the

equivalence class of x in Ce. We need to meet the following requirements.

Requirement Re: If {x : |[x]e| = k} has asymptotic density 0 for all k , then {x : |[x]e| ∈ K} does

not have asymptotic density 1.

We begin the construction with K0 = ω and remove numbers at certain stages to satisfy the

requirements. At the same time, we need to ensure that K is infinite. So the construction will preserve

an element of K each time that it removes an infinite number of elements. We may assume for the

construction that {x : [x]e is infinite} has upper density 0; otherwise, the conclusion is immediate.

We will show how to satisfy an individual requirement for the case e = 0. Let C = (ω, S0), let

S = S0, and consider the four sets Ai = {x : |[x]S| = i mod 4} for i = 0, 1, 2, 3. Since the union of

the sets equals ω, at least one of the sets, say Aj, must have upper asymptotic density at least 1/4.

Let us suppose that {x : |[x]S| = k} has asymptotic density 0 for all k, so that we need to take
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action on requirement R0. Then we will ensure that K ∩ {i : i = j mod 4} = {4 + j}; i.e. we let

K1 = {4 + j} ∪ {k : k "= j mod 4} and maintain K ∩ {i : i = j mod 4} = {4 + j} throughout the

construction. Then {x : |[x]S| ∈ K} must have density at most 3/4, so that it cannot contain any set

D has asymptotic density 1.

The general construction of K is in stages. After stage e, we will have designated, for certain

i ≤ e, a value j(i) and corresponding set Ai = {x : |[x]i| = j(i) mod 2i+2}, so that for i "= h, we have

Ai ∩ Ah = ∅. We will have removed Ki = {m : m = j(i) mod 2i+2} from K, except for 2i+2 + j(i),

for such i. Note that we will have removed at most one set Ki mod 2i+2 for each i ≤ e, for a total of

at most 2e + 2e−1 + · · · + 1 < 2e+1 classes mod 2e+2, resulting in the set Ke. Thus, there remain

2e+1 classes mod 2e+2 to work with, each disjoint from the previous classes. At stage e + 1, we

will ensure Requirement Re (if necessary) by removing a set of class sizes from K. If there exists

k such that {x : |[x]e+1| = k} has positive density, then we take no action. If not, then we select

j = j(e + 1) < 2e+3 such that Ae+1 = {x : |[x]|e+1 = j mod 2e+3} has upper density at least 2−e−3

and we let Ke+1 = {m : m = j(e + 1) mod 2e+3}. If Ke+1 meets one of the previous classes Ki, then

in fact Ke+1 ⊆ Ki, so that we have already removed all but one element of Ke+1 from K. Otherwise,

we remove Ke+1 = {m : m = j mod 2e+3} from Ke, except for 2e+3 + j, to obtain Ke+1.

Let K = ∩sK
s. It remains to check that K satisfies each Requirement Re and that K is an

infinite set.

First, we show that action is taken infinitely often. Suppose, by way of contradiction, that no action

is taken after stage e. Then K will consist of a finite number of equivalence classes modulo 2e+2 plus

a finite set. Thus K will be computable. Hence there is some i such that Ci consists of exactly one

class of size k for each k ∈ K. Thus, at stage i, when we select j such that {x : |[x]i| = j mod 2i+2}
has positive upper density in Ci, and consider Ki = {m : m = j mod 2i+2}, we would have Ki ⊆ K ⊆
K i+1. But then we would have taken action and removed all but one value of Ki from K.

Next we need to check that K is infinite. Since action was taken infinitely often, we have preserved

in K an element 2i+2 + j(i) of Ki for infinitely many i. Since the sets {Ki : i ∈ ω} are disjoint, this

element is never removed at any later stage. Hence K is infinite.

Now, suppose that {x : |[x]e| = k} has asymptotic density 0 for all k, and suppose, by way of

contradiction, that {x : |[x]e| ∈ K} has asymptotic density 1. Then at stage e of the construction,

we will have selected j < 2e+2 such that Aj = {x : |[x]|e = j mod 2e+2} has upper density at least

2−e−2, and defined

Ke = {m : m = j mod 2e+2}.

Since K ⊆ Ke−1, it follows that Ke is disjoint from all previous Ki. So we will remove all but one

element of Ke from K at stage e. It follows that {x : |[x]e| ∈ K} has lower density at most 1 − 2−e−2.

Finally, suppose that A = (ω, S) has character χ(A) ⊆ K × {1} and is Σ1-coarsely c.e. Let

C = (ω, R) be a computable equivalence structure, say R = Se. Let D be a set of density 1 such that

the structure D = (D, R) = (D, S) is a Σ1 substructure of both A and C. Since D ≺1 A, we have

D ⊆ {x : |[x]|S ∈ K}. Since R and S agree on D, and D ≺1 C, it follows that D ⊆ {x : |[x]|e ∈ K}.
By the assumption on C, this means that {x : [x]e = k} has density 0 for each k. It follows from

Requirement Re that {x : |[x]e| ∈ K} does not have asymptotic density 1. However, this contradicts

the fact that the subset D has density 1.

An upper bound on the complexity of K may be determined as follows. First, we observe that

{x : |[x]i| = j} is uniformly Σ0
2 , and thus C(i, j, e) = {x : |[x]i| = j mod 2e} is also uniformly Σ0

2 .
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Then the lower density δ(C(i, j, e)) ≥ 1
4

if and only if

(∀m)(∃n ≥ m)|C(i, j, e) ∩ n| ≥
n

4
.

Thus, this test is Π0
3 . So the construction may be done using an oracle for ∅

���. So the set Ki is

uniformly computable in ∅
���. Since K is the intersection of the sequence (Ki)i∈ω, it follows that K

is a Π0
4 set. �

Here is a corresponding result for injection structures.

THEOREM 5.14

There is an infinite set K ⊆ ω such that if C = (ω, f ) is a computable injection structure for which

the set {x : |Of (x)| = k} has asymptotic density 0 for any k, and if D is a set of asymptotic

density 1, then D is not a subset of {x : |Of (x)| ∈ K}. Thus, any injection structure A with character

χ(A) ⊆ K × {1} cannot be coarsely computable.

PROOF. Here we let Ce := (ω, fe) be the ethpotential computable injection structure. That is, for the

eth c.e. set We, let fe(x) be the least y such that �x, y� ∈ We, if it exists. Let Oe(x) be the orbit of x

under fe, if defined. Then we need to meet the following requirements Re for every e ∈ ω.

Requirement Re: If Ce is an injection structure and {x : |Oe(x)| = k} has asymptotic density 0 for

all k, then {x : |Oe(x)| ∈ K} does not have asymptotic density 1.

We begin the construction with K0 = ω and remove numbers at certain stages to satisfy the

requirements. At the same time, we need to ensure that K is infinite. So the construction will preserve

an element of K each time that it removes an infinite number of elements. We may assume for the

construction that {x : Oe(x) is infinite} has upper density 0; otherwise, the conclusion is immediate.

We will show how to satisfy an individual requirement for the case e = 0. Let C = (ω, f0), let

f = f0 and consider the four sets Ai = {x : |O0(x)| = i mod 4} for i = 0, 1, 2, 3. Since the union

of the sets equals ω, at least one of the sets, say Aj, must have upper asymptotic density at least 1/4.

Let us suppose that {x : |Oe(x)| = k} has asymptotic density 0 for all k, so that we need to take

action on requirement R0. Then we will ensure that K ∩ {i : i = j mod 4} = {4 + j}; i.e., we let

K1 = {4 + j} ∪ {k : k "= j mod 4} and maintain K ∩ {i : i = j mod 4} = {4 + j} throughout the

construction. Then {x : |[x]S| ∈ K} must have density at most 3/4, so that it cannot contain any set

D that has asymptotic density 1.

The details of the construction are similar to those given in the proof of Theorem 5.13 and are,

therefore, omitted here. An upper bound on the complexity of K may be determined as follows. First,

we observe that {x : |Oi(x)| = j} is uniformly Σ0
1 , and, thus, C(i, j, e) = {x : |Oi(x)| = j mod 2e} is

also uniformly Σ0
1 . Then the lower density δ(C(i, j, e) ≥ 1

4
if and only if

(∀m)(∃n ≥ m)|C(i, j, e) ∩ n| ≥
n

4
.

Thus, this test is Π0
2 . So the construction may be done using an oracle for ∅��, and it follows that the

K is a Π0
3 set. �

As was the case for Σ1-generically c.e. structures, any Σ1-coarsely c.e. injection structure is

isomorphic to a computable structure.

PROPOSITION 5.15

The following are equivalent for any injection structure A = (ω, f ):

(a) A has a Σ1-coarsely c.e. copy;
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(b) χ(A) is a c.e. set;

(c) A has a computable copy.

PROOF. Suppose first that A = (ω, f ) is a Σ1-coarsely c.e. injection structure. Let B = (ω, g)

be a c.e. structure and D be a dense set such that f = g on the set D, and D = (D, f ) is a Σ1

elementary substructure of both A and B. Then χ(A) = χ(D) = χ(B) and is, therefore, a c.e. set.

The implication (b)⇒(c) follows from Proposition 3.4. �

For Σ2-coarsely c.e. equivalence structures, the characterization is in two cases.

PROPOSITION 5.16

Let A be an equivalence structure with character K such that at least one of the following holds:

(i) A has an infinite equivalence class,

(ii) K is bounded,

(iii) K has a computable s1-function.

Then the following are equivalent:

(1) A has a Σ2-coarsely c.e. copy;

(2) K is Σ0
2 ;

(3) A has a c.e. copy.

PROOF. Let A be an equivalence structure with character K, which satisfies one of the three

conditions above.

Suppose first that A = (ω, E) is Σ2-coarsely c.e. Let B = (ω, R) be a c.e. structure and D be a

dense set such that E = R on the set D, and D = (D, E) is a Σ2 elementary substructure of both A

and B. Then by, Proposition 4.14, χ(A) = χ(D) = χ(B) and is, therefore, a Σ0
2 set.

Next, suppose that K is Σ0
2 . Since A satisfies one of the three conditions, it follows from

Proposition 4.3 that A is isomorphic to a c.e. structure.

Finally, suppose that A has c.e. copy. Then the copy is itself Σ2-coarsely c.e., where the desired

dense set is D = ω. �

PROPOSITION 5.17

Let A be an equivalence structure with unbounded character K such that A has no infinite

equivalence class and K does not have a computable s1-function. Then the following are

equivalent:

(1) A has a Σ2-coarsely c.e. copy;

(2) K is Σ0
2 and, for some finite k, A has infinitely many classes of size k.

PROOF. Let A be an equivalence structure with unbounded character K such that A has no infinite

equivalence class and K does not have a computable s1-function. Suppose first that A = (ω, E) is

Σ2-coarsely c.e. Let B = (ω, R) be a c.e. structure and D be a dense set such that E = R on the set

D, and D = (D, E) is a Σ2 elementary substructure of both A and B. Then, by Proposition 4.14,

χ(A) = χ(D) = χ(B) and is, therefore, a Σ0
2 set. Since B is c.e., it follows from Lemma 4.7 that

B has an infinite class. Therefore, ω \ D is infinite. Now, consider a ∈ ω \ D and k = |[a]E|. If

(k, n) ∈ K, then (k, n) ∈ χ(D) and thus (k, n + 1) ∈ χ(A), so that (k, n + 1) ∈ K. It follows that

(k, m) ∈ K for all m.

Next, suppose that K is Σ0
2 and, for some k, A has infinitely many classes of size k. By Proposition

4.3, there is a c.e. structure C = (ω, E) with character K and an infinite class. Let D be a co-infinite

computable dense set. Define D = (D, R) to consist of infinitely many classes of size k. Define R
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on ω \ D to be a copy of C. This defines a c.e. structure isomorphic to B. Now, let B = {x ∈ ω :

|[x]R| is finite}. The set B is dense since it includes the dense set D. We have that B ≺2 C since K is

unbounded. Now, B = (B, R) has no infinite classes and has character K, so it is isomorphic to A.

We will now build a copy (ω, E) of A by letting E = R on B, and letting (ω \ B) consist of infinitely

many classes of size k. �

Note, in particular, that if K is a Σ0
2 set with no computable s1-function and A consists of one

class of size k for each k ∈ K, then no proper substructure of A can have the same character as A

and, therefore, A cannot be Σ2-coarsely c.e.

Here is a related result.

THEOREM 5.18

There is a Δ0
2 set K with no computable s1-function, which is asymptotically dense.

LEMMA 5.19

If B is a Σ3 elementary substructure of the equivalence structure A = (ω, E) and A has an infinite

class, then B has an infinite class.

PROOF. Let B = (B, E) be a Σ3 elementary substructure of an equivalence structure A = (ω, E)

and suppose that A has an infinite equivalence class. Then A satisfies the infinitary Σ3 formula

(∃x)
∧

n∈N

∧

ψn(x), where ψn(x) is the Σ0
1 formula

(∃x1) · · · (∃xn)
∧

i<j≤n

[xi "= xj ∧ xiEx].

It follows that B |� (∃x)
∧∧

nψn(x) as well and, therefore, B has an infinite class. �

THEOREM 5.20

For any equivalence structure A, A is Σ3-coarsely c.e. if and only if A has a c.e. copy.

PROOF. Let A = (ω, E) be a Σ3-coarsely c.e. equivalence structure with character K. First, assume

that one of the following conditions is satisfied: A has an infinite equivalence class, K is bounded

or K has a computable s1-function. Since A is also Σ2-coarsely c.e, it follows from Proposition 5.16

that A has a c.e. copy.

Next, assume that A has no infinite equivalence class and character K is unbounded and does not

have a computable s1-function. Let B = (ω, R) be a c.e. structure and D be a dense set such that

E = R on the set D, and D = (D, E) is a Σ3 elementary substructure of both A and B. Then, by

Proposition 4.14, χ(A) = χ(D) = χ(B). By Proposition 5.19, D and hence B have no infinite

classes. Thus, A is isomorphic to B.

Now, assume that A has a c.e. copy with domain ω. Then the copy itself is Σ3-coarsely c.e., where

the desired dense set is D = ω. �
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