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Abstract—Student engagement is a key component of learning and teaching, resulting in a plethora of automated methods to
measure it. Whereas most of the literature explores student engagement analysis using computer-based learning often in the lab, we
focus on using classroom instruction in authentic learning environments. We collected audiovisual recordings of secondary school
classes over a one and a half month period, acquired continuous engagement labeling per student (N=15) in repeated sessions, and
explored computer vision methods to classify engagement from facial videos. We learned deep embeddings for attentional and
affective features by training Attention-Net for head pose estimation and Affect-Net for facial expression recognition using
previously-collected large-scale datasets. We used these representations to train engagement classifiers on our data, in individual and
multiple channel settings, considering temporal dependencies. The best performing engagement classifiers achieved
student-independent AUCs of .620 and .720 for grades 8 and 12, respectively, with attention-based features outperforming affective
features. Score-level fusion either improved the engagement classifiers or was on par with the best performing modality. We also
investigated the effect of personalization and found that only 60 seconds of person-specific data, selected by margin uncertainty of the

base classifier, yielded an average AUC improvement of .084.

Index Terms—Affective computing, computer vision, educational technology, nonverbal behaviour understanding.

1 INTRODUCTION

HEN are students engaged in learning during a class?

What is the relationship between student engage-
ment and the content and the quality of the learning ma-
terial? And, how is student engagement related to learning
outcomes and long-term learning goals? These research
questions and more have drawn the interest of scientists
from educational sciences, psychology, and similar fields
to investigate student engagement during learning. We ad-
vance this research using computational methods.

To begin our investigation of student engagement, we
must first define the term engagement and contextualize its
implications in the classroom setting. Several dictionaries
share a similar definition of the term engagement; being
engaged means “to involve oneself or become occupied; to
participate” while engagement can be defined as “[being]
actively committed”. As it relates to human behavior, en-
gagement is highly connected to commitment and involve-
ment. In the educational context, student engagement has
been the subject of research for the past three decades. This
includes different attempts to define the term [1].

The definition by Fredricks et al. [2] is one of the
most accepted and frequently used in education research.

o O. Siimer, P. Goldberg, and U. Trautwein are with the Hector Research
Institute of Education Sciences and Psychology, University of Tiibingen,
Tiibingen, 72072, Germany, O. Siimer is also with the Department of
Computer Science, University of Tiibingen, Tiibingen, 72076, Germany.

o Sidney K. D’Mello is with the Institute of Cognitive Science and the De-
partment of Computer Science, University of Colorado Boulder, Boulder,
CO 80309. E-mail: sidney.dmello@colorado.edu

o P Gerjets is with the Leibniz-Institut fiir Wissensmedien, Tiibingen,
72076, Germany. E-mail: p.gerjets@iwm-tuebingen.de.

e E. Kasneci is with the Department of Computer Science, University of
Tiibingen, Tiibingen, 72076, Germany. E-mail: enkelejda.kasneci@uni-
tuebingen.de.

Authorized licensed use limited to: IVERSITY OF COLOR

uires IEEE permission. See http://www.ieee.org/
C}\DO. Downloaded on August 18,2022 a

They define engagement as a multidimensional construct
composed of three dimensions: behavioral, cognitive, and
emotional. Those dimensions do not reflect isolated pro-
cesses, but rather dynamically interrelated factors within
an individual student. In the context of classroom and
learning activities, behavioral engagement focuses on the act
of participation and can include behaviors such as display-
ing attention and concentration, or asking questions. Emo-
tional engagement encompasses affective reactions such as
a student’s interest or boredom. Whereas aspects of be-
havioral and emotional engagement are typically externally
observable, cognitive engagement incorporates less overt,
internal cognitive processes such as psychological resource
investments in learning and self-regulation [2]. Importantly,
previous research has found positive correlations between
aspects of student engagement and academic achievement,
emphasizing its central role in classroom learning [3]. To
put it differently, students” engagement during classroom
instruction determines the extent to which students learn,
how well they develop intellectual skills, and how long they
will persist in school [4]. Given its importance, in the present
study, we aim to use affective computing techniques to
measure student engagement in authentic classrooms based
on visible indicators.

Two methods are proposed in affective computing litera-
ture to acquire the engagement labels needed for supervised
learning: 1) self-reports and 2) external behavior observa-
tions. Self-reports are practical, relatively cheap, and easy
to administer to a large sample, making them valuable for
the measurement of engagement and beyond [1]. Despite
their value, self-reports have certain drawbacks, namely a
dependence on participant compliance and diligence [5].
Furthermore, self-reports can be used in two ways: after
the lesson or multiple times as experience sampling. The
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former can lead to biases in retrospective recall, the latter
risks disrupting the natural flow of instruction. To cause
as little disruption as possible, self-reports administered in
experience sampling studies have to be short. There is a risk,
however, that shorter self-reports may not adequately cover
the construct under investigation (more details can be found
in [6]).

External behavior observations are another useful assess-
ment tool for student engagement and have a long tradi-
tion in education research. External behavior observations
have been used to investigate determinants of classroom
processes such as quality of instruction [7], teacher-student
relationships (e.g., [8]), the number of learning opportunities
(e.g., [9]), and a teacher’s choice of practices (e.g., [10]).
In general, observer ratings are systematic approaches that
aim to identify and interpret certain behaviors [11]. Their
deployment in large-scale studies is notably limited by
the necessity of providing human raters with specialized
training, the difficulty of acquiring reliable labeling, and the
cost involved. Moreover, in contrast to many other computer
vision applications, crowdsourcing is not a viable option to
label student engagement collected in authentic classrooms
due to privacy considerations and the specialized training
that is required for raters.

Self-reports and external behavior observations pose a
challenge for large samples of classrooms. A solution is to
automatically estimate engagement using machine learning
and computer vision. Automated methods have two main
advantages: they are fast and they have the potential to
increase the sample size of classroom studies. In the field
of affective computing, initial studies aimed at estimating
student engagement focused on computer-based learning
[12], [13], [14] and intelligent tutor systems (ITS) [15]. From
ITS log files, such as students’ reaction times, errors, and
performance [16], [17], [18], preferred modalities for en-
gagement analyses shifted to video [12], [13], [19], audio,
and physiological measures (i.e., galvanic skin response [20],
[21], EEG [22], [23], heart rate [24]).

In computer-based learning settings, the availability of
log data is an important asset [25]. Furthermore, vision-
based features can be extracted reliably using webcams.
In the classroom, however, log data is typically unavail-
able and using sensors for each student can render stud-
ies expensive, intrusive, and ultimately may affect student
behaviors. Thus, a widely accepted practice in classrooms
is to record the instruction with field cameras located in
the corners of the room. One drawback of this approach,
however, is that audio and visual data is noisy and may be
occluded, a challenge that we address in the present work.

1.1 Contributions of the Study

Although automated engagement analysis is widely studied
in computer-based settings such as intelligent tutors and
educational games, this study is, to our knowledge, one of
the first to perform video-based engagement classification
in the classroom on a large scale. In this paper, we review,
in detail, engagement measurement studies in the field of
affective computing. We then discuss the large-scale school
study we conducted by collecting audio-visual recordings
of classes during a one and a half month period. Observer
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ratings of student engagement were acquired using an in-
strument previously validated in university-level seminars
[26].

The current study’s primary focus is to develop en-
gagement classification from limited and unconstrained
data where traditional face alignment and facial action
unit estimation methods have largely failed. Following the
definition by Fredricks et al. [2], we focus on behavioral
and emotional aspects of student engagement because they
have observable behavioral correlates [27]. Visual attention
(subsequently referred to as attention) and affective expres-
sions can thus provide useful insight into these two sub-
components of engagement. Accordingly, we propose learn-
ing attention and affect features from two convolutional
neural networks that we trained on head pose estimation
and facial expression recognition as pretasks. In contrast
to previous work that utilized handcrafted features in en-
gagement analysis, the deep learning-based representations
we propose work without precise facial alignment. Our
engagement classification is performed using these learned
feature embeddings. We also applied feature and score
level fusion on these features. Beyond reporting baseline
results using person-independent classification, we inves-
tigated personalization to address intrapersonal variation in
student (dis)engagement as well.

2 RELATED WORK

In recent years, the use of automated methods in classroom
behavior analysis and engagement estimation has been on
the rise. The popularity of such methods is largely due to the
availability of big data and the progress of artificial intelli-
gence. Notably, developments in deep learning have yielded
significant results in social signal processing problems [50],
[51], [52], [53], including classroom and learning analytics
[54], [55].

We can categorize the literature of automated engage-
ment estimation based on the following criteria:

o learning situation (computer-enabled settings, tradi-
tional classroom instruction and group-work, etc.)

o nonverbal features (various behavioral cues related
to learning activities)

o computational methodology (in both feature extrac-
tion and machine learning)

o final objectives (explanation [i.e., showing a statisti-
cal relation] vs. fully automated predictive system for
psychologically valid measurements of engagement)

In addition to these points, another consideration is
the use of sensors [56]. Whereas sensor-free measurements
depend on educational systems’ log files, sensor-based mea-
surements use physical devices such as physiological sen-
sors (i.e., EDA, EEG, heart rate sensors) and audiovisual
recordings acquired from cameras and voice recorders. As
our motivation is to measure engagement as seamlessly as
possible without necessitating any expensive and intrusive
sensors, we limit our scope to engagement analysis using
only visual modalities. Table 1 summarizes the literature of
automated engagement analysis across three domains: class-
room, computer-based settings (including intelligent tu-
tors and screen-based learning games), and human-human,
human-robot interactions (HHI/HRI).
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TABLE 1: Automated Engagement Analysis in Classroom, Computer-based Learning, Human-Human/Human-Robot

Interaction (HHI/HRI) Settings

1949-3045 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re

Reference Setting Behavioral Cues Engagement Measurement Predictive Models
[28] classroom head pose observer reports v
[29], [30] classroom head pose, body motion self-reports (in-class) X
[31], [32] classroom head pose, gaze, facial expressions, posture observer reports v
[33] classroom gaze mapping (heads up/down) - X
[34] classroom head pose, gaze, FACS action units observer reports v

real-time monitoring system capable of extracting
[35] classroom many behavioral features (i.e. smile detector, - X
hand raising, head pose, speech analysis)
monitoring system
[36] classroom (head pose and gaze estimation) B v
[37] computer-based  FACS action units and ITS log features observer ratings v
self-reports
[38] computer-based  FACS action units (user engagement survey [39], v
NASA-TLX [40])
[12] computer-based handcrafted features from faces observer reports v
[19] computer-based  FACS action units and appearance features self-/observer reports (MW) v
[13] computer-based  FACS action units and gross body movement observer reports (BROMP [41]) v
; Kinect Animation Units, facial appearance, self-reports
[42] computer-based o vt rate estimated from face videos (concurrent & retrospective) Y
[43] computer-based  facial appearance features crowdsourcing v
[44] computer-based head pose and gaze direction observer reports v
[14] computer-based {aaal‘ expressions, head pose, observer reports v
earning management system log data

ELEA [45] HHI - observer ratings X

RECOLA [46] HHI - self-reports X

MHHRI [47] HHI & HRI audio, physiological, and first-person vision self-reports v
(48], [49] HRI facial expressions, body pose, audio v

(in children’s storrytelling and therapy with robots)

2.1 Learning Analytics in the Classroom

Despite the popularity of computer-based learning tech-
nologies, Intelligent Tutor Systems (ITS), and Massive On-
line Open Courses (MOOC), traditional classroom-based
learning is still the dominant setting for primary through
tertiary education. The popularity of classroom-based learn-
ing can be linked to the importance of sociological factors
and collaboration throughout the learning process [57],
[58]. For this reason, analytical tools in the classroom that
measure students’ learning-related behaviors and affective
and cognitive engagement can play an essential role in
research aiming to investigate and improve the efficiency
of classroom-based learning.

Learning analytics methods in the classroom can include
video cameras in the corner of the room, direct recordings
of students’ faces and upper bodies, and external audio
recorders. The quality of audio-visual feature extraction,
in general, is not as fine-grained as in computer-based
situations where a webcam, 1-2 meters away, captures a stu-
dent’s behaviors. However, classroom analytics can provide
more insight into student-teacher, student-learning material,
and student-student interactions than analysis focused on
individual students.

Bidwell and Fuchs [28] presumably proposed the first
classroom monitoring system capable of analyzing student
engagement. Although their technical report did not in-
corporate any quantitative results, they defined a general
workflow for classroom analytics by using several color and
Kinect depth-sensing cameras during a lesson in a third-
grade classroom. Three observers attended the lesson and
coded each student’s behavior using a mobile device during
20 second intervals according to the following categories:
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appropriate (engaged, attentive, and transition) and inap-
propriate (non-productive, inappropriate, attention-seeking,
resistant, and aggressive). Due to the limitations of only
recording a single lesson and collecting highly imbalanced
data, Bidwell and Fuchs used a Hidden Markov Model
(HMM) to classify three categories (engaged, attentive, and
transition) from head pose based gaze-target mappings.

A more recent classroom monitoring system was pro-
posed by Raca and Dillenbourg [29]. Their study pro-
posed the use of student’s motion information during class
and behavioral synchronization between neighboring stu-
dents’ feature representation to estimate student attention.
In [30], they handcrafted several features such as the row
in which the student sat, the amount of still time (where
head pose does not change significantly for a period), and
head travel (normalized head pose change). As ground
truth labels of attention, Raca and Dillenbourg used self-
reports that students completed in approximately 10-minute
intervals. These features, together with a Support Vector
Machines (SVM) classifier, performed up to the accuracy
of 61.86% (Cohen’s k = 0.30) to predict 3-scale attention
(low, medium, and high). Their work showed that student
attention can be automatically measured using visible be-
havioral cues. However, they used considerably long in-
tervals (10 minutes) before self-reports were obtained and
the person-independent evaluation was not clearly stated
in their experiments. Moreover, they only employed atten-
tional features (head pose and motion), and did not utilize
any affective or behavioral nonverbal features.

Zalatelj and Kosir [31], [32] used a Kinect sensor and
its commercial SDK to estimate body pose, facial expres-
sions, and gaze. Subsequently, they computed behavioral
cues (i.e., yawning, taking notes, etc.) from Kinect features
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and trained a bagged decision tree classifier to estimate
observer-rated attention levels (low, medium, high). They
also used manually-labeled behavioral features (i.e., writ-
ing, yawning, one’s hand touching their head). [32] only
analyzed a few minutes of video recording from datasets
with 3 students, raising questions about generalizability. In
[31], they increased the number of students to 18 (only 25-
minute recordings per student) and reported an accuracy of
75.3% in three-level engagement classification. Even though
they achieved moderate performance in the task, nearly one-
fifth of their data had to be discarded due to the sensor’s
failure to accurately track face and body features. The range
of Kinect and similar depth sensors is around 0.4 to 5.45
meters [59], and the ideal range for face alignment and
body pose estimation is even less (i.e., Kinect One was used
at 1.8 meters in [31]). This suggests that multiple sensors
are required in a typical classroom with 20-30 students,
potentially introducing additional cost and posing device
synchronization issues.

Thomas and Jayagopi [34] collected video recordings of
10 students in three 12-minute segments while they were
listening to motivational video clips on YouTube. Three
observers labeled the engagement of each student in 10-
second intervals based on whether a student was looking
towards the screen (teacher area), talking to a neighbor,
or gazing in another direction. Their approach was to use
head pose, gaze direction, and facial action unit features
using OpenFace [60] and classifiers such as SVM and logistic
regression. They reported up to an AUC of .83 in two-class
engagement classification. The main limitation of this study
was the limited data size and concerns about the engage-
ment labeling methodology. Specifically, students can still
be attentive to the audio content while looking elsewhere or
taking notes.

Goldberg et al. [26] is the first study that utilizes a
psychologically valid and comprehensive engagement rat-
ing system. Their continuous observer-based rating system
combines Chi & Wylie’s ICAP (Interactive, Constructive,
Active, Passive) framework [61] and on-task/off-task be-
havior analysis [62]. Using attentional (head pose and gaze
direction) and affective (FACS action unit intensities) sets of
features with support vector regression, they predicted con-
tinuous observer-ratings and reported correlations between
estimated engagement levels and self-reports collected at
the end of 40-minute teaching units (N=52). They also
found that behavioral synchrony with immediate neighbors
improved the estimation of engagement and reported re-
gression results up to a Pearson correlation of .71 with the
ground truth labels.

One of the main objectives of learning analytics in the
classroom is the reporting of students’ estimated attention
and engagement to teachers. For instance, Fujii et al. [33]
estimated head-down (i.e., taking notes or reading learn-
ing material) and head-up (gazing at whiteboard/teacher
area) behaviors for each student and depicted a color-
coded visualization for teachers with a synchronization rate
of the classroom in terms of predicted classes, head-up
and head-down. However, they tested the performance of
the head-down/head-up detector on limited data (average
accuracy of 89.8% in 30 minutes of video recordings and
5 students). Additionally, only reporting behavioral cues
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(looking at learning material or the teacher area) provides
limited information on students engagement levels.

In a similar vein, two recent studies [35], [36] devel-
oped smart classroom monitoring systems. While Anh et
al. [36] mapped gaze directions focused on three areas
(board/teacher, table/notebook, and other directions) and
visualized the distribution on a dashboard, Ahuja et al.
[35] integrated various nonverbal features in their smart
classroom, EduSense. These features included the state-of-
the-art methods in face detection and alignment, body pose
estimation, hand raise detection, and active speaker detec-
tion. [35] presented a technical analysis of real-time class-
room monitoring systems, including the speed and latency
of the system and their algorithms’ performance. However,
they did not report on student engagement. Even though
nonverbal features are essential to understand engagement,
they are not easy for a teacher to interpret on their own.

In summary, computer vision-based classroom analytics
studies, though emerging, are still limited. The sample sizes
are small and the majority do not estimate attention or
engagement levels. For the studies that do estimate student
attention/engagement, there remain concerns about the va-
lidity of the engagement labels.

2.2 Engagement Estimation in Computer-based Learn-
ing

Computer-based learning situations are more restricted than
classroom situations because they only contain student-
technology interactions. These studies generally capture
video and audio from 1 to 2 meters away, resulting in
better quality data for feature extraction methods. Further-
more, introducing an intervention during learning is more
straightforward than in the classroom setting. For these rea-
sons, automated engagement estimation is more prevalent
in computer-based situations such as students playing an
educational game, engaging in reading comprehension or
writing tasks, or learning with ITSs (see [25], [56] for a
review).

One study that predicted the level of engagement in
computer-based settings (during which the participants per-
form a cognitive training task) was conducted by Whitehill
et al. [12]. They used appearance-based facial features (Box
filters, Gabor filters, CERT FACS features) and estimated
levels of engagement using several classifiers such as Gen-
tleBoost, SVM, and multinomial logistic regression. They
developed a manual rating system (4-scales) and annotated
the video recordings at 60-sec or 10-sec intervals. The accu-
racy of their classifiers varied between 36-60%. Even though
they conducted one of the initial studies, their setting was
limited to interaction with an educational game. Their rat-
ings entailed the assignment of single labels to the 3-minute
videos and lacked continuous labels which can provide
more precise information about student engagement levels.

In a similar computer-based setting, Monkarasi et al. [42]
estimated engagement using Kinect face tracker ANimation
Unit (ANU) features, LBP-TOP, and heart rate (estimated
from videos of the face) features during a writing task.
They used concurrent self-reports (every 2-minutes during
the writing task) and retrospective self-reports after the
participants finished the task. Both self-reports showed high
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correlation (r = 0.82, p < 0.001), and the engagement
classification (low/high) achieved an AUC of .758 and .733
using concurrent and retrospective labels, respectively. Their
study was based on Kinect sensors and handcrafted features
such as local binary patterns (LBP) and statistical measures
derived from facial landmarks. Thus, data capture was
more sensitive to data loss because of head motion or face
occlusion. Bosch et al. [13] used estimated FACS action units
as features and predicted observer annotations [41] using
different classifiers (Bayes Net, Updateable Naive Bayes,
Logistic Regression, AdaBoost, Classification via Clustering,
and LogitBoost). The six variables they predicted according
to [41] are boredom, confusion, delight, engagement, frus-
tration, and off-task. Engagement classification performed
an AUC of .679 and 64% of accuracy.

Aslan et al. [14] developed a real-time engagement esti-
mation system using facial features (facial landmarks, head
pose) and learning management system log data (content
duration, number of hints, difficulty level). They tested the
usability of the system as an assistive tool for teachers.
Their engagement estimation was in two dimensions: be-
havioral (on-task vs. off-task) [63] and emotional (satisfied,
bored, confused) [64]. On-task/off-task engagement classi-
fication performed up to an F1 score of 80.09%, whereas
their emotional engagement classifier had an F1 score of
48.12% to 89.30% in person-independent and person-specific
settings, respectively. Including [14], previous studies in
computer-based settings adopted low-dimensional geomet-
ric and appearance descriptors. In contrast, engagement
analysis based on learned representations can be improved
by learning better features.

Mind wandering (MW) is an important attentional com-
ponent of engagement, defined as an attentional shift from
task-related to task-unrelated thoughts [65]. It is consistently
linked to negative performance in learning tasks [66]. The
availability of automated methods to detect MW can reveal
this covert aspect of engagement. The use of visual modali-
ties, particularly facial videos, to detect MW is preferable to
eye gaze [67] and physiological signals [68], which necessi-
tate specialized sensors. Stewart et al. [69] is the first study
that used visual modality, facial action units, and body
motions to detect MW. They recorded facial videos while the
participants watched a narrative film for 35 minutes. Each
participant self-reported MW by pressing a key through
the video screening. Facial action unit features and classi-
fiers including logistic regression, naive Bayes, and support
vector machines could spot MW in a person-independent
setting with an F; score of .390. Later, [70] showed the
generalizability of MW detection when trained and tested
on different tasks (reading scientific text and watching a
narrative film). Bosch et al. [71] showed the applicability
of video-based MW detection in a classroom study (N=135)
while learning from an intelligent tutor system. Even though
mind wandering is related to behavioral disengagement
and off-task behaviors, it involves internal thoughts, and
there are fewer overt behavioral cues associated with mind
wandering. In this study, we mostly limit our scope to
visible engagement.
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2.3 Human-Human and Human-Robot Interactions

(HHIHRI)

Another line of work is the attention analysis in human-
human interactions (e.g., in group work) and in human-
robot interactions. For example, Sanches-Cortes et al. [45]
developed an audiovisual corpus of groups of four who
engaged in a survival task and focused on estimating group
performance, apparent personality, and perceived leader-
ship and dominance. Similarly, Rinvegal et al. [46] used
a survival task during remote collaboration using audio,
video, and physiological signals as well as self-reported en-
gagement. However, although survival tasks can be useful
to measure group interactions, they do not represent typical
learning situations which is the current focus.

Looking into more recent studies, Celiktutan et al. [47]
collected an audiovisual dataset during human-human and
human-robot interactions using first-person cameras. They
acquired self-/acquaintance-assessed personality and self-
reported engagement labels. However, limitations include
the size of the dataset (18 participants, 6 hours, but com-
posed of short clips and not in learning settings) and in-
teractions wherein one participant or robot asks predefined
questions. Another application in human-robot interactions
is autism therapy for children [48], [72] and child-robot
interactions (a dialogic storytelling task) [49], [73]. The mea-
surement of engagement during children’s storytelling or
autism therapy may be more obvious. In these settings, it
is comparably easier to differentiate between engaged and
disengaged behaviors than in schools where most pupils
learn to hide their disengagement. Furthermore, age affects
attention levels [74]. Most pupils in higher grade levels learn
to hide their disengagement. These factors have the poten-
tial to make visible cues between engaged and disengaged
behaviors more difficult to spot. Despite the lack of expert-
labeling criteria, these studies adopt a continuous engage-
ment labeling approach and deep Q learning to actively
sample training data and personalize models with limited
data.

To summarize, the literature in attention and engage-
ment analysis is centered on computer-based learning set-
tings as well as human-human and human-robot interac-
tions. Collecting data for automated analysis in those do-
mains is comparably more convenient than in the classroom.
However, the impact of schools and classroom instruction
exceeds the scope of these applications and, moreover, plays
a crucial role in every student’s life. Therefore, research
analyzing attention and engagement in the classroom is
highly important and could benefit from novel analytic ap-
proaches. Existing classroom-based studies are very limited
in terms of data size. Most were conducted on university-
level courses or on a small number of participants (mainly to
test computer vision systems). While Raca and Dillenbourg
[30] conducted the most comprehensive attention monitor-
ing study in the classroom and showed the applicability of
these technologies in a school setting, their study lacked
expert-labeled attention/engagement measures and predic-
tive learning models on a larger scale. We build off this
existing work and extend it further in the current study.
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3 DATA COLLECTION FOR AUTOMATED ENGAGE-
MENT ESTIMATION IN THE CLASSROOM

The study was conducted during regular lessons at a sec-
ondary school in Germany over a one and a half month
period. The ethics committee from the Faculty of Economics
and Social Sciences of the University of Tiibingen approved
our study procedures (Approval #A2.5.4-097_aa), and all
teachers and parents provided written consent for their
students to be videotaped. Students who did not consent
to being videotaped attended a parallel session covering the
same instructional content.

3.1 Participants

We collected audio-visual recordings of 47 classes from 5"

to 12" grades, resulting in 128 participants overall. Each
participant attended more than one class (3.84 on average).

Fig. 1: Sample scene from the classroom. The synchronous
cameras recorded the instruction simultaneously.

Therefore, the total number of samples across grades
was over 360. The collection of labeled data for developing
and benchmarking automated methods is time consuming.
Thus, we identified a sub-sample of students based on
their occurrence and visibility in multiple video recordings,
resulting in 15 students from grade 8 (N=7) and grade 12
(N=8) in our analysis. Each participant appeared in five
recordings on average (i.e., classes on different days and
subjects). The total number of samples in our data was 75.
Classes covered a wide range of subjects including Mathe-
matics, Chemistry, Physics, IMP (Informatics, Mathematics,
Physics), History, Latin, French, German, and English.

3.2 Procedure

Before classes on the first day, students filled out a ques-
tionnaire covering demographic information (age, gender)
and individual differences (BFI-2 XS, 15 items; [75]). Af-
ter each session, students completed another questionnaire
about their learning activities. Session recordings lasted
between 30 and 90 minutes each. Video material during
classes covered group work, individual work, and teacher-
centered instruction. To best capture student attention on the
instructor, we focused on teacher-centered components of
the video (see Fig 1), extracting the main part of instruction
time in intervals of 15 to 20 minutes from each recording.
The intervals were manually annotated by human raters.
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3.3 Self-Reported Learning Activities

After each session, we assessed students’ involvement (four
items, o = 0.73; [76]), cognitive engagement (six items, ov =
0.78; [77]), and situational interest (six items, o = 0.92; [78])
during the preceding instructional period.

3.4 Continuous Manual Annotation

To manually annotate students’ observable behavior, we
used a one-dimensional scale through the open software,
CARMA [79], which enables continuous (1-second in our
case) interpersonal behavior annotation via a joystick [80].
We combined the concept of on-task/off-task behavior [62],
[81] with existing scales from the engagement literature. To
define more fine-grained cues within the possible behavioral
spectrum, Interactive, Constructive, Active, and Passive,
we used the ICAP framework [61]. Thus, behaviors were
annotated on a symmetric scale ranging from -2, indicating
the disturbance of other students (i.e., interactive) or off-
task behavior, to +2, indicating highly engaged, interactive,
on-task behavior (see Fig 2). Values closer to 0 indicated
rather unobtrusive, passive behavior. Two raters annotated
the sub-set of students in all videos in random order, with
inter-rater reliability ICC(2,2) for each student being 0.77 on
average (absolute agreement). For subsequent analysis, the
mean across the two raters was calculated for every learner
in every second.

The existing observational instruments often use time
samplings of 20-s intervals or longer (e.g., in [82], [83], [84],
[85]). However, classroom interactions are rather dynamic
and student behavior may change significantly within 20
seconds. To account for these changes and to capture the
ground truth in a more fine-grained manner, we decided
to acquire engagement labels per second. For more details
about the manual annotation instrument, interested readers
are referred to Goldberg et al. [26].

A
é’ +2 reflecting out loud
B explaining sth. to others
2 plaining
| £
Z:J L asking questions
= | .8 raising hands
ZI +1 taking notes
QO using additional material independently
upright posture, shin lifted up
g listening without doing anything else
Z =0 s
= gaze is shifting away
o)) lying head on table
] rummaging in so. stuff
©n
E playing around with things
LLI. -1 ocupying oneself off-topic, w/o disturbing anybody
I, body posture clearly turned away
(&)
. o .
= fooling around
% being distracted, disturbing others
—
<)
J' § -2 walking around with intention to interrupt

Fig. 2: Continuous scale of our manual rating instrument
and visible behavioral indicators [26]
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3.5 Preprocessing

For each video recording, we had three cameras as depicted
in Figure 1. One camera was located in the rear part of
the class covering the classroom and teacher. The other
two cameras were placed on the left and right side of the
teacher area (whiteboard) directed towards the class. We
applied our computational pipeline to both the left and
right camera and dynamically picked the stream where a
particular student was more visible. Specifically, we used a
single-stage face detector, RetinaFace [86], to detect all faces
in the video streams. Subsequently, we picked several query
face images that belonged to the students whose behaviors
we intendeded to analyze. Instead of face tracking, we
directly used those query images and extracted ArcFace
embedding [87] for all face patches. By calculating the
minimum cosine similarity between the query images and
all faces, we created face tracklets for each student. Despite
the challenges of occlusion and different camera angles, the
face detection and recognition methods we employed could
localize and recognize faces most of the time due to their
training on large and unconstrained data sets. We used one-
second (24 frames) continuous sequences where both face
detection and recognition worked smoothly.
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Fig. 3: The distribution of engagement labels in Grade 8
and 12. Pie charts show the percentage of quantized labels
according to continuous labeling.

Table 2 shows the number of different day recordings per
student and the total length of the data where preprocessing
was successful. The total data length is 25,450 and 32,755
seconds for Grades 8 and 12, respectively.

In total, we collected over 15 hours of recording in 30
sessions. Compared to other classroom-based studies, the
line of work by Raca & Dillenbourg [30] used four classes in
9 sessions. Even though their study was on large-scale data,
their attention analysis was based on 10-minute intervals
and self-reports. Similarly, sample sizes of other engagement
studies in the classroom are limited: three videos of 12-
minute recordings in [34], 25 minutes of video recordings
in [31], 4 minutes in [32].

In the continuous labeling scale, values denoting disen-
gagement were rarely observed and the labels were often
imbalanced. Thus, we followed the previous works [72],
[73] that discretized the continuous scale into three groups:
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low [-2, 0.35], medium (0.35, 0.65], and high engagement
(0.65, 2.0]. Figure 3 depicts the continuous and discrete
distribution of labels in grades 8 and 12.

4 METHODOLOGY
4.1 Problem Statement

To classify student engagement level, we used video record-
ings of classes. Formally, we employed sequences S =
{lL,I2,---In} where n = 1,--- | N denotes the time in-
tervals of a second (24-frames). Using any of the channels,
attention or affect, we extracted feature vectors from each
sequence X = {x1, 29, --xy} with x € RT*MXDm_ The
24-frame feature sequences are associated with engagement
label y = {0,1,2}. When training engagement classifiers
(except for LSTM models), we used the middle frame as a
training sample. To predict the engagement labels, we used
either the majority voting of all 24-frame predictions or a
single prediction in a temporal learning model.

TABLE 2: The number of classes and the total duration of
recording where face detection was successful (in seconds)
per each student.

Grade 8

student S4 S7 S8 S11 S13 S14 S16

#class 2 7 7 3 6 4 6

seconds 836 5450 5309 2269 4404 2674 4508

Grade 12

student S1 S2 S3 S4 S5 S6 S7 S8
#class 9 8 3 3 4 3 6 4
seconds 6363 6695 2662 2708 4219 2605 3844 3659

4.2 Feature Representation

In most of the classes, students were listening to the teacher
instead of speaking. Due to occlusion of the students” upper
bodies in many of the recordings, nonverbal features such as
speech and body pose were not always available. However,
faces were usually visible and computationally faster and
more reliable to detect. Consequently, our analysis depends
on preprocessed faces as described in 3.5.

Motivated by the fact that engagement is a multidi-
mensional construct, we can extract two different sets of
information from face images: attentional and emotional
features. There are several studies in the literature that used
available face processing tools such as OpenFace [60] for
engagement estimation [44], [48].

The main drawback of this approach, however, is that
it depends on very accurate face alignment. In a classroom
setting, however, the distance of the camera to the students
varies between 2-10 meters, which reduces image quality
and eventually leads to poor facial keypoint localization.
Hence when we processed the classroom data using Open-
Face [60], it could only process approximately 30-40% of
a student face with high confidence. Furthermore, even
though facial action unit-based approaches provide valuable
information on affect, they almost always anticipate nearly
frontal images. Considering these issues, we extracted affect
and attention features from a network that we trained on
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discrete facial expression recognition and head pose esti-
mation, respectively. Both networks were trained without
precise face alignment using 68-point facial landmarks.

Figure 4 shows the feature learning method for affect
and attention. Feature learning does not involve any educa-
tional data. In the affect branch (Affect-Net), we used one
of the most unconstrained and large-scale affect datasets,
AffectNet [88]. We also trained a ResNet-50 network using
softmax cross-entropy loss to predict categorical models
of affect (seven discrete facial expressions): neutral, happy,
sad, surprise, fear, disgust, and anger. The training set of
AffectNet was composed of 23,901 images whereas the
validation set had 3,500 images. We aligned all facial images
using five facial keypoints estimated by the face detector
[86] and aligned by similarity transform to the size of
224 x 224. The training was done using an SGD solver
with an initial learning rate of 0.1 (decayed ten times in
every 30 epochs) for 100 epochs. The best accuracy on the
validation set reached 58.37%. This performance is compa-
rable to the [88]’'s benchmark 58%. State-of-the-art methods
that employed pyramid super resolution, label smoothing
[89], and knowledge distillation [90] improved up to 60.68%,
and 60.60% by using additional training data. In subsequent
engagement classification experiments, we discarded the
prediction of both networks and used the feature activations
of the layer before the last fully connected layer of the
AffectNet model for affect embedding.

Affect-Net —

e neutral
g e happy

r e sad
ReSNet-50 E e surprise

- o fear
o disgust

L]

anger

Attention-Net ]

discretized
\ values
e roll
o yaw
e pitch

ResNet-50
Fig. 4: Feature learning for affect and attention. Two ResNet-
50 backbones are separately trained for facial expression
recognition and head pose estimation. The learned features
will be used subsequently for engagement estimation on
classroom data.

CE-loss

¥ converted to angles
(yaw, roll, pitch)

In the attention branch (Attention-Net), we used the
300W-LP [91] dataset to train another ResNet-50 network
to estimate head pose. By adopting the approach in [92], we
optimized two losses jointly: softmax classification on dis-
cretized values and mean squared loss on continuous values
of head pose angles (yaw, pitch, and roll). The features of the
final Attention-Net model that we used performed a mean
angular error of 7.36 on the AFLW2000 dataset [91]. The
details of our Attention-Net training procedure are provided
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in the supplementary material.

The CNN-based approach is advantageous for head pose
estimation because it is more robust than Perspective n-
Point (PnP)-based methods that find correspondence be-
tween estimated facial keypoints on an image and their cor-
responding 3D locations in an anthropological face model
[92]. In challenging cases where those methods fail (for
instance, partial occlusion or varying angles of camera
view), CNN-based methods can return satisfactory predic-
tions and, more importantly, map the inputs in a continuous
low-dimensional embedding according to poses. We do not
use estimated head pose or facial expressions. We are only
interested in the learning embedding feature representation
to use as attentional or affective features.

AffectNet and 300W-LP datasets face many challenging
situations such as various camera angles and image quality,
illumination, background, and makeup. Thus, Affect-Net
and Attention-Net branches trained on these datasets can
learn robust feature representation to avoid these difficul-
ties. Compared to the handcrafted appearance features such
as Local Binary Patterns or Gabor filters, deep embeddings
can be extracted without precise alignment and are ex-
tendable by training with new DNN architectures on more
data. Training Attention-Net and Affect-Net representations
on head pose estimation (300W-LP) and facial expression
(AffectNet) datasets, instead of training them directly for
engagement classification on classroom data, helps to avoid
overfitting caused by the limited number of subjects rep-
resented in the classroom data, a major advantage of this
method.

4.3 Engagement Classification

We compared different classifiers on affective and attention
features. Frame-based classifiers were trained on the middle
frame of each 1-second sequence to avoid redundant train-
ing samples when all frames were used. In the test phase, we
retrieved predictions for all 1-second (24 frame) sequences
and applied majority voting. The shallow classifiers that
we used included Support Vector Machine (SVM) and Ran-
dom Forests (RF). All model training and dimensionality
reduction was conducted in a person-independent manner
where an individual participant’s data could either be in
the training or test fold, but not in both. Considering the
behavioral differences between grades, we built separate
models for grades 8 and 12.

For SVMs, we tested both linear and radial basis function
(rbf) kernels. When the data is linearly inseparable (as in
engagement classification), the input feature space is pro-
jected into a high-dimensional space through an inner prod-
uct transformation called a kernel function, k(x,,z,,) =
&(2)?(2,,). Subsequently, an SVM classifier is applied.
Instead of explicitly calculating ¢, we calculated all pairwise
similarities in the training set. For instance, linear and rbf
kernels were defined as 27 x,, and exp(—7||z,, — 2., ||?). Due
to the high number of samples, training SVM-based models
with many instances and features (i.e., 2048-dimensional
features and 20-25K training samples) can lead to storage
and computational costs for kernel methods. Thus, before
training SVM models, we applied Principal Component
Analysis (PCA) and used the top 48 components that ex-
plain 99% of the variance in the training set. Principal
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components were calculated in training sets separately. We
applied the same transformation to the test set in order to
preserve person-independence. For RF, we used the feature
embeddings directly without dimension reduction.

For DNN's, instead of retraining the entire representa-
tion up to the first layers of the ResNet-50 architecture, we
trained a Multi-Layer Perceptron (MLP). Even though the
data subset that we acquired for manual annotation and
used in our analysis was over 15 hours, we still faced the
problem of a limited number of participants and the re-
stricted context of in-class learning. Thus, training a network
from scratch would result in overfitting and failure to recall
previously learned features from a larger set of participants,
a useful action for modeling engagement. We used two-
layer MLPs (one for AffetcNet and another for AttentionNet
features) each with an input layer of 2048 neurons and a
hidden layer of 128 neurons. Training was conducted in
mini-batches of 256 using soft-max cross-entropy loss and
an SGD solver with a learning rate of 0.001 and a maximum
200 of iterations. In each trial, we kept a random 10% of
the training data as a validation set for early stopping and
preserved the person-independent setting. As with the SVM
models, we applied majority voting on individual frames to
acquire the prediction for 1-second sequences.

In addition to those approaches, we used a recurrent
neural network model, long short-term memory (LSTM)
[93], to learn temporal patterns in the data.

We provided 2048-length Attention-Net or Affect-Net
embeddings as input to a two-layer LSTM network with
a hidden layer size of 128. The output of the LSTM network
on the last time step was fed to a fully connected layer of
64 neurons, and the entire model was trained using softmax
cross-entropy loss and Adam solver [94] with a learning rate
of 0.001. All LSTM models were trained for 5 epochs.
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Fig. 5: Active Learning for Personalized Engagement Classi-
fication (The parameters of the parts with lock sign are kept
frozen).
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4.4 Personalization of Engagement Classifiers

Since engagement and disengagement during instruction
can differ significantly from one student to another, engage-
ment classifiers often benefit from personalization. Tradi-
tional active learning algorithms typically propose a single
instance to label at a time. This may result in a longer wait-
ing period for the expert labeler during the personalization
phase of the engagement classifier. In contrast, we assume
the labeler starts from an engagement classifier trained in
a person-independent manner and labels a set of instances.
For SVM-based classifiers, engagement probability can be
calculated via Platt scaling whereas the mean predicted class
probabilities of the trees can be used in Random Forests.
MLP and LSTM classifiers provide an engagement proba-
bility output because they were trained with softmax cross-
entropy loss. We used these probabilities as an uncertainty
score for unlabeled instances.

In order to investigate the effect of personalization with
a small amount of data, we utilized the margin uncer-
tainty principle [95]. This principle considers the samples
with the smallest margin between first and second to be
the most likely class probabilities. After training a person-
independent engagement classifier, we ran this classifier
on person-specific data and requested labels of instances
where the class probabilities between the first and second
most likely predictions were the smallest. In this way, we
only used the labels of instances around the separation
hyperplane of low, medium, and high engagement. The
margin uncertainty rule can be written as follows:

x;knarg = argmin [PMmu, (yAl | I) - PMini,t, (yAQ | 'T)] 1)

where § = Py, (9 | z) is the prediction with highest
posterior probability, 1; and y> are first and second most
likely predictions.

Figure 5 depicts our personalization framework using
batch-mode active learning. The deep feature embedding
component (i.e., Attention-Net and Affect-Net) was not
retrained in the personalization of engagement classifiers.
Thus, these steps only updated the engagement classifier
and did not require a longer training time. The first step
shows the initial training of the engagement classifier. Sub-
sequently, deep feature extractors and engagement classi-
fiers were deployed on person-specific data. A small num-
ber of samples with high uncertainty were selected and
added to the training set.

The uncertain samples with the highest margin between
the first and the second most likely predictions should lie
around the separating hyperplane. As an example, let’s
use an unlabeled sample with probability outputs of 45%,
40%, and 15% for high, medium, and low engagement
categories, respectively. Even a few of these samples can
help increase the separation between high and medium
engagement. They can also be more effective in personaliza-
tion than samples more congruous to the labeled samples
and further from the separating hyperplane. Instead of
a single update, we sampled a small batch of unlabeled
images to label and retrained the initial model iteratively.
The use of only a small number of person-specific samples
should not create significant time and memory overhead
for retraining engagement classifiers. With iterative updates,
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TABLE 3: Performance Comparison of Engagement Classifiers on Classroom Data using Attention-Net and Affect-Net

Features and Different Classifiers.

Classifier AUROC
Grade-8 Grade-12

Attention-Net  Affect-Net Attention-Net  Affect-Net
SVM (linear)  .560 £ .05 .570 £+ .06 .656 £ .09 .563 £+ .06
SVM (rbf) .603 £ .05 604 + .03 697 + .07 595 + .08
RF 620 + .04 .608 £+ .03 .708 £ .05 .600 £ .09
MLP .615 £ .05 597 + .03 701 £ .06 622 + .05
LSTM .603 £ .05 .610 £+ .04 719 £+ .05 .612 + .09

each personalization step was applied on a day or a week
of recording. The existing person-independent engagement
classifier was personalized and adapted to a specific subject.

5 RESULTS

As indicated above, we performed engagement classifica-
tion experiments separately in grades 8 and 12 because vi-
sual engagement across grades can vary. With the exception
of the test subject, every student was used for training and
the same experiment was repeated for each test student and
modality (affect vs. attention) in both grades. Table 3 shows
the performance of various classifiers using Attention-Net
and Affect-Net features. We used weighted Area Under the
ROC Curve as a performance measure in the three-level
engagement classification task since it measures the perfor-
mance of a classifier at different thresholds. Furthermore, it
is more attune to class imbalances than to metrics such as
accuracy.

Engagement classification. AUCs in general ranged
from .56 to .719 with a mean of .623, which reflect an
improvement from chance AUC of 0.5. The best performing
unimodal classifiers used attention features and a RF in
grade 8 (AUC of 0.62) and an LSTM for Grade 12 (AUC
of .72).

When visual indicators were compared, Attention-Net
features yielded .01 to .03 better AUC than Affect-Net for
Grade 8. On the other hand, the margin between the average
AUCs of Grade 12 students is more notable. Attention-net
features performed .08-.11 better than Affect-Net features in
Grade 12. This may be related to the easy distraction, move-
ment, and increased gaze drifts characteristic of students
in both grades. As a result, attention features were more
effective than affect features in engagement classification.

Another comparison is the type of classifier used to
examine engagement. In our experiments, linear SVM clas-
sifiers had the lowest performance (.03 to .06 lower AUCs).
However, there were no explicit performance differences
among SVM with rbf kernel, RF, and MLP classifiers across
both grades and feature sets. Typically, we expect deep
learning-based methods, MLP for instance, to better model
engagement than shallow classifiers, but performance in this
case was comparable to RF and SVM-rbf. This may be due to
the limited sample size of the data, the multifaceted aspect
of learning problems, and imbalances in feature and label
distribution. We can intuitively argue that a better perfor-
mance in initial tasks (Attention-Net in head pose estimation
and Affect-Net in facial expression recognition) can eventu-
ally lead to better engagement classifiers. We investigated

Authorized licensed use limited to: IVERSITY OF COLOR

the relationship between initial tasks and engagement clas-
sification performance and validated it through additional
experiments presented in the supplementary material.

Looking into DNN-based classifiers, the use of tempo-
ral information by LSTM classifiers negligably improved
the performance of MLP only in the settings of Affect-
Net/Grade 8 (+.013 in AUC) and Attention-Net/Grade 12
(+.018 in AUC). The limited improvement of LSTMs may
be due to the short time window (24-frame) over one
second. We adopted this approach to match the continuous
engagement labeling method which generated engagement
labels per second, and consequently deemed it suitable to
provide real-time feedback for applications deployed in a
school setting.

TABLE 4: Performance Comparison of Different Fusion
Strategies using Random Forest Classifiers.

Grade  Feature Set Avg. AUROC
8 Attention-Net .620
8 Affect-Net .608
8 Feature-level Fusion .633
8 Score-level Fusion .632
12 Attention-Net .708
12 Affect-Net .600
12 Feature-level Fusion .616
12 Score-level Fusion .694

We tested different fusion strategies using RF engage-
ment classifiers due to their higher performance and speed
and to make them comparable to the personalized models
that we use as RF engagement classifiers. For feature level
fusion, different feature embeddings were concatenated to
train a single engagement classifier. Score level fusion av-
eraged the probability outputs of two separate classifiers
trained on Affect-Net and Attention-Net representations.
Table 4 shows the performance of feature-level and score-
level fusion for grade 8 and 12. For grade 8, both fusion
strategies yielded comparable improvement, +.012-.013 over
the best modality (Attention-Net). On the other hand, score
level fusion in grade 12 was on par with the unimodal
attention classifier, whereas feature-level fusion was much
lower.

After reviewing the overall results and considering the
difficulty of interpreting a student’s level of engagement
using only facial videos, we find these results to be mod-
erate. This is notable given that the criteria for the manual
annotation of engagement (as depicted in Figure 2) is not
directly related to gaze direction or facial expression.
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Fig. 6: The Effect of Personalization on Different Engagement Classifiers (All classifiers are based on RF. The legends show
the corresponding AUC performance per student, and each thick line represents the overall trend of personalization.)

Personalized models. We selected RF classifiers for the
personalized models because of their successful perfor-
mance in the above person-independent experiments and
their speed in training as compared to other classifiers.
Readers may recall that instead of directly training and
testing on person-specific data, we started with person-

TABLE 5: Confusion Matrices for the
Independent and Personalized Models.

Best Person-

Method Actual Classified Priors
(Grade 12) low  medium  high
Attention-Net, RF  low .099 442 458 101
medium  .053  .735 345 522
high .075 400 525 377
Attention-Net, RF  low 185  .387 429 101
(personalized) medium  .027  .768 205 522
high 032 .360 608  .377

independent models and adapted them based on small
amounts of person-specific data in a simulated active learn-
ing setting. The number of samples from each student
varied (as depicted in Table 2). Thus, we limited person-
specific labels requested by the oracle to 60 seconds for
each student. Specifically, starting with the model person-
independent model, we sampled 60 samples using different
sampling strategies, and compared ROC performance to
initial performance. The 60 samples were acquired after 6
steps by selecting only 10 samples per step, adapting the
classifier with the new samples iteratively.

The effect of personalization based on RF engagement
classifiers using Attention-Net and Affect-Net features in
grades 8 and 12 is depicted in Figure 6 for each student.
As the amount of data per student varies, 60 samples
correspond to different proportions of each person’s data.
Thus, we also report the requested (%) percent of samples.

With the exception of one student (S4 in Grade 8), the
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Fig. 7: The overall improvement of personalization in AU-
ROC using Attention-Net and Affect-Net features in Grades
8 and 12.

amount of data was large enough. The requested data (60
samples) corresponded to only 2-3% of all the data. The
effect of personalization varied from .03 to .29 in terms of
AUC improvements. Affect features had greater improve-
ments after personalization for both grades. Overall, there
was a 6.89% and 9.83% AUROC improvement for attention
and affect features, respectively.

Table 5 shows the confusion matrices of the RF classifier
using Attention-Net features in Grade 12 before and after
personalization. Without personalization, high engagement
was misclassified as medium (400 and .360) engagement,
and low engagement was misclassified as medium and high.
This may be due to class imbalances since the majority
are medium engagement (52.2%). Personalization improves
engagement classification across the board.

In summary, our experiments in personalization yielded
average AUC improvements of .084 using only 60 seconds
of personal data. The largest improvement, as depicted in
Figure 7, was +.124 of AUC in Affect-Net features and
RF classifier in Grade 12. Labeling 60 one-second samples
selected from different parts of a video is more manageable
than labeling the entire recording and takes only a few
minutes for an expert annotator. This procedure enables a
practical use of our proposed workflow. In return for this
effort, the performance gain was substantial for both feature
sets and grades.
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6 DiscussIiON

We aimed to develop video-based models to detect engage-
ment during learning in authentic classroom environments.
We collected a large-scale classroom observation dataset
along with observer ratings of student engagement for
grades 8 and 12 (N=15). In contrast to previous works that
mainly used handcrafted local (i.e., local binary patterns,
Gabor filters) and precomputed features such as head pose
or estimated facial action units, we used deep learning
methods for feature extraction and a combination of shallow
and deep classifiers. We discuss our main findings, limi-
tations/future work, applications, and ethical implications
below.

6.1 Main Findings

Our main findings are that: (1) attention-based features were
more effective at predictive engagement than affect-related
features; (2) fusion of affective- and attention- features led
to small boosts in accuracy; (3) there were limited benefits to
deep learning methods over shallow classifiers; (4) overall
engagement could be classified with moderate accuracy in
a person-independent setting from individual streams; (5)
engagement classification was higher for grade 12 vs. grade
8; and (6) even a small amount of person-specific data could
considerably enhance classification accuracy.

6.2 Limitations and Future Work

From the technical perspective, the limited sample size is
related to both the technical constraints of infrastructure in
such field studies (e.g. the preparation of such a recording
requires 20 minutes) and the manual effort associated with
data annotations. Additionally, the presence of cameras can
put pressure on students and cause their behavior to change
when they know instruction is being recorded. Collecting a
significant amount of audiovisual recordings from the same
classes over the course of a school year as a longitudinal
study could overcome some of these effects and allow
researchers to investigate engagement in time.

Another limitation of this study is its focus on only the
visible dimension of engagement. The detection of mind
wandering through observation of students” facial expres-
sions is a relevant emerging research topic [71]. Combining
automated methods to detect mind wandering with engage-
ment analysis may yield a better understanding of students’
affective and cognitive engagement.

Even though our study presents a step towards measur-
ing facial representations in the classroom, it was not possi-
ble to learn them on the engagement data due to the limited
sample size. The use of self-supervision and representation
learning on unlabelled classroom data may result in better
representations for engagement analysis in future work.
Additionally, our models failed to detect low engagement,
likely due to data skew. The distribution of continuous la-
beling was also highly imbalanced. To solve these issues, we
propose collecting more data in uncontrolled environments
or, in order to obtain additional low engagement samples,
employing interventions to manipulate engagement.

Our study focused on facial videos in particular. How-
ever, speech features can also provide valuable informa-
tion for engagement classification and complement visual
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modalities. We observed that noisy capture from a distance
makes audio signal separation more challenging. Thus,
recording audio using separate voice recorders per desk
synchronized with cameras could be the topic of future
work. This could include the use affective acoustic signal
processing and even speech recognition and language pro-
cessing.

6.3 Applications and Ethical Considerations

The reported results in this study suggest that engagement
classifiers could be applied to automate data processing
within the scope of classroom instruction research and could
be personalized using a small amount of data. Engagement
models utilizing the same feature extractor used here can be
applied to real-time students. Instead of recording videos,
such a system would only record behavioral data and help
increase the sample size for studies in classroom research.
Data collection, storage, and privacy concerns are some of
the significant issues that need to be addressed before large
scale classroom studies can be conducted.

The use of these models outside of research settings
is more limited. If used, it must be done in a privacy-
preserving and ethical manner. In particular, our approach
envisions, beyond anonymization [96], the immediate dele-
tion of raw video recordings as part of the responsible use
of the data. Instead, only aggregated information from the
student group may be stored and individual-level scores
discarded. As a result, the explicit mapping of a student’s
individual engagement scores and features can be avoided.
Further improvement in the performance of engagement
classification and a transition from student engagement to
classroom-level analysis has the potential to make engage-
ment analysis a more useful tool.

We are well aware that a potential application for en-
gagement classifiers is a real-time classroom observation
system such as [35]. Although such affective and cognitive
interfaces summarizing engagement analytics as a teaching
aid are growing in popularity, we strongly oppose any use
of such solutions for real-world classroom monitoring. This
is for both ethical reasons and due to the lack of empirical
data on possible negative side effects with regard to student
motivation and learning in such arrangements. As such,
we explicitly do not advocate using these methods for
any evaluative assessment of student motivations/learning
and instruction quality. This is for many reasons including,
but not limited to: the moderate accuracy of the models,
the focus on only sub-components of engagement, the fact
that engagement is only annotated by raters and not cross-
referenced with other data sources, engagement levels may
be impacted by external causes such as difficult family
circumstances, and student engagement levels are not fully
within the control of the instructors. To be blunt, using such
tools for student and teacher evaluation and for any form of
accountability would likely constitute a major ethical misuse
of the technology. Importantly, advances in Al are necessary
to address the fairness, accountability, transparency, and
bias of the algorithms before they are deployed in any ap-
plication. In this context, only a continuous, reflective dialog
with social stakeholders can lead to sustainable solutions.
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