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Abstract. Inferring the size of a complex system from partial mea-
surements of some of its units is a common problem in engineering,
with significant applications in the field of structural health monitoring
(SHM), where one may attempt at relating system size (number of de-
grees of freedom) to the integrity of the structure. Here, we demonstrate
the possibility of inferring the size of a stochastic system by assembling
measurements of its response into a detection matrix. In deterministic
systems, the rank of the detection matrix (number of non-zero singu-
lar values) equals the size of the largest observable system component.
We extend this framework to reconstruct the number of states of an
unknown Markov chain, where we cannot distinguish between two or
more states. In this case, we only have access to an estimate of the de-
tection matrix, but with a larger rank, since stochasticity generates a
series of non-zero singular values. We establish conditions for the cor-
rect inference of system size, relating the number of realizations and the
smallest true singular value. Our work highlights connections between
SHM, system identification, and control theory, paving the way for new
cross-disciplinary inquiries.
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1 Introduction

Networked systems are formed by individual entities that interact with each
other [2, 6]. Because of the powerful tools available, the framework of network
theory has been adopted to study a wide variety of systems, from the brain [3]
to the Internet [12], as well as social networks [17]. Further, network theory has
recently been applied to several complex mechanical structures, such as trusses
and lattices [1, 8, 10, 11, 15, 16].

Seldom we have access to the number of units forming the system. Typically,
we only have access to some of the units of the system, as accessing all of them
may be impossible or not practical. The inference of the number of units in a
system has significant applications in the field of structural health monitoring.
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In a network representation of a mechanical structure, the nodes of the network
correspond to the degrees of freedom of the system. Should we detect a change
in the size of the system, and in particular a decrease in the degrees of freedom
of a structure, we could assess the integrity of the structure [4].

A potential approach to solve infer the network size is to utilize the output
time-series of the free-response of the system for the assembly of a so-called
detection matrix [9]. Upon loose assumptions, the rank of the detection matrix
is equal to the size of the largest observable component of the network system
[13]. The capabilities of the detection matrix in inferring the size of mechanical
systems and failures in mechanical structures has been recently demonstrated
by our group [4].

Previous efforts on the use of a detection matrix have mainly focused on
deterministic systems, without theoretical insights on stochastic systems. Here,
we address this gap in the literature by studying the inference of the number of
states of an unknown Markov chain, where we cannot distinguish between two
or more states. In this case, we only have access to an estimate of the detection
matrix, with a larger rank. In fact, stochasticity generates a series of “noisy” non-
zero singular values, which are reduced in number by the number of realizations
used in the estimation of the detection matrix. Through numerical simulations
on a simple example of the problem, we identify which are tenable necessary
conditions for the correct inference of the number of states of the Markov chain
and study how singular values scale with the number of realizations.

2 Theory

We consider a Markov process [14] Xk with unknown finite number N of states
s1, . . . , sN . The Markov property reads

Pr (Xk = xk|X0 = x0, . . . , Xk−1 = xk−1) = Pr (Xk = xk|Xk−1 = xk−1) , (1)

for any realization {x0, . . . , xk} of the Markov chain.

Let us define the vector of probabilities πk = [Pr (Xk = s1) , . . . ,Pr (Xk = sN )]
T
.

Then, from Eq. (1), we can write

πk+1 = P
Tπk = Aπk, (2)

where P is the so-called transition matrix [14], defined element-wise as

Pij = Pr (Xk = sj |Xk−1 = si) , (3)

for any time instant k. Note that each row of Pij must sum to one.
We do not have direct access to the process Xn, but only to an “output”

stochastic process Yk with M ≤ N output states s̄1, . . . , s̄M , which in general
is not even a Markov process [5]. We assume that the value of realization yk
is deterministically determined by the value of realization xk at the same step,
through a non-invertible, surjective map f : {s1, . . . , sN} → {s̄1, . . . , s̄M}. We
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define the output vector φk = [Pr (Yk = s̄1) , . . . ,Pr (Yk = s̄M )]
T
, and we assume

that it is related to the state vector πk through

φk = Cπk. (4)

We hypothesize that the matrix C is a Boolean M × N matrix that embodies
the f map, in which every column contains a single “1” element. This condition
corresponds to a situation in which we cannot distinguish between two or more
states of the Markov process Xk, which are associated to the same state s̄i of
Yk. In other words, if the i-th row of C contains more than one “1”, the states
of Xk associated with the columns containing the 1 elements are mapped to the
same output state s̄i.

Our goal is to find the number N of states of the Markov process Xk, having
access only to the output stochastic process Yk. First, we consider the case in
which we know φk exactly. Due to the nature of Eqs. (2) and (4), this problem
is equivalent to the one of finding the size of a time-discrete system networked
system from partial measurements on a subset of the nodes. Similar to Refs. [4,
9, 13], we solve this problem through the definition of a detection matrix. We

consider a family of l initial probability distributions π
(l)
0 , l = 1, . . . , L with L >

N , which we collect within a matrix Π =
[

π
(1)
0 , . . . ,π

(L)
0

]

. We can assemble the

detection matrix from the corresponding output vectors φ
(l)
k for k = 0, . . . ,K−1

and l = 1, . . . , L, as follows:

T(K,L) =













φ
(1)
0 φ

(2)
0 . . . φ

(L)
0

φ
(1)
1 φ

(2)
1 . . . φ

(L)
1

...
...

. . .
...

φ
(1)
K−1 φ

(2)
K−1 . . . φ

(L)
K−1













. (5)

The detection matrix T(K,L) has size MK × L.
By extending the claims in [4], we can prove the following statement.

Theorem 1. Consider the system in Eqs. (2) and (4). If Π is full-row rank
(rank(Π) = L) and K ≥ N , then the detection matrix T(K,L) has the same rank
of the observability matrix

ON =











C

CA

...
CA

N−1











. (6)

Hence, if the system is observable, we can infer its size by assembling the
output vectors in a detection matrix and compute its rank. However, we normally

do not have access to the output vectors φ
(l)
k , but only to an estimate φ̂

(l)

k from

realizations of the Markov process, from which we assemble an estimate T̂(K,L)

of the detection matrix. The estimate of the detection matrix T̂(K,L) is typically
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full-rank, whereby a series of non-zero noisy singular values is generated due to
the stochastic nature of the system. To identify necessary conditions for inference
and distinguish true from noisy singular values, we explore numerically how the
noisy singular values vary with the number of realizations used for the estimation
of the detection matrix.

3 Numerics

To guide the introduction of some necessary conditions for the inference of the
number of the states of the Markov chain, we rely on numerical simulations on
one of the simplest possible example. Specifically, we consider a Markov process
with N = 3 states, with transition probability matrix

P =





0.1 0.7 0.2
0.8 0.1 0.1
0.1 0.1 0.8



 . (7)

We assume that we can only distinguish M = 2 of the three states, such that
the second and third states cannot be distinguished. Thus, we have

C =

[

1 0 0
0 1 1

]

. (8)

It is easy to show that the system is fully observable.
We consider K = 10 time instants and L = 10 random initial probability

distributions, such that the detection matrix is 20× 10. We study how the noisy
singular values vary with the number of realizations used to estimate the detec-
tion matrix. To this end, we conduct a series of simulations in which we estimate
the detection matrix T̂(K,L) from a number of realizations R spanning from 10
to 100, 000 for each of the L initial probability distributions.

In Fig. 1, we show the singular values of the true detection matrix T(K,L)

and of the estimate of the detection matrix T̂(K,L) for the different numbers
of realizations used to estimate it. Clearly, the true detection matrix has three
non-zero singular values: we can observe a sharp gap between the group of three
non-zero singular value and the set of zero (up to numerical precision) singular
values (Fig. 1a). The clear separation disappeares once we consider the estimates
of the detection matrix (Fig. 1b-f). Regardless of the number of realizations, all
the singular values are above 10−3, such that a numerical evaluation of the
rank of the estimated detection matrix would always overestimate the number
of states of the Markov process. While for a small number of realizations it is
impossible to distinguish the second and third singular values from the noisy
ones, the gap between the first three non-zero singular values and the remaining
ones increases when utilizing more realizations. This observation corroborates
the idea that the noisy singular values decrease in value when increasing the
number of realizations used to estimate the detection matrix.

To understand how these singular values scale with the number of realiza-
tions, in Fig. 2, we show the dependence of the third and fourth singular values
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Fig. 1. Singular values of the true detection matrix T(K,L) (a) and of the estimate of

the detection matrix T̂(K,L) (b-f), for an increasing number of realizations R = 10 (b),
R = 100 (c), R = 1, 000 (d), R = 10, 000 (e), and R = 100, 000 (f).
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Fig. 2. Third (blue circles) and fourth (red squares) singular values of the estimate
of the detection matrix T̂(K,L) as functions of the number of realizations used in the
estimation.

of our system with the number of realizations used to estimate the detection
matrix. For small numbers of realizations, we observe that these two singular
values show a similar, almost indistinguishable trend. In fact, for a small num-
ber of realizations, the singular values are dominated by the noise associated
with stochasticity, which decreases similarly for both singular values with the
increase in the number of realizations. Continuing to increase the number of
realizations, we observe that the true non-zero singular value stabilizes around
a fixed value, while the noisy singular value continues to decrease. The largest
noisy singular value scales with the inverse of the square root of the number of
realizations, as confirmed by a linear fit (R2 = 0.999, p < 0.001). This analysis
provides us a condition for identifiability: the smallest non-zero singular value of
the true detection matrix must be larger than the largest noisy singular value,
which scales with the inverse of the square root of the number of realizations.

4 Conclusions

In this paper, we investigated how to infer the size of a stochastic system in the
form of an unknown Markov process. We assume that we do not have direct
access to the Markov process, but only to an output stochastic process in which
we cannot distinguish between some of the states of the Markov process. This
situation shares similarities with hidden Markov chains [5], although the problem
of inferring the number of states has never been posed in this context. We seek to
identify the number of states of the Markov process from the rank of a detection
matrix assembled from the output measurements.

Upon assuming perfect knowledge of the output process, the rank of the
detection matrix corresponds to the size of the largest observable component
of the system. However, we normally have access only to an estimate of the
detection matrix, which is full-rank due to the presence of non-zero noisy singular
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values associated with the stochastic nature of the estimate. Through numerical
simulations, we show that the smallest true singular value must be larger than
the largest noisy singular value for the inference to be possible. Further, we show
that the largest noisy singular value scales with the inverse of the square root of
the number of realizations used in the estimate of the detection matrix.

Our results pave the way for new inquiries to establish algorithms and statis-
tical tests for the inference of the size of a stochastic system, based on estimates
of the detection matrix. The algorithms may be based on our observation on
the different scaling of true and noisy singular values. Statistical tests may be
devised based on hard thresholding of singular values [7], based on estimates of
the noisy singular values. Our work highlights important connections between
SHM, system identification, and control theory.
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