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This work shines light on the role of extracellular polymeric substance (EPS) in the formation
and preservation of elemental sulfur biominerals produced by sulfur-oxidizing bacteria.
We characterized elemental sulfur particles produced within a Sulfurovum-rich biofilm in
the Frasassi Cave System (Italy). The particles adopt spherical and bipyramidal
morphologies, and display both stable (a-Sg) and metastable (3-Sg) crystal structures.
Elemental sulfur is embedded within a dense matrix of EPS, and the particles are
surrounded by organic envelopes rich in amide and carboxylic groups. Organic
encapsulation and the presence of metastable crystal structures are consistent with
elemental sulfur organomineralization, i.e., the formation and stabilization of elemental
sulfur in the presence of organics, a mechanism that has previously been observed in
laboratory studies. This research provides new evidence for the important role of microbial
EPS in mineral formation in the environment. We hypothesize that the extracellular organics
are used by sulfur-oxidizing bacteria for the stabilization of elemental sulfur minerals outside
of the cell wall as a store of chemical energy. The stabilization of energy sources (in the
form of a solid electron acceptor) in biofilms is a potential new role for microbial EPS that
requires further investigation.

Keywords: sulfur, biomineralization, organomineralization, extracellular polymeric substances, biofilms, Raman,
STXM

INTRODUCTION

Elemental sulfur [S(0)] is an intermediate of the biogeochemical sulfur cycle found in many
natural environments, such as marine sediments, marine and lacustrine water columns, cold
or hot springs, hydrothermal environments, salt marshes, and caves (Zerkle et al, 2010;
Findlay et al., 2014; Hamilton et al,, 2015; Lau et al., 2017; Jorgensen et al,, 2019). S(0) is
formed by chemical or biological oxidation of more reduced sulfur species, although in
low-temperature environments, biological S-oxidation rates are typically more than three orders
of magnitude faster than abiotic rates (Luther et al., 2011). A wide diversity of microorganisms
can oxidize sulfide, polysulfides, or thiosulfate and precipitate S(0) through both phototrophic
and chemotrophic pathways (Kleinjan et al., 2003; Dahl and Prange, 2006). In turn, microbially
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formed S(0) can be used as a source of energy for a wide
diversity of S-oxidizers, S-reducers, and microorganisms that
perform S(0) disproportionation (Warthmann et al, 1992;
Dahl, 2020a). Elemental sulfur thus occupies a central and
ecologically important role in the biogeochemical sulfur cycle.

Biogenic S(0) is deposited either intracellularly or
extracellularly (Kleinjan et al., 2003; Dahl and Prange, 2006;
Maki, 2013). Most studies on microbial S(0) biomineralization
so far have focused on microorganisms forming intracellular
S(0) globules, for instance Allochromatium  vinosum,
Acidithiobacillus ferrooxidans, Thiothrix spp., or large colorless
SOB, such as Thiomargarita namibiensis, Thioploca spp., or
Beggiatoa spp. (Brune, 1995; Gray and Head, 1999; Pasteris
et al,, 2001; Prange et al., 2002; Maki, 2013; Nims et al., 2019;
Dahl, 2020b). Many SOB can form S(0) extracellularly, such
as green sulfur bacteria (Chlorobiaceae; Gregersen et al., 2011;
Marnocha et al, 2016), purple sulfur bacteria of the
Ectothiorhodospiraceae family (Then and Triiper, 1983), some
purple non-sulfur bacteria (Hansen and van Gemerden, 1972),
some lithotrophic sulfur bacteria (Cron et al, 2019), and
cyanobacteria (Oren and Shilo, 1979). More work is needed
to decipher the formation mechanisms of extracellular S(0)
and to characterize its properties.

In sulfide-rich solutions, S(0) is thermodynamically stable
only under a very restricted range of natural Eh-pH conditions
(e.g., Eh —0.05 to 0.15 and pH <5 at 25°C and 1 bar; see
Figure 7 in Rickard and Luther, 2007). It is thus not clear
how microbial sulfur, particularly when it is extracellular,
persists in most circumneutral aqueous environments. Cosmidis
et al. (2019) recently showed that interactions with organics
are important for the abiotic formation of S(0) minerals, a
process termed S(0) organomineralization. Organomineralized
sulfur can be found in several metastable crystal structures,
including the monoclinic allotropes p-Sg and y-Sg, which are
thought to be stabilized by close association with organics.
Organic-mineral interactions may also be important in
extracellular S(0) formation by bacteria. Indeed, organics
produced by the chemolithoautotrophic SOB Sulfuricurvun
(S.) kujiense (Campylobacterota) are needed for extracellular
S(0) formation by this organism. The S(0) globules of S. kujiense
are composed of B-Sg and y-Sg and are coated by organic
envelopes that allow them to precipitate under conditions
outside of their theoretical thermodynamic stability domain
(Cron et al.,, 2019). Other SOB, such as Thiobacillus sp. W5
(Kleinjan et al., 2005) and Chlorobaculum (C.) tepidum (Hanson
et al., 2016; Marnocha et al., 2019), also produces extracellular
S(0) globules with organic envelopes, suggesting that organics
play a previously overlooked role in microbial S(0) formation
and stabilization in nature.

Previous studies describing the importance of organics in
S(0) mineralization were based on laboratory experiments,
whereas observations from natural environments are still lacking.
Elemental sulfur particles with metastable structures and intimate
associations with organics were described in a sulfur-rich glacial
site in the Arctic, but it could not be determined whether
microbial mediation was involved in their formation
(Lau et al, 2017). In the present study, we characterized

extracellular S(0) particles formed within microbial biofilms
in a subsurface environment dominated by sulfur-cycling bacteria.
The Grotto Grande del Vento-Grotta del Fiume (Frasassi) cave
system is actively forming in Jurassic limestone in the Apennine
Mountains of the Marches Region, Central Italy (D’Angeli et al.,
2019). The S(0) minerals described here are found within
microbial biofilms in a microaerophilic sulfide-rich stream,
Pozzo di Cristalli. Previous full-cycle rRNA and metagenomic
approaches identified Campylobacterota most closely affiliated
with Sulfurovum species as the most abundant organisms in
streamer biofilms at this location (Jones et al., 2008; Macalady
et al., 2008; Hamilton et al., 2015). Sulfurovum oxidize sulfide
and thiosulfate to sulfate and extracellular S(0) globules, which
can make up more than 60% by weight of their mats. These
primary producers serve as the principal source of organic
carbon to the subsurface stream ecosystem (Hamilton et al.,
2015). The biofilms are attached to rocks in the stream bed
where they intersect the water surface. In this environment,
sulfidic water turbulently mixes with oxygen in the cave air,
providing chemical energy for growth (Macalady et al., 2008).

We characterized the morphology and crystal structure of
S(0) particles formed by microbial S-oxidation in these natural
Sulfurovum-dominated biofilms wusing scanning electron
microscopy (SEM), X-ray diffraction (XRD), and ultra-low-
frequency Raman spectromicroscopy. Organics closely
associated with the S(0) minerals were also characterized
using Fourier-transform infrared (FTIR) spectroscopy and
scanning transmission X-ray microscopy (STXM). Our results
provide important clues about how organic compounds (e.g.,
carboxylic acids, amides, aromatics, and aliphatic compounds)
excreted by cells are used to encapsulate and stabilize
extracellular S(0) within EPS matrices. We discuss the ecological
implications of this new role of EPS in sulfur-based
microbial ecosystems.

MATERIALS AND METHODS

Biofilm Sample Collection

Pozzo di Cristalli is a cave stream that periodically hosts blooms
of streamer biofilms primarily composed of Campylobacterota
in the genus Sulfurovum (Jones et al., 2008; Macalady et al,,
2008; Hamilton et al., 2015). The biofilms thrive in turbulent
stream riffles near the air-water interface. Sulfide concentration
was 20.5 pM at the time of sampling in September 2016.
Streamer sample PC1647 was harvested from customized floating
twine supports. In September 2017, a Sulfurovum-dominated
biofilm (streamer sample PC1718) was collected from a limestone
cobble at the same location (Figure 1). Biofilm samples were
divided into sterile Falcon tubes and cryotubes. Samples in
Falcon tubes were preserved with glutaraldehyde and stored
at —20°C. Cryotube samples were stored at —80°C.

X-Ray Diffraction

For XRD, approximatively 1 ml of biofilm sample PC1718
(i.e., the condensed content of a microcentrifuge tube) was
rinsed three times with deionized water and deposited on a
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FIGURE 1 | Biofilm collection site in September 2017 with billowing white
Sulfurovum-rich streamer biofilm on the surface of the stream at center right.
The Sulfurovum-dominated biofim is surrounded by a weakly pigmented
Beggiatoa biofilm growing on the black sediment surface.

single crystal miscut Si holder. Samples were analyzed using
a PANalytical Empyrean diffractometer paired with a PIXcel3D
detector, and Cu Ko (4 = 1.5406 A) incident X-ray radiation.
Scans were conducted over a 20 range of 5-70°, and analyses
used a step size of 0.025°, a time of 96.4 s per step, and a
current density of 40 mA. XRD data were analyzed using
MDI JADE software. Mineral identification was performed by
comparison with reference XRD patterns from the International
Centre for Diffraction Data (ICDD) database.

Raman Spectromicroscopy

For Raman, 5 ml of frozen unpreserved biofilm (sample PC1718)
was rinsed three times with deionized water to remove salts.
Samples were either deposited and dried on a microscope
slide or kept wet between a microscope slide and cover slip.
Raman spectra were collected using a Horiba LabRam HR
Evolution Vis—-NIR optimized & AIST-NT Scanning Probe, and
a Si-based CCD detector (1,024 x 256 pixels). Raman signals
were measured in the low-frequency range using BragGrate
notch filters (Nims et al., 2019). The spectrometer was calibrated
using the 520 cm™' Raman peak of Si prior to analysis. Spectral
data were corrected for instrumental artifacts and baseline-
subtracted using a polynomial fitting algorithm in LabSpec 6
(Horiba Scientific). The sample spectra were compared with
reference Raman spectra for different allotropes of S(0)
(Nims et al., 2019).

Scanning Electron Microscopy

For SEM, biofilm samples were rinsed with deionized water
and deposited on polycarbonate filters (GTTP Isopore
membrane filters, Merck Millipore, pore size 0.2 pm) or on
glass slides (for correlative Raman analyses, see below). The
samples were allowed to dry at ambient temperature and
coated with iridium or gold prior to analysis. For sample
PC1718, SEM analyses were conducted on a Field Emission
Nova NanoSEM 630 at the Materials Characterization

Laboratory at The Pennsylvania State University. Images were
acquired with the microscope operating at 3-7 kV and a
working distance (WD) of ~3-5 mm. Energy-dispersive X-ray
spectroscopy (EDXS) analyses were performed at 12 kV and
WD ~7 mm. For sample PC1647, SEM analyses were conducted
on a JSM-7401F field emission scanning electron microscope
(FESEM) at the Nanoscale Fabrication Laboratory at the
University of Colorado at Boulder. Images were acquired in
the secondary electron mode with the microscope operating
at 5kV and a WD of 6 mm, and in the backscattered electron
mode at 15 kV and WD 8 mm. EDXS analyses were performed
at 20 kV and WD 8 mm.

To correlate Raman data with morphological characterization
of the S(0) particles, we designed a correlative Raman-SEM
protocol. A frozen unpreserved biofilm sample (PC1718) was
rinsed three times with deionized water to remove salts and
deposited on a microscope glass slide. The sample was
air-dried, and the S(0) particles were first analyzed using
Raman. The microscope slide was then coated with iridium
and analyzed by SEM on a Field Emission Nova NanoSEM
630 (see details on SEM operations below). Raman-based
crystallographic characterization of the S(0) minerals was
performed before SEM imaging in order to prevent potential
structural alteration in the dry, low-vacuum environment of
the SEM chamber.

Fourier-Transform Infrared Spectroscopy
For FTIR spectroscopy, 1 ml of unpreserved biofilm (sample
PC1718) was rinsed three times with deionized water and
dried in a vacuum oven at 60°C overnight. Then, 6 mg of
dried sample and 100 mg KBr were ground and pelleted.
FTIR measurements were conducted on a vertex 70 spectrometer
(Bruker Optics) equipped with a deuterated triglycerine sulfate
(DTGS) detector and a high-intensity water-cooled Globar
source. Spectra were collected at 5 cm™ resolution (2.5 mm
aperture) as an average of 100 scans using MVP PRO software
(Harrick Scientific). The instrument was purged for 30 min
before the first measurement to ensure baseline stability. The
FTIR analyses were performed on three separate occasions
on distinct aliquots of the biofilm, and the obtained spectra
were similar between analyses. The spectra were baseline
corrected using the “Rubber Band” algorithm within the OPUS
2.2 software. The experimental spectra were plotted with
reference spectra for calcite and quartz (RRUFF database;
Lafuente et al., 2015).

Scanning Transmission X-Ray Microscopy
and C K-Edge and S L-Edge X-Ray
Absorption Spectroscopy

For STXM, 1 ml of unpreserved biofilm (samples PC1647 and
PC1718) was rinsed three times with deionized water. A small
drop of the suspension (~3 pl) was deposited on a Formvar-
coated 200 mesh Cu TEM grid (Ted Pella) and allowed to
air-dry at ambient temperature. STXM analyses were performed
on beamline 10ID-1 (SM) of the Canadian Light Source
(Saskatoon, Canada), and beamline 11.0.2. of the Advanced
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Light Source (ALS, Berkeley, CA). The X-ray beam was focused
on the samples using a Fresnel zone plate objective and an
order-sorting aperture yielding a focused X-ray beam spot of
~30 nm on the samples. After sample insertion in the STXM
microscope, the chamber was evacuated to 100 mTorr and
back-filled with He at ~1 atm pressure. Energy calibration
was achieved using the well-resolved 3p Rydberg peak of gaseous
CO, at 294.96 eV. Images, maps, and image stacks were acquired
in the 260-340 eV (C K-edge) and 155-190 eV (S L-edge)
energy ranges.

Scanning transmission X-ray microscopy data were processed
using aXis2000 software. Maps of organic C were obtained
by subtracting images obtained at 280 eV (i.e., below the C
K-edge) and converted into optical density (OD) from
OD-converted images at 288.2 eV (1 s—x* electronic transitions
in amide groups). Maps of S were obtained by subtracting
OD-converted images obtained at 160 eV (i.e., below the S
L-edge) from OD-converted images at 163.5 eV (energy of
the S L;-edge). X-ray absorption near-edge structure (XANES)
spectra were extracted from image stacks as explained in
Cosmidis and Benzerara (2014). Different types of objects
(e.g., cells, EPS, and sulfur particles) were visually identified
in STXM images and maps. Regions of interest were manually
selected, and their distinctive XANES spectra were extracted
from the stacks and plotted. A linear background correction
was applied to the XANES spectra at the C K-edge and the
S L-edge, in the 260-280 eV region and 155-160 eV region,
respectively, to eliminate the contributions of lower energy
absorption edges.

RESULTS

Morphology of Elemental Sulfur Particles
in Sulfurovum-Dominated Biofilms

Scanning electron microscopy imaging combined with EDXS
analyses of the Sulfurovum-dominated biofilms revealed
abundant sulfur-rich particles within a dense matrix of EPS
(Figure 2; Supplementary Figures S1, S2). The particles
appear as spheroids and bipyramidal crystals, which are
sometimes fused into elongated chains (Figure 2A;
Supplementary Figure S1). The particles may also adopt
more irregular shapes. The EPS appears either film-like
(Figure 2C) or as a web made from a network of thin
threads (Figure 2F). Figure 3 shows the size distribution
of S(0) spheroids in two biofilm samples [PC1647 (n = 1,354)
and PC1718 (n = 256)]. The diameters of the spheroids
range from 0.1 to 3.5 pum, with an average diameter of
1.31 pm for PC1347 and 1.03 pm for PC1718. Bipyramids
are not abundant enough to plot their size distribution, but
range between 1.9 and 4.8 pm in length.

Crystal Structure of Elemental Sulfur

X-Ray Diffraction

X-ray diffraction analyses performed on sample PC1718 indicate
that the biofilm contains S(0) present as orthorhombic «-Sg
and monoclinic B-Sy (Figure 4), as determined by comparison
with §(0) XRD patterns from the ICDD database. Calcite and
quartz minerals were also detected.

fused bipyramidal S(0) crystals (black arrow).

FIGURE 2 | Scanning electron microscopy images of sulfur particles associated with EPS in Sulfurovum-dominated streamer biofilms. Samples include
(A) PC1647 and (B-F) PC1718. Red arrows point to bipyramidal S(0) crystals and white arrows point to S(0) spheroids. (A) shows an example of a chain formed by
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Correlative Scanning Electron Microscopy and
Raman Spectromicroscopy

In order to determine the relationship between S(0) crystal
structure and particle morphology, Raman spectroscopy
correlated with SEM imaging was performed on sample
PC1718. Crystal structure identification was performed by
comparison with low-frequency Raman spectra for different
reference S(0) allotropes (Nims et al., 2019). The a-S; allotrope
can be identified using the low-frequency range Raman
vibration modes at 28 cm™, 44 cm™, 51 cm™, 63 cm™, and
a doublet at 82 cm™ and 88 cm™ (Figure 5C). The B-S,
allotrope displays distinctive vibrations in the low-frequency
range with a peak positioned at 82 cm™, a doublet at 33 cm™
and 42 cm™', and a shoulder at 60 cm™'. Spheroids were
found to be composed of either a-Sz or B-S; (Figures 5A,B,D).
These two allotropes were sometimes found in close association
with each other (Figure 5E). We attempted to determine the
crystal structure of S(0) bipyramids, but they could not
be found in the sample during Raman analyses due to their
relative rarity.

Association of Elemental Sulfur With EPS
and Encapsulating Organics
Fourier-Transform Infrared Spectroscopy
Fourier-transform infrared (FTIR) spectroscopy was performed
on the unpreserved PC1718 sample (Figure 6). Reference
spectra for calcite and quartz were used to assist in the
interpretation of the FTIR data, since these minerals were
identified in the sample based on XRD (Figure 4). The sample

spectrum displays a broad band centered around
3,400-3,430 cm™" corresponding to O-H stretching frequencies
(Supplementary Figure S3). The broad peak around
1,750 cm™ corresponds to stretching of COOH or COOR
in carboxylic acids and aromatic esters (Artz et al., 2008).
Signal in this region is also attributed to C=O stretching
in esters and fatty acids (Schmitt and Flemming, 1998).
Peak signal around 1,650-1,600 cm™ is attributed to stretching
of aromatic C=C or asymmetric C-O stretching in COO~
(carboxylates; The presence of carboxylic acids in our sample
is further supported by the presence of a peak at 1,426 cm™!
originating from symmetric C=O stretching and OH
deformation in COOH from carboxylates or carboxylic acid
structures (Thomas, 1972). The band at 1,056 cm™ is
attributed to phosphates in nucleic acids (Orhan Yanikan
et al., 2020) and/or to quartz. A sharp peak at 879 cm™
is present, commonly interpreted as out of phase ring
stretching (ring “breathing”) of aromatics (Artz et al., 2008).
Peaks at 470 and 424 cm™' are attributed to S-S stretching
in Sy (Meyer, 1976; Steudel and Eckert, 2003). The presence
of quartz is confirmed by peaks at 692, 776, and 795 cm™
and a shoulder at 1,160 cm™. The peak at 516 cm™ is
representative of calcite. Quartz peaks may overlap with
the molecular vibrations of polysaccharides in the 1,200-
900 cm™' region, which are typically observed in FTIR spectra
of EPS (Naumann et al.,, 1991).

Fourier-transform infrared analysis thus confirmed the presence
of quartz, calcite, and S(0) minerals in the biofilm, while signal
from the organic material shows a composition dominated by
carboxylic acids, carboxylates, and aromatic structures.
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FIGURE 3 | Histograms depicting the size distributions of spherical S(0) particles in the PC1647 and PC1718 biofilm samples.
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Scanning Transmission X-Ray Microscopy at the
C K-Edge and S L-Edge

Scanning transmission X-ray microscopy analyses at the S
L-edge of the Sulfurovum-dominated biofilms (samples PC1647
and PC1718) confirmed that S(0) is the only form of particulate
sulfur present in the samples (Supplementary Figure S4).
C K-edge analyses showed the presence of bacteria along
with two types of extracellular carbon materials: abundant
EPS (as already observed in SEM images) and thin envelopes
around S(0) particles (Figure 7). The thin organic envelopes
are especially visible in STXM images and maps in places
where S(0) particles were vaporized due to the low pressure
of the STXM chamber and X-ray beam damage (black arrows
in Figure 7A).

All C K-edge XANES spectra display peaks at 285-285.2 eV,
characteristic of 1s — m¢-_c transitions in either aromatic or
unsaturated carbon; Figure 8). The main peak in all spectra
is located at 288.2 eV, corresponding to ls—m* transitions

in amide groups of proteins (Benzerara et al., 2004; Haberstroh
et al., 2006; Chan et al,, 2011). The presence of amides is
in contradiction with FTIR results which did not clearly
detect this functional group. This discrepancy may be due
to the fact that we focused our STXM analyses on clearly
identifiable features, such as microbial cells and organic
envelopes around S(0) particles, while the signal from these
small features may have been diluted by the signal of the
more abundant EPS in bulk FTIR analyses. All spectra
furthermore display a shoulder at 287.5 eV, corresponding
to 3s—c* transitions in aliphatics (Haberstroh et al., 2006;
Lehmann, 2009), and a small peak at 289.4 eV, corresponding
to 1s—3p/c* transitions in hydroxylic groups (Brandes et al.,
2004). Some spectra (mostly EPS) have a peak at 288.5 eV,
attributed to the Is— 7m&_ electronic transitions in
carboxylics (Cody et al, 1998; Boyce et al, 2002; Chan
et al,, 2011). A small peak at 286.6 eV, representative of
Is—m* transitions in phenolic groups, ketones, carboxylates,
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FIGURE 7 | STXM images and maps of Sulfurovum-dominated streamer biofim. (A-B) Sample PC1647. (A) image collected at 288.1 eV. Black areas are S(0)
particles. The empty spherical envelopes of vaporized S(0) globules are visible (black arrows). (B) Corresponding carbon map. The white arrow shows the carbon
enveloped around a partially vaporized S(0) particle (a chain of S(0) bipyramids). (C-1) Sample PC1718. (C) Image collected at 288.2 eV. (D) Carbon map. (E) Sulfur
map. (F) Image collected at 300 eV. (G) Carbon map. The arrow points to a rod-shaped microbial cell. (H-1) Image collected at 300 eV. (I) Carbon map. The boxes
in (A), (F), and (H) and the arrow in (B) indicate where XANES analyses shown in Figure 8 were performed. Scale bars: 1 pm.

or aldehydes (Myneni, 2002; Lehmann, 2009; Moffet et al.,
2011; Cosmidis et al., 2019), is only present in the organic
envelope of a S(0) chain (Figures 7B, 8). Spectra of EPS
and S(0) envelopes sometimes display a shoulder at 288.7 eV,
interpreted as C 1s— m(—o electronic signature of acidic
polysaccharides (Toner et al., 2009; Chan et al., 2011).

DISCUSSION

Properties of the Biofilm S(0) Particles

We described S(0) particles forming within biofilms present
in microaerophilic, sulfide-rich subsurface stream. The biofilms
are dominated by Campylobacterota most closely related to
Sulfurovum species (Jones et al.,, 2008; Macalady et al., 2008;
Hamilton et al., 2015), which are known to oxidize sulfide
and thiosulfate to sulfate and/or extracellular S(0) (e.g., Campbell
et al, 2006). Microbial sulfide oxidation rates are typically
several orders of magnitude higher than chemical oxidation
by molecular oxygen (Luther et al.,, 2011) suggesting that S(0)
particles in the Frasassi biofilms are primarily the product of
microbial S-oxidation. However, mineral nucleation and growth
within biofilms are often influenced by surrounding EPS, which
may result in particle shapes, sizes, or crystal structures that
differ from those of inorganically precipitated minerals (Tourney
and Ngwenya, 2014). Here, we summarize our observations
of the S(0) particles in the Frasassi biofilms and suggest how
formation within EPS may have influenced S(0) properties.
The results are also summarized in Figure 9.

The samples we examined contained both S(0) spheroids
and bipyramids, alongside more irregularly shaped particles
(Figures 2, 7). Both spherical and bipyramidal morphologies
have been observed in microbial biomineralization
experiments, microbe-free organomineralization experiments,
and inorganically precipitated S(0). Extracellular S(0) spheroids
or globules are formed by diverse bacteria (Dahl and Prange,
2006; Marnocha et al.,, 2016; Cron et al., 2019). S(0) spheroids
can also be formed through chemical precipitation of S(0)
in the presence (Cosmidis et al, 2019) or in the absence
(Marnocha et al., 2019) of organic compounds. Previous
studies have suggested that bipyramids are typical of S(0)
precipitated in the absence of organics (Steudel, 2003).
However, as noted above, bipyramids have also been observed
in S(0) organomineralization experiments with humic acids
(Cosmidis et al, 2019) and in cultures of C. tepidum
(Marnocha et al., 2019). The biofilm samples we examined
contained S(0) spheroids ranging from 0.2 to 3.3 pm (Figure 3)
with median particle sizes near 1 pm. The PC1647 sample
had larger S(0) spheroids. Larger particle size could
be controlled by the age of the biofilm, or possibly by the
growth of the biofilm on the twine support. Further analysis
would be needed to confirm whether biofilm age and the
nature of attachment surfaces influence particle size. S(0)
particles with sizes ranging from <0.2 pm to 10 pm have
been observed in other natural environments (Findlay et al.,
2014; Lau et al.,, 2017), in microbial cultures (Cron et al,,
2019; Marnocha et al,, 2019), in inorganically precipitated
S(0) (Meyer, 1976; Garcia and Druschel, 2014), and in S(0)
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FIGURE 8 | C K-edge XANES spectra obtained on the particles and cells
shown in Figure 7. Dashed lines correspond to absorption energies for
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(1 s—3p/c* transitions in alcohols, ethers, and hydroxylated aliphatic
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organomineralization experiments (Cosmidis et al., 2019).
Particle sizes or morphologies of the S(0) described here
are thus not particularly characteristic of their formation
within microbial biofilms.

On the other hand, we observed both a-S; and p-Sg S(0)
crystal structures in biofilm sample PC1718 (Figures 4, 5).
The monoclinic sulfur allotrope p-S; is thermodynamically
unstable at temperatures lower than 96°C, as opposed to
orthorhombic «-Sg which is the stable structure at room

temperature (Steudel, 2003). In laboratory studies, metastable
monoclinic S(0) phases were formed abiotically at low temperature
in the presence of organics (Guo et al, 2006; Choudhury
et al., 2013; Moon et al.,, 2013; Cosmidis et al., 2019). In
microbial incubations, soluble organic compounds produced
by S. kujiense were found to play an important role in the
formation and stabilization of extracellular B-Sg particles in
cultures and in spent media containing soluble organics (Cron
et al, 2019). B-S; was also previously described from a
low-temperature natural environment, and it was proposed that
it was stabilized by its intimate association with organic matter
(Lau et al, 2017).

Based on FTIR and XANES, the organic material associated
with S(0) in the biofilms has a complex composition dominated
by carboxylic acids, amides, aromatics, and aliphatic
compounds (Figures 6, 8). EPS is typically composed of
DNA, polysaccharides, and lipids (Devaraj et al, 2019).
These would include polyaromatic compounds and carboxylic
substitutes (Flemming and Wingender, 2010). It is important
to note that the organic compounds we observed are not
merely “associated,” but directly encapsulating S(0) particles
(Figures 7A,B). Consistent with this observation, previous
work describing organics associated with S(0) formed in
organomineralization experiments demonstrated the presence
of carboxylic (Cosmidis et al, 2019) and amide groups
(Cosmidis and Templeton, 2016) in organic envelopes closely
encapsulating S(0) minerals. Pure cultures of the Sulfurovum
relative S. kujiense also produced an amide-rich envelope
around extracellular S(0) globules (Cron et al., 2019). Similarly,
extracellular S(0) produced by C. tepidum was encapsulated
in organic envelopes composed of proteins and polysaccharides
(Marnocha et al., 2019).

Both organic envelopes around S(0) particles and the
presence of the metastable allotrope p-S; thus confirm an
important role for organic-mineral interactions in extracellular
S(0) mineralization. We therefore hypothesize that microbially
derived extracellular organics (EPS) are critical for the
formation and preservation of S(0) particles in the Sulfurovum-
dominated biofilms at Frasassi, raising the interesting
question below.

S(0) Organomineralization and Storage in
Biofilms: A New Role for EPS?

Extracellular formation of biominerals in close interaction
with organic polymeric structures has been documented for
different types of systems, for instance precipitation of calcium
carbonates in microbial mats (Dupraz et al, 2009) or on
diatom EPS (Stanton et al., 2021), or iron-(oxyhydr)oxide
mineralization on polymeric bacterial sheaths and stalks
(Chan et al., 2009, 2011). While in some cases mineral
precipitation on extracellular organics may be “unintended
and uncontrolled” (Frankel and Bazylinski, 2003), in other
cases specific organic structures are involved in directing
extracellular biomineralization and this process plays a crucial
role in metabolism, growth, and/or survival (Miot et al., 2009;
Chan et al., 2016).
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FIGURE 9 | Diagram summarizing the main findings of the study. The biofilms including cells, EPS, and S(0) particles with encapsulating organic envelopes are
represented, as well as analytical data obtained with different bulk, micro-scale, and nano-scale techniques.

In the Frasassi Sulfurovum-rich biofilms, EPS appears to influence
S(0) formed as a result of microbial S-oxidation, through the
stabilization of otherwise unstable mineral phases. Organics have
been shown to favor the formation and stabilization of S(0)
minerals through S(0) organomineralization (Cosmidis and
Templeton, 2016; Cosmidis et al., 2019). S(0) organomineralization
may occur with diverse types of organic molecules (e.g., amino-
acids, sugars, and humic acids; Cosmidis et al., 2019), as well as
with soluble organic compounds produced by different types of
bacteria (Cron et al.,, 2019). It remains to be determined whether
specific organics are produced by the Frasassi biofilm microbial
community to direct S(0) formation and stabilization. Given that
organic matter is energetically costly to produce (Amend et al,
2013; Jayathilake et al, 2017), particularly for autotrophs like
Sulfurovum (LaRowe and Amend, 2015, 2016), we consider it
unlikely that S(0) encapsulation and particle trapping in the biofilm
is accidental. Holdfasts in colonizing Sulfurovum populations appear

to be made of S(0) rather than organic matter, eliminating a
potential role for EPS in biofilm attachment. These observations
suggest that binding and encapsulating S(0) in EPS may represent
a particular ecological strategy.

We can speculate about the ecological role that EPS and
embedded S(0) particles might play in the survival and
dispersal of Sulfurovum populations in the cave habitat. In
this environment, Sulfurovum-rich biofilms form only in
turbulent stream flow near the air-water interface and are
absent when appropriate support structures are unavailable
in that position. The entrenched cave streams hosting the
biofilms are subject to rapid, weather-related changes in
water levels that frequently wash out or drown the biofilms.
Thus cells that are producing S(0) under ideal conditions
(Reaction 2) may experience rapid changes in O, availability.
Under O, starvation conditions, bioavailable S(0) in the
biofilm could enable survival and possibly even growth.
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Hamilton et al. (2015) noted that Sulfurovum metagenome-
assembled genomes (MAGs) obtained from biofilms collected
at the same sampling site ubiquitously contained genes that
would allow H, and formate oxidation with S(0) as an
electron acceptor (Reaction 1).

Reaction1: Hy +S° — H,S AG® ~—30 kJ/reaction

Reaction2: H,S+0.50, — S° + H,0
AG® = —421K] / reaction

Although Reaction 1 yields much less energy than Reaction
2 under standard conditions (and likely also under in situ
conditions), the ability to utilize stored S(0) may represent an
important ecological advantage to the cave Sulfurovum populations,
and capturing and storing S(0) in EPS may be an important
element in the life strategy of this group. This scenario will
be tested using metatranscriptomics in the future work. If so,
energy storage through stabilization of electron donors for energy
metabolism may be a previously underappreciated role for EPS
in biofilms.

Extracellular polymeric substances in the Frasassi biofilms
described here appear to be responsible for at least two
properties of the S(0) minerals: their crystal structure (with
the stabilization of B-Sg) and organic encapsulation. It is
now well established that the properties of S(0) particles
play a crucial role in their utilization by bacteria. For instance,
particle size, surface area, and S’ composition and structure
affect S(0) oxidation rates by Thiobacillus albertis (Laishley
et al., 1986). Allochromatium vinosum grown on S(0) show
a preference for polymeric sulfur over commercial crystalline
Sg, which they are unable to uptake (Franz et al., 2007).
Preference for polymeric sulfur utilization over S; was also
evidenced in natural mats of chemotrophic S-oxidizers (Engel
et al., 2007). Incubation experiments of natural freshwater
communities with different sulfur sources showed a preference
for the utilization of a reactive form of colloidal S(0) -
possibly polythionates - over S (Findlay and Kamyshny,
2017). Recently, it was shown that C. tepidum can grow
from the oxidation of its own biogenic S(0) globules but
not from oxidation of commercial sulfur, crystalline S(0),
or inorganically precipitated colloidal S(0), which is
mineralogically very similar to biogenic S(0) globules but
does not have an organic coating (Marnocha et al., 2016,
2019). It is possible that S(0) formation within EPS favors
storage in a form more readily utilizable by the cells, by
favoring metastable S(0) structures and by making S(0)
particles hydrophilic, allowing interaction with the cell surface
(Marnocha et al., 2019).

CONCLUSION

We studied a natural Sulfurovum-rich S(0)-producing biofilm
to investigate processes that influence the precipitation and
stabilization of extracellular S(0) in the environment. We found
that sulfur particles in the biofilm are encapsulated within

organic envelopes and that some of the particles have an
unstable crystal structure (the high-temperature allotrope B-Sy).
These characteristics have also been observed in S(0) produced
by organomineralization. Our results suggest that EPS within
the biofilm stabilize S(0) particles, preventing their dispersal
away from the biofilm and influencing their structural and
surface properties. Future studies will be needed in order to
determine the ecological importance of this process and its
impact on biogeochemical sulfur cycling in the Frasassi cave
and in other environments.
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