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In the sciences in general, the phrase “route to chaos”
has come to refer to a metaphor when some physical,
biological, economic, or social system transitions from
one exhibiting order to one displaying randomness (or
chaos). Sometimes the goal is to understand which uni-
versal mechanisms explain that transition, and how one
can describe systems that operate in a region between or-
der and complete chaos. In other words, the goal is to
understand the mathematical processes by which a system
evolves from one whose recurrent set is finite towards an-
other one exhibiting chaotic behavior as parameters gov-
erning the behavior of the system are varied. This has
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only been understood for one-dimensional dynamics. The
present note exposes new approaches that allow one to
move away from those limitations.

A tentative global framework toward describing a large
class of two-dimensional dynamics, inspired partially by
the developments in the one-dimensional theory of inter-
val maps is discussed. More precisely, we present a class
of intermediate smooth dynamics between one and higher
dimensions. In this setting, it could be possible to develop
a similar one-dimensional type approach and in particular
to understand the transition from zero entropy to positive
entropy.

Complexity in Dynamics
Considering a system which evolves in time, the purpose
of dynamical systems is to describe the asymptotic behav-
ior of its orbits. As an example, one may think to the gra-
dient flow associated to a Morse function: there exists a
finite number of equilibria and any other orbit is a curve
which connects one equilibrium to another one. One may
also have in mind mechanical systems: in the case of the
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Figure 1. Morse-Smale dynamics defined by the gradient flow
of a Morse function.

Figure 2. Hamiltonian dynamics (the pendulum).

ideal frictionless pendulum, one gets a flow whose orbits
are contained in the level sets of the energy function. See
Figures 1 and 2.

In this note we consider discrete time systems, defined
by a map 𝑓 on a phase space𝑀. For instance, 𝑓may be the
time-1 map for the flows mentioned previously. The for-
ward orbits are the sequences of the form 𝑥, 𝑓(𝑥), 𝑓(𝑓(𝑥)),
𝑓(𝑓(𝑓(𝑥))),. . . For convenience, one usually denotes 𝑓𝑛(𝑥)
the image after 𝑛 compositions by 𝑓 and one of our goals is
to characterize the accumulation sets of the orbits, usually
called the limit sets.
The horseshoe map. For the above systems, or for others
like rotations or isometries, the limit sets are very simple
and the orbits are described easily. But much richer behav-
iors exist. This happens on surfaces, when a rectangle 𝑅 is
vertically stretched, horizontally contracted, and crossed
twice by its image 𝑓(𝑅). In this case 𝑅 ∩ 𝑓(𝑅) has two
components (𝑅0, 𝑅1) and any orbit contained in 𝑅 may
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Figure 3. The horseshoe map.

be coded by a sequence in {0, 1}ℤ, which represents the se-
quence of components met along the orbit. See Figure 3
and [Shu] for more details. Conversely, any such sequence
is realized by an orbit contained in 𝑅. This shows that for
each time 𝑛 ≥ 0, at least 2𝑛 different orbits of the system
may be distinguished at the scale of the rectangle 𝑅.
The topological entropy. One measures the complexity
of a dynamical system 𝑓 through its entropy. It is de-
fined by fixing 𝜀 > 0 and considering the maximal num-
ber 𝑁(𝜀, 𝑓, 𝑛) of orbits under 𝑓 that can be distinguished
at scale 𝜀 up to time 𝑛. The topological entropy ℎ(𝑓) is
the asymptotic exponential growth rate1 of this quantity.
It is always bounded when 𝑓 is a differentiable map of a
compact manifold. As we will see the dynamics differs dra-
matically when the entropy vanishes or is positive.
Morse-Smale dynamics. For the simple systems pictured
in Figures 1 and 2 the entropy is zero. This is also the case
for any Morse-Smale dynamics, i.e., for systems which gen-
eralize the gradient dynamics in this way:

• there exist finitely many periodic orbits 𝑂1,. . . , 𝑂ℓ,
each of them being hyperbolic (when 𝑥 ∈ 𝑂𝑖 is
fixed by 𝑓𝑛, 𝑛 ≥ 1, the moduli of the eigenvalues
of 𝐷𝑓𝑛(𝑥) are different from 1),

• any other orbit accumulates in the past and in the
future on two different orbits 𝑂𝑖, 𝑂𝑗 with 𝑖 < 𝑗.

1Note that 𝑁(𝜀, 𝑓, 𝑛) increases as 𝜀 gets smaller. Formally, one thus sets ℎ(𝑓) =
lim𝜀→0 lim sup𝑛→+∞

1
𝑛
log𝑁(𝜀, 𝑓, 𝑛).
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Cascade of doubling periods and odometers. An impor-
tant example of a diffeomorphismon the disc with zero en-
tropy andwhich is notMorse-Smale was first built in [GST]
and exhibits an infinite sequence of periodic orbits. It can
be described as follows: the disc 𝐷 is mapped into itself
and is separated by a line of points 𝛾 whose forward orbit
converges to a fixed point 𝑥0. The two components 𝐷𝑙, 𝐷𝑟
of 𝐷 ⧵ 𝛾 are topological discs that are exchanged by the
map and contain points 𝑥𝑙, 𝑥𝑟 of the same 2-periodic orbit.
Each disc 𝐷𝑙 or 𝐷𝑟 is divided by a line 𝛾𝑙 or 𝛾𝑟 of points
whose orbit accumulates on {𝑥𝑙, 𝑥𝑟}; the four components
of 𝐷 ⧵ (𝛾𝑙 ∪ 𝛾 ∪ 𝛾𝑟) are cyclically permuted by the map and
each of them contains a point of the same 4-periodic orbit.
The decomposition goes on inductively and produces one
periodic orbit for each period 2𝑛.

The collection of periodic points converges to an invari-
ant Cantor set 𝐾. The restriction of the dynamics to 𝐾 is
conjugated to the addition by 1 on the group of dyadic in-
teger ℤ2, and for that reason the limit Cantor set is called
an odometer (or adding machine).
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Figure 4. A cascade of doubling periods accumulating on an
odometer.

Transverse homoclinic intersections. For the horseshoe
map, pictured in Figure 3, we have seen that the number
of itineraries at time 𝑛 has the lower bound 2𝑛 and the
entropy is at least log(2). A generalization of that phe-
nomenon occurs frequently in differentiable dynamics. In-
deed, let us consider a diffeomorphism with a fixed point
𝑝which is a hyperbolic saddle: the tangent space at 𝑝 decom-
poses as the sumof two invariant subspaces𝑇𝑝𝑀 = 𝐸𝑠⊕𝐸ᵆ,
such that the eigenvalues of 𝐷𝑓|𝐸𝑠 (resp. 𝐷𝑓|𝐸𝑢) have a
modulus smaller than 1 (resp. larger than 1). Then the set
of points whose forward (resp. backward) orbit converges
to 𝑝 is an immersed submanifold 𝑊 𝑠(𝑝) (resp. 𝑊 ᵆ(𝑝)),

called stable manifold (resp. unstable manifold) of 𝑝.
Poincaré has noticed a fascinating phenomenon: when
these manifolds have a transverse intersection point (dif-
ferent from 𝑝 itself), then they have to intersect in an intri-
cate way, see Figure 5.

Figure 5. The net formed by the stable and unstable
manifolds of a fixed point, when there exists a transverse
homoclinic intersection.

Smale has proved that such a transverse homoclinic in-
tersection forces 𝑓 to have a horseshoe, implying that the
entropy is positive. For periodic orbits 𝑂 with period 𝜏
which are saddle (i.e., which split into saddle fixed points
of 𝑓𝜏), one defines analogously the stable and unstable
manifolds 𝑊 𝑠(𝑂),𝑊 ᵆ(𝑂); a transverse intersection (out-
side 𝑂) between them implies that 𝑓 admits a horseshoe.
Katok has shown the converse in dimension 2. On sur-
faces, positive entropy is thus equivalent to the existence
of a horseshoe:

Theorem (Smale, Katok). For 𝐶2-diffeomorphisms on a sur-
face, the topological entropy is positive if and only if there exists
a hyperbolic periodic orbit with a transverse homoclinic point.

In higher dimensions, only Smale’s implication re-
mains, but one may ask if Katok’s still holds for “most”
diffeomorphisms.

Transition to Chaos in the Space of Systems
It appears that the space of diffeomorphisms splits into
two classes with very different dynamics: those with zero
entropy and those with positive entropy. Each of these
classes contains open sets: the set of Morse-Smale diffeo-
morphisms on the one hand, and the set of systems ex-
hibiting a transverse homoclinic orbit on the other hand.
This naturally raises the following questions.

Q1. Is the set of Morse-Smale diffeomorphisms dense in the set
of systems with zero entropy?
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Q2. Is the set of diffeomorphisms with a transverse homoclinic
intersection dense in the set of systems with positive entropy?

If these questions have positive answers, the interface of
these two classes is small and one goal would be to under-
stand the systems at the transition between simple (zero
entropy) and complicated (positive entropy) dynamics. In
particular we would like to identify, if it exists, the phe-
nomenon that generates entropy.

Q3. Can one characterize systems that belong to the boundary
of the class of dynamics with zero entropy?

Wenote that the two open classes introduced before can
be distinguished by the number of periodic orbits present
in the system: it is stably finite in one case, and stably infi-
nite in the other case.

Q4. Can one identify the transition from finitely to infinitely
many periodic orbits?

We will discuss these questions in different settings,
starting with the lower dimensions.

One-dimensional Dynamics
These questions have already been addressed in dimension
1. We will focus on continuous maps acting on the closed
interval, but one could also consider maps acting on other
one-dimensional spaces like the circle or trees. For mono-
tonemaps, it is not difficult to prove that the accumulation
points of any orbit is either given by fixed points (if the
map is increasing) or by a unique fixed point and periodic
orbits of period two (if the map is decreasing).

A richer situation holds with non-invertible maps. The
action of quadratic polynomials on the real line illustrates
how different possible dynamical scenarios arise. Without
loss of generality, one can consider the quadratic family

𝑓𝑎 ∶ 𝑥 ↦ 𝑎𝑥(1 − 𝑥)
which satisfies 𝑓𝑎([0, 1]) ⊂ [0, 1] for 𝑎 ∈ [0, 4]. There is a
value 𝑎∗ such that the topological entropy vanishes when
𝑎 ≤ 𝑎∗ and is positive for the other parameters. As 𝑎 < 𝑎∗
increases the (finite) number of periodic orbits increases
and 𝑎∗ is the smallest parameter exhibiting periodic points
with arbitrarily large periods.

The natural ordering of the interval allows a combinato-
rial approach. For instance, exploring the richness of that
total order structure, Milnor and Thurston have developed
a Kneading Theory, giving a complete description of all
topological possibilities for the dynamics of a family of
endomorphisms of the interval, with a given number of
monotonicity branches.
Periodic approximation in the interval. A point 𝑥0 is re-
current if its forward orbit meets any of its neighborhoods;
this is the case when 𝑥0 is periodic. A result, that highlights
the strength of the order structure, asserts:

Property (L.-S. Young [Y]). For interval maps, the periodic
points are dense in the recurrent set.

This fact is unknown in higher dimensions, even from
a smooth generic point of view. A simple proof of this fact
goes along the following lines. Let us consider a recurrent
(non-periodic) point 𝑥0 and a forward iterate 𝑥1 = 𝑓𝑛(𝑥0)
close to 𝑥0. Without loss of generality, one can assume
that 𝑥0 < 𝑥1. We claim that there is a periodic point for
𝑔 ∶= 𝑓𝑛 inside (𝑥0, 𝑥1). Indeed one can easily check that
𝑥0 is still recurrent for 𝑔. Since 𝑥0 < 𝑥1, there exists a posi-
tive integer 𝑘 such that 𝑔𝑘(𝑥1) < 𝑥1. Taking the smallest 𝑘
also gives 𝑔𝑘(𝑥0) = 𝑔𝑘−1(𝑥1) > 𝑥1. Therefore we have a con-
tinuous map 𝑔𝑘 ∶ [𝑥0, 𝑥1] → [0, 1] such that 𝑔𝑘(𝑥0) > 𝑥1
and 𝑔𝑘(𝑥1) < 𝑥1. Hence the graph of 𝑔𝑘 crosses the diag-
onal inside (𝑥0, 𝑥1): there is a point 𝑝 ∈ (𝑥0, 𝑥1) which is
fixed for 𝑔𝑘 and so periodic for 𝑓, see Figure 6.
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Figure 6. Localization of a periodic point in the interval.

We can recast the previous proof, avoiding an explicit
use of the order, and in a way that can be generalized to
other contexts. Under the same choices of 𝑥0 and 𝑥1 as
above, we define the intervals 𝐷− = [0, 𝑥0] and 𝐷+ =
[𝑥1, 1] and we take the first positive integer 𝑘 such that
𝑔𝑘(𝑥1) ∉ 𝐷+. Such an integer exists since 𝑥0 is recurrent
and does not belong to 𝐷+. By the choice of 𝑘 observe
that 𝑔𝑘(𝑥0) = 𝑔𝑘−1(𝑥1) ≥ 𝑥0. Let ℎ∶ [0, 1] → [𝑥0, 𝑥1]
be the continuous map which coincides with the identity
on [𝑥0, 𝑥1] and such that ℎ([0, 𝑥0]) = 𝑥0, ℎ([𝑥1, 1]) = 𝑥1.
Then the map ℎ ∘ 𝑔𝑘 ∶ [𝑥0, 𝑥1] → [𝑥0, 𝑥1] has a fixed point
𝑝 ∈ [𝑥0, 𝑥1]. Note that ℎ ∘ 𝑔𝑘(𝑥0) = 𝑥1 (since 𝑔𝑘(𝑥0) ∈ 𝐷+)
and ℎ ∘ 𝑔𝑘(𝑥1) ≠ 𝑥1 (since 𝑔𝑘(𝑥1) ∉ 𝐷+). Therefore 𝑝 be-
longs to (𝑥0, 𝑥1). Since ℎ is the identity on (𝑥0, 𝑥1), the
point 𝑝 is a fixed point of 𝑔𝑘.
One-dimensional dynamics and zero entropy. A sim-
ple characterization of positive entropy in the interval has
been given by Misiurewicz:

Property (Misiurewicz). An interval map has positive entropy
if and only if there exist two disjoint intervals such that the
image of each interval by an iterate 𝑓ℓ of the map contains the
union of both intervals.

The reason is analogous to Smale-Katok’s theorem: the
number of itineraries for 𝑓ℓ with respect to these intervals
grows as 2𝑛, see Figure 7.
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Figure 7. Map satisfying Misiurewicz’s criterion.

Another historical result in this combinatorial theory is
Sarkovskii’s hierarchy of periodic orbits. It implies:

Property (Sharkovskii). Interval maps with zero entropy only
admit periodic points of period 2𝑛, 𝑛 ≥ 0.

Let us discuss Sharkovskii’s property in the case of uni-
modal maps of the unit interval [0, 1], i.e., continuous maps
with only one turning point 𝑐 ∈ [0, 1], one strictly increas-
ing interval [0, 𝑐] and one strictly decreasing interval [𝑐, 1].
The following dichotomy then holds:

Property. For unimodal maps 𝑓 with zero entropy,
– either all forward orbits converge to a fixed point,
– or 𝑓 is renormalizable: there exists an interval 𝐼 containing
𝑐 such that 𝑓(𝐼) ∩ 𝐼 = ∅, 𝑓2(𝐼) ⊂ 𝐼, 𝑓2|𝐼 is unimodal and the
forward orbit of any point either converges to a fixed point or
enters in the interval 𝐼.

In particular, any periodic orbit is either fixed, or has
even period. Applying the property to 𝑓2|𝐼 shows that 4 di-
vides any period larger than 2. Arguing inductively, one
concludes that the allowed periods have the form 2𝑛.

The dichotomy can be obtained by considering sepa-
rately the two cases 𝑓(𝑐) ≤ 𝑐 and 𝑓(𝑐) > 𝑐. In the first
case, 𝑓([0, 𝑐]) ⊂ [0, 𝑐] and since 𝑓|[0,𝑐] is increasing, it fol-
lows that any orbit in [0, 𝑐] converges to a fixed point; since
𝑓([0, 1]) ⊂ [0, 𝑐], the same property holds on the whole in-
terval [0, 1]. In the second case, observe that since 𝑓(𝑐) > 𝑐
and 𝑓(1) ≤ 1, there is a fixed point 𝑝 ∈ (𝑐, 1]. Let us in-
troduce the maximal interval 𝐼 ∶= (𝑝′, 𝑝) ⊂ (0, 𝑝) whose
image is contained in (𝑝, 1) (note that either 𝑝′ = 0 or
𝑓(𝑝′) = 𝑝). Observe that the turning point 𝑐 belongs to
that interval, 𝑓(𝐼) ∩ 𝐼 = ∅ and 𝑓2|𝐼 is unimodal. Also
𝑓2(𝑝′) ≤ 𝑓2(𝑝) = 𝑝. Since the entropy is zero, it follows
from Misiurewicz’s property that 𝑓2(𝑐) ∈ 𝐼 and therefore
𝑓2(𝐼) ⊂ 𝐼. It remains to see that any forward orbit either
converges to a fixed point or enters inside 𝐼. Note first that
if 𝑥 < 𝑝′ then 𝑓(𝑥) < 𝑓(𝑝′) = 𝑝 and so either 𝑓(𝑥) ≥ 𝑝′ (in

I f(I)

f(c)p

Figure 8. Unimodal map which is renormalizable.

this case 𝑓(𝑥) is contained in the interval 𝐼) or 𝑓(𝑥) < 𝑝′
and the argument can be repeated: if the forward orbit of
𝑥 does not enter in 𝐼, it remains in the increasing interval
[0, 𝑐] and converges to a fixed point. In the last case 𝑥 > 𝑝:
the image 𝑓(𝑥) belongs to the increasing part and we are
reduced to the first case. See Figure 8.
Infinite renormalization and odometers. From the pre-
vious discussion, one concludes that for unimodal maps
with zero entropy, two cases are possible.

A first possibility is that the inductive renormalization
described in the previous paragraph stops after a finite
number𝑚 of steps. The set of periods is then the finite set
{2𝑘, 0 ≤ 𝑘 ≤ 𝑚}. Any forward orbit accumulates on one
periodic orbit. The dynamics is similar to Morse-Smale dy-
namics (although the number of periodic points of a given
period may be infinite).

Otherwise one says that 𝑓 is infinitely renormalizable. For
each 𝑘 ≥ 0, let 𝐼𝑘 denote a renormalization interval with
period 2𝑘, so that 𝑉 𝑘 ∶= 𝐼𝑘 ∪ 𝑓(𝐼𝑘) ∪ ⋯ ∪ 𝑓2𝑘−1(𝐼𝑘) is
forward invariant. The family (𝑉 𝑘) is decreasing and the
intersection is an invariant compact set 𝒦. When 𝑓 is 𝐶2

and 𝐷2𝑓(𝑐) ≠ 0, it is a Cantor set2, and the dynamics on𝒦
is the same as in the example of Figure 4: it is an odometer.
Inside such a set, all the orbits are dense and follow the
same statistic: they distribute toward the same invariant
probability measure, and visit a set 𝐼𝑘 with frequency 2−𝑘.
Any forward orbit of 𝑓 accumulates either on a periodic
orbit, or on the odometer.
The renormalization operator. Deepening the idea
of renormalization, Coullet-Tresser and independently
Feigenbaum, have proposed to consider the renormaliza-
tion operator ℛ acting on the space of smooth unimodal
maps with a quadratic turning point: to any map which

2It follows from the no wandering interval theorem, see [MS].
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Figure 9. Renormalization of a unimodal map.

is renormalizable on a maximal interval 𝐼, it associates the
map ℛ(𝑓) ∶= 𝐻 ∘ 𝑓2|𝐼 ∘ 𝐻−1, where 𝐻 is the orientation-
reversing affine homeomorphism between 𝐼 and [0, 1]. See
Figure 9.

These people have realized that the dynamics of ℛ is
the key to understanding the boundary of the set of maps
with zero entropy. They conjectured that the operator
has a unique fixed point 𝑓⋆, which is hyperbolic. The
set of unimodal maps whose sequence of renormaliza-
tions converges to 𝑓⋆ is a one-codimensional submanifold
(which corresponds to infinitely renormalizable maps).
Outside this stable manifold, the renormalizations stop
after finitely many steps. On one side the dynamics has
Morse-Smale behavior: the number of periods is finite and
the entropy vanishes. On the other side of the stable mani-
fold, the dynamics renormalizes until a horseshoe appears
and the entropy is positive. See Figure 10.

The definite mathematical proof of these results started
first in the analytic context with Sullivan’s program [Su],

infinite
renormalizable

Morse-Smale like
h = 0

h > 0

f

R

renormalizable maps ∃ horseshoeperiod 1 only

Figure 10. Dynamics of the renormalization operator ℛ on the
space of unimodal maps with quadratic turning point.

approaching the Feigenbaum-Coullet-Tresser Renormal-
ization Conjecture based on Teichmüller theory, and fin-
ished with the proof by Lyubich [L], showing the hyper-
bolicity of the renormalization fixed point; this has been
later extended to lower regularity in [FMP]. Partial results
about maps with more monotonicity branches (multi-
modal maps) and the associated transition to chaos have
been obtained by many authors (see, e.g., [MT] and refer-
ences cited or citing).

These results also explain some quantitative and uni-
versal phenomena appearing when the system changes in-
side one-parameter families. Every family of unimodal
maps presents essentially the same dynamical features as
it passes from zero to positive entropy: for instance when
one measures the size of the set of parameters for which
some periods appear. This is sometimes called topologi-
cal universality for one-dimensional dynamics since it al-
lows one to show that the quadratic family encapsulates
all possible dynamical behaviors.

Dissipative Surface Dynamics
One can naively wonder if that rich and meaningful de-
scription of the dynamics on the interval, can be extended
to higher dimensions. The next level of complexity to be
considered is dissipative two-dimensional invertible maps
acting on the disc, i.e., diffeomorphisms 𝑓 from the 2-disc
𝔻 into its image 𝑓(𝔻) ⊂ 𝔻 and which contract the vol-
ume. Therefore, the iterates of the disc are confined to a
set whose two-dimensional volume vanishes and which
seems to have a one-dimensional structure.

However, there are phenomena in this setting with no
one-dimensional counterpart: there exists a residual3 set
of dissipative diffeomorphisms of the disc exhibiting infin-
itely many attracting periodic orbits with arbitrarily large
periods (this property is called the Newhouse phenome-
non, see [N]), whereas generic smooth one-dimensional
maps have only finitely many attracting periodic points4.
Hénonmaps. One classical example of dissipative surface
maps is the Hénon map which is defined by the formula
(𝑥, 𝑦) ↦ (1−𝑎𝑥2+𝑦, 𝑏𝑦)where 𝑎 and 𝑏 are real parameters
and 𝑏 has modulus in (0, 1). See Figure 11.

This family was introduced by Hénon back in the sev-
enties as a non-linear model displaying complicated dy-
namics. In the age of computers and of computer graphics,
Hénon maps are one of the simplest two-dimensional sys-
tems used, through numerical simulations, to showhow it-
erations produce extraordinarily complex behaviors. How-
ever, the phenomena observed computationally have been
rigorously explained only for very small sets of parameters.

3The residual sets refer here to the Baire category: the phenomena holds on a
G𝛿 set which is dense inside a non-empty open set of 𝐶2-diffeomorphisms.
4It follows from the generic finiteness of attractors, see theorem B’ in [MS].
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Figure 11. The forward orbit of the point (0.35, 0.35) under the
Hénon map (𝑥, 𝑦) ↦ (1 − 1.4𝑥2 + 𝑦, 0.3𝑥).

Observe that 𝑏 is the Jacobian of the map and by letting
𝑏 tend to zero, one recovers the classical quadratic family
described. One may thus expect that the two-dimensional
maps have dynamical features of the interval quadratic
map 𝑥 ↦ 1−𝑎𝑥2, even if the Hénonmaps also display new
properties, such as the intriguing Newhouse’s phenome-
non.
Difficulties. In practice, the two-dimensional systems are
much more difficult to describe and much less is known
for the Hénon maps than for the quadratic family. One
reason is that there does not exist an obvious ordering on
the phase space as in dimension 1, so that a combinatorial
structure of the dynamics is much more difficult to intro-
duce. In particular there is no point in the disc which gen-
eralizes a priori the turning points in the interval. A notion
of critical points may be defined for some parameters but
their number turns out to often be infinite while there is
only one for quadratic maps.

In that sense, trying to look for a general description
of dissipative diffeomorphisms on the disc (with the nec-
essary adaptations) as it has been performed in the one-
dimensional context, could be considered overambitious
and unattainable with such a level of generality, or even
looking to the wrong paradigm.
Perturbative approaches and strong dissipation.
Through deep analysis it is possible to describe subsets
of parameters inside the Hénon family as small perturba-
tions of the one-dimensional setting, either with positive
entropy [BC] or with zero entropy [CLM]. These works nec-
essarily suppose that the Jacobian 𝑏 is extremely close to
0. This setting will be qualified as a “strongly dissipative
regime.”

Zero entropy—a conjecture by Tresser. The Newhouse
examples mentioned above have transverse homoclinic or-
bits and positive entropy, so it is possible that when the en-
tropy vanishes, the differences between interval dynamics
and dissipative dynamics in the disc may disappear. This
expectation is encapsulated in a conjecture by Tresser [GT].
It focuses on maps at the bifurcation locus between zero
and positive entropy. The natural examples are the dif-
feomorphisms pictured in Figure 4: similarly to the one-
dimensional case, for each positive integer 𝑛 there is ex-
actly one periodic orbit with period 2𝑛, and no other pe-
riod exists.

Conjecture (Tresser). In the space of dissipative diffeomor-
phisms of the disc, generically, maps which belong to the bound-
ary of the subset of systems with zero entropy have an infinite
set of periodic orbits with periods 𝑚.2𝑘, for a given 𝑚 ≥ 1 and
all 𝑘 ≥ 0.

In other terms, it asserts that at the transition between
zero and positive entropy, there exists a doubling cascade
of periodic orbits.

Mildly Dissipative Surface Dynamics
After recognizing the difficulties of the dissipative surface
dynamics, we now present an open large class of dissipa-
tive diffeomorphisms acting on the disc 𝔻, that has been
introduced in [CP] and that captures key properties of
one-dimensional maps: abundance of periodic points in
the recurrent set, order structure through one-dimensional
reduction, renormalization structure in the entropy zero
case, etc. However, it keeps two-dimensional features,
showing all the well known complexity of dissipative sur-
face diffeomorphisms; moreover it includes the Hénon
family with Jacobian 𝑏 up to 1/4 and therefore goes be-
yond classic perturbative strategies.
Mild dissipation. As mentioned before, the theory of real
one-dimensional dynamics is leveraged on the order struc-
ture of the interval: each point separates the interval in two
components. This feature does not exist for the plane and
has to be replaced by a different separation property. At
any point 𝑥, one can consider its stable set, i.e., the set of
points whose iterates get closer to the forward orbit of 𝑥:

𝑊 𝑠(𝑥) = {𝑦 ∶ dist(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) → 0}.
For instance 𝑥 can belong to a periodic orbit which attracts
all the points in a neighborhood: in this case 𝑊 𝑠(𝑥) con-
tains a neighborhood of the orbit and one says that 𝑥 is a
sink.

Since the dynamics is dissipative, one expects that for
“most points” 𝑥 the set𝑊 𝑠(𝑥) is non-empty, and indeed us-
ing results from ergodic theory, one can show that unless
𝑥 is a sink, the stable set is an embedded one-dimensional
submanifold, called the stable manifold of 𝑥. Since the dy-
namics acts on the disc 𝔻, we say that 𝑊 𝑠(𝑥) separates,
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when it contains a curve 𝛾𝑠𝑥 through 𝑥 whose endpoints
belong to the boundary of the disc, so that 𝔻 ⧵ 𝛾𝑠𝑥 has two
connected components. In this way, we can introduce the
following definition (see Figure 12):

Definition. A diffeomorphism which sends the disc into its
interior and contracts the volume is mildly dissipative if for
any invariant5 probability measure 𝜇 and for 𝜇-almost every
point 𝑥,

• either 𝑥 is an attracting periodic point (a sink),
• or through 𝑥 there exists a curve that is contained in

the stable set of 𝑥 and that separates the disc.

x

γs
x

D

Figure 12. A stable manifold which separates the disc.

It turns out that this class contains open sets of maps
that are sufficiently close to maps on the interval (hence
contains strongly dissipative systems), but is wider: using
tools from complex analysis, one can show that it also con-
tains all Hénon maps whose Jacobian have modulus less
than 1/4. For this reason these systems are called mildly
dissipative. Note that one can build examples of dissipa-
tive diffeomorphisms on the disc that are not mildly dis-
sipative, but these systems may be exceptional: we do not
know if mild dissipation holds generically.
One-dimensional reduction. Although the existence of a
stable curve only occurs on a measurable subset, it allows
one to induce dynamical partitions of the system. Assum-
ing the mild dissipation property (stable manifolds sepa-
rate the disc) one can prove that the dynamics of a mildly
dissipative diffeomorphism of the disc can be reduced to
a continuous non-invertible map acting on a real tree (a
simply connected and path-connected metric space):

Property. Given a smooth mildly dissipative diffeomorphism f
of the disc 𝔻, there exist a continuous map ℎ on a real tree 𝑋
and a projection Π∶ 𝔻 → 𝑋 such that:

5The invariance of the measure by 𝑓 means that 𝑓∗𝜇 = 𝜇.

• 𝑓 and ℎ are semi-conjugated: Π ∘ 𝑓 = ℎ ∘ Π,
• any two 𝑓-invariant probability measures 𝜇, 𝜈 with no

atoms and mutually singular project on different mea-
sures Π∗(𝜇), Π∗(𝜈).

The second item says that the projection does not col-
lapse the dynamics too much.

Reducing a system to a lower-dimensional one is a fre-
quent strategy in dynamics. In our setting the key idea is
that the space of leaves of foliations in the plane generates
a one-dimensional structure. The mild dissipation pro-
vides a large collection of stablemanifolds that are disjoint
separating curves. It is well-known that the dual object to
a planar lamination is a tree: the idea behind the proof
of the previous property is to quotient the disc along these
stable curves, see Figure 13. That property suggests that the
one-dimensional order structure re-emerges from themild
dissipation and makes possible to envision results with a
“one-dimensional flavor.”

Figure 13. The one-dimensional structure associated to the
family of stable manifolds.

Periodic approximation in the disc. Another concise re-
sult that highlights the richness of the mildly dissipative
class is the following:

Property. For mildly dissipative diffeomorphisms of the disc,
the closure of the set of periodic points contains the support of
any invariant probability measure.

The proof uses an essential idea of one-dimensional dy-
namics that can be transposed to mildly dissipative diffeo-
morphisms of the disc: recurrence of non-periodic points
forces to reverse the orientation on the projected tree 𝑋
and this implies the existence of a periodic point. It goes
along the following lines.

Let us consider an 𝑓-invariant probability measure 𝜇
with no atom. Poincaré recurrence theorem asserts that,
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in a restriction to a full measure set, all points are recur-
rent. Let us fix some point 𝑥0 in that set. We have to prove
that any neighborhood of 𝑥0 contains a periodic point. By
recurrence, there exists 𝑥1 = 𝑓𝑛(𝑥0) close to 𝑥0 such that
the stable curves 𝛾𝑠𝑥0 , 𝛾𝑠𝑥1 are close and bound a thin strip 𝑆;
the intersection of the strip with a large iterate of the disc,
𝐷 ∶= 𝑓𝑚(𝔻) defines a box 𝑅 with small diameter as in
Figure 14, such that 𝐷 ⧵𝑅 has two connected components
whose closures are discs 𝐷− and 𝐷+.

Let 𝑔 ∶= 𝑓𝑛 and let 𝑘 be the first positive integer such
that 𝑔𝑘(𝑥0) ∈ 𝐷+ and 𝑔𝑘+1(𝑥0) ∉ 𝐷+ (this exists since
𝑥1 = 𝑔(𝑥0) belongs to 𝐷+ and 𝑥0 is recurrent). Similarly
as in the one-dimensional case, we consider a continuous
map ℎ∶ 𝐷 → 𝑅 such that

ℎ|𝑅 = Id, ℎ(𝐷−) = 𝛾𝑠𝑥0 ∩ 𝑅, and ℎ(𝐷+) = 𝛾𝑠𝑥1 ∩ 𝑅.

In particular, ℎ ∘ 𝑔𝑘 sends 𝑅 into itself and therefore has a
fixed point 𝑝 in 𝑅.

Since 𝑔𝑘(𝑥0) ∈ 𝐷+ and since stable curves do not cross,
𝑔𝑘(𝛾𝑠𝑥0) ⊂ 𝐷+; similarly 𝑔𝑘(𝛾𝑠𝑥1) ⊂ 𝐷−. Consequently, ℎ∘𝑔𝑘
has no fixed point in 𝑅 ∩ (𝛾𝑠𝑥0 ∪ 𝛾𝑠𝑥1) and by definition of ℎ,
one deduces ℎ∘𝑔𝑘(𝑝) = 𝑔𝑘(𝑝) = 𝑝. Hence 𝑓 has a periodic
point in 𝑅 which is arbitrarily close to 𝑥0, as required.

D−

D+

x1

x0
R

S

D

Figure 14. Why periodic points are dense.

Mildly Dissipative Dynamics with Zero Entropy:
I—Prototype Models
We have described two classes of examples of mildly dissi-
pative diffeomorphisms: Morse-Smale systems, which be-
long to the interior of the set of dynamics with zero en-
tropy, and the examples pictured in Figure 4 which belong
to its boundary. We now present topological models with
zero entropy and unbounded periods, that can be built
through a sequences of “surgeries and pasting” of two ele-
mentary Morse-Smale systems.

Figure 15. The diffeomorphisms 𝑓0 (left) and 𝑓1 (right). The
attracting domains are depicted by a dash boundary.

Prototypemodels. Let us first introduce twoMorse-Smale
dissipative diffeomorphisms of the disc 𝑓0, 𝑓1 that we de-
scribe below and depicted in Figure 15. The limit set of
𝑓0 is the union of a fixed saddle whose unstable branches
are interchanged and of an attracting orbit of period two
that revolves around the fixed point. The limit set of 𝑓1 is
the union of a fixed attracting periodic point, a saddle of
period three revolving around the fixed point, and an at-
tracting periodic orbit (also of period three); each saddle
has an unstable branch anchored at the fixed point and
an unstable branch contained in the attracting domain of
the 3-periodic sink. Both diffeomorphisms are depicted
in Figure 15. In both situations, one says that the saddle
periodic orbit is stabilized: either it is a fixed point, or its
unstable manifold intersects the basin of a fixed sink.
An inductive construction. Given any sequence (𝑘𝑖) in {0, 1}ℕ,
one can build a sequence of dissipative diffeomorphisms
(𝑔𝑖), with exactly one sink of period 𝜏𝑖 ∶= Π𝑖

𝑗=1(2 + 𝑘𝑗)
whose basin is a disc 𝐷𝑖. It is obtained inductively from
the diffeomorphism 𝑔𝑖−1 by “pasting” the diffeomorphism
𝑓𝑘𝑖 in the basin of the sink of 𝑔𝑖−1, so that the return map
𝑔𝜏𝑖−1𝑖 |𝐷𝑖 is conjugated to 𝑓𝑘𝑖 . In that way, 𝑔𝑖 has a nested
sequence of discs 𝐷0 ⊃ 𝐷1 ⊃ ⋯ ⊃ 𝐷𝑖 that are renormaliza-
tion domains of periods 𝜏0, … , 𝜏𝑖. Each diffeomorphism 𝑔𝑖
is Morse-Smale; moreover the construction can be done in
a such way that the sequence (𝑔𝑖) converges to a homeo-
morphism.
Properties of the limit system. The homeomorphism that is
obtained as limit of the sequences (𝑔𝑖) verifies that:

• the dynamics is “infinitely renormalizable” in the
sense that there is a nested sequence of renormal-
ization domains with increasing periods;

• the limit set (i.e., the set of points that belong to
renormalization domains with arbitrarily large pe-
riod) is a Cantor set whose dynamics is an odome-
ter (as introduced at the beginning of this text, but
its sequence of periods (𝜏𝑖) may not be equal to
the sequence (2𝑖)).

We want to make some remarks: (i) The construction
shows that there exist homeomorphisms with vanishing
entropy and with periodic points whose period is not 2𝑛.
(ii) The sequence can converge to a smooth mildly dissipa-
tive diffeomorphism if 𝑘𝑖 = 0 for 𝑖 large. (iii) The previous
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construction can be performed by gluing together more el-
ementary diffeomorphisms 𝑓𝑘: the period of their saddles
and of their non-fixed sinkmay be larger; one can also con-
sider more complicate Morse-Smale systems 𝑓0, 𝑓1.
Are the prototype models typical? One can ask if the
properties displayed by the prototype models are also sat-
isfied by mildly dissipative diffeomorphisms 𝑓 of the disc
with zero entropy. More precisely:

• What can be the periods of a nested sequence of
attracting domains?

• When 𝑓 belongs to the interior of the set of sys-
tems with entropy zero, do its periodic points
have bounded periods?

• When 𝑓 belongs to the boundary of the set of sys-
tems with entropy zero, is it infinitely renormaliz-
able? is any limit set either an odometer Cantor
set or a periodic orbit?

The strongly dissipative case. These questions can be
tested on strongly dissipative diffeomorphisms. In fact,
they have been answered by de Carvalho, Lyubich, and
Martens [CLM] for Hénon-like mappings of the form
𝐹(𝑥, 𝑦) = (𝑓(𝑥) + 𝜖(𝑥, 𝑦), 𝑥) where 𝑓 is a unimodal map
of the interval with a quadratic turning point and 𝜖 is a
real-valued map from the square to ℝ with a small size. In
this work, they construct a period-doubling renormaliza-
tion operator which extends the renormalization operator
introduced for unimodal maps (Figure 10) and they show
that (for sufficiently small 𝜖) the properties carry over to
this case. Namely, the renormalization operator admits a
unique fixed point (which actually coincides with the fixed
point of the renormalization on the interval): it is hyper-
bolic (with a one-codimensional stable manifold) and the
periods of its renormalization domains are 2𝑛 for all 𝑛 ≥ 0.

Mildly Dissipative Dynamics with Zero Entropy:
II—The General Case
In the general case, the notion of turning point does
not exist anymore and the map may be far from one-
dimensional endomorphisms. In fact, it is not difficult
to construct mildly dissipative diffeomorphisms with zero
entropy which are not close to an interval map and even
have periodic points with periods that are not a power of
two (see the prototype construction) and so the renormal-
ization scheme developed for Hénon-like maps with very
small Jacobian cannot be applied directly.

In what follows, we are going to state the results that we
have obtained with Charles Tresser [CPT] and at the end,
we explain some of the main ideas of the proof.
Renormalizable dynamics. As in dimension 1, the renor-
malization is an essential tool for describing the transition
to chaos. Let us define that notion for surface diffeomor-
phisms.

Definition. A diffeomorphism 𝑓 of the disc is renormaliz-
able if there exist a compact set 𝐷 ⊂ 𝔻 homeomorphic to
the unit disc and an integer 𝜏 > 1 such that 𝑓𝑖(𝐷) ∩ 𝐷 = ∅
for each 1 ≤ 𝑖 < 𝜏 and 𝑓𝜏(𝐷) ⊂ 𝐷. One says that 𝐷 is a
renormalization domain of period 𝜏.

Based on that definition, one gets a dichotomy:

Theorem A. For any mildly dissipative diffeomorphism 𝑓 of
the disc whose entropy vanishes,

• either 𝑓 is renormalizable,
• or any forward orbit converges to a fixed point.

Morse-Smale diffeomorphisms (whose non-wandering
dynamics is carried by a finite set of hyperbolic periodic
points) are certainly not infinitely renormalizable. It is nat-
ural to generalize this class of diffeomorphisms in order to
allow bifurcations of periodic orbits.

Definition. A system is generalized Morse-Smale if:

• the limit set of any forward orbit is a periodic or-
bit,

• the limit set of any backward orbit that is con-
tained in 𝔻 is a periodic orbit,

• the set of periods over all periodic orbits is finite.

(Contrary to classical Morse-Smale systems, there may ex-
ist infinitely many periodic points with the same period.)

Clearly these diffeomorphisms have zero entropy.
Moreover, the set of mildly dissipative generalized Morse-
Smale diffeomorphisms of the disc is 𝐶1 open. A stronger
version of theorem A states that in the renormalizable case
there exist finitelymany disjoint renormalization domains
such that the limit set of any forward orbit contained in
their complement is a fixed point. That version implies:

Corollary. Amildly dissipative diffeomorphism of the disc with
zero entropy is

• either infinitely renormalizable,
• or generalized Morse-Smale.

Boundary of zero entropy. From the previous theorem
and the fact that generalized Morse-Smale diffeomor-
phisms are in the interior of the set of systems with zero
entropy, one can characterize the dynamics in the bound-
ary of zero entropy:

Corollary. A mildly dissipative diffeomorphism of the disc in
the boundary of zero entropy is infinitely renormalizable.

One can nowwonder, after these results, if one can get a
complete characterization of the limit sets of these systems.
The following result extends the property of interval maps.

Corollary. Let 𝑓 be a mildly dissipative diffeomorphism of the
disc with zero entropy. Then the limit set 𝒞 of any orbit is:

• either a periodic orbit,
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• or a generalized odometer: there exists an odometer
ℎ on the Cantor set𝒦 and a continuous subjective map
𝜋∶ 𝒞 → 𝒦 such that 𝜋 ∘ 𝑓|𝒞 = ℎ ∘ 𝜋. Moreover 𝜋 is
“essentially” one-to-one.

Figure 4 represents the second case.
Set of periods. One cannot expect that Sarkovskii’s prop-
erty stated above for interval maps extends identically in
the disc. Indeed the prototype models show that any fi-
nite set of integers can appear inside the set of periods of
a mildly dissipative diffeomorphism having zero entropy.
But a constraint appears, when one considers periodic or-
bits with sufficiently large period:

Theorem B. If 𝑓 is an infinitely renormalizable mildly dissi-
pative diffeomorphism of the disc with zero entropy, then there
exist an open set 𝑊 and 𝑚 ≥ 1 such that:

• 𝑊 is a finite disjoint union of renormalization do-
mains whose period divides 𝑚 (possibly several orbits
of domains),

• the periods of points in 𝔻 ⧵𝑊 are bounded by 𝑚,
• any renormalization domain 𝐷 ⊂ 𝑊 of 𝑓𝑚 has period

of the form 2𝑘: it is associated to a nested sequence of
renormalization domains 𝐷 = 𝐷𝑘 ⊂ ⋯ ⊂ 𝐷1 ⊂ 𝑊 of
𝑓𝑚 with period 2𝑘, … , 2.

In other words, the period of a renormalization domain
is eventually a power of 2: after replacing 𝑓 by an iterate,
the period of all the renormalization domains are powers
of 2. This implies the announced property on periods:

Corollary. For any mildly dissipative diffeomorphism 𝑓 of the
disc with zero entropy, there exist two finite families of integers
{𝑛1, … , 𝑛𝑘} and {𝑚1, … ,𝑚ℓ} such that the set of periods of the
periodic orbits of 𝑓 coincides with

Per(𝑓) = {𝑛1, … , 𝑛𝑘} ∪ {𝑚𝑖.2𝑘, 1 ≤ 𝑖 ≤ ℓ and 𝑘 ∈ ℕ} .

In particular, this proves Tresser’s conjecture in the case
of mildly dissipative dynamics of the disc.
Hénon maps. The previous results can be applied to the
Hénon family for all parameters provided that the Jaco-
bian is smaller than 1/4 (this requires some adaptation in
order to reduce it to a map sending the disc into its inte-
rior). More precisely, when the entropy vanishes, any for-
ward (resp. backward) orbit in ℝ2 has exactly one of the
following behavior:

• it escapes to infinity, i.e., leaves compact sets;
• it converges to a periodic orbit;
• it accumulates to a generalized odometer.

Mildly Dissipative Dynamics with Zero Entropy:
III—Sketch of the Proofs
The approach for the general case cannot use the interval
ordering and is based instead on the structure of the set of

periodic points: the unstable branches of the saddle peri-
odic points serve as a skeleton of the dynamics that allows
one to construct the renormalization domains. We first ex-
plain this strategy on the prototype examples introduced
before.
Dynamical features of the prototype examples. Let us
consider a prototype diffeomorphism 𝑔𝑖 obtained after
pasting a finite number Morse-Smale diffeomorphisms
𝑓𝑘0 , 𝑓𝑘1 , 𝑓𝑘𝑖 . The unstable branches of the saddles connect
the periodic points and define a tree structure that we call
a chain, see Figure 16.

Figure 16. Chain of periodic points associated to the
diffeomorphism 𝑔 obtained by pasting successively 𝑓0, 𝑓0, 𝑓1. It
contains: one saddle fixed point (red), a two-periodic saddle
orbit (blue) whose unstable branches are exchanged by 𝑔2, a
four-periodic attracting orbit (brown), and a twelve-periodic
saddle (orange) and attracting (pink) orbits. The arrows
indicate if periodic points are saddles or sinks (for sinks, all
arrows are pointing in).

From each saddle 𝑝 points out at least one arrow, which
lands at a point 𝑞 with the same or double period. Two
cases may occur (see Figure 16):

• either 𝑞 is a an attracting periodic point,
• or 𝑞 is a saddle whose unstable branches are ex-

changed by some iterate of 𝑓.

That observation allows one to reconstruct the renormal-
ization domains of the prototype example 𝑓, see Figure 17.

In the first case (top of Figure 17), the unstable man-
ifold of 𝑝 accumulates on the sink 𝑞 which anchors a re-
volving saddle 𝑤 with larger period (period three in the
figure); this implies that the unstable branch of 𝑝 has to
cross the stable manifolds of the iterates of 𝑤. One then
defines a disc which contains 𝑞,𝑤, is bounded by a piece
of the unstable branch of 𝑝 and a piece of the stable man-
ifolds of the saddle 𝑤, and which is mapped into itself by
some iterate of 𝑓.

In the second case (bottom of Figure 17), the unstable
manifold of 𝑝 accumulates on the saddle 𝑞 (with the same
period) whose unstable branches are exchanged by the dy-
namics and accumulate on a sink of double period. This
implies that the unstable branch of 𝑝 has to cross both sta-
ble branches of 𝑞. Again, a piece of the unstable branch of
𝑝 and of the stable manifolds of the saddle 𝑞 defines a disc
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which is mapped into itself by some iterate, and contains
𝑞, but not 𝑝.

This construction leads us to introduce the following:

Definition. A Jordan domain 𝐷 is a Pixton disc6 of period
𝜏 if its boundary decomposes in two parts: one subset of
𝑊 ᵆ(𝑝) and a closed set whose forward iterates by 𝑓𝜏 are all
contained in the interior of 𝐷.

A trapped disc for 𝑓𝜏 (i.e., a disc mapped by 𝑓𝜏 into its
interior) is a particular example of a Pixton disc.

p
q

w

p
q

w

p
q

p

q

Figure 17. Examples of Pixton discs.

How to work out the general case. The strategy in the gen-
eral case goes along the next steps which will be detailed
in the following paragraphs.

i) Chains. As for the prototype models built previ-
ously, the set of fixed points and their unstable
branches forms a connected set which has a tree
structure. Considering also iterates 𝑓𝑚, one gets
chains between periodic points whose period di-
vides 𝑚: the periodic points of larger period are
connected to the ones of lower period and “re-
volve” around them.

ii) The case where all the periodic points are fixed. We
then prove that any limit set is a fixed point.

iii) Construction of Pixton discs. When there are peri-
odic points that are not fixed, one builds Pixton
discs which contain all periodic points of higher
period and are good candidates to be renormaliza-
tion domains.

6Pixton introduced a similar notion in order to study planar homoclinic orbits.

f2(p)

f(p)
p

f3(p)

Figure 18. A stabilized periodic orbit of period 4 and its 4
decorated regions bounded by the stable manifolds. The
periodic orbit is stabilized by the fixed point in the middle.

iv) Renormalization domains. Once the Pixton discs are
constructed, we prove that the “maximal ones” are
renormalization domains.

v) Eventual period two. At last one concludes that af-
ter several renormalizations, the new renormaliza-
tion periods are all equal to 2.

Chains of periodic points. The key ingredient to obtain
the tree structure is to check that there is no cycle between
fixed (or periodic) points:

Property. There is no sequence of saddle fixed points
{𝑝1, … , 𝑝𝑛} such that the unstable manifold 𝑊 ᵆ(𝑝𝑖) accumu-
lates on 𝑝𝑖+1 and 𝑊 ᵆ(𝑝𝑛) accumulates on 𝑝1.

This property generalizes Smale’s theorem mentioned
in the first section: a cycle would force a situation close
to what is depicted in Figure 5, which would give positive
entropy.

In chains, a special role is played by stabilized points:
these are saddles that either are fixed and whose unstable
branches are exchanged by 𝑓, or are not fixed but whose
unstable manifold is anchored by a fixed point. The stable
manifolds of the stabilized points bound domains called
decorated regions (see Figure 18). These regions are pairwise
disjoint: otherwise, using that each iterate of the decorated
orbit has an unstable branch which accumulates on a sta-
bilizing fixed point, it would imply that an unstable mani-
fold crosses the stable manifold of another iterate, creating
a homoclinic intersection and therefore contradicting the
fact that the entropy vanishes.

Moreover, the decorating regions contain all the peri-
odic points of larger periods: otherwise, it would again
force a homoclinic intersection. One can thus decompose
the set of periodic points as:

• stabilizing fixed points,
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Figure 19. Construction of a Pixton disc: Γ is fixed and 𝑤 has
period 2.

• stabilized periodic orbits,
• periodic orbits contained in decorated regions.

The case where all the periodic points are fixed. In this
setting, the property of periodic approximation in the
disc implies that any probability invariant measure is sup-
ported on the set of fixed points. Hence, the limit set of
any forward orbit contains a fixed point. If it is not a sin-
gleton, the forward orbit also accumulates on points in un-
stable branches of fixed points, so that its limit set contains
a cycle of fixed points. This would contradict the no cycle
property stated before.
Construction of Pixton discs. To each unstable branch
Γ ⊂ 𝑊 ᵆ(𝑝), fixed by an iterate 𝑓𝜏, we build a Pixton disc𝐷Γ
for 𝑓𝜏 that contains the accumulation set of Γ, in a similar
way as we did for the prototype examples: if 𝑤 is a saddle
point accumulated by Γ, one considers a disc 𝐷 bounded
by an arc in Γ and an arc in the stable manifolds of 𝑤; this
disc contains all the periodic points of deeper level and
connected to 𝑤 in the chain structure, see Figure 19. The
Pixton disc 𝐷Γ is obtained as the union of such discs for
different choices of 𝑤.
Renormalization domains. To prove that the Pixton disc
𝐷Γ is actually a renormalization domain, one has to prove
that the iterates of Γ∩𝐷Γ (in Figure 19) remain contained
in the disc; if a piece of Γ escapes from 𝐷Γ under forward
iterations, a strong version of the property of periodic ap-
proximation implies that there are periodic points outside
𝐷Γ which are accumulated by Γ, a contradiction since 𝐷Γ
contains all the periodic points that belong to the accumu-
lation set of Γ.

Eventual period two. The previous steps build the renor-
malization (theorem A). A large number of renormaliza-
tions reduces the study to a small neighborhood𝑊 of the
union of the generalized odometers. We then have to show
that the period of all the further renormalizations is equal
two (theorem B).

We first observe that for the saddle orbits contained in
𝑊 , a large proportion of the iterates have stable manifolds
which vary continuously for the 𝐶1-topology. In particu-
lar, for a large proportion of points, the stable manifolds
are “parallel.” This is consistent with the example of Fig-
ure 4, where the renormalization periods are 2 at each step.
However a renormalization period larger than two would
providemore than two stable curves, based at iterates close,
and which have to bend away from each other (see for in-
stance Figure 18 where the period is 4). This contradicts
the fact that these curves are 𝐶1-close.

Dynamics in Higher Dimensions
There is no such detailed description of the dynamics of
systems with zero entropy for general surface diffeomor-
phisms and on higher-dimensional manifolds. However
perturbative methods have been developed which allow
one to describe a 𝐶1-dense open set of systems. In particu-
lar, they imply the following dichotomy:

Theorem ([PS,C]). The union of the set of Morse-Smale dif-
feomorphisms and of the set of diffeomorphisms having a trans-
verse homoclinic intersection is a 𝐶1-dense open set of the space
of diffeomorphisms.

As the diffeomorphisms with a transverse homo-
clinic intersection have positive entropy, this result
characterizes—inside a dense open set—the systems with
zero entropy. However the dynamics on the boundary
of the set of systems with zero entropy is not understood.
And in higher topologies, almost nothing is known.
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