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ABSTRACT
Trust is a key element in the development of effective collaborative
relationships between humans and increasingly complex artificial
intelligence (AI) systems. Here, we examine trust in AI in the context
of a human-AI partnership that involves a joint decisionmaking task
for estimating levels of public speaking anxiety based on speech
signals. The AI system is comprised of an explainable machine
learning (ML) algorithm, that takes acoustic characteristics as input
and outputs the estimate of public speaking anxiety levels, a local
explanation about the most important features that contributed
to the decision of each speech sample, and a global explanation
about the most important features for the data overall. We analyze
interactions between AI and human annotators with background
in psychological sciences, and measure trust over time via the
annotators’ agreement with the AI model and the annotators’ self-
reports. We further examine factors of trust that are related to
the characteristics of the human annotator and the ML algorithm.
Results indicate that trust in AI depends on the openness level of
the annotator and the importance level of input features. Findings
from this study can provide guidelines to designing solutions that
properly calibrate human trust in AI in collaborative human-AI
tasks.
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1 INTRODUCTION
Recent advances in artificial intelligence (AI) have contributed to
significant progress in every field imaginable, including health, edu-
cation, commerce, and entertainment. While the decisions provided
by an AI system can be readily used in some domains (e.g., image-
based object recognition in industrial applications), they require
additional checkpoints in human-centered applications, such as the
fields of medicine [10, 26, 27] and justice [12]. Individuals and stake-
holders need to calibrate their trust on the algorithms that power
the decision making process in such human-centered applications,
which tend to be subjective and involve high stakes [14, 20]. Poor
trust calibration results into individuals overly or insufficiently rely-
ing on the AI with serious implications in the final outcome [22, 29].

Trust in automation has been investigated in the light of various
human factors, including user traits (e.g., demographics, personal-
ity, trust propensity, attitudes) and states (e.g., attentional control,
stress, fatigue) [23]. While human-related characteristics have been
examined in prior work as potential factors of trust to automa-
tion [13, 32], to the best of the authors’ knowledge, human factors
of trust in AI are to date left unexplored. Prior work has further
investigated various system-related factors that affect human trust
in AI, in particular. The performance and characteristics of the ma-
chine learning (ML) algorithm that powers the AI system, including
the transparency, explainability, privacy preservation, and fairness,
have been posited as important system-based factors [4, 18, 31]. In
contrast to black-box ML models, explainable (or glass-box) models
can contribute to trustworthy AI by providing a justification of the
output decisions[4, 13, 32].

This study investigates trust in AI during a human-in-the-loop
decision making task, that aims to estimate one’s anxiety levels
from speech signals. Annotators with background on psychological
sciences are asked to collaborate with an explainable AI algorithm
to provide a final decision about a speaker’s anxiety levels during
a public speaking task. Annotators listen to a presentation and
are also being presented the decision of the AI algorithm and cor-
responding explanations. Trust is quantified via the annotators’
agreement with the ML model, as well as self-reports. Statistical
analysis of the collected data is conducted through correlation
analysis and linear mixed effects (LME) models, the latter used to
account for the repeated measures within each annotator, and aims
to answer the following research questions:
RQ1: How is trust in AI manifested in a speech-based decision
making task jointly conducted between a human stakeholder and
an AI system?
RQ2: To what extent is trust in AI affected by the annotator’s ex-
pertise and personality characteristics?
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RQ3: To what extent is trust in AI affected by the ML characteris-
tics?
RQ4: Does trust in AI change over time?
Results indicate that trust in AI varies across annotators. Annota-
tors with open personality traits depict higher trust to AI compared
to their counterparts. System characteristics also affect trust in AI
with annotators depicting higher trust in cases where speech pause
duration has been considered important by the explainable ML
system. Finally, trust in AI appears to be a dynamically changing
concept with some participants depicting decreasing trust in the AI
over the course of their interaction with the system, while others
present opposite trends.

2 PRIOR WORK & STUDY CONTRIBUTIONS
Trust in AI has been recently investigated in a limited number of
studies. Vivian et al. conducted an experiment with Amazon Me-
chanical Turkers, who were asked to classify deceptive reviews
from TripAdvisor with the assistance of an AI model [13]. The
authors examined the annotators decision without the help of the
AI, as well as across three human-AI collaboration conditions (i.e.,
presenting the ML decision; presenting the feature explanation
provided by the ML; presenting both the ML decision and feature
explanation). Providing both the ML decisions and explanations
depicts similar levels of human performance compared to providing
the AI decisions alone. Zhang et al. designed an AI-powered health-
care system for the diagnosis of radiology reports, and examined
how user trust is affected by the extent of explanation provided
by the system and the system performance [33]. The same group
also examined elements of trustworthiness in a prediction context
where participants were asked to predict whether one’s annual
income would exceed $50k based on their demographic and job
information [32]. Wang & Yin conducted experiments on Amazon
Mechanical Turk to understand the extent to which various explain-
able AI methods and models can improve people’s understanding of
the decision making task and help calibrate their trust to the AI [28].
The decisionmaking tasks were inspired by domains related to crim-
inal justice and environmental sustainability. Ayoub et al. applied
an explainable natural language processing model to COVID-19
claims. Trust in model prediction was evaluated with self-reports
across three different conditions that involved presenting different
components of the model [1].

Prior work on trust in automation has explored various human-
related factors that affect the interaction between a human and an
autonomous agent (e.g., vehicle, machinery). Previous studies have
posited user expertise as a factor of trust and trust repair toward
automation [9, 19]. Findings suggest that novice users are more
prone to automation bias, meaning that they are more likely to
overtrust an automated system. Personality also affects user trust.
Drivers with open personality traits depicted less trust in an au-
tonomous vehicle, potentially due to their curiosity in response to
novel stimuli [15]. People with high openness were further faster in
their response to an automated system, which serves as a measure
of trust [25]. Higher agreeableness and conscientiousness result
in higher initial trust in automation [5]. Participants who score
higher in agreeableness and openness and low on conscientious-
ness are found to have higher trust in the AI, as manifested via

slower reaction time in the decision making process. Openness
and agreeableness served as a factor of trust to a conversational
agent, according to which open and agreeable individuals were
more likely to confide in and listen to the agent [34]. Grounded on
these findings, we will explore four main human factors of trust
in AI, namely user expertise, agreeableness, conscientiousness and
openness.

The contributions of this paper in relation to prior work are as
follows: (1) While prior work has examined trust in AI mostly using
text and images as inputs [1, 13, 32], in this study annotators were
asked to listen and perceive speech signals, which are more complex
in nature compared to other modalities; (2) Instead of using Amazon
Turkers, this study investigates interactions between AI and human
stakeholders with prior training in the domain of interest, which
are more difficult to recruit, but can more reliably simulate real-
life human-centered applications; and (3) The characteristics of
annotators are investigated as factors of trust to the AI. Such factors
have been investigated in relation to trust in automation [9, 15, 19,
25], but are still unexplored in relation to trust in AI.

3 SPEECH-BASED AI SYSTEM FOR
ESTIMATING PUBLIC SPEAKING ANXIETY

3.1 Data Description
The data used to train the explainable ML for estimating public
speaking anxiety come from the VerBIO dataset and include 78
speech files from 55 speakers [30]. We extracted seven acoustic
features, including the mean pause duration, loudness (i.e., com-
puted as the logarithm of the mean square energy), fundamental
frequency (F0), zero crossing rate, jitter, shimmer, and voicing prob-
ability, since these are intuitive, easily interpretable, and related to
the public speaking anxiety [2, 6]. A human expert with expertise
in behavioral coding listened to each audio file and provided the
perceived anxiety levels of the speaker on a 5-point Likert scale
(i.e., 1: No anxiety, 5: Very high anxiety). The human expert listened
to the audio files as many times as necessary in order to make a
reliable decision. The scores from the human expert are used as the
ground truth in this study.

3.2 Explainable ML Algorithm
Grounded on work that supports the significance of explainable
ML in facilitating human-AI partnerships[13, 28, 32], we used the
Explainable Boosting Machine (EBM) [21], a glass-box model with
comparable performance to state-of-the-art ML methods. The EBM
is trained to estimate the speaker’s levels of public speaking anxiety
based on the acoustic measures (Section 3.1). Based on the EBM,
training is conducted on one feature at a time in a round-robin
fashion cycling through all features x j where j is the index of feature.
In this way, EBM can mitigate the effects of co-linearity and learn
the best feature function fj for each feature x j and the outcome of
interest y. Mathematical formulation of the model is as follows:

д(E[y]) = β0 +
∑

fj (x j ) (1)

whereд is the identity function in our model, β0 is the intercept, and
E is the expected value. The function fj shows how each feature
contributes to the model’s prediction for estimating public speaking
anxiety. While the original representation of the EBM [21] includes
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Figure 1: Global explanation graph capturing the effect of
loudness feature in estimating public speaking anxiety lev-
els, as provided by the Explainable BoostingMachine (EBM).

Figure 2: Example of local explanation graph. Larger abso-
lute value indicates higher importance of the corresponding
feature in estimating anxiety for the audio sample.

feature interactions, there were not considered in our experiment,
since they would increase the complexity of the model and would
likely be less intuitive for the users [16].

We first trained the EBMusing all acoustic features and evaluated
the EBM in a leave-one-participant-out cross-validation framework
that yielded 0.0772 (p = 0.5) Spearman’s correlation between the
estimated and actual levels of anxiety. We then performed a feature
selection method that filtered out the acoustic measures that de-
picted low Spearman’s correlation (i.e., < 0.1) with the outcome of
interest. This resulted in a reduced feature set (i.e., pause duration,
loudness, jitter, shimmer) that yielded an improved Spearman’s
correlation value of 0.2609 (p < 0.05), a result equivalent with prior
work on the same dataset [30].

The EBM model provides a global explanation graph, which
shows the correlation between each feature and output label based
on all the data (Fig. 1). The x-axis of the graph denotes the feature
values and the y-axis denotes the effect of feature on the outcome.
Positive values (i.e., solid blue line; Fig. 1) indicate positive associa-
tion between the acoustic feature and the anxiety outcome, while
the opposite holds for negative values. The graph also presents the
confidence of the model for each feature value with thick shaded
areas indicating higher uncertainty about the decision. Another
output of the EBM model is the importance of each feature for a
particular speech file in estimating public speaking anxiety, which
is referred to as local explanation. Fig 2 shows a local explanation
graph for a sample audio, for which pause duration is the most
important feature, while loudness is the least important. In Fig 2,
the intercept corresponds to the average public speaking anxiety,
represented by variable β0 in (1).

Characteristic Mean ± Stand. Dev. Range
Agreeableness 35.72 ± 3.22 [9 - 45]

Conscientiousness 35.36 ± 3.67 [9 - 45]
Openness 35 ± 5.13 [10 - 50]

Table 1: Personality characteristics of the 11 annotators who
participated in the study.

4 USER STUDY DESIGN
The purpose of our study is to investigate how human stakeholders
interact with and trust the explainable AI model (Section 3) in esti-
mating anxiety levels based on speech. Our study included 11 anno-
tators (8 female, 3 male; 19.6±0.97 years), who are students from the
department of Psychological & Brain Sciences. Recruited annotators
were familiar with basic concepts related to human behavior and
felt sense. Two annotators were Asian, five were White/Caucasian,
three were Hispanic/Latino, and one was Black/African American.
Each annotators was compensated with $180.

We created a web interface (Fig 3, Supplementary material)
through which annotators interacted with the AI model. The inter-
face contains:

• An audio player to listen to the audio files.
• The global explanation graphs (Section 3) explaining the
association between each feature and the estimated anxiety.

• The local explanation graph (Section 3) explaining the rela-
tive importance of each feature for each audio file.

• A comment box so that participants can provide their obser-
vations for each audio file.

• Help buttons so that annotators can quickly refer to these
as needed.

We first tested our website with five annotators, who were com-
pensated with an additional amount of $40. Since our initial version
of the algorithm contained 7 features, these were deemed as too
many features by the five annotators. Therefore, per annotators’
request, we reduced the number of features to 4 and added ex-
planations of the local explanation graphs. Prior to the study, the
annotators completed the Big Five Inventory [11] to capture per-
sonality traits, and in particular, agreeableness, conscientiousness,
and openness, which are the focus of this study (Section 2). The
distribution of these scores for all annotators is shown in Table 1.
Based on the annotators’ resume, we also measured their expertise
in behavioral coding. This comprised a binary variable with value
of 1 if the annotator had conducted behavioral coding before, and
0 otherwise. Three out of the eleven annotators in our data had
expertise with behavioral coding. Annotators were also provided a
mini-tutorial that introduced the basics of speech measures through
a presentation that explained the intuition and interpretation of
the four features used in the EBM model (i.e., pause duration, jitter,
shimmer, loudness), along with examples of audio samples with
high, medium and low value of each of the features. The first au-
thor further conducted a one-to-one meeting with each annotator,
in which he explained the task, EBM model, and web interface,
and answered their questions. The first author was also available
throughout the duration of the experiment for any additional ques-
tions.

As part of the study procedure, annotators were first instructed
to see the global explanation graph for each feature so that they can
understand how the AI model interprets the association between
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(a) (b)

(c)

Figure 3: Custom-made web interface used by the annotators. (a) Home page, including links to the audio sample to be selected
for annotation, explanations of vocal measures, and guidelines of the annotation process; (b) Drop down list which contains
all the four features used in our model. After selecting a feature, the user will be able to inspect the global explanation graph
for the selected feature; (c)Web page which gives the ability to play the audio file, inspect the local explanation graph, provide
the estimated public speaking anxiety rating, and write comments.

each feature and the anxiety level. After that, they listened to each
audio file, observed the local explanation graph provided by the AI
(i.e., EBM model), and were shown the anxiety level estimated by
the AI. Based on these, they were instructed to report the anxiety
level of the speaker in the corresponding audio file on a 5-point
Likert scale (i.e., same as the ground truth; Section 3.1), which serves
as the final annotation score for each annotator. The annotators
were explained that their final annotation score does not need to
be aligned with AI’s decision, and that they may agree or disagree
with the AI. They were further highly encouraged to provide a
comment for each audio file explaining their thought process and
the reason why they agree or disagree with AI decision.

Four randomly selected audio files were provided twice to each
annotator in order to check their consistency. This resulted in a
total of 82 audio files. Since the annotation process was a cogni-
tively demanding task, annotators were instructed to annotate 8
batches of files. Each batch included 10 files except the last batch
which included 12 files and annotators were advised to spend ap-
proximately 2 hours for each batch. After completing each batch

of files, annotators were further asked to rate the extent to which
they trusted AI in making their decision on a 5-point Likert scale
(1: Not at all; 5: Extremely).

At the end of the study, annotators were asked to report the most
and least useful acoustic features in regards to the decision making
task. The first author also conducted an exit discussion with each
annotator and asked them about their experience with the AI, trust
or mistrust issues with the AI, and interpretability and usability of
each feature for estimating a speaker’s anxiety level.

5 DATA ANALYSIS AND RESULTS
We will show our results in five parts. First, we will demonstrate
the within-person consistency of each annotator (Section 5.1). Then
we will present the annotators’ agreement with the ground truth
and the AI (Section 5.2), and demonstrate how the annotators’ and
AI characteristics moderate the annotators’ agreement with the
ground truth and the AI (Sections 5.3, 5.4). Finally, we will explain
how the annotators trust in AI evolves over time (Section 5.5).
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Annotator ID Average difference
1 0.25
2 0.375
3 0.325
4 0.2
5 0.5
6 0.6
7 0.2
8 0.125
9 0
10 0.625
11 0.525
12 0.75

Table 2: Average difference in the annotation score for du-
plicate samples by each annotator.

5.1 Consistency of annotators
To quantify the consistency of annotators, we compute the average
difference in the annotation scores for the four duplicate samples
that were provided during the annotation process (Table 2). This
score is close to zero for the majority of the annotators, while it
becomes larger than zero for Annotator 12, whom we excluded
from the following analysis.

5.2 Annotators’ agreement with ground truth
and AI - Measures of trust in AI

We compute the Spearman’s correlation r
(i)
GT between the ground

truth labels and the scores provided by annotator i . The median
of r (i)GT values across annotators is 0.414 and the distribution of
the corresponding values is shown in Fig 4, which indicates that
most of the annotators depict moderate to high positive correlation
with the ground truth. This suggests that the annotators are doing
a reasonable job in providing these scores. We further compute
the Spearman’s correlation r (i)AI between the estimates provided by
the AI and the annotation scores provided by annotator i . In this
case, we observe a wider range of Spearman’s correlation values
with the corresponding distribution skewed toward the left. This
indicates that the majority of the annotators depict low to moderate
agreement with the AI, which can be justified by the moderate
performance of the EBM model in estimating anxiety levels (i.e.,
r = 0.26; Section 3). It also appears that there are some annotators
(i.e., three annotators with r

(i)
AI > 0.5) who are in high agreement

with the AI system. The distribution of r (i)AI in Fig 5, the average r (i)AI
value from 11 annotators is 0.427 and the median of r (i)AI is 0.417.

Based on these two correlations and grounded on prior work [24],
we also compute a measure of trust in AI for each annotator i as:

Ratio(i) =
r
(i)
AI

r
(i)
GT

(2)

If annotator i agrees more with the ground truth than the AI deci-
sion, then the Ratioi will be less than 1, which potentially suggests
mistrust to the AI system. On the contrary, if annotator i agrees
more with the AI decision compared to the ground truth, then
Ratioi will be greater than 1. In the latter case, this would suggest

Figure 4: Distribution of Spearman’s correlation r
(i)
GT be-

tween the ground truth and annotation scores provided by
each annotator.

Figure 5: Distribution of Spearman’s correlation r
(i)
AI between

the AI decision and annotation scores provided by each an-
notator.

that the annotator is biased over the decision of the AI system,
which can potentially lead to overtrusting the AI. The median value
of Ratio(i) computed over all annotators is 0.9, while the distribu-
tion of this measure is shown in Fig 6. We notice that the Ratio(i)
values are centered around one for 4 annotators, which indicates
that the annotators’ judgement matches equally with the true label
and the AI decision, therefore suggesting good calibration of trust
to the AI. However, there appear to be 3 annotators who slightly
overtrust the AI (i.e., Ratio(i) > 1) and 1 annotator who tends to
extremely overtrust the AI system (i.e., Ratio(i) >> 1), as well as 3
annotators who mistrust the AI (i.e., Ratio(i) < 1).

5.3 Effect of annotators’ characteristics on
their agreement with ground truth and AI

We further explore the extent to which the association between the
annotations and the ground truth, as well as between the annota-
tions and the AI decision is moderated by the annotators character-
istics. Grounded on prior work [5, 7, 9, 15, 19, 25, 34] (Section 2), we
examine the annotators’ expertise with behavioral coding, agree-
ableness, conscientiousness, and openness. In the following models,
we used 78 annotation scores provided by each of the 11 annotators,
resulting in a total 858 samples, and all input data were normal-
ized. We build a LME model with random intercept to estimate
the annotation score of audio sample j provided by annotator i as
follows:

Yi, j = β + a1 ×Tj + b1 ×Ai + c1 × (Tj ×Ai ) + xi (3)
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Figure 6: Distribution of Ratio(i) =
r (i )AI
r (i )GT

, serving as a measure

of annotators’ trust to the AI system. Ratio(i) ≈ 1 suggests
calibration of trust, Ratio(i) > 1 overtrust, and Ratio(i) < 1
mistrust.

where Yi, j denotes the annotation score of sample j by annotator i ,
Tj denotes the ground truth for sample j, Ai is a characteristic (i.e.,
expertise in behavioral coding, agreeableness, conscientiousness,
openness) related to annotator i , β represents the fixed intercept
for all observations, and xi denotes the random intercept for each
annotator i . In (3), a, b, and c are fixed effect coefficients which are
constant for all observations, and xi is a random effect coefficient
which is different for each participant i . Coefficients a and b quan-
tify the association between annotation score with ground truth,
as well as annotation score with the annotators’ characteristics,
respectively. Parameter c quantifies the moderation effect of annota-
tor’s characteristic on the association between annotation score and
ground truth (i.e., higher absolute values of c indicating stronger
moderation). The estimated model coefficients and the correspond-
ing p−values are reported in Table 3. Results suggest a significant
positive association between annotation score and true label for
all annotator characteristics. They also suggest that agreeableness
moderates the association between annotation score and ground
truth in a positive and significant way (i.e., c1 = 0.86, p < 0.05),
indicating that annotators with agreeable personality characteris-
tics tend to agree more with the ground truth. Similarly, annotators
with expertise in behavioral coding appear to agree more with the
ground truth (i.e., c1 = 0.54, p < 0.05). Conscientious annotators
tend to also agree more with the ground truth compared to their
counterparts, although this moderation is approaching significance
(c1 = 0.74, p = 0.06). Finally, no significant moderation effect was
found for openness.

Similarly, we analyzed the extent to which the annotators’ char-
acteristics moderate the association between the annotation score
and the AI decision via the following LME model:

Yi, j = β + a2 ×Mj + b2 ×Ai + c2 × (Mj ×Ai ) + xi (4)

All the variables in (4) are the same as in (3) except Mj , which
denotes the anxiety score estimated by the AI model for the j-th
audio sample (Section 3). Results demonstrate a significant posi-
tive association between the annotation score and the AI decision
(i.e., positive values of a; Table 4). Annotators with highly open
personality tend to agree more with the AI decision compared to
their counterparts with low openness (i.e., c2 = 0.76, p < 0.01).

Annotator a1 b1 c1
Characteristic
Agreeableness 0.88(p=0) -0.69(p=0.009) 0.86(p=0.020)
Expertise in 1.15(p=0) -0.50(p=0.001) 0.54(p=0.015)

behavioral coding
Conscientiousness 0.98(p=0) -0.67(p=0.019) 0.74(p=0.068)

Openness 1.40(p=0) -0.10(p=0.625) -0.181(p=0.50)
Table 3: Linearmixed effects (LME)model estimates of fixed
and interaction effects of annotator’s characteristics on the
association between annotation score and ground truth.

Annotator a2 b2 c2
Characteristic
Agreeableness 1.05(p=0) -0.47(p=0.099) 0.41(p=0.284)
Expertise in 1.23(p=0) -0.25(p=0.13) 0.06(p=0.804)

behavioral coding
Conscientiousness 1.06(p=0) -0.53(p=0.090) 0.42(p=0.312)

Openness 0.80(p=0) -0.64(p=0.002) 0.76(p=0.006)
Table 4: Linearmixed effects (LME)model estimates of fixed
and interaction effects of annotator’s characteristics on the
association between annotation score and AI decision.

Feature a3 b3 c3
Pause 0.54(p=0.008) -0.82(p=0.068) 1.85(p=0.002)

Loudness 1.47(p=0) 0.17(p=0.417) -1.20(p=0.002)
Jitter 0.76(p=0) -2.97(p=0.010) 5.49(p=0.004)

Shimmer 1.30 (p=0) 0.13(p=0.726) -0.10(p=0.868)
Table 5: Linearmixed effects (LME)model estimates of fixed
and interaction effects of acoustic feature value on the asso-
ciation between annotation score and AI decision.

The other characteristics did not yield any significant moderation
effects.

5.4 Effect of AI input to the annotator’s
agreement with AI

We also investigate the extent to which the value of the acoustic
features, as well as the importance of the acoustic features, as
estimated by the EBM model, affects the annotators’ trust to the AI.
We build the following LME model:

Yi, j = β + a3 ×Mj + b3 × fk, j + c3(Mj × fk, j ) + xi (5)

All the parameters in (5) are the same as in (4) except fk, j , which
denotes the value of feature k (i.e., jitter, shimmer, pause, loudness)
for the j-th audio sample. As expected, we observe a significant
positive association between the annotation score and AI decision
(Table 5). Annotators agree more with the AI model for samples
with high pause duration (c3 = 1.85, p < 0.01) and jitter (c3 = 5.49,
p < 0.01). In contrast, annotators agree less with the AI model for
samples with high loudness (c3 = −1.20, p < 0.01). Non-significant
moderation effects were found for shimmer.

We further study the extent to which the importance of each
feature, as estimated by the AI through the EBM model, affects the
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Feature a4 b4 c4
Pause 0.62(p=0.003) -0.92(p=0.017) 1.92(p=0.001)

Loudness 1.48(p=0) 0.43(p=0.03) -2.12(p=0)
Jitter 1.30(p=0) 0.64(p=0.12) -0.45(p=0.368)

Shimmer 1.49(p=0) 0.86(p=0.012) -0.99(p=0.026)
Table 6: Linearmixed effects (LME)model estimates of fixed
and interaction effects of acoustic feature importance on the
association between annotation score and AI decision.

Figure 7: Annotators’ responses indicating the most impor-
tant feature for AI-enabled decision making.

annotators’ trust to the AI, via the following LME equation:

Yi, j = β + a4 ×Mj + b4 × IMk, j + c4 × (Mj × IMk, j ) + xi (6)

All the parameters in (6) are the same as in (5) except IMk, j which
denotes the absolute feature importance of feature k for the j audio
sample. We used the absolute value of feature importance, rather
than the actual one, since this is easier to interpret (i.e., large ab-
solute value indicates high importance, irrespective to positive or
negative association between the feature and the anxiety score).
Annotators tend to agree more with the AI when pause duration
is deemed as an important feature (i.e., c4 = 1.92, p < 0.01), while
they agree less with the AI when loudness (i.e., c4 = −2.12, p = 0)
and shimmer (i.e., c4 = −0.99, p < 0.05) are considered important
features (Table 6). This indicates that annotators might perceive
pause duration as an important feature for estimating anxiety, while
there is potentially a confusion in regards to loudness and shimmer.
No significant results were found for jitter. These findings are con-
sistent with the answers to the surveys provided by the annotators
at the end of the user study. The majority of annotators reported
that pause duration and jitter were the most useful features, fol-
lowed by loudness and shimmer (Fig. 7). Loudness and shimmer
were further found the least useful features (Fig. 8).

5.5 Evolution of human trust in AI over time
The self-reported score of trust to AI across time for each annotator
is provided in Fig 9. We observe that 7 out of the 11 total anno-
tators show higher or equal trust in AI at the end, compared to
the beginning of the annotation task (i.e., solid lines; Fig 9). The
remaining four annotators depict a decrease in their trust in the
AI throughout the annotation procedure (dotted lines; Fig 9). We
further empirically examine the characteristics of the annotators
in the two groups. Annotators who depict increasing trust over
time are more open and agreeable (i.e., openness = 35.85 ± 4.76,

Figure 8: Annotators’ responses indicating the least impor-
tant feature for AI-enabled decision making.

Figure 9: Evolution of trust in AI over time for each anno-
tator.The y-axis denotes the AI-trust score for each batch of
10 audio samples and x-axis denotes batch index in chrono-
logical order. The solid lines correspond to the 7 annotators
who show higher or equal trust in AI at the end than the
beginning and the dotted lines correspond to rest of the an-
notators whose trust in AI tends to decrease at the end of the
task.

agreeableness = 36 ± 3.11) compared to the annotators who have
depicted decreasing trust in AI (i.e., openness = 33.5 ± 5.4, agree-
ableness = 35.25 ± 3.34). Although additional quantitative analysis
is necessary, this can potentially suggest that open and agreeable
individuals are more tolerant to the errors of the AI: even if the
system makes an error due to its overall moderate performance,
they still recognize its value over time.

6 DISCUSSION
In answering the first research question (RQ1: How is trust in AI
manifested in a speech-based decision making task jointly con-
ducted between a human stakeholder and an AI system?), we ob-
served varying levels of trust across annotators with some depicting
overtrust (i.e., high agreement with the AI and low agreement with
the ground truth), while others portraying mistrust (i.e., low agree-
ment with the AI and high agreement with the ground truth) in the
system. Similar observations were found in terms of self-reports.
There are a variety of factors that can explain this variance, which
will be discussed in the following.
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6.1 Human expertise as a factor of trust
In response to the second research question (RQ2: To what extent
is trust in AI affected by the annotator’s expertise and personality
characteristics?), our results indicate that annotators with expertise
in behavioral coding tend to agree more with the ground truth
compared to their counterparts (Section 5.3). This can be justified
by the fact that annotators with more expertise are likely to more
reliably recognize anxiety levels in speech, therefore agree more
with the ground truth. However, expertise in behavioral coding
was not found to be a moderating factor of the annotator’s trust
in AI (Sections 5.3, 5.5). This finding is partially in agreement with
prior work that has found that novice and experienced pilots self-
report similar level of trust to an automatic system [17]. A potential
reason might be the fact that all annotators are still pursuing their
undergraduate degree, therefore the expertise in behavioral cod-
ing between the two groups is not substantially different to yield
significant results. In addition to this, all annotators had no prior
experience in working with AI systems, therefore the novelty of
the AI-assisted decision making task might potentially dominate
the user experience.

6.2 Human personality as a factor of trust
We found that open individuals trust the AI decision more com-
pared to non-open individuals (Section 5.3). This is in accordance to
the majority of work that has explored human openness as a factor
of trust in automation [25, 34]. Since open individuals are curious
and tend to seek new experiences, it might be the case that they
tend to be more trusting during their new encounter with the AI. In
contrast to prior work [5, 25, 34], we did not find a significant effect
on trust for agreeableness and conscientiousness. Previous work
has found that individuals who are more agreeable, therefore more
cooperative than their less agreeable counterparts, depict a higher
trust in automation [5, 25, 34]. Although our results are in the right
direction (i.e., indicating positive association between trust and
agreeableness, Table 4), a potential reason for the non-significant
finding might be the relative small variance in annotators’ agree-
ableness in our data, which might prevent the LME model from
adequately fitting the data. Prior findings are mixed with respect
to conscientiousness. Some research suggests that conscientious
users are more likely to trust the AI [5], while other work has
hypothesized the opposite, but with no significant findings [25].

6.3 AI elements as a factor of trust
In answering the third research question (RQ3: To what extent is
trust in AI affected by the ML characteristics?), our analysis indi-
cates that feature importance serves as a factor of trust in the AI
(Table 6). Specifically, annotators depicted increased trust in the AI
when the ML model deemed that pause duration was important for
estimating anxiety. This is consistent with the small number of prior
findings, which indicate that individuals trust explainable AI sys-
tems more when the feature contribution explanation is shown [28]
improving the overall accuracy of the decision [13]. Results on
loudness were slightly conflicting to what was expected, since an-
notators depicted decreased trust in the system in cases where
the importance of the corresponding feature was high. A potential
reason for this might be that loudness is highly dependent on the

position of the microphone. During the exit discussion, seven out of
the eleven annotators perceived that high loudness was associated
with close position of the microphone, rather than the nervousness
of the speaker. Our analysis also suggests that annotators do not
agree with the AI estimate for samples with high loudness (Table 5).
The EBM model also indicates that high loudness has high impact
on the decision, though this effect is uncertain (i.e., sharp decline
of the blue curve and thick grey area for high loudness values in
Fig. 1). As part of our future work, we will take advantage of the
modularity of the EBM model and its user interface (Fig. 1) [3],
which can be re-adjusted by human experts.

6.4 Trust over time
Our analysis suggests that trust in the AI changes over time (Sec-
tion 5.5), therefore providing a positive response to the fourth
research question (RQ4: Does trust in AI change over time?). Em-
pirical findings further indicate that agreeable and open annotators
might depict increasing trust in AI, while decreasing patterns were
observed for their less agreeable or less open counterparts. While
this needs to be formally evaluated via statistical analysis, it pro-
vides evidence consistent with prior work that trust is a reactive
and volatile property [23], therefore it is important to understand
how it evolves over time. It is also necessary to investigate how AI
systems can be designed in order to build and actively repair trust
over time (e.g., via introducing humanness characteristics) [9].

6.5 Limitations
Our study depicts various limitations, which will be addressed
as part of our future work. First, trust has been quantified via
the annotator’s agreement to the AI, as well as via self-reports.
Grounded in findings from previous work [8, 25], we plan to capture
behavioral (e.g., reaction time) and neural (e.g., observational error-
related negativity/positivity) measures of trust, which we anticipate
that they will provide complementary findings. Second, this study
explored a user’s trust to an explainable AI system (i.e., EBMmodel)
without comparing various ML characteristics (e.g., ML confidence)
or a control condition that does not include AI-enabled decision
making. Third, the ground truth used in this model was obtained by
one expert annotator. Although we have a good reason to believe
that this annotator provided reliable ratings of public speaking
anxiety, as part of our future work we will construct our ground
truth using multiple experts. Finally, as part of our future work we
plan to adapt the web interface that was used for the annotation
process for colorblind individuals.

7 CONCLUSIONS
We examined trust in a human-AI collaboration paradigm that aims
to estimate levels of public speaking anxiety based on speech. We
found varying levels of trust in AI among human annotators, which
was partially dependent on the annotators’ personality and the
importance of the acoustic features, as estimated by the explainable
ML. Implications from this study can provide guidelines to training
and designing ML for retaining proper levels of trust in AI during
human-AI collaboration.
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