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Ozone depletion due to dust release of iodine in the 
free troposphere
Theodore K. Koenig1,2†, Rainer Volkamer1,2*, Eric C. Apel3, James F. Bresch4, Carlos A. Cuevas5, 
Barbara Dix1,2, Edwin W. Eloranta6, Rafael P. Fernandez7, Samuel R. Hall3, Rebecca S. Hornbrook3, 
R. Bradley Pierce8, J. Michael Reeves9, Alfonso Saiz-Lopez5, Kirk Ullmann3

Iodine is an atmospheric trace element emitted from oceans that efficiently destroys ozone (O3). Low O3 in airborne 
dust layers is frequently observed but poorly understood. We show that dust is a source of gas-phase iodine, indi-
cated by aircraft observations of iodine monoxide (IO) radicals inside lofted dust layers from the Atacama and 
Sechura Deserts that are up to a factor of 10 enhanced over background. Gas-phase iodine photochemistry, com-
mensurate with observed IO, is needed to explain the low O3 inside these dust layers (below 15 ppbv; up to 
75% depleted). The added dust iodine can explain decreases in O3 of 8% regionally and affects surface air quality. 
Our data suggest that iodate reduction to form volatile iodine species is a missing process in the geochemical iodine 
cycle and presents an unrecognized aeolian source of iodine. Atmospheric iodine has tripled since 1950 and affects 
ozone layer recovery and particle formation.

INTRODUCTION
Iodine is a critical micronutrient for human health transported 
through, and possibly partially acquired from, the atmosphere (1, 2). 
Atmospheric iodine is prevalent in the marine boundary layer (MBL) 
(3), lower free troposphere (4), upper free troposphere (5), and strato-
sphere (6) and participates in rapid photochemical cycles, which 
destroy ozone (O3) and modify the atmospheric oxidative capacity 
(3, 7–9). Iodine photochemistry decreases the tropospheric O3 bur-
den by 9% (8, 9), decreasing radiative forcing (10, 11), and reduces 
the atmospheric OH burden, increasing the lifetime of methane and 
other greenhouse gases (12). On a per-atom basis, iodine is about 
three orders of magnitude more efficient than chlorine at destroy-
ing O3 (6). Iodine oxoacids nucleate particles more efficiently than 
sulfuric acid (13), and can dominate new particle formation (NPF) 
and particle growth in coastal areas with macroalgae (14, 15) and in 
the Arctic (16).

The global source of iodine is dominated by O3-stimulated emis-
sions of volatile inorganic iodine species [i.e., hypoiodous acid (HOI) 
and I2) from the ocean surface (~1.86 Tg year−1) (8, 17, 18). Since 
1950, anthropogenic O3 has increased the northern hemisphere iodine 
burden threefold over preindustrial levels via this stimulated emis-
sion (19–21). The oceans also dominate the atmospheric sources 
of organic iodine compounds, primarily methyl iodide (CH3I), via 
biotic and abiotic processes (22–24). Biogenic sources of iodine—both 

marine and terrestrial—arise from iodine’s role as a micronutrient 
(2, 25). Terrestrial iodocarbon sources are much smaller than 
marine sources (~0.091 Tg year−1) (22, 26). However, terrestrial in-
organic sources of iodine originated from arid regions have not 
been previously considered.

Dust layers are often depleted in O3 (27–29), but the necessary 
O3 sink within dust plumes remains poorly understood. Previous 
studies have attributed dust-related O3 loss to heterogeneous loss of 
O3 and NOy species on the dust surfaces. However, laboratory stud-
ies have now firmly established that the reactive uptake of O3 is low 
(reactive uptake coefficient, O3 ≤ 6.6 × 10−7) (30), leaving most of 
the necessary O3 sink associated with dust unexplained. Previous 
field measurements have also found large enhancements in gas-phase 
iodine, both iodine monoxide (IO) and CH3I, associated with dust 
layers from the Sahara (31, 32). However, a possible role of iodine in 
the O3 depletion has not been previously assessed, nor has an aeolian 
iodine source to the atmosphere been established.

RESULTS
Decoupled layers enriched in iodine and dust
During aircraft flights out of Antofagasta, Chile, in the southern 
hemisphere tropics, we have consistently detected widespread ele-
vated layers of dust containing enhanced mixing ratios of IO radicals. 
These layers were detected on the top of the MBL and extended 
several kilometers into the lower free troposphere (1.5- to 7-km 
altitude). The dust layers were tracked by the High Spectral Resolu-
tion Lidar (HSRL) above and below the Gulfstream V (GV) aircraft 
(Fig. 1, A and B) to extend from 35.0°S to 12.6°S and up to 455 km 
from shore and persisted for the entire period (13 days) of aircraft 
observation. The Airborne Multi-Axis Differential Optical Absorption 
Spectroscopy (AMAX-DOAS) instrument found IO enhancements 
for all 27 layer intercepts when clouds did not preclude observation 
(table S1). This included multiple intercepts of likely contiguous 
layers along and away from the coast, indicating that IO enhance-
ments are a persistent feature of these layers (fig. S1).

Figure 1C shows spectral proof of IO fingerprint absorption, and 
its variation with altitude during one of these dust intercept vertical 
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profiles. The signals inside the lofted dust layers exceed those found 
in the MBL. The observed IO mixing ratios above, below, and be-
tween the dust layers are lower and found consistent with regional 
free tropospheric background of 0.10- to 0.25-pptv (parts per trillion 
by volume) IO (33). Within the dust layers, the observed IO is as much 
as a factor of 10 higher than this background. DOAS observations of 
oxygen-oxygen collision-induced observation (O4; a reliable atmo-
spheric standard) indicate that the dust layers reduce path length in 
aggregate rather than enhance it by multiple scattering, establishing 
unambiguously that IO concentrations are enhanced in the dust layers 
(fig. S2; see the Supplementary Materials for details). The IO enhance-
ments are consistently observed in dust layers at low and high altitudes.

Back-trajectories initiated along the flight track show no contact 
with the MBL over up to 10 days and instead point to a terrestrial 
source from the Atacama, Monte, and Sechura Deserts. These deserts 
are portions of the South American Arid Diagonal (SAAD) (34). 
Figure 1A shows that the Atacama is the dominant source region 
for the intercepted layers (at least partially a reflection of proximity 
to most flight tracks). However, data from three layer intercepts near 
Peru are unambiguously from the Sechura Desert and not from the 
Atacama. The Atacama is the site of a globally unique extraction of 
iodine from caliche deposits (35). However, these deposits are located 
below the surface. Furthermore, while ore-processing facilities are 
located in the vicinity of many back-trajectories (i.e., located near 
Antofagasta where the aircraft was based), most of the back-trajectories 
from dust layers do not pass within 0.5° latitude or longitude of these 
facilities and many travel well above the boundary layer. We con-
clude that dust and iodine arise from a common source, i.e., the 
various deserts spanning the SAAD.

Ozone depletion due to iodine in the free troposphere
The lofted dust layers are consistently accompanied by significant 
O3 depletion. Figure 2 shows an example of these ozone-depleted 

laminae in the free troposphere. Potential temperature and humidity 
discontinuities at the layers’ edges indicate that the vertical extent of 
the layers is dynamically controlled. As noted above, the layers ex-
tend horizontally over hundreds of kilometers with average O3 de-
pletion of 17% but as much as 40% (table S1). Near the layers’ cores, 
O3 drops exceptionally low [O3 ≤ 10 parts per billion by volume 
(ppbv) for 9 of 22 layers with O3 measurements; table S1], creating 
ozone-depleted laminae. Aerosol counters show distinct submicro
meter and supermicrometer aerosol populations in all three layers 
(even above 5 km; fig. S3), with the larger aerosol gravitationally 
settling within each layer, as indicated by the mean aerosol diameters 
(Fig. 2, middle). HSRL depolarization data (fig. S1) show that layers 
below ~5 km are nonspherical dust but become spherical at high 
altitude and with increasing distance from the coast (see the Supple-
mentary Materials for details). Across all three layers, the degree of 
O3 depletion correlates with aerosol surface area, consistent with 
the hypothesis of heterogeneous O3 uptake—however, so does the 
IO mixing ratio (Fig. 2, right).

Recent laboratory studies have established that O3 reactive up-
take onto dust proceeds too slowly under atmospheric pressure to 
contribute substantially to O3 loss (30) due to most O3 regenerating 
when O2 is present (see the Supplementary Materials for details). 
Heterogeneous uptake of NOy also contributes to O3 destruction. 
However, as highlighted by DOAS NO2 measurements (fig. S2), 
the observed layers exist in a low NOy environment, which limits 
the potential impact of heterogeneous NOy uptake in this study. 
We examined the capacity for heterogeneous uptake to cause the 
observed O3 depletion in the laminae, confirming a negligible im-
pact from direct O3 uptake and modest impacts (O3  ~  10 ppbv 
after 7 days) from reactive NOy uptake (fig. S4). Heterogeneous 
uptake of NOy is important but has two major limitations: (i) The 
amount of odd oxygen directly removed is small (NOy << O3), and 
(ii) removal of NOy suppresses O3 production but does not produce 

Fig. 1. Overview of observations. (A) Sources and extent of observed layers. Flight tracks for TORERO RF01 to RF06 are shown in blue where layers are contiguous with 
observations of enhanced IO and/or HSRL linear depolarization shows that layers below 6 km are significantly nonspherical (indicates dust); otherwise they are shown in 
gray. Letter labels indicate heading changes and connect with fig. S1. The background shading (yellow to red) represents the sources of observed dust based on 72-hour 
back-trajectories (see the Supplementary Materials for details). (B) DOAS and HSRL data for the takeoff of RF05 (RF05-01); the time from takeoff connects with the inset in 
(A). (C) IO spectral proofs from the case study shown in the center panel. Individual spectral proofs are vertically displaced by 1 × 10−3 in optical density for separation; 
numbers on the left indicate the retrieved IO mixing ratio with 1 uncertainties, and those on the right in square brackets indicate the altitude of the observation.
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persistent chemical cycles to consume O3. Even using theoretical 
maximal values for NOy uptake ( = 1), the impacts on ozone are 
the same (<0.1 ppb O3 difference at all times). As a result, O3 mixing 
ratios stabilize above 10 ppbv. Known heterogeneous reactions of 
O3 and NOy species are not enough to explain the observed low O3 
mixing ratios in the ozone-depleted laminae.

At the observed IO levels, gas-phase iodine chemistry is highly 
efficient at destroying additional O3 through catalytic photochemical 
reaction cycles. Introducing 10 pptv of Iy (consistent with ~2 pptv of 
IO observed; fig. S4) accelerates O3 destruction by over a factor of 
2 and is needed to explain the low observed O3 at the core of these 
layers. Only when the iodine is included can the box model explain 
the low O3 below 10 ppbv (fig. S4). Iodine directly destroys O3, 
dominates O3 destruction as shown by the reaction integrals over 
3 days (tables S4 and S5), and remains efficient even at these low O3 
concentrations. Critically, a distinct anticorrelation is observed: 
Iodine levels are highest where O3 is lowest (fig. S5). Vigorous iodine 
chemistry consistent with known chemical mechanisms of gas-phase 
O3 destruction by observed IO levels is needed and found to be suf-
ficient to explain the ozone-depleted laminae.

It is possible that the multiphase reaction I− + O3 enhances the 
ozone sink beyond the gas-phase iodine chemistry modeled here. 
Any O3 loss due to multiphase chemistry depends on the gas-phase 
O3 concentration and on how the conditions sustaining I− in aerosol 
change inside the dust layers relative to the background. Compared 
to the stratosphere (6), the contribution from I− + O3 in dust layers 
is masked by rapid gas-phase chemistry at much (factor ~ 150) 
higher gas-phase IO radical concentrations, lower O3 concentrations 
(factor ~ 0.1), and the dilution of any dissolved iodide concentra-
tion in more abundant liquid water inside dust layers. Iodide in dust 

aerosol is not enriched over background marine aerosol (36). More-
over, iodide would be depleted in less than 1 s if not replenished from 
other iodine reservoir species [e.g., iodate photoreduction (37, 38); 
see also the Supplementary Materials]. The photosensitized reduc-
tion of iodate in chromophoric dust proxies, while plausible as a 
source of I− as an initial intermediate toward activating Iy,gas, is 
currently insufficiently constrained experimentally to model any 
accompanying multiphase O3 loss with certainty. However, iodide 
destroys O3 in a stoichiometric ratio of one, meaning that if 10 pptv 
Iy,gas is liberated via I− + O3, this reaction consumes only 10 pptv of 
O3. The direct O3 sink of multiphase chemistry to liberate Iy,gas is 
therefore very small compared to efficient gas-phase chemistry at 
the high observed IO radical concentrations, which destroys several 
ppbv of O3. However, in the absence of a gas-phase mechanism to 
form HIO3 (and thus particulate iodate), O3 loss could be further 
enhanced and is estimated conservatively here. In the future, more 
measurements to understand iodine speciation and phase partition-
ing are needed to understand iodate as a missing component of the 
geochemical iodine cycle in models.

Aeolian iodine source from dust
While the large IO enhancements inside dust layers could, in prin-
ciple, reflect a change in chemical partitioning of gas-phase iodine, 
we find that the dust itself is the source of the iodine. This is be-
cause, even under exceptionally low O3 inside the dust layers, the 
IO/Iy ratio remains high, and IO accounts for at least 15% of 
daytime Iy. The photostationary equilibrium of gas-phase Iy reservoir 
species is limited by HOI photolysis and establishes within minutes 
(daytime). Therefore, changes in gas-phase chemical partitioning 
induced by dust are small, and to explain elevated IO inside dust 

Fig. 2. Summary of RF05-01 case study. Left: Relative humidity and potential temperature. Middle: Demonstration of the anticorrelation of O3 and aerosol surface area 
consistent with the literature and previously attributed to heterogeneous uptake. Gray shading across panels indicates when this smoothed surface area is greater than 
25 m2 cm−3; uppercase letters indicate the individual dust-layer intercepts. Dashed lines are indicative of a contiguous background. Right: Iodine observations; error bars 
show 1 errors. Mixing ratios of IO are retrieved by the AMAX-DOAS using a parameterization method. Dashed line shows median of southern hemisphere TORERO ob-
servation after filtering for dust-impacted data. Aerosol volume density (box-car smoothed over 15 s for sufficient statistics) is shown. Water vapor was measured by the 
Vertical Cavity Surface-Emitting Laser (VCSEL) hygrometer. CH3I is measured with Trace Organic Gas Analyzer (TOGA).
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layers, an additional iodine source from the dust is needed. We 
posit that iodate reduction and volatilization is the source of iodine 
from dust.

We propose that the observed correlation of iodine with aerosol 
volume (fig. S5) results from sparingly soluble iodates on dust sur-
faces, which accumulate from atmospheric deposition and geogenic 
deposits (13, 39–41) before lofting. We suggest that acid deposition 
from the atmosphere onto dust, dust deliquescence, and possibly 
illumination may be critical steps facilitating iodine release from 
lofted dust (see Fig. 3 and below): the alkalinity of dust, scarcity of 
water, and limited illumination before lofting trap iodate. We attri-
bute the sphericity of particles in the layers at high altitude and with 
increasing distance from the coast to dust deliquescence. This role 
of water vapor in the activation process is consistent with previous 
findings that water vapor correlates with the level of O3 depletion 
associated with Saharan dust (42). Liquid water helps to mobilize 
sparingly soluble IO3

− and also iron ions, which facilitates the photo-
chemical production of peroxides either directly (43) or by using 
the iron ions (44). Iodate might then be reduced through reaction 
with the iron ions (45, 46), by H2O2 (47), by nitrite (48) photosensitized 
reactions (37, 38), or by numerous other species (49). Iodate reduc-
tion is thermodynamically favored over nitrate reduction and might 
serve to suppress renoxification. Acid uptake to lower pH, possibly 
aided by photosensitized reactions, may be necessary for iodate 

reduction to proceed at an atmospherically relevant rate. At higher 
altitudes, dust has an important role as ice nuclei (50), and iodine, 
in turn, recycles on ice surfaces in the upper troposphere (Fig. 3) 
(5, 51, 52). Iodate has been previously observed on Saharan dust 
during several ship cruises and is notably depleted for the smallest 
dust aerosol sizes, which is consistent with surface area–dependent 
heterogeneous release (fig. S6) (36, 53). Iodate is present in Saharan 
dust [and caliche deposits below the Atacama; see (54, 55) and the 
Supplementary Materials] and is the likely source of iodine enhance-
ments associated with dust that had previously been observed over 
the Atlantic (31, 32).

In contrast to the observations from the Saharan region, we do not 
observe any impact from dust on CH3I (Fig. 2, right). This suggests 
that there is likely to be more than one mechanism of iodate reduc-
tion leading to possible variations in the speciation of volatile iodine 
released from dust. Laboratory studies of iodate reduction under 
conditions that resemble atmospheric aerosols are needed to devel-
op missing mechanisms of iodate reduction in atmospheric models.

Atmospheric implications
The precise mechanism of iodine release from dust is currently un-
known. However, we approximate the net effect of iodate processing 
(Fig. 3) in the CAM-chem model (8, 56) as an autocatalytic dust source, 
tuned to resemble observed dust-impacted IO concentrations in the 

Fig. 3. Schematic of dust release of iodine and O3 loss. Broadly clockwise from bottom left: (1) Aeolian processes loft dust, leading to size sorting due to gravitational 
settling. (2) The basicity of dust will encourage uptake of gas-phase acids such as nitric acid (HNO3) and other NOy species. (3) Once deliquesced aqueous ion chemistry is 
facilitated, iodate reduction can be facilitated by peroxides or soluble iron, either of which would suffice. The redox chemistry of iodine is highly complex, and the precise 
mechanism leading to volatilization is unknown. Iy is likely to be liberated in the oxidation state of I0 (I2) or I+ (HOI, ICl, IBr) or as an organic species (e.g., CH3I), although the 
latter is not observed in TORERO. (4) Released iodine photolyzes initiating rapid photochemical cycles. (5) Dust can participate in low-altitude cloud formation, is subject 
to wet deposition, and can nucleate ice, facilitating recycling of iodine on ice surfaces.
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study area. The model captures the IO observed in the absence of 
dust, as well as the average IO enhancements in the presence of dust, 
yet it exhibits greater variability when dust is present (fig. S7). How-
ever, the latter may be expected given the limited number of obser-
vations. The spatial scale of the DOAS measurement is likely to 
include components of background air with lower IO. Nonetheless, 
IO enhancements of up to a factor of 10 over background were ob-
served within the dust layers. The model underestimates the magni-
tude and variability of dust-free IO by a small amount in absolute 
terms, but this leads to a larger and more variable relative enhance-
ment in dust-impacted data. The model has been tuned to capture 
the average IO concentrations measured in the presence of dust (fig. 
S7) within the studied region and is not affected by a similar differ-
ence in spatial scales. Hence, the median enhancements in fig. S7 
are not directly comparable between model and observations, and 
the observations are expected to be a lower bound on the average IO 
enhancement inside dust layers. The model accurately produces the 
approximate vertical extent of the dust layers (Fig. 4B); an extended 

horizontal domain is chosen to assess atmospheric impacts (allows 
the displacement of IO enhancements further from dust sources in 
the model; Fig. 4A). Dust is found to be the source of more than 
90% of iodine outflow from the Atacama between 2- and 4-km height 
and dominates O3 destruction in January (Fig. 4C).

Ozone impacts due to dust are conservatively estimated in the 
model and limited to iodine, because NOy uptake to dust, as well as 
dust source of the Sechura Desert, is not represented in CAM-chem. 
The removal of NOy (and by extension NOx) will continue to sup-
press O3 production until replenished, likely increasing its relevance 
at regional scales. The transport and chemistry of background O3 
levels are reasonably well represented (57–59). The model does not 
produce conditions similar to the O3-depleted laminae aloft without 
introducing the new iodine source from dust, which suggests that 
transport of low O3 air cannot explain the observed O3 depletion in 
the dust laminae. As expected, modeled localized O3 decreases by 
~35% (Fig. 4D), which is less than observed. Nonetheless, a regional 
(box on Fig. 4, A and D) impact is clearly visible across most of the 

Fig. 4. Regional (and global) impacts. (A) Map of IO at 2.9-km altitude in CAM-chem for January 14 (dynamics in CAM-chem are fixed but do not reflect any specific real 
day). (B) Curtain of IO at 90°W (gray dashed line on map). (C) Iodine release at altitude and comparison of iodine release from dust and from very short lived species (VSLS) 
computed for January over the box indicated on the maps in Mg month−1 (top axis). Dashed lines show the same traces for an annual extrapolar average; fluxes are shown 
as Gg year−1 (top axis). (D) Impact of dust iodine on O3 in CAM-chem computed as (O3,dust iodine − O3,base)/O3,base. (E) Curtain of the O3 impact at 90°W. (F) O3 impacts at 
different temporal and spatial scales. The O3 impact is computed by calculating the mean profiles for the two model cases and then computing the equation above. 
Displayed values are means computed for the box on the maps for January 14; the months of January and June; for the tropics (defined here as 20°S to 20°N) and for 
extrapolar regions (defined as 60°S to 60°N).
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model domain, lowering O3 by as much as −9.4% (−2.5 ppbv of O3; 
Fig. 4F). In the free troposphere, iodine destroys O3 150% as efficiently 
as in the MBL due to increased photolysis rates and has three to 
six times the residence time, greatly enhancing its impact (fig. S8). 
Downward transport entrains air into the MBL that is both enriched 
in iodine (Fig. 4B) and depleted in O3 (Fig. 4E), leading to −6.9% 
(0.9 ppbv; regional) impact on O3 at the surface and even −4.7% 
(−0.5 ppbv; regional) in the January mean. The entrainment of 
iodine-rich and O3-depleted air into the MBL is of relevance to sur-
face air quality and human health, and due to the iodine’s buffer 
capacity over ozone, pollution is expected to evolve differently within 
regional scales in the near future depending on the air pollution mit-
igation policies implemented by different countries (57).

On a global scale, the Sahara dominates dust emissions, and the 
impacts of dust transport on surface air quality have been well doc-
umented in cities across Europe (60, 61). In our simulations, the 
iodine source from the Sahara is actively controlled and conserva-
tively estimated by modulating the efficiency of iodine release zonally 
not to exceed the observed levels of IO radicals in the SAAD domain. 
Consistent with the SAAD dust, Saharan dust has also been observed 
to affect O3 in the free troposphere at the Monte Cimone Climate 
observatory, with implications for surface air quality in cities of 
northern Italy [Po Valley; (28)] and southern Spain (62). This 
pattern of dust transport is captured by CAM-chem; however, the 
magnitude of episodic impacts on O3 of >40% attributed to Saharan 
dust at Monte Cimone is underestimated in the model, reflecting 
the conservative implementation of iodine chemistry from Saharan 
dust (fig. S9). Transport and NOy uptake are also likely to contrib-
ute substantially to O3 depletion under more polluted conditions 
such as those observed at Monte Cimone (63). Similarly, dust from 
the Taklimakan and Gobi Deserts have been observed to affect O3 in 
cities in northern China, although the impacts appear to be smaller 
(~10%) deep in the continental interior (29). While it is very likely 
that iodine impacts from dust are not limited to the study area, a 
confirmation of dust iodine release from other deserts globally, in-
cluding the Sahara and Gobi Deserts, warrants further investigation. 
In our current conservative implementation, dust is found to be 
responsible for 41% of iodine release in the extrapolar lower free 
troposphere, resulting in an annual mean decrease of extrapolar 
tropospheric O3 by 0.87%, which extends beyond the regional scale.

DISCUSSION
The persistence of IO radicals in aged stratospheric air further indi-
cates that iodate heterogeneously recycles from stratospheric aerosols 
(6), which is consistent with our findings for dust. In the tropo-
sphere, particulate iodine is only a minor reservoir of total inorganic 
iodine (sum of gas- and particulate-phase Iy); most tropospheric 
iodine resides in the gas phase (8). The observations presented here 
suggest that iodate can be a primary source of iodine to the atmo-
sphere. Together with the rapid oxidation and volatilization of 
iodide, this points to multiphase iodine chemistry being extremely 
dynamic and context dependent and warrants further research.

Surface deposits of iodine are the result of atmospheric deposi-
tion and geogenic iodate deposits in the Caliche layers of the Atacama 
Desert. Field measurements indicate that atmospheric HIO3 is 
widespread (13) and available to deposit and accumulate on alkaline 
dust as iodate before lofting. In principle, also iodides, if present, 
can be oxidized to iodates in an oxic atmosphere (64). Iodate in the 

subsurface Caliche layers is thought to be Jurassic marine deposits 
uplifted by the Andes orogeny, and slowly transported to their cur-
rent location by ground water (55, 65, 66). Marine diagenesis is the 
major source of such geological iodine, given that the crustal budget 
of iodine is dominated by marine carbonates (67). Continental 
deposits of iodine are thus ultimately of marine origin (55) and can 
inject iodine to the atmosphere as part of volcanic eruptions (68, 69) 
and lofted dust. The relative importance of atmospheric deposition 
and geogenic iodine as sources of iodate injected to the atmosphere 
remains to be established.

The correlation of iodate with calcium (fig. S6; see the Supple-
mentary Materials for details) suggests that iodate reduction could 
be important to consider in geoengineering scenarios, which have 
proposed annual stratospheric injections of calcium carbonate as 
large as 5.6 Tg year−1 (70). Iodate is a contaminant component of a 
variety of carbonate minerals (71), i.e., 1 to 10 parts per million (ppm) 
(72). Upper limits could lead to 3% year−1 increase in the current 
stratospheric iodine burden of 1.7 Gg (6). Over a decade, iodate 
injection as part of geoengineering dust injections thus has the 
potential to significantly increase the iodine burden in the lower 
stratosphere, which would slow ozone layer recovery.

Our results have broader implications for iodine partitioning be-
tween the gas and particle phases and add field evidence of iodate 
reduction as a missing component of the geochemical iodine cycle. 
Multiyear records show that iodine has increased by a factor of 3 
since 1950, responding to O3 anthropogenic pollution and thinning 
of polar sea ice (19–21). Atmospheric models are currently missing 
sources of iodic acid (HIO3), which is a highly condensable vapor 
that adds iodate in particles and—as an alternative pathway to higher 
iodine oxides—can nucleate and grow particles efficiently (13). If 
atmospheric deposition of iodate is responsible for iodine accumu-
lation on dust, it is currently unclear whether the released iodine we 
observe had accumulated before dust lofting on geological time 
scales or reflects the contemporary O3 response of the oceanic 
iodine source enhancement. The iodine-mediated feedback between 
dust and tropospheric O3 is likely to shift regional impacts relevant 
to air quality and human health in a changing climate. Predicting 
these changes in response to changing dust emissions on climate is 
challenging (73, 74) and deserves further attention. Investigation of 
the time scales of iodate cycling between the gas and particle phases, 
including deposition to arid regions and reemission as dust, is crit-
ical to quantifying the role of iodate and deserts as a missing piece 
in the global geochemical iodine cycle.

MATERIALS AND METHODS
The TORERO field campaign
The aircraft measurements were collected aboard the National Sci-
ence Foundation (NSF)/National Center for Atmospheric Research 
(NCAR) High-performance Instrumented Airborne Platform for 
Environmental Research (HIAPER) GV aircraft during the Tropical 
Ocean tRoposphere Exchange of Reactive halogen species and 
Oxygenated volatile organic compounds (VOC) (TORERO) field 
campaign (5). TORERO conducted 17 research flights over the Eastern 
Pacific Ocean out of Antofagasta, Chile and San Jose, Costa Rica in 
January and February 2012. IO was measured with a CU AMAX-DOAS 
instrument (4, 5, 58) (see the Supplementary Materials). Aerosol 
backscatter and depolarization profiles were measured by the 
HSRL (75, 76) (see the Supplementary Materials). Submicrometer 
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particles were measured with an Ultra-High Sensitivity Aerosol Spec-
trometer (UHSAS) (77), and supermicrometer particles were measured 
with a Cloud Droplet Probe (CDP) (78). The up- and downwelling 
spectral actinic flux was measured by the HIAPER Airborne Radiation 
Package (HARP)—Actinic Flux (79) and used to compute photolysis 
frequencies. Organic iodine (particularly CH3I) was measured with 
the NCAR Trace Organic Gas Analyzer (TOGA) (80, 81).

Identification and specification of dust layers
To ensure a consistent identification and definition of the dust layers 
and their extent, three criteria were used: (i) The aerosol surface area, 
when summed from the UHSAS and CDP assuming spherical parti-
cles, was greater than 25 to prevent extensive splitting of layers if the 
surface area drops below this threshold for less than 30 s, the layer 
is treated as contiguous; (ii) IO mixing ratios in the layer either are 
significantly greater than measured above or below the layer or are 
greater and at least 0.2 pptv when averaged; (iii) water and potential 
temperature profiles were examined to exclude the boundary layer. 
Using this definition, a total of 27 layers, ranging in altitude be-
tween 0.9 and 6.4 km, were identified during the TORERO campaign. 
All identified layers are from flights that landed or took off from 
Antofagasta, Chile. For a further classification of the layers and the 
naming convention, see the Supplementary Materials.

Back-trajectory data products
Two back-trajectory data products were used: (i) a 72-hour meso-
scale product in the Weather Research and Forecasting (WRF) model 
(82) and (ii) a 10-day Real-time Air Quality Modeling System (RAQMS) 
product. The WRF back-trajectories were initialized along the flight 
track for ~2000 points per flight and ran back for 72 hours at 3-hour 
resolution with an advective time step of 30 min (83). The WRF 
simulations included a planetary boundary layer (PBL) tracer that 
was set to 1 within the model’s PBL and allowed to spread above the 
PBL by various model processes. Surface source regions for a given 
trajectory were defined as the locations where the PBL tracer in-
creased or the trajectory passed through the boundary layer. Boundary 
layer contributions were collected for 1° × 1° bins for every back 
trajectory ending in an iodine enhancement layer back 72 hours 
weighted by the amount of tracer increase (weight of 1 when in the 
boundary layer). Dust source regions are determined by selecting 
source areas with soil moisture below 0.075 cm3 cm−3 at 1° × 1° reso-
lution in the annual average based on the Soil Moisture Active Passive 
(SMAP) satellite (84). Reverse Domain Filling (85) in RAQMS 
chemical and meteorological forecasts (86) provides information 
on 10 days of air mass history for ~500 altitude curtains per flight 
along the flight track.

Chemical box modeling
Iy,gas was inferred from IO radical measurements using a chemical 
box model developed at the University of Colorado Boulder (52, 58), 
with extended iodine chemistry (8) including photolysis frequencies 
measured with HARP—Actinic Flux (79) and chemical constraints 
from observations (see the Supplementary Materials for details). 
O3 loss for different chemical scenarios was modeled using the same 
box model (table S3).

Global modeling
CAM-chem (version 4) (59) was used to estimate ozone loss and the 
iodine (Iy) budget. Model cases examining the recycling of iodine to 

the gas phase on different atmospheric surfaces are the same as in 
(6). The dust iodine source was represented as an extension of the 
iodine (IONO2, INO2, and HOI) recycling on sea-salt aerosol, al-
though instead of just resulting in a change of Iy partitioning, the 
iodine recycling on dust surfaces produces an additional iodine 
source of 4% of the net heterogeneous recycling rate. The rate of this 
reaction was capped to saturate at 2 m2 cm−3 and further limited 
by latitude such that IO all over the globe never exceeds the maxi-
mum concentration observed during TORERO within the SAAD 
region (see the Supplementary Materials for details).

Statistical analysis
Unless otherwise specified, when referring to fitted correlations in 
the text, the input data are the specified quantities arithmetically 
averaged over layer intercepts, and orthogonal distance regression 
is used. Data are used without additional weighting, if data appear on 
a graph showing a correlation they were used in the fit. No composite 
or nonlinear fits are presented in this manner; hence, references to 
“R” or “R2” refer to the Pearson product-moment correlation coef-
ficient and the square thereof. Explicit hypothesis testing is not used.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj6544
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