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Abstract. Brain development in adolescence is synthetically influenced
by various factors such as age, education, and socioeconomic conditions.
To identify an independent effect from a variable of interest (e.g., socioe-
conomic conditions), statistical models such as General Linear Model
(GLM) are typically adopted to account for covariates (e.g., age and
gender). However, statistical models may be vulnerable with insufficient
sample size and outliers, and multiple tests for a whole brain analysis
lead to inevitable false-positives without sufficient sensitivity. Hence, it is
necessary to develop a unified framework for multiple tests that robustly
fits the observation and increases sensitivity. We therefore propose a uni-
fied flexible neural network that optimizes on the contribution from the
main variable of interest as introduced in original GLM, which leads to
improved statistical outcomes. The results on group analysis with frac-
tional anisotropy (FA) from Diffusion Tensor Images from Adolescent
Brain Cognitive Development (ABCD) study demonstrate that the pro-
posed method provides much more selective and meaningful detection of
ROIs related to socioeconomic status over conventional methods.

1 Introduction

Experiences consistent with different levels of socioeconomic status (SES) are key
to brain development [4,15]. Brain structure and functional connectivity were
thought to be explained solely by their heritable aspects, consolidated by mag-
netic resonance imaging (MRI) based studies of twins with shared characteristics
for brain volume and structure [3,16,31]. High correlation in genetically similar
regions of interest (ROIs) support genetic aspects of intelligence [28]. However,
recent evidence points to SES being a principal determinant of brain structural
characteristics such as Pediatric Imaging, Neurocognition and Genetics (PING)
study [17] that offer unique insights into the associations of SES and children’s
brain structure. However, most studies remain cross-sectional and are suscepti-
ble to confounds that impact delineation of associations between SES and brain
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development [1,5]. Regardless of the method, most conventional approaches do
not effectively differentiate meaningful associations between environmental expo-
sures and brain morphometric or diffusion characteristics with MRIs.

In conventional approaches, statistical tests with neuroimaging measures
under Gaussian assumption are independently performed at each ROI to obtain
evaluative measures (e.g., p-value), and correcting for multiple comparisons delin-
eates ROIs that are statistically associated with a variable of interest X (e.g., dis-
eased vs. healthy) [8,9]. As several factors affect the brain synthetically, statisti-
cal models such as General Linear Model (GLM) are utilized to control for effects
from nuisance covariates Z and identify the true effect from X [14,18,24]. GLM
achieves this by comparing a pair of models, i.e., Full and Reduced Models, where
the Full Model considers X and Z together while the Reduced Model takes only Z
to fit given observations. Investigating the difference of errors explained by the two
models, i.e., analysis of variance (ANOVA), yields the true effect from the variable
of interest X corrected for covariates Z [26].

Notice that, while GLM offers a satisfactory formulation to control for covari-
ates to describe marginal effects, it does not necessarily increase sensitivity of
the method. It uses Ordinary Least Square (OLS) to fit a pair of linear mod-
els [24], and performs F -test based on residuals from OLS, which can often be
misleading owing to multicollinearity and outliers [32]. Moreover, a whole brain
analysis on several voxels or ROIs requires multiple tests which ends up with
inevitable false-positives [2,27]. In machine learning, Domain Adaptation (DA)
provides a way to control for an unwanted variable, i.e., domain. DA operates
with a source and a target domain where separate neural networks for each
domain are compared for a predictive task to transfer knowledge from source to
target [7,25]. While the architectures of GLM and DA are similar, the objectives
are quite different as the target variable in DA is a covariate in GLM. Also, DA
may become very complex to control multiple covariates.

To address the issues above, we propose to develop a novel Artificial Neu-
ral Network (ANN) architecture that constructs an ensemble of multiple pairs
of linear models that correct for covariates and optimize on statistical sensi-
tivity. The framework shares the same hypothesis space bias with GLM with
a loss inspired by F -test; we choose to maximize the overall F -statistics with
constraints from domain knowledge. Optimizing such an ANN model in a con-
strained space improves sensitivity corrected for covariates together with selec-
tive identification of task-specific ROIs. Our contributions here are summarized
as: 1) Devising a novel ANN that marginalizes effects from covariates, 2) The
framework can simultaneously optimize multiple models for whole brain analy-
ses, 3) Various experiments identify associations between socioeconomic status
and brain outcomes, which were not available with conventional approaches.

2 Preliminary: General Linear Model

GLM is a generalization of multiple linear regression to the case of more than
one target variable. Hence, it can be written as

Yj = β1jX1 + · · · + βpjXp + εj
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Yj (j = 1, · · · ,m) is target variable (e.g., ROI measures), {Xk}p
k=1 is a set of

independent variables (e.g., group), and εj is a Gaussian distributed error.
GLM provides a general statistical framework for testing various associa-

tions and hypotheses such as ANOVA, [26], analysis of covariance (ANCOVA)
[26] and the multivariate analysis of covariance (MANCOVA) [30]. Hence,
GLM is an appropriate method of determining the effect of variables of inter-
est X = (X1, ...,Xp) on target variables Yj even with nuisance covariates
Z = (Z1, · · · , Zq) (e.g., age, gender, and so on). Specifically, GLM compares
a Full Model (with X and Z) and a Reduced Model (with Z), which perform
linear operations on Yj :

Full Model: Yj = ZλF
j + XβF

j + εj , Reduced Model: Yj = ZλR
j + εj

where coefficients λF
j , λR

j ∈ R
q and βF

j ∈ R
p. In the finite sample setting, the

influence of X for Yj can be measured by comparing the sum of squared of errors
(SSE) for the Full and Reduced Models:

SSER
j :=

n∑

i=1

(
yij − ziλ

R
j

)2
and SSEF

j :=
n∑

i=1

(
yij − ziλ

F
j − xiβ

F
j

)2
(1)

where (yij)n
i=1, (xi)n

i=1, and (zi)n
i=1 are set of observed values of Yj , X, and Z

for the i-th subject, respectively.
F -test is one of the popular statistical approaches to determine whether the

influence of X is significant. More precisely, it considers the following hypotheses:

H0j : βF
j = 0 vs. H1j : βF

j �= 0 (2)

where 0 = (0, · · · , 0)′ ∈ R
p and resultant statistics F ∗

j is defined as

F ∗
j :=

(
SSER

j − SSEF
j

dfR − dfF

) (
SSEF

j

dfF

)−1

(3)

where dfR = n−q and dfF = n−p−q are the degrees of freedom from the Reduced
and Full Model, respectively. The F -test rejects H0j if F ∗

j is sufficiently large.
This is feasible because a larger F ∗

j comes from a larger SSER
j −SSEF

j which
means that X is providing auxiliary information on Yj that covariates Z cannot
explain. In general, coefficients βF

j , λF
j and λR

j are estimated by OLS which can
be vulnerable to outliers and lack of sample size. Also, m-multiple hypothesis
tests often suffer from a multicollinearity and lack of sensitivity problems. These
issues motivate to develop a new robust framework, to be described shortly.

3 CoCoNet: Covariate Correcting Network

Consider the same setting as in GLM (under Gaussain assumption) where a set
of measurements Yj at location j, a main variable of interest X (e.g., group),
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and covariates Z (e.g., age and gender) across n samples are given. The aim
here is to quantify the true effect from X on Yj with high sensitivity across
all j, while correcting for effects from confounding Z. For this, we design a
novel framework, Covariate Correcting Network (CoCoNet), whose architecture
is motivated from performing independent hypothesis tests across all j using
GLM. Unlike conventional approaches, CoCoNet optimizes the multiple GLM
at the same time using specialized ANN architecture with regularizers rather
than performing multiple independent ANOVA.

From Sect. 2, as larger F ∗
j is desired for those j’s rejecting the H0j showing

significant group differences, the optimization should maximize the sum of F ∗
j

across j (i.e., minimizing its inverse). One can easily see from (3) that increasing
SSER

j will increase F ∗
j , hence naively optimizing on (3) will lead to loose fitting

of the Reduced Model. To avoid this, Mean Squared Error (MSE) of predicting
Y with X, Z and their coefficients from both models, i.e., MSEF and MSER,
are considered such that the regressions for both models become tight. Lastly,
from a neuroscience perspective, it is intuitive to include a sparsity constraint as
changes in the brain due to certain conditions may manifest on selective regions.
We therefore include �1-norm penalty term on the F ∗ = (F ∗

1 , · · · , F ∗
m) indicating

sparse detection of ROIs that reject the null. Formulating the ideas discussed
above, the initial loss to minimize is defined as

1∑m
j F ∗

j

+ γ�1‖F ∗‖�1 +
m∑

j

(γRMSER
j + γF MSEF

j ) (4)

where γ�1 , γR and γF are hyperparameters to balance individual terms.
Carefully observing (3), maximizing F ∗

j is equivalent to maximizing the ratio
of SSER and SSEF (as in the natural ANOVA) as

F ∗
j =

(
SSER

j − SSEF
j

SSEF
j

)(
dfR − dfF

dfF

)−1

∝
(

SSER
j − SSEF

j

SSEF
j

)
∝

(
SSER

j

SSEF
j

)

(5)

as the degrees of freedoms are constants. Moreover, applying �1 penalty on (3)
is equivalent to imposing the �1 constraint on SSER

j − SSEF
j = 0, denoting

βF
j = 0. In the end, the loss function (4) is revised as

L(λ, β) =
1

∑m
j

SSER
j

SSEF
j

+ γ�1‖βF ‖�1 +
m∑

j

(
γR

n − dfR
SSER

j +
γF

n − dfF
SSEF

j

)

(6)

where γ�1 , γR, and γF are hyperparameters that balance contributions from
each term. It is important to set γR and γF properly to avoid underfitting of
individual models, as the Full and Reduced Models converge at different speeds.

The overall architecture of CoCoNet is illustrated in Fig. 1, that consists of
m pairs of Full and Reduced Models. Reduced Model takes q covariates, i.e., Z,
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Fig. 1. Overview of CoCoNet structure, consisting of m Full Models and m Reduced
Models for all target variables. The residuals from each model pairs are diversely used
to define the loss function, which lead to maximizing statistical outcomes.

with a bias term. The input of the Full Model includes p variables of interest (i.e.,
X) along with Z and bias. The outputs from a single Reduced and Full Model
pair are estimations Ŷ R

j and Ŷ F
j of the same target variable Yj computed from

pertinently trained weights and inputs so that the model ultimately minimizes
(6). The loss L given in (6) to be minimized is computed from Ŷ ’s based on
SSER

j ’s and SSEF
j ’s together with a �1 penalty on β.

4 Experimental Result

We performed several group analyses based on household income criteria; from
high to subtle effect-size groups. The results show quantitative improvements
with CoCoNet over baselines, which yield clinically meaningful results (Figs. 2
and 3).

4.1 Experiment on ABCD Dataset

Dataset. The Adolescent Brain Cognitive Development (ABCD) study [11] is an
ongoing observational assessment of brain development in children recruited from
21 sites in the U.S. at 9–10 years of age. The rationale for study are provided by
[6,29]. Enrolled children underwent cognitive, behavioral, demographic, health,
and sleep assessments annually and brain imaging every two years. DTI from
individuals were parcellated by co-registration with the Destrieux Atlas [10]
comprising 148 regions, and average fractional anisotropy (FA) was computed
at each ROI. The current study used the baseline dataset (v2.0.1) approved
by institutional review boards. This fully processed data for our experiment
is hosted by the National Institutes of Health Data Archive (NDA), and was
downloaded and analyzed following a data use agreement.

Setup. Baselines are as follows: 1) conventional GLM, 2) GLM with Neu-
ral Network for regression (GLMNN ), 3) GLM with Lasso for the Full Model
(GLMLasso). All of these methods analyze variance at each ROI independently
and yield corresponding F -statistics and p-values. For GLMLasso, sparsity coef-
ficient was set to 0.01. For CoCoNet, hyperparameters were set as: m = 148
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Table 1. Demographics of the ABCD Dataset.

Category BP NP High Mid Low

# of Subjects 952 8876 4205 2792 2831

Gender (M/F) 487/465 4608/4268 2207/1998 1448/1344 1440/1391

Age (Mean ± std) 118.5 ± 7.3 119.1 ± 7.5 119.4 ± 7.5 118.8 ± 7.5 118.7 ± 7.5

Scanner (Siemens/GE/Philips) 623/215/114 5719/2024/1133 2717/891/597 1866/591/335 1759/757/315

Table 2. ROIs identified using GLM from BP vs. NP groups and comparisons of
statistics (p-values with Bonferroni correction at α = 0.01 and F -statistics).

idx ROI p-value F -statistic

GLM GLMNN GLMLasso CoCoNet GLM GLMNN GLMLasso CoCoNet

1 left g.temp.
sup.plan.polar

5.45E-05 5.45E-05 5.45E-05 1.34E-11 16.30 16.30 16.30 45.86

2 right g.and.s.
cingul.ant

3.92E-05 3.92E-05 3.92E-05 1.11E-16 16.92 16.92 16.92 94.82

3 right g.front.
sup

3.06E-05 3.06E-05 5.05E-05 6.66E-16 17.39 17.39 16.44 65.42

4 right g.oc.temp.
med.parahip

2.15E-05 2.15E-05 2.21E-05 1.11E-16 18.06 18.07 18.02 111.76

5 right g.temp.sup.
plan.polar

1.86E-06 1.86E-06 1.86E-06 1.11E-16 22.76 22.76 22.76 92.41

6 right s.front.
sup

3.46E-06 3.46E-06 5.98E-06 1.18E-08 21.57 21.57 20.52 32.58

(i.e., # of ROIs), p = 1 (i.e., group), q = 4 (i.e., age, gender, scanner1,2),
γstat = 1, γ�1 = 10, γR = 0.1, γF = 0.1, and learning rate was 0.01. CoCoNet
was implemented with Pytorch and optimized using Adam optimizer [19]. All
the p-values were corrected for multiple comparisons using Bonferroni correction
at α = 0.01.

Two sets of experiments based on several group criteria were performed.
In the first experiment, the subjects were divided into two groups, i.e., Below
Poverty and Non-Poverty, using the poverty criteria from U.S. Census Bureau
($16, 910) [21]. In the latter, the subjects were categorized into three groups: 1)
Low (<$50, 000), 2) Mid (between $50,000 and $100,000), and High (≥$100,000)
income groups based on [22] to look at more detailed development differences
between Low vs. Middle and Middle vs. High income groups.

Below Poverty vs. Non-Poverty. We first performed a group analysis on
Below Poverty (BP) vs. Non-Poverty (NP) groups. All models yielded several
ROIs that showed statistically significant group differences between the BP and
NP (6, 7, 6, and 52 ROIs for GLM, GLMNN , GLMLasso, and CoCoNet respec-
tively) and CoCoNet showed decrease in the p-values.

Quantitative results with F -statistics and p-values on the 6 ROIs that were
detected with conventional GLM are compared in Table 2. All these ROIs were
commonly detected across all models tested on the ABCD data. We first used a
Linear NN, i.e., GLMNN , to fit the same data with the same objective function
of OLS, and used its regression result for F ∗ in (3) and p-values. This baseline
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was designed to confirm that NN can replace OLS in GLM. As expected, we
observed that both GLM with OLS and NN performed almost the same with
very marginal difference as seen in the F ∗’s and p-values. Lasso with penalty on β
(i.e., GLMLasso) yielded increase in SSEF as the parameter space was restricted
by the regularizer. However, it still resulted in very similar results with GLM and
GLMNN in their F ∗ and p-values on the ROIs detected with GLM. On the other
hand, notice that both F ∗ and resultant p-values from CoCoNet got significantly
better over the three baseline approaches. This result was obtained by leveraging
a slightly different model fitting; we observed ∼0.01 decrease on average in R2

for the Reduced Model but overall statistical outcomes have improved. Some of
the F ∗ went negative for unimportant ROIs with GLMLasso and CoCoNet due
to regularizers, but it was not a problem for the ROIs with β’s close to 0.

Low vs. Middle vs. High Income Group Analyses. The Low vs. Middle/
Middle vs. High group comparisons are more challenging than the BP vs. NP
analysis as their effect sizes are more subtle in the income spectrum. The results
are summarized in Table 3 with the identified ROI labels and their p-values.

Table 3. Identified ROIs and p-values from Low vs. Mid (Left) and Mid vs. High
income (Right) analyses. (detected ROIs surviving Bonferroni at α=0.01 in bold)

In the comparison of Low vs. Middle income groups, CoCoNet identified 11
ROIs of which p-values survive Bonferroni correction at α = 0.01, while GLM
and GLMLasso yielding only 1 and GLMNN detecting 3 ROIs subsumed by the
11 ROIs from CoCoNet. These results are visually compared in Fig. 2. Notably,
the overall p-values from CoCoNet are distributed at smaller values than those
from baselines, meaning that CoCoNet was able to intensively detect valid ROIs.

In the Middle vs. High group analysis, GLM and GLMLasso did not yield
any ROIs surviving Bonferroni correction even after hyperparameter tuning.
However, GLMNN and CoCoNet detected 2 and 13 regions respectively. Com-
paring the p-values of the detected ROIs, the associations between socioeconomic
characteristics and brain outcomes were much more sensitively identified with
CoCoNet. These descriptions can be visually seen in Fig. 3 whose first row is the
p-value map from GLMNN and the second row is that from CoCoNet.
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Fig. 2. p-value maps in − log10 scale from Low vs. Mid income group analysis. First row:
GLM, Second row: GLMNN , Third row: GLMLasso, Fourth row: CoCoNet. CoCoNet
detects more ROIs with lower p-values than the baselines.

Fig. 3. Middle vs. High income group analysis and resultant p-value maps in − log10

scale. First row: GLMNN , Second row: CoCoNet. GLM and GLMLasso yielded no ROIs.

4.2 Discussions on the Results

Statistical Parametric Mapping (SPM) is a conventional approach. While SPM
performs multiple ROI/voxel-wise independent regressions, we proposed to solve
them simultaneously as a unified framework. Almost identical results between
GLM and GLMNN show this is doable, which share the same inductive bias
with CoCoNet without �1-penalty. With �1-penalty in CoCoNet, we observed
marginal decrease in R2 and the residuals should be very close to F-distribution.

The results demonstrate substantially improved performance over conven-
tional regression-based tools in isolating distinct ROIs with structural alterna-
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tions. Notably, these results support the refinement of current methods used to
identify meaningful effects associated with environmental exposures that impact
brain development. As effect sizes are tied to sample size in imaging-based
datasets such as the ABCD study [11], there is a need to extend conventional
approaches prone to errors tied to differences detected by chance alone.

Our results show that the right parahippocampal gyrus has the highest F -
statistic with CoCoNet when compared to GLM-based methods. This is an ROI
implicated in memory encoding and retrieval, which are key to overall cogni-
tion in children. Other meaningful ROIs include the anterior cingulate and the
planum temporale, which are regions critical to motivational learning and exec-
utive function, as well as language development. Our method consistently iden-
tified key ROIs such as the post-central sulcus [33] and the calcarine sulcus [20]
in comparisons of children from low and middle income groups. These ROIs,
responsible for the somatosensory and visual attributes of cortical processing,
appear to be consistent with regional substrates for specific aspects of sensory
processing thought to be impacted by environmental exposures [12]. Fusiform
gyrus [23] and parts of the parietal cortex [13] (e.g. supramarginal gyrus) are
detected from middle and high income comparison using CoCoNet. Biological
specificity of structural alterations in the brain is emphasized from the results.

5 Conclusion

In this paper, we developed a novel framework, i.e., CoCoNet, which is an ANN
that finds appropriate regressions to enhance multiple ANOVA. The results
demonstrate substantially improved performance over conventional tools in iso-
lating brain regions with structural alternations potentially impacted by environ-
mental factors. We see very high potential of CoCoNet being adopted in various
studies that require higher sensitivity accounting for confounding effects.
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7. Daumé III, H.: Frustratingly easy domain adaptation. arXiv preprint arXiv:0907.
1815 (2009)

8. Della Nave, R., Ginestroni, A., Tessa, C., et al.: Brain white matter damage in sca1
and sca2. an in vivo study using voxel-based morphometry, histogram analysis of
mean diffusivity and tract-based spatial statistics. Neuroimage 43(1), 10–19 (2008)

9. Della Nave, R., Ginestroni, A., Tessa, C., et al.: Brain white matter tracts degener-
ation in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics
and voxel-based morphometry. Neuroimage 40(1), 19–25 (2008)

10. Destrieux, C., Fischl, B., Dale, A., et al.: Automatic parcellation of human cortical
gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1), 1–15
(2010)

11. Dick, A.S., Lopez, D.A., Watts, A.L., et al.: Meaningful associations in the adoles-
cent brain cognitive development study. BioRxiv (2021). https://doi.org/10.1101/
2020.09.01.276451

12. Farah, M.J., Shera, D.M., Savage, J.H., et al.: Childhood poverty: specific associ-
ations with neurocognitive development. Brain Res. 1110(1), 166–174 (2006)

13. Fogassi, L., Ferrari, P.F., Gesierich, B., et al.: Parietal lobe: from action organiza-
tion to intention understanding. Science 308(5722), 662–667 (2005)

14. Glueck, D.H., Muller, K.E.: Adjusting power for a baseline covariate in linear
models. Stat. Med. 22(16), 2535–2551 (2003)

15. Hackman, D.A., Farah, M.J.: Socioeconomic status and the developing brain.
Trends Cogn. Sci. 13(2), 65–73 (2009)
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