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Abstract—Recent advances in Critical Congenital Heart Dis-
ease (CCHD) research using Photoplethysmography (PPG) sig-
nals have yielded an Internet of Things (IoT) based enhanced
screening method that performs CCHD detection comparable
to SpO2 screening. The use of PPG signals, however, poses a
challenge due to its measurements being prone to artifacts. To
comprehensively study the most effective way to remove the
artifact segments from PPG waveforms, we performed feature
engineering and investigated both Machine Learning (ML) and
rule based algorithms to identify the optimal method of artifact
detection. Our proposed artifact detection system utilizes a 3-
stage ML model that incorporates both Gradient Boosting (GB)
and Random Forest (RF). The proposed system achieved 84.01%
of Intersection over Union (IoU), which is competitive to state-
of-the-art artifact detection methods tested on higher resolution
PPG.

Index Terms—PPG, CCHD, artifacts, Machine Learning

I. INTRODUCTION

Congenital heart disease (CHD) is the leading cause of
birth-defect associated infant illness and death [1]. CHD is
also the most common birth defect, affecting nearly 0.8% of
all newborns [1]. About 25% of these CHD cases belong to
the critical congenital heart disease (CCHD) subset, the most
dangerous one [1], [2]. CCHD must be detected as soon as
possible because these lesions require surgical or catheter-
based intervention soon after birth. If not detected soon after
birth, CCHD can lead to preventable poor outcomes, includ-
ing death [1], [3], [4]. Before the development of oxygen-
saturation (SpO2) based CCHD screening, 25% of CCHD-
positive newborns would go home undiagnosed [4], [5]. SpO2
screening has helped with earlier diagnosis and diminished
sequelae, however an estimated 6.4 deaths due to CCHD
occur per 100,000 births in the United States despite mandated
screening. [6]

Therefore, efforts aimed at improving postnatal detection of
these life-threatening lesions are necessary. To address that,
Doshi et. al proposed a system that reads dual pulse oximetry
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data and uploads it online through an Internet of Things (IoT)
setup [7]. This system would calculate many of the newborn’s
health indicators through Photoplethysmography (PPG) pulse
oximetry devices and allowed for quick online access of the
acquired data. The data from that study was later employed
on a Machine Learning (ML) classifier to achieve better
CCHD detection metrics than SpO2 screening [8]. Although
the preliminary results from [8] were promising, using PPG
signals still poses a challenge due to artifacts. An artifact is
a period of the measured waveform that was affected by an
external factor such as movement, touch or others (refer to
Figure 1 and Figure 2). Due to relying on constant contact
with the skin, PPG signals are artifact prone. The waveform
affected by artifacts cannot be used for medical analysis. This
limits the quantity of useful data acquired, especially when
the subjects are prone to unpredictable movement, which is
the case for infants.
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Fig. 1. An example of five second segment of a PPG signal with a normal
start followed by a clear artifact.
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Fig. 2. An example of five second segment of a PPG signal with a normal
start, a less clear artifact in the middle, and then a normal ending.

Since the normal PPG signals are highly ordered and ho-
mogeneous (see Figure 1), trained annotators can identify and
label artifacts. While human annotation is a reliable method
to separate the artifact segments, it is time-consuming and
labor intensive. Thus, an automated approach to identify PPG
artifact is necessary.

The challenge of separating artifacts segments from normal
ones in PPG has been tackled by many authors [9]-[14]. They
have achieved good results with rule based [9], [10], ML [12]
and deep learning methods [11], [13], [14]. However, these
studies were done on higher resolution PPG data which was
able to display details such as dicrotic notches, which are not
found in many pulse oximeters, even those commonly used in
medical practice.

With the challenge of extracting artifacts from inexpensive
PPG signals in mind, we propose an end-to-end pipeline for
automated waveform artifact detection. Such pipeline would
receive a raw PPG waveform as input, and return the exact
location of where the artifacts are located.

Our contributions can be summarized as follows:

« We combine different ML models to construct a precise

framework for the detection of artifacts in PPG signals.
To our best knowledge, it is the first time a combination
of ML models is used to identify artifacts in PPG signals.

o We evaluate the proposed framework on an artifact de-

tection task using IoT based extracted PPG signals from
newborns. Upon evaluation we conclude our model’s per-
formance is competitive with state-of-the-art PPG artifact
detection ML models [12].

II. RELATED WORK
A. Rule Based methods

Rule based methods extract waveform features and create
classification rules based on the values yielded from extracted
features. In these methods, the rules are decided by the coder
and the waveform must be sliced before analysis. Each rule
will decide whether the analyzed segment is normal or artifact,
or whether the segment will be analyzed by another rule.
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Fig. 3. An example of PPG segment with its onsets and peaks signaled. The
beat segments are extracted from onset to onset.

In [9], precise artifact detection was achieved through
features extracted on the preprocessed segments only. The
features extracted were focused on clinically relevant measure-
ments such as diastolic and systolic phase length, and amount
of dicrotic notches. In [10], they achieved precise artifact
detection when coupling features based on the preprocessed
waveform’s segment with features based on a Gaussian fit
of said segment. The Gaussian fit would assume the dicrotic
notch in each segment is the peak of an independent Gaussian
distribution. In all the aforementioned studies, the waveform
slicing method chosen was to divide segments based on
consecutive onsets (see this type of segmentation in Figure
3). The period from one onset to the next has been called a
“pulse” [9], [10], and in this study we will refer to them as
beats (see an example of a beat in Figure 4). All features used
in previous studies were extracted from those beats. The rules
were applied linearly, sometimes utilizing ratios that utilized
features from previous beats.

B. Machine Learning methods

In [12], random slices of waveform were taken and certain
features were extracted from each slice. These features were
then fed to a multitude of ML models and observed an
Accuracy of 84% =+ 2.89. The study was also able to assess
that Random Forest is the best performing ML model for
the specific problem setup analyzed. However, just like the
previously seen rule based methods [9], [10] this ML method
[12] uses PPG data with higher resolution that is capable of
displaying the dicrotic notches of every beat.

III. METHODS
A. Data Collection

The PPG data was collected through a real-time data ana-
lytic pipeline similar to [7] to improve CCHD detection. The
pipeline gathered PPG data through two relatively inexpensive
Nonin® WristOx2™ 3150 pulse oximetry medical devices
attached to the subject’s right hand and one foot. The pulse
oximetry devices transmit via Bluetooth to a Pi-Top™" device,
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Fig. 4. An example of normal beat segment with its peak and onsets signaled
on the graph.

which aggregates the data from both pulse oximetry devices.
The Pi-Top serves as the liaison between the medical devices
and the internet, making this an IoT setup where clinicians
can easily access the data soon after its collection without
the necessity of being on site. Using this setup, we were able
to harvest PPG waveform, perfusion index (PIx) and other
features that are aggregated and calculated in real-time by
the Pi-Top. The data collected is then transferred to a hard-
drive and sent to REDCap, an encrypted online database that
can be accessed by clinicians and our study’s personnel. Due
to security and privacy concerns, the Pi-Top™" is not directly
connected to the Internet. Since this study focus on the removal
of artifacts from PPG waveform, we only kept the de-identified
PPG waveform data and discarded all other information such
as PIx and SpO2.

B. Subjects

The PPG data (57,659 beats) was acquired from 21 new-
borns. The patients were enrolled at University of California
(UC), Davis, Sutter Medical Center in Sacramento, UC Los
Angeles, UC San Francisco, and Cohen Children’s Medical
Center. From each patient, we recorded at least 5-minute PPG
measurements from a foot and hand simultaneously at three
different time periods: within 24 hours, 24-48 hours, and
after 48 hours following the infant’s birth. The data collection
efforts for this study yielded 6 hours and 42 minutes of PPG
signals.

C. Data Preparation

The acquired PPG signals were annotated by trained ob-
servers. The annotators had access to the entire waveform and
labeled sections of artifact. We defined artifact free segments,
also called normal, as a minimum of 10 consecutive beats
without artifact. Given the task of annotating artifacts has
inherent subjectivity, we employed two annotators in order
to acquire a reliable ground truth. After overlapping their
annotations, it was observed that the two annotators disagreed
on 12% of the total 6 hours and 42 minutes of annotation,

amounting to approximately 48 minutes of PPG signals where
annotators disagreed on its classification.

After annotation, we then segmented each waveform into
beat segments. The segmentation was done through automatic
identification of the waveform’s onsets as seen in Figure 3.
Every segment between two onsets was extracted, and its
peak was automatically detected as seen in Figure 4. There
were 57,659 beat segments extracted. Out of these segments:
31,989 segments were labeled as artifact, 19,736 segments
were labeled as normal, and 5,934 were labeled as disagreed.

Although there was no preprocessing of our PPG data, we
did automatic artifact classification of beat segments larger
than 2.4 seconds. A beat of 2.4 seconds indicates the subject’s
heart rate (HR) is at 25 beats per minute (BPM, see Equa-
tion 1), a value we are confident did not occur for newborns
during our data collection [15].

60 seconds

HR

)

- Length of Beat Segment in seconds
D. Feature Extraction

Throughout our experiment we attempted both a ML and a
rule based approach. When approaching the feature extraction,
we sought to find features that would yield noticeable differ-
ence for normal versus artifact segments, as well as replicate
useful features from previous studies [9], [10], [12].

An example of feature extracted due to noticeable dif-
ference between normal and artifact is Averaged Dynamic
Time Warping Euclidean distance € 4, prw (see Algorithm 1).
Two examples of features replicated from previous studies are
diastolic and systolic phase duration [9], [10]. When analyzing
a beat segment we can find a local peak (see Figure 4). The
period from the first onset to the peak is the systolic phase,
while the period from the peak to the second onset is the
diastolic phase.

Other features include: Onset-Amplitude Ratio (OAR, see
Equation 2), Amplitude (Amp), beat duration, value at half
of systolic phase, peak-mid systolic distance (PMSD, see
Equation 3), peak-mid diastolic distance (PMDD, see Equation
4). There were also features that used values from previous
neighboring beats such as: Amp ratio (see Equation 5), Di-
astolic phase ratio (see Equation 6), Systolic phase ratio (see
Equation 7), and diastolic/systolic duration ratio (see Equation
8).
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E. Artifact Detection Algorithms

a) Rule Based: When building the rule based method,
we followed the trend of previous studies [9], [10] and built
a linear set of rules. Meaning each feature is transformed into
a rule and if the segment satisfies its conditions, the segment
is then analyzed by a different rule. The process goes linearly
until all rules have been passed and the segment is classified
as normal, or if one rule spots the segment to be an artifact,
which then ends the evaluation. Our rule scheme can be seen
in Figure 5.

b) Machine Learning: In order to build the ML clas-
sifier, we tested Logistic Regression, Random Forest (RF),
Decision Trees and Gradient Boosting (GB). In order to choose
which features would be fed to the models, Recursive Feature
Elimination (RFE) was employed. When performing RFE, we
aimed at picking the features that would yield the highest
Sensitivity for artifact detection.

RF and GB were the two best performing models. RF had
high Sensitivity (Sens) and GB displayed high Specificity
(Spec). Upon combining both models, we were able to achieve
a 3-stage ML based classifier that had better performance than
using either just RF or GB. The 3-stage ML is described in
Figure 6.

FE. Performance Evaluation

Artifact detection is a segmentation problem where each part
of the waveform could either be an artifact or normal. Since
we approach the problem by classifying each beat segment, we
thus used the metrics employed in classification problems to
evaluate the performance of the different algorithms: Sensitiv-
ity, Specificity, and Accuracy (Acc). However, given that the
problem still is a segmentation problem at core, we decided to
also use Intersection over Union (IoU) score to achieve more
comprehensive evaluation.

e TP
Sen81t1V1ty =TPR = m (9)
TN
ificity = —— 1
Specificity TN+ FP (10)
TP+ TN
A = 11
Y = FPY TP+ FN + TN (b

where:

o TP: the number of artifact predicted as artifact
o FP: the number of normal predicted as artifact
o TN: the number of normal predicted as normal
o FN: the number of artifact predicted as normal

Rule 1: Only one peak was identified
in the beat
Rule 2: Beat is shorter than 0.7s Rule 21: Amplitude isn’t larger then
25% or smaller than 400% of the
previous amplitude
Rule 20: Length of beat isn’t larger
than 33% or smaller than 300% of
the previous beat
Rule 19: Systolic phase isn’t larger
than 33% or smaller than 300% of
previous systolic phase
Rule 18: Diastolic phase has a value
smaller than any of the onsets

Rule 3: Diastolic phase is shorter
than 0.51s

Rule 4: Systolic phase is shorter
than 0.51s

Rule 5: The PPG value at half the
Systolic length is less than 36,000

Rule 6: The ratio of systolic and
diastolic length is less than 15

Rule 17: Verify systolic values are
ever-increasing

Rule 16: Total duration of beat is
larger than 0.27s and shorter than
2.4s
Rule 15: Systolic and diastolic
duration ratio is bigger than 1.1

Rule 7: The ratio of the sum of
values at onsets and the amplitude
is larger than 1.45
Rule 8: Amplitude is less than
42,500

Rule 14: Systolic phase is longer
than 0.08s and shorter than 0.49s

Rule 9: Ratio of amplitude of
current beat and amplitude of
previous beat is less than 1.25

Rule 10: Average Euclidean Dynamic
Time Warping Distance is less than
1482
Rule 11: PMSD < 257

Rule 13: The peak is less or equal to
double the mean of PPG waveform

Rule 12: PMDD < 1930

True

Fig. 5. The rule based algorithm employed by this study. The rules in blue
were developed based on our feature engineering. The yellow rules were
based on previous studies that also employed rule based artifact detection
mechanisms [9], [10]
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Fig. 6. The proposed 3-Stage ML model. Here, the predictions from the
all-around GB model are used as preliminary predictions. Then, if the High
Sens RF model predicted any normal (negatives), we overwrite the all-around
predictions for those indexes. If the High Spec GB model predicted any artifact
(positives), we overwrite the all-around predictions for those indexes. The end
result is the final predictions.

IoU score. IoU scores the amount of overlap present
between two different measurements. In the example of our
artifact detection study, IoU would measure the amount of
overlap between the ground truth and the algorithms’ pre-
diction. Sensitivity, Specificity, and Accuracy provide reliable
information on how many segments were correctly classified.
However, these beats, especially the artifact ones, can vary in
duration and thus IoU score allows us to calculate what per-
centage of the total waveform length was correctly segmented.

IV. RESULTS

A. Agreed Beats vs. All Beats

All experiments were done on either all beats or on only
agreed beats. When only agreed beats were employed, all beats
where the annotators disagreed on its class were removed from
both train and test set. When all beats were used, the disagreed
beats were considered artifacts.



TABLE I
SUCCESS METRIC SCORES FOR ALL BEATS AND ONLY AGREED BEATS

Beats Used All Beats Only Agreed Beats
Method Rule Based RF GB 3 Stage ML Rule Based RF GB 3 Stage ML
IoU 70.94% 77.20% 78.29% 78.55% 74.01% 81.71% 82.49% 84.01%
Accuracy 72.06% 77.79% 78.99% 79.05% 74.98% 81.71% 82.77% 84.27%
Specificity 60.15% 55.42% 67.62% 64.68% 60.15% 68.40% 80.67% 82.18%
Sensitivity 77.52% 88.22% 84.29% 85.75% 83.31% 89.65% 83.95% 85.44%

All Beats evaluation had every single segment extracted from the cases seen and disagreed beats were considered artifacts. Only Agreed Beats evaluation

had disagreed beats removed from train and test set before inference.

Algorithm 1 Extraction of Dynamic Time Warping Features
Input: Raw waveform divided into beat segments
Output: obtain Euclidean Dynamic Time Warping Dis-
tance Epry and Averaged Euclidean Dynamic Time Warp-
ing Distance £4,prw
Initialize: Acquire beat B; of length £; seconds and the
previous beat By of length Ly seconds. Set total length £
tobe L =Ly + L
Feature Extraction: Epryy =
gAvDTW = DTW(Bl, Bo) =L

DTW(Bl 5 Bo) and

B. IoU and Accuracy

IoU and Accuracy (Acc) have similar values due to the
segments length being fairly stable across all normal and
most artifact beat segments. We observed that the ML models
significantly outperformed the rule based method as shown
in Table I The IoU and Acc metrics taken for disagreed-
beats-based ML models performed better than agreed-beats-
based rule based methods, which denotes significant superior
performance. When comparing different ML models, IoU and
Acc are superior for the proposed 3 stage ML model.

TABLE II
HIGH SENS/SPEC MODELS USED IN 3 STAGE ML
Models Specificity Sensitivity
RF high Sens 46.76% 95.34%
GB high Spec 93.88% 61.82%

C. Sensitivity and Specificity

The Sensitivity and Specificity of the tested models can be
seen both in Table I and Table II. In Table I we see the metrics
from the standard RF and GB, as well as for the 3-stage ML
model. In Table II we see the metrics from the high Specificity
and the high Sensitivity ML models that were later combined
with GB to make the 3-stage ML model (see Figure 6). In
order to achieve the high Specificity and high Sensitivity ML
models, we adjusted the prediction confidence level needed
for artifact prediction. The best model all-around was GB. RF
had an inherent tendency to achieve high Sensitivity, while
GB had an inherent tendency to achieve high Specificity.

V. DISCUSSION

In this study, we investigated the use of rule based and
Machine Learning based Artifact Detection algorithm with
PPG data from inexpensive IoT based automated collection.
We propose a 3-stage Random Forest-Gradient Boosting Ar-
tifact Detection model that would balance a high Specificity,
a high Sensitivity and an all-around model to achieve high
IoU score and accuracy. For our dataset, the 3-stage Machine
Learning classifier significantly outperformed the rule based
classifiers, achieving 10% higher IoU in both settings where
disagreed beats were included in the analysis and when they
were removed.

As part of our future work, we aim to increase our dataset
and attempt Deep Learning methods. We also seek to employ
our 3-stage ML model on a Pi-Top™ so we can perform artifact
detection and removal before the PPG data is uploaded to
the online encrypted database. A setup with integrated artifact
detection and removal would allow for seamless acquisition
of important features used for CCHD detection.
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