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ABSTRACT

The emergence of Positron Emission Tomography (PET)
imaging allows us to quantify the burden of amyloid plaques
in-vivo, which is one of the hallmarks of Alzheimer’s dis-
ease (AD). However, the invasive exposure to radiation and
high imaging cost significantly restrict the application of PET
in characterizing the evolution of pathology burden which
often requires longitudinal PET image sequences. In this
regard, we propose a proof-of-concept solution to generate
the complete trajectory of pathological events throughout
the brain based on very limited number of PET scans. We
present a novel variational autoencoder model to learn a
latent population-level representation of neurodegeneration
process based on the longitudinal S-amyloid measurements
at each brain region and longitudinal diagnostic stages. As
the propagation of pathological burdens follow the topology
of brain connectome, we further cast our neural network
into a supervised sequential graph VAE, where we use the
brain network to guide the representation learning. Experi-
ments show that the disentangled representation can capture
disease-related dynamics of amyloid and forecast the level of
amyloid depositions at future time points.

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder resulting in cognitive impairments that interfere with
functions for daily life [1]. In current pathophysiologic un-
derstanding of AD, $-amyloid deposition occurs as the first
pathological event, followed by tau fibrillary tangles as the
downstream effect , and chronologically lead to neurodegen-
eration as the final signal of cognitive disorders [2]. Thus,
accumulation of S-amyloid neuritic plaques is one of the ear-
liest risk factor for potential development of AD [3] and one
of the key proteins to assess in understanding AD [2, 4].
Non-invasive Positron Emission Tomography (PET) pro-
vides a direct measure of in vivo S-amyloid status to better
characterize early AD. Despite the improved diagnostic abil-
ity from amyloid PET, the cost for PET scans are very expen-
sive (~$5,000) which prevents its widespread clinical adop-

tion. Under limited amyloid PET data at present, to facilitate
clinical research on f-amyloid, a framework that can learn
dynamics of amyloid and forecast future measures from lim-
ited past timestamps may be of great interest, helping under-
stand how amyloid functions and its critical roles in AD.

Many studies have shown that structural brain connectiv-
ity from Diffusion Tensor Imaging (DTI) is highly associated
with AD progression [5, 6, 7], whose topology between re-
gions of interest (ROIs) behaves as a path for the amyloid de-
position [8]. However, it is very challenging to learn complex
dynamics of -amyloid over brain networks through noisy
data from limited timestamps per subject (e.g., less than 3
timestamps on average). Given limited and noisy longitudi-
nal S-amyloid PET measures over a structural brain network,
our aim is to develop a framework to uncover the disease dy-
namics or progression pattern of -amyloid and forecast amy-
loid depositions at future timestamps to better characterize the
progression of AD. Unfortunately, this is not trivial as ob-
servations from PET scans are complexly affected by several
variables such as age, gender, anatomy, disease effect, etc.

Notice that these variables can be separated as time-
varying and time-invariant components, where the progres-
sion of AD is a major factor for the time-varying one. There-
fore, separating them in a latent space is critical; disentangled
representation learning would be able to disentangle time-
invariant contents (e.g., anatomical information) from time-
varying contents (e.g., morphological changes, dynamics of
amyloid). Such disentangled representations not only help
model becomes more explainable, but also can benefit con-
ditional data generation for downstream tasks [9, 10], e.g.,
cross-modality registration and segmentation [11, 12].

To this end, motivated by the schematics of Sequential
Graph VAE [13, 14, 15], we develop a framework that learns a
latent disentangled representation composed of time-varying
and time-invariant latent components to characterize longitu-
dinal S-amyloid over the structural brain network. The core
idea is to capture disease-related dynamics of S-amyloid as
well as forecast future amyloid depositions using the disen-
tangled representation. The major contributions of this work
are: 1) We incorporated “time-dependent” label as a super-
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Fig. 1: A graphical visualisation of the encoder and decoder. (a) Encoder: time-invariant random variable (r.v.) f are inferred by time-dependent labels y
and data X, and time-varying r.v. z are sequentially inferred by labels y and data X ; (b) Decoder: data are sequentially generated from time-dependent labels

y, time-invariant r.v. f and time-varying r.v. z via latent r.v. W.

vision into the model to characterize longitudinal effect; 2)
We integrated a brain network to make the framework more
robust to the subject-wise heterogeneous dynamics; 3) We
validated this framework on longitudinal S-amyloid over the
brain network with diagnostic labels of AD from Alzheimer’s
Disease Neuroimaging Initiative (ADNI). Experimental re-
sults suggest a significant potential that this framework will
facilitate clinical research by enriching amyloid data collec-
tion and help better understand the role of amyloid in the pro-
gression of AD before the disease symptoms manifest.
Related Work. Disentangled representation learning aims
to map original data onto a low-dimensional space to help
extract semantically meaningful components. [3-VAE and
follow-up works [16, 17, 18] proposed a heavier penalty on
KL divergence term in objective function to learn a better
disentanglement representation by encouraging learning of
independent factors. FHVAE [14] and DSVAE [15] were de-
veloped for sequential data generation by elaborately design-
ing model architectures and disentangling latent factors into
time-invariant and time-varying parts. However, less research
has been conducted for disentangled representations of se-
quences with the capacity which incorporates time-dependent
labels and graph structure and performs forecasting as well.
Furthermore, despite several works on disease progressing
exist [19, 20, 21, 22], representation disentanglement of med-
ical sequential data has been under-explored.

2. METHODS

2.1. Supervised Sequential Graph VAE Model

Supervised Sequential Graph Variational Autoencoder (SSG-
VAE) is designed for learning a disentangled representation
composed of time-variant and time-invariant latent variables
to capture the dynamics of longitudinal measures and forecast
the measure at the future timestamp. We observed sequen-
tial data that appear as M *“P pairs of supervised data points
D5 = {X;,y;} M| over a shared graph G with N nodes,
where X; = (X, 1,... X, r,) refer to the i-th sequential ob-
servations, ie., X;; € RY, and y;, = (Yi1s---Yi,) de-
note the corresponding time-dependent diagnostic labels. We

will leave out the index ¢ wherever it is clear that the terms
we are referring to are associated with a single data point.
SSG-VAE simultaneously trains a probabilistic encoder and
decoder, and factorizes latent variables into two disentangled
variables: time-invariant variable f and time-varying variable
z1.r = (21,...,27). We expect that latent variable f can
encode the time-invariant global aspects of the data, while la-
tent variable z will encode how the time-varying information
at timestamp ¢ is morphed into that of timestamp ¢+-1. The ar-
chitectures of decoder and encoder are visualised in Figure 1.

2.1.1. Objective Function

We design a supervised variational autoencoder framework
with an objective function [23, 24] defined over D*"“P as
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where the model parameters of the decoder is denoted as 6
and the model parameters of the encoder is denoted as ¢.
Here, p(.) denotes the empirical distribution, pg(.) refers to
the decoder distribution and g¢(.) is the variational posterior.

2.1.2. Prior

The prior of time-invariant latent variable f is defined as f ~
N(0,1). We assume that time-varying latent variables z1.7
follow a sequential prior z;|2z;_1 ~ N (, diag(o?)), where
[et, o] are the parameters of the prior distribution and is pa-
rameterized as a recurrent network LSTM [25], in which the
hidden states are updated temporally. Moreover, prior dis-
tributions of time-dependent labels y follow the multinomial
distribution, i.e., pp(y:) = Cat(y:|w). Assuming labels y,
time-invariant f and time-varying z;.7 are mutually indepen-
dent, the joint prior pg(y, f, z1.7) can be factorized as

T T
po(y, frzur) = [ [ po(ye)pe(f) [ [po(zilz<i).
t=1 t=1

We use independent priors to regularize latent variables to be
as independent as possible.



2.1.3. Generative Model: Decoder
The generative model is formalized by the factorization as
pG(X:Z%f»zl:T) (3)
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where W = (Wy,...,Wr) denotes the P-dimensional la-
tent vectors and W; € RV*P_ Latent vectors W are gen-
erated from the time-dependent y and the two disentangled
variables, i.e., the time-invariant f and the time-varying z.
We assume that data sequences X are generated from latent
vectors W via the graph convolution as

X, = Aw,0, C)

where © is the trainable weight matrix, A is the adjacent ma-
trix of the graph G, A = D= Y2AD-12 A = A+ 1, and
D =3 j A;;. That is, we incorporate the topology of the

graph G into the generative process using graph convolution.

2.1.4. Inference Model: Encoder

We use variational model g4 (f, z1.7| X, y) to approximate
the true posterior distribution pg(f, z1.7|X,y) over latent
variables given data [26, 27]. The inference is factorized as

T
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The time-invariant f are conditional on the entire time
sequences of data and time-dependent y, while the time-
dependent z; is inferred from the sequences before timestamp
t,i.e., X<t and y<;. We model both f and z via LSTM.

2.2. Predictive Supervised Sequential Graph VAE Model

Although SSG-VAE model in Section 2.1 can successfully
learn a disentangled representation which decomposes the
static, time-varying and label information, it cannot be uti-
lized for data forecasting at future timestamps, due to lack of
the forecasting layer in the model. To conquer this challenge,
we extend our SSG-VAE to Predictive Supervised Sequential
Graph VAE (PSSG-VAE), which allows us to forecast latent
variables and output outcomes at future time stamps.

Assuming the complete data pairs X = (Xq,...,Xr)
and y = (y1,...,yr), we denote the observed data pairs as
X =(X1,...,Xr—1)andy = (y1,...,y7-1), with X7, yr
denotes the forecast data pair. Then we can reformulate the
inference model in Section 2.1.4 as

q¢(f,z1;T|X,y) = q¢(f,z1;T71‘X,:l’})q¢(ZT|ZT71), (6)

where gy (zr|2r—1) can be any parametric function and we
use a naive linear transition model for the rest of this work,
and ¢¢(f, z1.:7-1 |X, 9) can be factorized similarly as Eq. 5.
With aforementioned reformulation, our extended PSSG-
VAE will be capable of data forecasting at future timestamps.

3. EXPERIMENTAL RESULTS

3.1. ADNI Dataset and Experimental Setup

Total of N=720 subjects were taken from the ADNI study
that contained both amyloid PET and DTI images. Longi-
tudinal S-amyloid data were processed from amyloid PET
scans, and structural connectivity matrices (i.e., number of
fiber tracts connecting different ROIs) were derived from DTI
registered at Destrieux atlas in FreeSurfer [28] using a in-
house tractography pipeline. Specifically, standardized up-
take value ratio (SUVR) was computed for S-amyloid at each
brain region, and an overall graph was obtained by taking the
average of connectivity matrices from healthy subjects. Diag-
nostic labels of each scan categorize subjects’ dementia stage
as one of Cognitive Normal (CN), Significant Memory Con-
cern (SMC), Early Mild Cognitive Impairment (EMCI), Late
Mild Cognitive Impairment (LMCI) and Alzheimer’s Disease
(AD). Demographics of the subjects are presented in Table 1.

Table 1: Demographics of the ADNI dataset.

Demographics | CN SMC EMCI LMCI AD
# of Subjects 204 80 240 107 89
Gender (M/F) 106:98 27:53 138:102 61:46 44:45

Age (mean,std) | 73.33(6.06) 71.06(5.01) 70.91(7.16) 72.04(7.92) 73.22(7.48)

CN: Cognitive Normal; SMC: Significant Memory Concern; EMCI: Early Mild Cogni-
tive Impairment; LMCI: Late Mild Cognitive Impairment; AD: Alzheimer’s Disease.

We validated our framework on the dataset from ADNI
study including longitudinal S-amyloid data on brain net-
works with diagnostic stage labels of AD. We conducted
three experiments as described below. Section 3.2 displays
latent traversals over labels, where we explored how patterns
of generated amyloid will change corresponding to variations
of diagnostic labels. Section 3.3 shows reconstruction per-
formance on the dynamics of 3-amyloid, compared with the
ground truth and visualized on brain surfaces. Section 3.4
demonstrates forecasting performances at the future times-
tamp with 3-fold cross validation. Here, since each subject
has different number of visits, we propose two baseline ap-
proaches for comparison with our approach. One is the
averaging where the amyloid measure at the last timestamp is
estimated as the average of all historical measures at previous
timestamps , the other is the linear regression by leveraging
the average from all past timestamps as predictors. Root
mean square error (RMSE) and Mean Absolute Error (MAE)
between the ground truth and the predicted are used as the
metrics for evaluation of forecasting performance.

3.2. Latent Traversals over Labels

To explore the relation between labels and generated amyloid,
we conducted latent traversals task over labels of diagnostic
stages using proposed SSG-VAE in Section 2.1. Specifically,
we fixed a time-invariant variable f and a time-varying vari-



EMCI

—0

Fig. 2: Latent Traversals over Labels. From left to right: generated 3-amyloid on brain surfaces with latent variables fixed and diagnostic labels varying from
CN to AD, respectively. Label-related patterns match with existing knowledge from the neuroscience domain.

able z, and we varied the corresponding label from CN to
AD respectively. We reconstructed the 5-amyloid with those
different labels but the same other latent variables shown in
Figure 2. It is clear that as the status of disease stage becomes
worse, the values of amyloid measure become larger, match-
ing the existing knowledge from the neuroscience domain.

3.3. Reconstruction on the Dynamics of 3-Amyloid

Here we illustrate that our SSG-VAE model can learn the
complex dynamics of S-amyloid by showing the reconstruc-
tion results on the testing data. We show the true amyloid and
reconstructed amyloid on brain surfaces in Figure 3. It visu-
ally demonstrates that the reconstruction not only captures the
anatomical information but also successfully learns the true
dynamics from the limited and noisy longitudinal data, as it
resembles the patterns of amyloid on brain surfaces across
timestamps (see the color changes in Figure 3).

Fig. 3: Top: true brain surfaces for a randomly selected subject at times-
tamp to, t1 and t2 (True). Bottom: reconstructed brain surfaces for the same
subject at timestamp o, t1 and t2 (Recon). Generated via BrainPainter [29].

3.4. Forecasting 5-Amyloid at the Future Timestamp

We validated proposed PSSG-VAE in Section 2.2 on the fore-
casting task, and showed that the overall RMSEs on testing
for average approach, regression approach and ours are 0.38,
0.22 and 0.19, respectively. Our approach attains the low-
est overall RMSE. We also summarised RMSEs and MAEs
across the diagnostic labels in Table 2. It indicates that our ap-
proach performs significantly better than regression approach
at the earliest CN stage, which shows the advantage of our
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Fig. 4: Boxplot of forecasting performance at future timestamp visualizing
RMSEs for average (AVE), regression (LR) and our approach. Ours yields
lowest overall RMSE and smaller variation compared to other approaches.

approach by capturing the earliest sign of cognitive decline
at the preclinical stage. Moreover, we visualized RMSEs for
average approach, regression approach and ours in Figure 4.
It shows that the forecasts from our approach is more robust
and has smaller variation, as demonstrated by the smaller in-
terquartile range and fewer extreme outliers in the boxplot.

Table 2: Forecasting Performance across diagnostic stages.

\ | CN  SMC EMCI LMCI AD

Averace RMSE | 042 039 0.35 037 036
2 MAE | 032 031 0.28 030 028
Rearession | RMSE | 030 0.20 0.17 017 020
cgressio MAE | 021 0.6 0.13 0.13 0.15
o RMSE | 020 020 0.17 015  0.19
urs MAE | 015 0.5 0.13 0.11 0.14

CN: Cognitive Normal; SMC: Significant Memory Concern; EMCI: Early Mild Cogni-
tive Impairment; LMCI: Late Mild Cognitive Impairment; AD: Alzheimer’s Disease.

4. CONCLUSION

Understanding dynamics of S-amyloid and forecasting future
amyloid depositions will facilitate clinical research in the pre-
clinical stages of AD. Here we developed a novel Supervised
Sequential Graph VAE to learn a latent representation com-
prising time-varying and time-invariant information to char-
acterize longitudinal S-amyloid over structural brain network.
With the learned disentangled representation, our framework
can capture the robust dynamics of amyloid and forecast fu-
ture amyloid depositions from a few past time points.



Acknowledgement. Supported by GAANN Doctoral Fel-
lowships in CSE at UTA, NSF IIS CRII 1948510, NIH RF1
AG059312, NIH R03 AG070701, IITP-2019-0-01906 funded
by MSIT (AI Graduate Program at POSTECH) and Korea
R&D Special Economic Zone Foundation grant funded by the
Ministry of Science and ICT (Project ID : 1711150077).

5. REFERENCES

[1] Mark S Henry et al., “The development of effective biomarkers
for alzheimer’s disease: a review,” IJGP, vol. 28, no. 4, pp.
331-340, 2013.

[2] Randall J Bateman et al., “Clinical and biomarker changes in
dominantly inherited alzheimer’s disease,” N Engl J Med, vol.
367, pp. 795-804, 2012.

[3] Clifford R Jack Jr et al., “Nia-aa research framework: toward
a biological definition of alzheimer’s disease,” A&D, vol. 14,
no. 4, pp. 535-562, 2018.

[4] Joseph Therriault et al., “Determining amyloid-3 positivity
using 18f-azd4694 pet imaging,” JNM, vol. 62, no. 2, pp. 247—
252, 2021.

[5] Jacob W Vogel et al., “Spread of pathological tau proteins
through communicating neurons in human alzheimer’s dis-
ease,” Nature communications, vol. 11, no. 1, pp. 1-15, 2020.

[6] Ashish Raj et al., “A network diffusion model of disease pro-
gression in dementia,” Neuron, vol. 73, no. 6, pp. 12041215,
2012.

[7] Xin Ma et al., “Learning multi-resolution graph edge embed-
ding for discovering brain network dysfunction in neurological
disorders,” in IPMI. Springer, 2021, pp. 253-266.

[8] Seong Jae Hwang et al., “Associations between positron
emission tomography amyloid pathology and diffusion tensor
imaging brain connectivity in pre-clinical alzheimer’s disease,”
Brain connectivity, vol. 9, no. 2, pp. 162-173, 2019.

[9] Yizhe Zhu et al., “S3vae: Self-supervised sequential vae for
representation disentanglement and data generation,” in CVPR,
2020, pp. 6538-6547.

[10] Jiahong Ouyang, Ehsan Adeli, et al., “Representation dis-
entanglement for multi-modal mr analysis,” arXiv preprint
arXiv:2102.11456, 2021.

[11] Chen Qin, Bibo Shi, et al., “Unsupervised deformable registra-
tion for multi-modal images via disentangled representations,”
in IPMI. Springer, 2019, pp. 249-261.

[12] Junlin Yang et al., “Cross-modality segmentation by self-
supervised semantic alignment in disentangled content space,”
in DART and DCL. Springer, 2020.

[13] Fan Yang et al., “Disentangled sequential graph autoencoder
for preclinical Alzheimer’s disease characterizations from adni
study,” in MICCAI, 2021, pp. 362-372.

[14] Wei-Ning Hsu et al., “Unsupervised learning of disentan-
gled and interpretable representations from sequential data,” in
NIPS, 2017, pp. 1878-1889.

[15] Li Yingzhen et al., “Disentangled sequential autoencoder,” in
ICML. PMLR, 2018, pp. 5670-5679.

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

Irina Higgins, Loic Matthey, et al., “beta-vae: Learning basic
visual concepts with a constrained variational framework,” in
ICLR, 2017.

Ricky T. Q. Chen, Xuechen Li, et al., “Isolating sources of
disentanglement in variational autoencoders,” in NIPS. 2018,
vol. 31, Curran Associates, Inc.

Hyunjik Kim and Andriy Mnih, “Disentangling by factoris-
ing,” in ICML. PMLR, 2018, pp. 2649-2658.

Hubert M Fonteijn et al., “An event-based model for disease
progression and its application in familial alzheimer’s disease
and huntington’s disease,” Neurolmage, vol. 60, no. 3, pp.
1880-1889, 2012.

Bruno M Jedynak et al., “A computational neurodegenera-
tive disease progression score: method and results with the
alzheimer’s disease neuroimaging initiative cohort,” Neuroim-
age, vol. 63, no. 3, pp. 1478-1486, 2012.

Braden C Soper et al., “A hidden markov model for population-
level cervical cancer screening data,” Statistics in Medicine,
vol. 39, no. 25, pp. 3569-3590, 2020.

Rui Meng et al., “Hierarchical hidden markov jump pro-
cesses for cancer screening modeling,”  arXiv preprint
arXiv:1910.05847,2019.

DP. Kingma et al., “Semi-supervised learning with deep gen-
erative models,” in NIPS, 2014, pp. 3581-3589.

Siddharth N et al., “Learning disentangled representations
with semi-supervised deep generative models,” in NIPS. 2017,
vol. 30, Curran Associates, Inc.

Sepp Hochreiter et al., “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

Michael I Jordan et al., “An introduction to variational methods
for graphical models,” Machine learning, vol. 37, no. 2, pp.
183-233, 1999.

DP. Kingma and M. Welling, “Auto-encoding variational
bayes,” CoRR, vol. abs/1312.6114, 2014.

C. Destrieux et al., “Automatic parcellation of human cortical
gyri and sulci using standard anatomical nomenclature,” Neu-
roimage, vol. 53, no. 1, pp. 1-15, 2010.

Rézvan V Marinescu et al., “Brainpainter: A software for
the visualisation of brain structures, biomarkers and associated
pathological processes,” in MBIA and MFCA, pp. 112-120.
Springer, 2019.



