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Abstract

We prove a Parisi formula for the limiting free energy of multi-species spherical spin

glasses with mixed p-spin interactions. The upper bound involves a Guerra-style

interpolation and requires a convexity assumption on the model’s covariance function.

Meanwhile, the lower bound adapts the cavity method of Chen so that it can be

combined with the synchronization technique of Panchenko; this part requires no

convexity assumption. In order to guarantee that the resulting Parisi formula has a

minimizer, we formalize the pairing of synchronization maps with overlap measures

so that the constraint set is a compact metric space. This space is not related to the

model’s spherical structure and can be carried over to other multi-species settings.
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1 Introduction

Spin glasses are models of disordered magnetism, in which interacting magnetic

spins have irregular alignments. Mean-field spin glasses, most famously the Sherrington–

Kirkpatrick (SK) model [65, 44], have served as rich prototypes for more physical models

such as that of Edwards and Anderson [31]. A centerpiece of the mean-field paradigm

is the ability to express the limiting free energy with variational formulas. Following

the inspiration of Parisi [63, 64], mathematicians have managed to make these formulas

rigorous and subsequently reveal remarkable structure arising in the associated Gibbs

measures. The landmark work of Talagrand [73] in the case of the SK model was followed

by similar results for general mixed p-spins [58, 12] and spherical models [72, 24, 26, 40].

In order to relax the mean-field assumptions of classical models, certain asymmetric

models have been promoted and studied recently. These include so-called “multi-species”

models in which the spin coordinates are partitioned into several groups, between

which various strengths of interactions are allowed, e.g. [34, 74, 18, 32, 33, 17, 16]. By

raising new challenges, this direction has repeatedly inspired upgrades to the theoretical

toolbox used to prove, among other things, variational expressions for free energy. This

paper furthers this effort by addressing a multi-species version of classical mixed p-spin

spherical models.

Our main result is a Parisi-type variational formula for the limiting free energy of

these models (Theorem 1.3). Along the way, we formally define a metric space of “syn-

chronized” overlap measures (Definition 1.2), objects which were used by Panchenko

[59] in proving the analogous formula for the multi-species SK model on the hypercube.

With this formalization we are able to establish Lipschitz continuity for the Parisi func-

tional (Theorem 1.5) and the existence of minimizers (Corollary 1.6). Furthermore, the

framework we develop here enables a companion work [20] to elucidate the effect of

interspecies interactions on the structure of minimizers.

1.1 Definitions

Fix a finite set S , to index the various species. Suppose that for each positive integer

N , we have a partition {1, 2, . . . , N} = ]s∈S Is. Denote the cardinality of Is by Λs(N), so

that N =
∑

s∈S
Λs(N). When the value of N is clear from context, we will usually write

Ns = Λs(N).
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Multi-species mixed p-spin spherical models

We consider spin configurations σ = (σ1, . . . , σN ) ∈ RN such that

∑

i∈Is

σ2
i = Ns for each s ∈ S .

In other words, σ belongs to the following product of spheres:

TN :=
⊗

s∈S

SNs , where Sn := {σ ∈ R
n : ‖σ‖22 = n}. (1.1)

We say that coordinate i belongs to species s whenever i ∈ Is. Conversely, we will

write s(i) = s(i, N) to express whichever species a given coordinate i belongs to. We

assume that the fraction of coordinates allocated to each species, which we denote by

λs(N) := Ns/N , converges as N → ∞:

lim
N→∞

λs(N) = λs ∈ (0, 1] for each s ∈ S . (H1)

For each integer p ≥ 1, let ∆2
p = (∆2

s1,...,sp)s1,...,sp∈S be a symmetric p-dimensional

tensor of size |S |p, which will govern the p-spin interaction strengths between species.

The p-spin Hamiltonian on TN is defined as

H
(p)
N (σ) :=

1

N (p−1)/2

N∑

i1,...,ip=1

√
∆2

s(i1),...,s(ip)
gi1,...,ipσi1 · · ·σip , (1.2)

where each gi1,...,ip is an independent standard Gaussian random variable. To simplify

notation, we will use the following shorthands:

• The set of integers {1, 2, . . . , N} will be denoted by [N ].

• For a p-tuple of coordinates i = (i1, . . . , ip) ∈ [N ]p, we have the corresponding

p-tuple of species:

s(i) = s(i, N) := (s(i1), . . . , s(ip)) ∈ S
p.

In addition, if σ ∈ RN , then we have the p-spin product

σi := σi1 · · ·σip ∈ R.

• For a p-tuple of species s = (s1, . . . , sp) ∈ S p and q = (qs)s∈S ∈ RS , we will write

qs := qs1 · · · qsp ∈ R.

For instance, given the parameters λ = (λs)s∈S from (H1) governing the proportion

of coordinates belonging to each species, we can write λs = λs1 · · ·λsp .

Remark 1.1. We have elected to not burden the reader with symbolic cues such as
~i or i to distinguish vector quantities and scalar quantities, since the nature of such

objects should always be clear from context. The single exception is a vector indexed

by S , such as q = (qs)s∈S ∈ RS . For these quantities, the boldface indicates that the

analogous object in the classical single-species model would be a scalar. This distinction

will be especially important when we discuss replica overlaps. Also note that the species

identifier usually appears as a superscript and should not be mistaken for an exponent.

With these notational conventions, we can rewrite (1.2) as

H
(p)
N (σ) =

1

N (p−1)/2

∑

i∈[N ]p

√
∆2

s(i)giσi. (1.3)
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Multi-species mixed p-spin spherical models

The mixed Hamiltonian is then given by

HN (σ) :=
∑

p≥1

βpH
(p)
N (σ), (1.4)

where β = (βp)p≥1 satisfies a decay condition of the form

∑

p≥1

β2
p‖∆2

p‖∞(1 + ε)p <∞ for some ε > 0. (H2)

If βp = 0 for all p 6= 2, then (1.4) would be called an SK model.

With µn denoting normalized surface measure on the sphere Sn, we equip the

configuration space TN from (1.1) with the product measure

τN :=
⊗

s∈S

µNs .

With τN serving as a reference measure, the Hamiltonian (1.4) naturally produces a

Gibbs probability measure GN on TN , defined by

GN (dσ) :=
1

ZN
exp(HN (σ)) τN (dσ). (1.5)

The random normalizing constant ZN is called the partition function,

ZN :=

∫

TN

exp(HN (σ)) τN (dσ),

and we are interested in the limiting value of its exponential growth rate, or free energy:

FN :=
1

N
logZN .

1.2 Main results: the Parisi formula

We will show that limN→∞ FN exists, is non-random, and is given by a variational

formula called the Parisi formula. In order to define the objective function, called the

Parisi functional, we first need to introduce some other relevant functions and also define

the constraint set over which the optimization will take place.

1.2.1 Relevant functions

As a centered Gaussian process, (HN (σ))σ∈TN
is characterized by its covariance function.

If we define, for any σ1, σ2 ∈ TN , the overlap vector R(σ1, σ2) = (Rs(σ1, σ2))s∈S with

coordinates

Rs(σ, σ′) :=
1

Ns

∑

i∈Is

σiσ
′
i, (1.6)

then we have the following covariance relation:

E[HN (σ)HN (σ′)] = NξN (R(σ, σ′)), where (1.7)

ξN (q) :=
∑

p≥1

β2
p

∑

s∈S p

∆2
sλ

s(N)qs for q ∈ [−1, 1]S . (1.8)

Since we assume λs(N) → λs as N → ∞, the function ξN converges to

ξ(q) :=
∑

p≥1

β2
p

∑

s∈S p

∆2
sλ

sqs, q ∈ [−1, 1]S .
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Multi-species mixed p-spin spherical models

We assume ξ is convex on [0, 1]S . That is, its Hessian is nonnegative definite on this

domain:

∇2ξ(q) ≥ 0 for q ∈ [0, 1]S . (H3)

Next define, for each s ∈ S , the function

ξs(q) :=
1

λs
∂ξ

∂qs
(q) =

∑

p≥1

pβ2
p

∑

t∈S p−1

∆2
(t,s)λ

tqt, (1.9)

as well as

θ(q) := q · ∇ξ(q)− ξ(q) =
∑

p≥1

(p− 1)β2
p

∑

s∈S p

∆2
sλ

sqs. (1.10)

Note that on [0, 1]S , both ξs and θ are non-decreasing in every coordinate.

1.2.2 The constraint set

The argument to the Parisi functional will be a pair (ζ,Φ), where ζ is a probability

measure on [0, 1] (always a Borel measure), and Φ belongs to the following space of

functions.

Definition 1.2. Given λ = (λs)s∈S , let us say that a map Φ = (Φs)s∈S : [0, 1] → [0, 1]S

is λ-admissible if each coordinate Φs is non-decreasing and continuous, and jointly they

satisfy
∑

s∈S

λsΦs(q) = q for all q ∈ [0, 1].

When ζ is a Borel probability measure on [0, 1], we will call (ζ,Φ) a λ-admissible pair.

Notice that if Φ is λ-admissible, then Φs is (1/λs)-Lipschitz continuous because

λs|Φs(q)− Φs(u)| ≤
∑

t∈S

λt|Φt(q)− Φt(u)| = |q − u|.

This in turn implies

‖Φ(q)− Φ(u)‖1 ≤ |q − u|
∑

s∈S

1

λs
for any q, u ∈ [0, 1]. (1.11)

In particular, for any Lipschitz continuous function f : [0, 1]S → R, the composition f ◦Φ
is also Lipschitz and thus differentiable almost everywhere by Rademacher’s theorem.

Therefore, given a λ-admissible pair (ζ,Φ), we can define for each s ∈ S the following

function:

ds(q) :=

∫ 1

q

ζ
(
[0, u]

)
(ξs ◦ Φ)′(u) du, q ∈ [0, 1]. (1.12)

For any vector b = (bs)s∈S satisfying the constraint

bs > ds(0) for each s ∈ S , (1.13)

we define the quantity

A(ζ,Φ, b) :=
∑

s∈S

λs

2

[
bs − 1− log bs +

ξs(0)

bs − ds(0)
+

∫ 1

0

(ξs ◦ Φ)′(q)
bs − ds(q)

dq
]

− 1

2

∫ 1

0

ζ
(
[0, q]

)
(θ ◦ Φ)′(q) dq.

(1.14)
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The Parisi functional is given by

P(ζ,Φ) := inf
b
A(ζ,Φ, b), (1.15)

where the infimum is over b ∈ (0,∞)S satisfying (1.13). We then have the following

expression for the limiting free energy.

Theorem 1.3 (Parisi formula). Assuming (H1), (H2), and (H3), we have

lim
N→∞

FN = inf
ζ,Φ

P(ζ,Φ) a.s., (1.16)

where the infimum is over λ-admissible pairs. Without the convexity assumption (H3), it

is still true that

lim inf
N→∞

FN ≥ inf
ζ,Φ

P(ζ,Φ). (1.17)

It may seem strange in (1.15) to define the objective function itself using a variational

expression. We do this because the parameter b should really be thought of as a

consequence of calculus rather than spin glass theory; it appears because of a large

deviations calculation originally carried out by Talagrand [72] (translating here to

Proposition 2.10). An optimality condition for b is given in [20, Thm. 2.12]. The objects

ζ and Φ, on the other hand, are physically meaningful. Very briefly, if σ1 and σ2 are

independent samples from the Gibbs measure GN of (1.5), then ζ represents the limiting

law (as N → ∞) of the overlap averaged across all species,

R(σ1, σ2) :=
1

N

N∑

i=1

σ1
i σ

2
i =

∑

s∈S

λs(N)Rs(σ1, σ2).

Meanwhile, Φ specifies the relationship between average overlap and overlap within

each species: Φ(R(σ1, σ2)) = R(σ1, σ2). More context will be provided in Section 1.3,

where we elaborate on the origins of these two order parameters.

Remark 1.4. One can also add an external magnetic field to each species, in which case

one replaces HN (σ) with

HN (σ) +
∑

s∈S

hs
∑

i∈Is

σi,

where hs ∈ R is a fixed number. In that case, we would add to (1.14) the following

quantity:

∑

s∈S

λs

2
· h2s
bs − ds(0)

. (1.18)

The proofs in this case would simply require that we carry the external field through

every step. The appearance of (1.18) would come in (2.46), when we quote a calculation

from [72]; see Remark 2.11.

Following Theorem 1.3, it becomes desirable to understand the regularity of the

Parisi functional P. Here we address its continuity. First we need a notion of distance

on λ-admissible pairs. Given a probability measure ζ on [0,∞), let Qζ denote its quantile

function:

Qζ(z) := inf{q ≥ 0 : ζ
(
[0, q]

)
≥ z}, z ∈ [0, 1].
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We then have the following pseudometric:

D
(
(ζ1,Φ1), (ζ2,Φ2)

)
:=

∫ 1

0

‖Φ1(Qζ1(z))− Φ2(Qζ2(z))‖1 dz. (1.19)

Note that this is simply the Wasserstein-1 distance between two pushforward measures

ζ1 ◦Φ−1
1 on ζ2 ◦Φ−1

2 on [0, 1]S . In particular, convergence with respect to D is equivalent

to weak convergence. Let us emphasize that if we replaced D with the seemingly natural

option of adding a metric on measures and a norm on functions, then only the forward

direction of the previous sentence would be true. Indeed, it is essential that the converse

also be true. With 1 ∈ RS denoting the vector of all ones, our continuity result is the

following.

Theorem 1.5. Assume (H2). For any λ-admissible pairs (ζ1,Φ1) and (ζ2,Φ2), we have

|P(ζ1,Φ1)− P(ζ2,Φ2)| ≤
C∗
2
D
(
(ζ1,Φ1), (ζ2,Φ2)

)
, where C∗ := sup

s,s′∈S

∂ξs

∂qs′
(1).

(1.20)

Note that the quotient topology generated by D makes the space of λ-admissible

pairs compact. This is because the space of probability measures on [0, 1] is compact

in the weak topology (see [77, Rmk. 6.19]), as is the space of λ-admissible maps under

the uniform `1 norm. Indeed, thanks to (1.11), one can apply the Arzelà–Ascoli theorem

(see [53, Thm. 47.1] for a general version) to conclude the latter fact. In light of this

compactness, the continuity in Theorem 1.5 implies the existence of a minimizer to the

Parisi formula (1.16).

Corollary 1.6. Assume (H2). Then there exists a λ-admissible pair (ζ̃ , Φ̃) such that

P(ζ̃ , Φ̃) = inf
ζ,Φ

P(ζ,Φ). (1.21)

There is great interest in understanding properties of minimizers. In the spin glass

parlance, if (ζ̃ , Φ̃) satisfies (1.21), then ζ̃ ◦ Φ̃−1 is said to be a Parisi measure. In

the single-species case (where the only admissible map is the identity function), the

Parisi functional is known to have a unique minimizer. This is because (1.16) admits

an alternative formulation known as the Crisanti–Sommers formula [28, 72], whose

objective function is strictly convex. The analogous result for Ising spin glasses (where

the spins σi only take values ±1) is much less clear and was established in [11] (see

also [39]). In a companion paper [20], we provide the multi-species version of the

Crisanti–Sommers formula, and while convexity in ζ still holds, the same may not be true

for Φ. Therefore, addressing the uniqueness of solutions to (1.21) is left for future work.

Whether or not an optimizer in (1.6) is supported on a single point classifies the model

as either replica symmetric (RS) or replica symmetry breaking (RSB). The exact nature

of symmetry breaking remains deeply mysterious in many ways, especially for Ising spin

glasses. For various results on this front, see [62, 10, 26, 41, 14, 13], all dealing with

single-species models. In the multi-species setting, questions of symmetry breaking are

even more delicate because of the possibility that symmetry breaking occurs in one

species but not another. However, a key contribution of [20] is to rule out this possibility

under mild and natural assumptions, leading us to say there is simultaneous symmetry

breaking. See [20, Sec. 2.2].

Finally, it is worth pointing out that we have made a stylistic choice in expressing

the Parisi formula (1.16) using a continuous functional order parameter. That is, we

allow ζ to be any Borel probability measure on [0, 1]. However, for simplicity, Parisi

formulas are often expressed using just ζ with finite support, and then (1.14) takes
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the form (2.41). One nice outcome of extending the Parisi functional to all measures

is Corollary 1.6, although this result is not at all surprising. A more consequential

outcome takes place in [20], where the use of a continuous order parameter is essential

to obtaining simultaneous symmetry breaking in the greatest possible generality.

1.3 Proof sketch for derivation of the Parisi formula

This paper synthesizes several themes and tools from the mathematical theory of

spin glasses, suitably adapted to the multi-species spherical setting. Owing to the

many technical ingredients, it may be hard to identify a cohesive story within a linear

reading of the manuscript. Therefore, in this section we offer a generous overview of

the arguments leading to Theorem 1.3. In broad strokes, the upper bound for (1.16) is

proved in Section 3, and the lower bound (1.17) in Sections 4, 5, and 6, while Section 2

contains technical preliminaries needed throughout. Finally, Appendix A provides some

well-known facts about Gibbs measures that nevertheless cannot be read directly from

the literature. Therefore, we state and prove these facts for a very general setting.

Suppose σ1, σ2, . . . are independent samples from the Gibbs measure GN of (1.5).

For each pair of indices `, `′, we have a vector of overlaps R`,`′ = R(σ`, σ`′) as defined

in (1.6). Since (1.7) tells us that the Gaussian field HN is governed by these overlaps, it

can be intuited that the free energy FN is related to the law of the arrayR = (R`,`′)`,`′≥1,

which we denote by Law(R;GN ).1

The Parisi formula (1.16) makes the relationship between this law and limN→∞ EFN

precise, and this will be enough since it is a standard fact that FN concentrates around

its mean (see Lemma A.2). But understanding this relationship—and indeed proving

it—requires that we develop two fundamental concepts, namely (i) how the overlap

distribution Law(R;GN ) is identified with some pair (ζ,Φ); and (ii) how the Parisi

functional P emerges as the correct objective function. The rest of this section is to

explain (i) and (ii).

For any real-valued sequence (aN )N≥1, it is an elementary fact that for anyM ≥ 1,

lim inf
N→∞

aN
N

≥ 1

M
lim inf
N→∞

(aN+M − aN ). (1.22)

Applying this observation to aN = E logZN , we have

lim inf
N→∞

EFN ≥ 1

M
lim inf
N→∞

E log
ZN+M

ZN
. (1.23)

This inequality is the basis of the so-called cavity method for proving (1.17). That is, we

study how the free energy changes when a fixed numberM of “cavity coordinates” are

added to the configuration space, turning σ ∈ TN into (σ, κ) ∈ TN+M . This is done by

rewriting the Hamiltonian HN+M in three parts:

HN+M (σ, κ) = HM,N (σ) +
M∑

j=1

κjXj(σ) +D(σ, κ).

More precisely, the first part HM,N consists of all the terms in HN+M that involve no

cavity coordinates, the second part isolates those terms with just one cavity coordinate,

1This is a slight abuse of notation because the Gibbs measure is random. We mean for Law(R;G) to be a

deterministic object depending only on the law of the random Gibbs measure G. More precisely, if we use the

shorthand L = Law(R;G), then
∫

f(R) L(dR) = E〈f(R)〉,

where 〈·〉 averages over the replicas (σ`)`≥1 according to G, and E(·) denotes expectation over realizations of

G. A similar comment will apply to notation introduced in Theorem A.

EJP 27 (2022), paper 52.
Page 8/75

https://www.imstat.org/ejp



Multi-species mixed p-spin spherical models

while the third part contains all other terms and has negligible contribution. This

type of analysis is commonly called the Aizenman–Sims–Starr (A.S.S.) scheme after the

influential works [2, 3]. In applying this scheme to the present setting, we take as

inspiration the work of Chen [24] for single-species spherical models.

The difference between E logZN and E logZN+M is captured by two effects. First,

there is the direct contribution from the terms of the form κjXj(σ); these collectively

increase the free energy by an amount we call ΠM,1. Second, the only difference between

HM,N and HN is scaling (compare (1.4) and (5.4)), which decreases the free energy by

an amount we call ΠM,2. The beauty of the A.S.S. scheme is that upon replacing GN

by a Gibbs measure GM,N corresponding to the modified Hamiltonian HM,N , we can

express the quantities ΠM,1 and ΠM,2 as functions of LM,N := Law(R;GM,N ). Indeed,

up to negligible terms, Theorem 5.1 gives

lim inf
N→∞

EFN ≥ 1

M
lim inf
N→∞

(ΠM,1(LM,N )−ΠM,2(LM,N )). (1.24)

For brevity, we will write ΠM = ΠM,1 −ΠM,2. See Section 2.1 for a precise definition; it

is too lengthy to be reproduced here.

In view of (1.24), one is naturally motivated to pass to a subsequence (Nk)k≥1 along

which LM,Nk
converges weakly to some abstract law LM . Indeed, since ΠM is uniformly

continuous—a fact we check in Proposition 2.6—it can be continuously extended to a

domain including LM . The A.S.S. scheme (1.24) then leads to

lim inf
N→∞

EFN ≥ ΠM (LM )

M
. (1.25)

This statement in itself, however, is not so useful, for two reasons:

(a) First, there is the technical fact that ΠM (LM ) is defined only by abstractly extend-

ing ΠM to a completed domain. That is, ΠM as an explicit functional is conceived as

a function of a certain type of object—namely overlap distributions produced from

Gibbs measures—and it is not clear that LM can be realized in this way. Therefore,

we do not immediately have an actual formula for ΠM (LM ).

(b) Second, there is the more central obstacle that even if ΠM were extended via an

explicit formula, its definition is too complicated for meaningful analysis (let alone

to be compatible with a matching upper bound). After all, LM is a measure on an

infinite-dimensional space, and so we should hope to simplify the dependence of

ΠM on LM to some finite-dimensional statistic.

Let us first recall how issue (a) is resolved in the classical single-species case. In that

setting, R would instead be an array of scalars rather than vectors, namely the replica

overlaps averaged across all coordinates (not separately within each species). Let us

denote these averaged overlaps by

R`,`′ :=
1

N

N∑

i=1

σ`
iσ

`′

i =
∑

s∈S

λs(N)Rs
`,`′ . (1.26)

The scalar array R = (R`,`′)`,`′≥1 is easily seen to be a Gram–de Finetti array: symmetric,

nonnegative definite, and having entries that are exchangeable under finite permutations.

Moreover, as N → ∞, any subsequential weak limit of this array will inherit these

properties (see Lemma 6.7). A Gibbs representation is then found by appealing to the

Dovbysh–Sudakov theorem [30, 55].
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Theorem A. [57, Thm. 1.7] Let R = (R`,`′)`,`′≥1 be a Gram–de Finetti array such that

R`,` = 1 with probability one for every ` ≥ 1. Then R can be coupled with i.i.d. samples

(σ`)`≥1 from a random measure G on the unit ball of a separable Hilbert space, such that

with probability one

R`,`′ = σ` · σ`′ + 1{`=`′}(1− σ` · σ`) for all `, `′ ≥ 1.

In this case, we write Law(R;G) to denote the law of R.

As for issue (b), we need a second fundamental result, which requires that we

introduce the Ghirlanda–Guerra (G.G.) identities. Still in setting of Theorem A, let 〈·〉
denote the Gibbs average over the independent samples (σ`)`≥1, while E(·) will denote
expectation over realizations of the Gibbs measure G. We say that the array R from

Theorem A satisfies the G.G. identities if for any bounded measurable function f of the

finite sub-array Rn = (R`,`′)`,`′∈[n], and any bounded measurable ψ : [−1, 1] → R, we

have

E[〈f(Rn)ψ(R1,n+1)〉] =
1

n
E〈f(Rn)〉 · E〈ψ(R1,2)〉+

1

n

n∑

`=2

E〈f(Rn)ψ(R1,`)〉. (1.27)

Theorem B. [57, Thm. 2.13, 2.16, and 2.17] Let R and G be as in Theorem A. If R
satisfies the G.G. identities (1.27), then

(a) Law(R;G) depends only on the probability measure ζ on [−1, 1] defined by

ζ(·) = E〈1{R1,2∈·}〉.

(b) (Talagrand’s positivity principle) In fact, ζ
(
[0, 1]

)
= 1.

(c) The map ζ 7→ Law(R;G) is continuous with respect to weak convergence.

In summary, we have considered some distributional limit of the infinite scalar array

from (1.26). First Theorem A allows us to couple this limit to an abstract Gibbs measure.

Then Theorem B gives conditions under which this limit can be completely identified

by just a single marginal, which is some probability measure ζ on [0, 1]. The extreme

reduction brought by this second result should underscore just how strong the G.G.

identities are. Because these identities have played such a critical role in modern spin

glass theory, there is fortunately a standard perturbation technique to ensure they are

satisfied by some overlap distribution realized in the large-N limit; we carry this out in

Appendix A for a very general setting.

To connect these results back to the multi-species setting, recall the limit LM from

before; this is some law on infinite vector arrays. Suppose R is distributed according to

LM . The breakthrough of Panchenko [59] was to identify a “synchronization” theory by

which the vector array R is proved to be a deterministic function of the scalar array R,

provided that a multi-species version of the G.G. identities is satisfied. Namely, given

any bounded measurable function ϕ : [−1, 1]S → R, define Q`,`′ = ϕ(R`,`′). We say that

R satisfies the multi-species G.G. identities if for any bounded measurable function f of

the finite sub-array R
n = (R`,`′)`,`′∈[n], we have

E[f(Rn)Q1,n+1] =
1

n
E[f(Rn)] · E[Q1,2] +

1

n

n∑

`=2

E[f(Rn)Q1,`]. (1.28)

Then Panchenko’s result is the following.
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Theorem C. [59, Thm. 4] If R satisfies the multi-species G.G. identities (1.28), then

there exist non-decreasing (1/λs)-Lipschitz functions Φs : [0, 1] → [0, 1] such that almost

surely,

Rs
`,`′ = Φs(R`,`′) for all `, `′ ≥ 1, s ∈ S . (1.29)

Definition 1.2 can now be understood as a characterization of the fact that R`,`′ is

recoverable from Φ(R`,`′) by way of (1.26). Regarding the hypotheses of Theorem C, the

following comment is essential and thus set aside to be referenced later on.

Remark 1.7. If R satisfies the multi-species G.G. identities (1.28), then R satisfies the

classical G.G. identities. Indeed, to verify (1.27), simply set φ(x) =
∑

s∈S
λsxs, and take

ϕ = ψ ◦ φ in (1.28). Once the G.G. identities are known to hold for R, Theorem B(b)

guarantees that R`,`′ ≥ 0 with probability one. Therefore, the domain of Φs makes sense.

As we mentioned before, it is possible via perturbation to guarantee that the G.G.

identities hold, so that Theorems B and C can be applied. Correspondingly, the A.S.S.

scheme discussed previously actually needs to be performed for a perturbed Hamiltonian

which is defined in Section 3.1. But once this is done, we may assume that the law LM

appearing in (1.25) satisfies the G.G. identities and is thus a candidate for Panchenko’s

synchronization theory. More precisely, LM has the following representation. For

a random vector array R whose law is LM , let LM be the law of the scalar array

R realized by the map R 7→ R from (1.26). Then there is some synchronization map

R 7→ ΦM (R) = R under which LM has the pushforward representation2 LM = LM ◦Φ−1
M .

Furthermore, the scalar array R satisfies the hypotheses of Theorem A, and so there

is a random Gibbs measure GM such that LM = Law(R;GM ). Putting these two facts

together, we have

LM = Law(R;GM ) ◦ Φ−1
M . (1.30)

Remark 1.8. At this point, the Gibbs representation (1.30) does make an explicit def-

inition of ΠM (LM ) possible. However, the fact that the Gibbs measure GM is on an

infinite-dimensional space poses certain technical difficulties we would rather avoid.

Therefore, we will content ourselves with simply knowing that LM has a Gibbs represen-

tation rather than trying to use that representation to write down an explicit formula for

ΠM (LM ). Indeed, the former is essential for overcoming issue (a) declared before, while

the latter is not.

In light of Remark 1.7, we are further able to apply Theorem B(a) to the array R.

This means that in the representation (1.30), the quantity Law(R;GM ) is completely

determined by the law of σ1 · σ2 under E(G⊗2
M ), which is just some measure ζM on

R. Since LM is now seen to depend only on the λ-admissible pair (ζM ,ΦM ), we can

rewrite (1.25) as

lim inf
N→∞

EFN ≥ PM (ζM ,ΦM )

M
, (1.31)

where now PM is a simpler function realized when ΠM is restricted to overlap distribu-

tions satisfying the G.G. identities. This function is defined more precisely in Section 2.3,

and (1.31) later appears as Proposition 6.5.

The last step to prove the lower bound (1.17) is understanding the dependence

of (1.31) onM . To obtain a Parisi formula for Ising spin glasses, it suffices to consider

2We again ask the reader to tolerate a slight abuse of notation, since the argument of a synchronization map

such as ΦM is not an entire array but rather a single real number. But when it is convenient do so, we think of

ΦM as acting on the full array R by acting separately on every entry.
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just a single value ofM ; see [57, Sec. 3.5]. This remains true even in the multi-species

setting [59]. For spherical models, however, the functional ΠM is too complicated to

yield a useful objective function. The strategy thus pivots to finding a limit asM → ∞.

In the single-species case, a large deviations calculation of Talagrand [72] (used

here in (2.46)) would establish that PM/M converges to a limiting functional similar to

P from (1.15). The difficulty here, however, is that the preceding steps have already

required we send N → ∞, and the number of cavity coordinates assigned to each

species does not necessarily converge as N → ∞. An obvious workaround is to pass

to a subsequence along which these limits do exist, but even then it is not necessarily

true that asM tends to infinity, the fraction of cavity coordinates allocated to species s

converges (let alone to λs). Therefore, a critical step—carried out in Section 4 before the

cavity method and synchronization—is to actually redefine the model (1.1) in a strategic

way, in order to ensure that these species proportions behave properly even once M

is brought to infinity. For this redefined model, we can use Talagrand’s calculation to

identify (1.15) as the limiting functional; see Proposition 2.10. By further passing to a

subsequence along which (ζM ,ΦM ) converges to some (ζ,Φ), we obtain

lim
M→∞

PM (ζM ,ΦM )

M
= P(ζ,Φ).

In view of (1.31), this immediately implies the lower bound (1.17).

The task of establishing the matching upper bound is less involved. In Proposition 3.1,

we use the standard approach of Guerra’s RSB interpolation to verify that

lim
N→∞

EFN ≤ P(ζ,Φ) for any λ-admissible pair (ζ,Φ). (1.32)

The interpolation is reminiscent of [43, Sec. 3] in that the interpolating Hamiltonian

HN,t(σ, α) has two arguments: σ ∈ TN and α ∈ Nk−1, where the reference measure

on Nk−1 is a Poisson–Dirichlet cascade (see Section 2.2 for a review). When t = 0, the

resulting Gibbs measure is a product measure, allowing the original free energy FN

to be easily recovered. When t = 1, the configurations σ and α are coupled in such

a way that the functional PM from (1.31) appears. The convexity assumption (H3)

ensures the desired inequality (1.32); see Claim 3.5. In fact, this is the only place

convexity is required. It is worth noting that (H3) is needed only on the nonnegative

orthant, even though overlaps can be negative. This narrowing of the domain is enabled

by Talagrand’s positivity principle (Theorem B(b)), a multi-species version of which is

proved in Lemma 3.3.

1.4 Related works

The Parisi formula for the classical SK model with Ising spins was first proved by Tala-

grand [73], building on the seminal work of Guerra [36] which introduced the technique

of RSB interpolation. Later, Panchenko proved the Parisi formula for general mixed

p-spin models [58] by showing that the Ghirlanda–Guerra identities imply ultrametricity

for replica overlaps [56]. Recently Mourrat [47] has reinterpreted these Parisi formulas

as the solution to a Hamilton–Jacobi equation in the Wasserstein space of probability mea-

sures on the positive half-line; see [49, 48, 21, 23, 22] for finite-dimensional analogues,

and [52] for a generalized result.

In the context of spherical spin glasses, the Parisi formula for mixed p-spin models

with even p was proved by Talagrand [72] and extended by Chen [24] to include odd

p-spin interactions. Later, Subag [71] computed the logarithmic second-order term for

the free energy of pure p-spin models with p ≥ 3, by developing a geometric description

of the Gibbs measure at low enough temperature. Further analysis was carried out for

mixed p-spin spherical models close to pure by Ben Arous, Subag, and Zeitouni [8].
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The general multi-species SK model (Ising case) was introduced in [16], where Barra

et. al. gave an upper bound for the free energy using a variant of Guerra’s RSB bound

[36], under a condition equivalent to (H3). Panchenko produced the matching lower

bound in [59] by using the synchronization mechanism discussed above. By generalizing

this mechanism, Panchenko obtained variational formulas for the free energy of Potts spin

glass models [61] and mixed p-spin models with vector spins [60]. The synchronization

technique has since been pivotal in a variety of related models [38, 27, 25, 43, 52, 50].

Using the formula produced by Panchenko in [59], the authors together with Sloman

[19] studied symmetry breaking for multi-species SK models (see also [37] from the

physics literature). This work has since been improved by Dey and Wu [29], who also

considered non-convex models and properties of the replica symmetric phase. The RS

condition identified in [19, 29] also leads to fluctuation results [45].

A natural and interesting special case is a bipartite model, in which two species inter-

act with each other but not among themselves. In the Ising case, there are conjectured

formulas for the limiting free energy [18, 17, 51] of the bipartite SK model, although not

much is known rigorously. See [4, 7, 35, 1] for results on a generalization of the bipartite

SK model, and [5, 6] for its restriction to a special subset of phase space.

More progress has been made for spherical bipartite models. Auffinger and Chen

[9] proved a variational formula for the free energy at high temperature (i.e. ξ(1) is

sufficiently small); see also the recent min-max formulation [35]. Focusing on the

SK version, Baik and Lee [15] were able to obtain a formula at all temperatures and

also determine limiting fluctuations by drawing on connections with random matrix

theory. In all of these works, the fundamental difficulty is that bipartite models do not

satisfy (H3). This causes Guerra’s interpolation method—among other things—to break

down, although certain methods can bypass this issue, for instance complexity-based

approaches [46, 42] and the TAP representation (pioneered by Thouless, Anderson, and

Palmer [76]).

Regarding the latter, a trio of works by Subag [69, 68, 70] appeared shortly after this

paper was first released, containing respectively (i) a TAP representation for the free

energy of general multi-species spherical models; (ii) an analysis of the critical inverse

temperature in such models; and (iii) a formula for the limiting free energy (1.16) in pure

models (i.e. ξ(q) = β2qs for some s ∈ S p, p ≥ 2), which do not satisfy (H3). The TAP

approach executed in [69, 70] is analogous to [66, 67] in the single-species case (with

[67] going beyond the aforementioned [71] to cover all temperatures); that methodology

bypasses the Parisi framework of the present paper and works on the assumption that

E(FN ) converges as N → ∞. At present, this assumption is not known rigorously beyond

the cases considered here and in [9, 15].

2 Properties of the Parisi functional

This section develops some preliminary facts about the Parisi functional (1.14),

including Theorem 1.5. Establishing these facts requires that we return to the analytic

origins of this functional, which are motivated by the A.S.S. scheme of Theorem 5.1.

Consequently, the motivation for some of the coming definitions may currently seem

absent, although our work here will ultimately streamline the arguments in later sections.

Since the current section is quite long, we provide the reader a road map of its contents:

• In Section 2.1 we will define a sequence of functionals (ΠM )M≥1 such that, in a

suitable sense, ΠM/M converges asM → ∞ to the Parisi functional P from (1.15).

The functional ΠM is the central player that emerges from the cavity method, which

will be developed in Section 5. The key fact we prove here is a uniform continuity

statement (Proposition 2.6).
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• Finer analysis of ΠM is only possible once we restrict its domain to certain “nice”

overlap distributions which are synchronized (in the sense of (1.29)), satisfy the

Ghirlanda–Guerra identities, and are such that individual overlaps R`,`′ can only

take finitely many values. The overlap distributions satisfying the last two condi-

tions are precisely those generated by the Ruelle probability cascades. Section 2.2

gives a self-contained review of the relevant facts about these fundamental objects.

• We perform the restriction of ΠM to these nice distributions in Section 2.3. For

clarity and so that we can transition to the language of λ-admissible pairs, we give

this restriction its own notation: PM . We then prove Lipschitz continuity for PM

(Proposition 2.9) and convergence to the Parisi functional P (Proposition 2.10).

• Throughout Section 2.3 the functional PM is defined only on λ-admissible pairs

(ζ,Φ) in which ζ has finite support. With Lipschitz continuity established on

this dense subset, we start Section 2.4 by continuously extending PM to all λ-

admissible pairs. The limiting functional P could also be implicitly extended,

but we would like to know that this extension coincides with the definition (1.16).

Therefore, we prove directly that P is continuous (Proposition 2.17). A short proof

of Theorem 1.5 then follows.

2.1 Prelimit of the Parisi functional

A key difficulty is that the domain of P is, in loose terms, restricted to “synchronized”

overlap distributions. This synchronization is only realized in the large-N limit, and so the

functional ΠM must be defined more broadly in order to include the overlap distributions

realized from finite-volume Gibbs measures. We will soon make this definition, but first

we require the following setup.

2.1.1 The cavity space

Suppose we have fixed a partition of the integer interval [M ] into the various species, say

[M ] =
⊎

s∈S
(J s)s∈S , where |J s| =Ms. Analogously to (1.1), we consider the following

product of spheres:

TM :=
⊗

s∈S

SMs , (2.1a)

which is equipped with the corresponding product measure,

τM :=
⊗

s∈S

µMs . (2.1b)

2.1.2 Allowable overlap maps

In Section 1.3 we introduced the notation Law(R;G) to denote the law of the replica

overlap array R when the i.i.d. replicas are drawn from the random Gibbs measure G. In

that case R was defined via the map (σ, σ′) 7→ R(σ, σ′) from (1.6), but now we allow any

map fitting the following description. Let Σ be a metric space, and take any continuous

symmetric function R : Σ× Σ → [−1, 1]S satisfying the following condition.

Assumption 2.1. There exist centered Gaussian processes (Xj)j∈[M ] and Y on Σ whose

covariance structures are given by

E[Xj(σ)Xj′(σ
′)] = 1{j=j′}ξ

s(R(σ, σ′)) for j ∈ J s,

E[Y (σ)Y (σ′)] = θ(R(σ, σ′)).
(2.2)

Furthermore, these processes are almost surely measurable functions on Σ.
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2.1.3 The overlap distribution

Given a random (Borel) probability measureG on Σwhich is independent of the processes

from (2.2), let (σ`)`≥1 be i.i.d. samples from G. Apply the overlap map R to each pair of

samples, and set

R`,`′ = R(σ`, σ`′) + 1{`=`′}(1−R(σ`, σ`′)), (2.3)

where 1 ∈ RS is the constant vector with 1 in every coordinate. This defines a random

array R = (R`,`′)`,`′≥1. Denote the law of R by Law(R;G), where the dependence on R

is implicit (also recall Footnote 1).

Remark 2.2. When we are not using a generic Σ and R, their identities should always

be clear from context. Outside of this Section 2.1, there are really only two cases we

need to consider. The first is when Σ = TN andR is equal to the map from (1.6), in which

case Assumption 2.1 is verified in Remarks 5.2 and 5.4. Moreover, the Gibbs measure

G will usually be GM,N , meaning the distribution of (2.3), namely Law(R;GM,N ), is the

same one discussed in Section 1.3.

The second case is when Σ is some abstract Hilbert space and R is the composition

of its inner product with some λ-admissible map Φ. That is, R(σ, σ′) = Φ(σ · σ′). Here
the Gibbs measure G will be some G as in Theorem A. Using the notation of (1.30), we

then have Law(R;G) = Law(R;G) ◦ Φ−1.

2.1.4 The functional

We are finally ready to define the functional L 7→ ΠM (L). It accepts as input any law

L = Law(R;G) realized as above.

Take (ηj)j∈[M ] and η
′ to be standard normal random variables that are independent

of each other and everything else. Let Eη denote expectation over just these variables,

and set

Xη
j (σ) := Xj(σ) + ηj

√
ξs(1)− ξs(R(σ, σ)) for j ∈ J s,

Y η(σ) := Y (σ) + η′
√
θ(1)− θ(R(σ, σ)).

Let 〈·〉 denote expectation with respect to G. Finally, let E(·) denote expectation over

both realizations of G and the Gaussian processes from Assumption 2.1. Now define the

following quantities:

ΠM,1(L) := E log

∫

TM

Eη

〈
exp

( M∑

j=1

κjX
η
j (σ)

)〉
τM (dκ), (2.4a)

ΠM,2(L) := E logEη

〈
exp

(√
MY η(σ)

)〉
. (2.4b)

The functional of interest is then given by

ΠM (L) := ΠM,1(L)−ΠM,2(L). (2.5)

Remark 2.3. In order for (2.4) to make sense, we need to know that exp(
∑M

j=1 κjX
η
j (·))

and exp(
√
MY η(·)) are almost surely integrable with respect to the Gibbs measure

G. This is actually automatic from the boundedness of overlaps. Indeed, since the

Gaussianity is assumed to be independent of G, we can average over the former before

EJP 27 (2022), paper 52.
Page 15/75

https://www.imstat.org/ejp



Multi-species mixed p-spin spherical models

the latter. That is,

E

〈
exp

( M∑

j=1

κjX
η
j (σ)

)〉
= EG

〈
EXEη exp

( M∑

j=1

κjX
η
j (σ)

)〉

(2.2)
= EG

〈
exp

( ∑

s∈S

∑

j∈J s

κ2jξ
s(1)

2

)〉
= exp

( ∑

s∈S

Msξs(1)

2

)
,

(2.6)

and by similar reasoning

E
〈
exp(

√
MY η(σ))

〉
= exp

(Mθ(1)

2

)
. (2.7)

In particular, the processes exp(
∑M

j=1 κjX
η
j (·)) and exp(

√
MY η(·)) are integrable with

probability one.

Remark 2.4. In future sections, it will always be the case that R(σ, σ) is constant under

the Gibbs measure G. That is, there is some q∗ ∈ [−1, 1]S such that

〈1{R(σ,σ)=q
∗
}〉 = 1. (2.8)

For instance, when R is given by (1.6), then clearly R(σ, σ) = 1 for all σ ∈ TN . This

means the presence of ηj and η
′ in (2.4) will be unimportant when we apply the functional

ΠM to any Gibbs measure on TN (as in Section 5). Even if q∗ is not equal to 1, the

assumption of (2.8) does simplify the expressions in (2.4). Indeed, by using the fact that

E exp(cη) = exp(c2/2), we obtain

ΠM,1(L) := E log

∫

TM

〈
exp

( M∑

j=1

κjXj(σ)
)〉

τM (dκ) +
∑

s∈S

Ms

2
(ξs(1)− ξs(q∗)), (2.9a)

ΠM,2(L) := E log
〈
exp

(√
MY (σ))

〉
+
M

2
(θ(1)− θ(q∗)). (2.9b)

Remark 2.5. Notice that ΠM,1(L) does not change if we permute the Xj ’s. In this way,

the functional depends on the choice of J s only through its cardinality Ms, not on

precisely which subset of [M ] it is.

Even given Remark 2.3, it may still not be clear that ΠM is well-defined, since

different choices of R and G may lead to the same law L for the array in (2.3). This

will naturally be resolved as follows. Let L
n denote the law of the finite sub-array

(R`,`′)`,`′∈[n]; this is a probability measure on S -tuples of symmetric n × n matrices

whose entries lie in [−1, 1]. Let Pn denote the set of all probability measures on this

space. By compactness, it is easy to metrize the topology of weak convergence on P
n by,

say, a Wasserstein distance with respect to the Euclidean norm. We can thus speak of

continuity with respect to weak convergence.

Proposition 2.6. For any ε > 0, there is n large enough and some continuous function

Π
(ε)
M : Pn → R such that

|ΠM (L)−Π
(ε)
M (Ln)| ≤ ε for any L at which ΠM is defined.

Upon taking ε→ 0, it is clear that ΠM is well-defined, since Π
(ε)
M is defined indepen-

dently of R and G; see (2.16). In practice, we will use Proposition 2.6 via the following

consequence.

Corollary 2.7. If (LN )N≥1 is any weakly convergent sequence of laws at which ΠM is

defined, then limN→∞ ΠM (LN ) exists and depends only on the limit of (LN )N≥1.
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Proof. This is a standard application of uniform continuity. Given any ε > 0, let n and

Π
(ε)
M be as in Proposition 2.6. Since Π

(ε)
M is continuous on the compact space P

n, it is

necessarily uniformly continuous and thus Cauchy continuous. By assumption, (Ln
N )N≥1

is Cauchy, and so (Π
(ε)
M (Ln

N ))N≥1 is Cauchy as well. Consequently, for all N and N ′ large
enough, the difference |ΠM (LN )−ΠM (LN ′)| is at most

|ΠM (LN )−Π
(ε)
M (Ln

N )|+ |Π(ε)
M (Ln

N )−Π
(ε)
M (Ln

N ′)|+ |Π(ε)
M (Ln

N ′)−ΠM (LN ′)| ≤ 3ε.

That is, (ΠM (LN ))N≥1 is Cauchy and thus convergent.

To see that limN→∞ ΠM (LN ) depends only on the limit of (LN )N≥1, consider two

sequences (LN )N≥1 and (L̃N )N≥2 which converge to the same law. Then the sequence

L1, L̃1,L2, L̃2,L3, L̃3, . . .

also converges to this law, and so

ΠM (L1),ΠM (L̃1),ΠM (L2),ΠM (L̃2),ΠM (L3),ΠM (L̃3), . . .

is a convergent sequence by the existence argument given above. In particular, the two

subsequences (ΠM (LN ))N≥1 and (ΠM (L̃N ))N≥1 share the same limit.

The argument for Proposition 2.6 follows a general strategy that has appeared before,

for instance [58, Lem. 3] or [57, Thm. 1.3]. One complication of note is that our overlap

map R is not assumed to be an inner product.

Proof of Proposition 2.6. We prove the desired statement for ΠM,1, as the argument for

ΠM,2 is similar and in fact simpler. We start with a truncation procedure. For a > 0,

define

log(a)(x) := (−a ∨ (log x ∧ a)), exp(a) x := exp(−a ∨ (x ∧ a)).

Note for later that

| expx− exp(a) x| ≤ 1{x>a} expx+ 1{x<−a}. (2.10)

For convenience, let us introduce the following notation for a three-fold average:

⟪f(κ, η, σ)⟫ :=
∫

TM

Eη〈f(κ, η, σ)〉 τM (dκ),

where here η denotes the entire collection (ηj)j∈[M ]. The variable of interest is then

Z(a) := ⟪ exp(a)
( M∑

j=1

κjX
η
j (σ)

)
⟫.

When we have no truncation, we will just write Z for Z(∞). Note that ΠM,1(L) = E logZ.

Observe that by averaging over the ηj ’s, we obtain the following expression for Z:

Z =

∫

TM×Σ

exp
( M∑

j=1

κjXj(σ)
)
exp

( ∑

s∈S

Ms

2

(
ξs(1)− ξs(R(σ, σ))

))
(τM ⊗G)(dκ, dσ).

So given any realization of the Gibbs measure G, the quantity Z is simply the integral of

exp g(z), where g is a Gaussian process, and the integral is over z ∈ TM ×Σ with respect

to a finite measure. While this measure is random (depending on G), it is independent
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of the Gaussian process and thus regarded as fixed. Consequently, standard Gaussian

concentration (see the proof of [54, Lem. 3]) gives

PX(| logZ − E logZ| ≥ a) ≤ 2 exp(−a2/(4C)), where

C = E

[ M∑

j=1

κjX
η
j (σ)

2
]
=

∑

s∈S

Msξs(1).
(2.11)

Since 0 ≤ EX logZ ≤ logEXZ = C/2, we deduce from this concentration inequality that

| logZ| is not too large:

PX(| logZ| ≥ a) ≤ 2 exp(−(a− C/2)2/(4C)) for a ≥ C/2

≤ 2 exp(−a2/(16C)) for a ≥ C.

In particular, by integrating the tail we obtain the following moment bound:

EX log2 Z ≤ C2 +

∫ ∞

C2

PX(| logZ| ≥
√
a ) da ≤ C2 + 32C.

We have made this estimate in order to control the following truncation error: for a ≥ C

we have

|E logZ − E log(a) Z| ≤ E|EX logZ − EX log(a) Z| ≤ E|1{| logZ|≥a} logZ|

≤
√
P(| logZ| ≥ a)E log2 Z

≤
√
2 exp(−a2/(32C))

√
C2 + 32C.

(2.12)

On the other hand, since log(a) is ea-Lipschitz, we have

E| log(a) Z − log(a) Z(a)| ≤ ea E|Z − Z(a)|
(2.10)
≤ ea E⟪1{

∑
M
j=1 κjX

η
j (σ)>a} exp

( M∑

j=1

κjX
η
j (σ)

)
+ 1{

∑
M
j=1 κjX

η
j (σ)<−a}⟫

≤ ea
(
E⟪1{

∑
M
j=1 κjX

η
j (σ)>a}⟫E⟪ exp

(
2

M∑

j=1

κjX
η
j (σ)

)
⟫
) 1

2

+ ea E⟪1{
∑

M
j=1 κjX

η
j (σ)<−a}⟫

≤ ea exp(−a2/4C) exp(C) + ea exp(−a2/2C),

(2.13)

where in the last line we have again used the fact
∑M

j=1 κjX
η
j (σ) is Gaussian with mean

zero and variance C. At last, given any ε > 0, we choose a sufficiently large that (2.12)

and (2.13) combine to give

|E logZ − E log(a) Z(a)| ≤ ε/2. (2.14)

Now recall our notation that σ1, σ2, . . . are independent samples from the Gibbs

measure G. Also let η1, η2, . . . be independent copies of η. We then have the following

identity for any integer r ≥ 1 (simply by definition of ⟪·⟫ as an average):

⟪f(κ, η, σ)⟫r =

r∏

`=1

∫

TM

Eη`

〈
f(κ, η`, σ`)

〉
τM (dκ),

provided both sides make sense. Applying this identity to the function of interest, we

obtain

(Z(a))r =

r∏

`=1

∫

TM

Eη`

〈
exp(a)

( M∑

j=1

κjX
η`

j (σ`)
)〉

τM (dκ).
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Conditional on G, the EX -expectation of the right-hand side is just some non-random

function ϕM,r of the covariance matrix K = (K(j,`),(j′,`′)) for (X
η`

j (σ`))j∈[M ],`∈[r]:

EX [(Z(a))r] = ϕM,r(K).

Since exp(a) is bounded and continuous, so too is ϕM,r, as weak convergence of Gaussian

distributions is equivalent to convergence of their covariance matrices. Moreover,

since nonnegative definite matrices form a closed subset of all symmetric matrices, the

Tietze–Urysohn–Brouwer extension theorem allows us to extend ϕM,r continuously to

this larger space. Now, by (2.2) we have K(j,`),(j′,`′) = 1{j=j′}ξ
s(R`,`′) whenever j ∈ J s.

Consequently, K is a continuous function of the array R
r = (R`,`′)`,`′∈[r]. By composing

this function with ϕM,r, we obtain a bounded and continuous function φM,r (defined on

all symmetric r × r vector arrays) such that

EX [(Z(a))r] = φM,r

(
R

r).

To complete the proof, we appeal to Stone–Weierstrass to find a polynomial
∑n

r=1 αrx
r

which is within ε/2 of log x for all x ∈ [e−a, ea]. Since Z(a) always belongs to this interval,

we have the following approximation:

∣∣∣EX log(a) Z(a) −
n∑

r=1

αrφM,r(R
r)
∣∣∣ ≤ ε/2. (2.15)

Once we average over the realizations of G, we obtain the following function of Ln =

Law(Rn;G):

Π
(ε)
M,1(L

n) :=

n∑

r=1

αr

∫
φM,r(R

r) Ln(dR) =

n∑

r=1

αrE〈φM,r(R
r)〉. (2.16)

This is the map claimed by the proposition. Indeed, since each φM,r is bounded and

continuous, Π
(ε)
M,1 is continuous with respect to weak convergence. And putting to-

gether (2.14) and (2.15), we have

|E logZ −Π
(ε)
M,1(L

n)| ≤ ε.

By the exact same argument, we can obtain the analogous approximating function for

ΠM,2. In that case, the relevant function f is simply
√
MY η(σ) (no dependence on κ),

and the constant C appearing in (2.11) isMθ(1).

2.2 Review of Poisson–Dirichlet cascades and Ruelle probability cascades

Let us adopt the conventions that N = {1, 2, . . . } and N0 = {∅}. For each sequence

of the form

0 = m0 < m1 < · · · < mk−1 < mk = 1, (2.17)

there is a random probability measure on Nk−1, called a Poisson–Dirichlet cascade,

which satisfies certain properties described below. Since Nk−1 is countable, the cascade

is naturally identified with the random weights (vα)α∈Nk−1 constituting its probability

mass function. A precise construction can be found in [75, Sec. 14.2]; here we describe

just three properties needed in the sequel.
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2.2.1 Overlap distribution

For α = (α1, . . . , αk−1) ∈ Nk−1, let p(α) denote the set of truncations of α:

p(α) = {∅, (α1), (α1, α2), . . . , (α1, . . . , αk−1)}.

The similarity of two vectors α, α′ ∈ Nk−1 is measured by how many elements are shared

by p(α) and p(α′). That is, if α = (α1, . . . , αk−1) and α
′ = (α′

1, . . . , α
′
k−1), then define the

overlap

r(α, α′) := |p(α) ∩ p(α′)| =
{
inf{r : αr 6= α′

r} if α 6= α′,

k if α = α′.
(2.18)

The most basic property of the Poisson–Dirichlet cascade is that if α1 and α2 are indepen-

dently sampled according to the weights (vα)α∈Nk−1 , then r(α1, α2) follows a distribution

encoded by (2.17). Namely, if 〈·〉 denotes expectation over these independent samples,

and E(·) denotes expectation over realizations of the cascade, then by [75, Prop. 14.3.3]

we have

E〈1{r(α1,α2)=r}〉 = mr −mr−1, 1 ≤ r ≤ k. (2.19)

2.2.2 Expectations of hierarchical functions

Let (zβ)β∈N0∪···∪Nk−1 be i.i.d. random variables taking values in some metric space

T . Given any function F : T k → R, we define (using a slight abuse of notation) its

hierarchical form:

F (α) := F (z∅, z(α1), z(α1,α2), . . . , z(α1,...,αk−1)), α ∈ N
k−1. (2.20)

Therefore, F (α) and F (α′) are statistically dependent only via the variables (zβ)β∈p(α)∩p(α′).

We now describe a way of computing expectations of the form E log〈expF (α)〉, using
only a single random variable for each level of overlap. First define

Fk := F (z0, z1, . . . , zk−1), (2.21)

where z0, . . . , zk−1 are i.i.d. T -valued random variables as before. Now inductively define

Fr :=
1

mr
logEr exp(mrFr+1) for r ∈ [k − 1], F0 := E0(F1), (2.22)

where Er(·) denotes expectation over just zr, . . . , zk−1. By [75, Thm. 14.2.1], we then

have

E log〈expF (α)〉 = F0. (2.23)

As a matter of interpretation, the identity (2.23) has converted the hierarchical structure

of the random variables (zβ)β∈N0∪N1∪···∪Nk−1 into an iterative procedure.

2.2.3 Tilting by hierarchical functions

The last property we need concerns the Poisson–Dirichlet cascade tilted by a function F

of the form (2.20). That is, given any other function U of the same form, we define

〈U(α1)U(α2)〉F :=
〈U(α1)U(α2) expF (α1) expF (α2)〉

〈expF (α)〉2 , (2.24)
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where α1 and α2 are independent samples from the Poisson–Dirichlet cascade. With Fr

as in (2.22), define

Wr := exp(mr(Fr+1 − Fr)), r ∈ [k − 1].

With Uk as in (2.21) for the function U , [75, Prop. 14.3.2] gives the following identity for

any r ∈ [k]:

E〈1{r(α1,α2)=r}U(α1)U(α2)〉F = (mr −mr−1)E
[
W1 · · ·Wr−1(Er[Wr · · ·Wk−1Uk])

2
]
.

(2.25)

Note that Er(Wr) = 1 by (2.22), and that Wr has no dependence on zr′ for r
′ > r.

Consequently, for any r′ > r we have

Er[Wr · · ·Wr′ ] = Er

[
Wr · · ·Wr′−1Er′(Wr′)

]
= Er[Wr · · ·Wr′−1] = · · · = 1.

Therefore, when U ≡ 1, (2.25) provides a generalization of (2.19):

E〈1{r(α1,α2)=r}〉F = mr −mr−1, r ∈ [k]. (2.26)

2.2.4 Ruelle probability cascades

Notice that so far we have only dealt with the sequence of weights (mr)0≤r≤k from (2.17).

When one also defines a sequence of locations

0 = q0 ≤ q1 ≤ · · · ≤ qk ≤ qk+1 = 1, (2.27)

then one obtains a measure

ζ =

k∑

r=1

(mr −mr−1)δqr . (2.28)

We will now construct a random measure G = Gm;q1,...,qk on any separable, infinite-

dimensional Hilbert space such that if σ1 and σ2 are two independent samples from

this measure, then σ1 · σ2 is ζ-distributed (in the averaged sense of (2.30) given below).

Let (eβ)β∈N0∪···∪Nk−1 be a collection of orthonormal vectors in the Hilbert space, and for

each α ∈ Nk−1 define

hα :=
∑

β∈p(α)

eβ
√
q|β|+1 − q|β|,

where |β| = r for β ∈ Nr. Notice that

hα · hα′ = qr(α,α′). (2.29)

Therefore, if hα is chosen with probability vα according to the Poisson–Dirichlet cascade,

then two independently chosen hα1 and hα2 will yield the following analogue of (2.19):

E〈1{hα1 ·hα2∈[0,q]}〉 = ζ
(
[0, q]

)
for any q ∈ [0, 1]. (2.30)

We thus take Gm;q1,...,qk to be a purely atomic measure with

Gm;q1,...,qk({hα}) = vα, where (vα)α∈Nk−1 is the Poisson–Dirichlet cascade for (2.17).

(2.31)

This measure Gm;q1,...,qk is called a Ruelle probability cascade.
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2.3 Applying the Parisi prelimiting functional to Ruelle probability cascades

Now we return to our consideration of the function ΠM from Section 2.1. Here

we study the outcome of applying ΠM to overlap distributions obtained from Ruelle

probability cascades.

Let ζ be any measure on [0, 1] with finite support; in other words, ζ is of the form (2.28)

for some sequences (mr)1≤r≤k and (qr)1≤r≤k of the form (2.17) and (2.27). Let Gζ be the

associated Ruelle probability cascade following (2.31), and let Φ be any λ-admissible

map. As a shorthand, we will write

qr = Φ(qr), 0 ≤ r ≤ k + 1, (2.32)

since all quantities of interest will depend on Φ only through the values of q1, . . . , qk.

Using the map R : (hα, hα′) 7→ Φ(hα · hα′), we consider the law

L(ζ,Φ) := Law(R;Gm;q1,...,qk) (2.33)

from Section 2.1.3. Using the notation from Theorem A, we equivalently have

L(ζ,Φ) = Law(R;Gm;q1,...,qk) ◦ Φ−1. (2.34)

Implicit in our notation is that the right-hand side of (2.33) is completely determined by

ζ in (2.28). That is, even if a different collection of m’s and q’s give the same measure

in (2.28), Law(R;Gm,q1,...,qk) would remain the same. This is a consequence of Theorem B,

since overlap distributions arising from the cascades do indeed satisfy the Ghirlanda–

Guerra identities (see [75, Thm. 15.2.1] or [57, Thm. 2.10]). Let us make a formal

statement to which we can refer later.

Corollary 2.8. For any fixed Φ, the map ζ 7→ L(ζ,Φ) is well-defined and continuous with

respect to weak convergence.

In order to evaluate ΠM at L(ζ,Φ), we still need to check Assumption 2.1, and for

this we simply construct the desired Gaussian processes. Let (ηj,β)j∈[M ],β∈N0∪···∪Nk−1

and (ηβ)β∈N0∪···∪Nk−1 be independent standard normal random variables, and set

Xj(hα) =
∑

β∈p(α)

ηj,β

√
ξs(q|β|+1)− 1{|β|>0}ξs(q|β|) for j ∈ J s, (2.35a)

Y (hα) =
∑

β∈p(α)

ηβ

√
θ(q|β|+1)− θ(q|β|). (2.35b)

The desired covariance identities (2.2) trivially follow. Therefore, we can specialize (2.5)

to the present setting by defining

PM,i(ζ,Φ) := ΠM,i(L(ζ,Φ)) for i ∈ {1, 2}, and

PM (ζ,Φ) := PM,1(ζ,Φ)− PM,2(ζ,Φ).
(2.36)

The following statement is a precursor to the Lipschitz continuity claimed in Theorem 1.5.

Proposition 2.9. For any λ-admissible pairs (ζ,Φ) and (ζ̃ , Φ̃) such that ζ and ζ̃ have

finite support, we have

|PM (ζ,Φ)− PM (ζ̃ , Φ̃)|
M

≤ C∗
2

(
1 +

∑

s∈S

∣∣∣M
s

M
− λs

∣∣∣
)
D
(
(ζ,Φ), (ζ̃ , Φ̃)

)
, (2.37)

where C∗ is given in (1.20).
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Before proving Proposition 2.9, let us make the following preliminary calculation,

which explains how the functional (ζ,Φ) 7→ P(ζ,Φ) emerges from the cavity method,

and how Theorem 1.5 will follow from Proposition 2.9.

Proposition 2.10. Assume thatMs/M → λs asM → ∞, for each s ∈ S . Then for any

λ-admissible pair (ζ,Φ) such that ζ has finite support, we have

lim
M→∞

PM (ζ,Φ)

M
= P(ζ,Φ). (2.38)

Proof. We will use the shorthands

usr = 1{r>0}ξ
s(qr) = 1{r>0}ξ

s(Φ(qr)) and wr = θ(qr) = θ(Φ(qr)).

First we compute the right-hand side of (2.38) by recalling the definition of P

from (1.15). Since ζ
(
[0, u]

)
= mr for u ∈ [qr, qr+1), the quantity from (1.12) is equal to

ds(q) =

∫ 1

q

ζ
(
[0, u]

)
(ξs ◦ Φ)′(u) du

= mr[u
s
r+1 − ξs(Φ(q))] +

k∑

r′=r+1

mr′(u
s
r′+1 − usr′) for all q ∈ [qr, qr+1].

(2.39)

When q = qr, we will use the notation

dsr := ds(qr) =

k∑

r′=r

mr′(u
s
r′+1 − usr′), 1 ≤ r ≤ k.

Since ζ
(
[0, u]

)
= 0 for all u < q1, we have

ds(q) = ds1 for all q ∈ [0, q1]. (2.40)

Now consider the first integral in (1.14). In light of (2.40), we have

∫ q1

0

(ξs ◦ Φ)′(q)
bs − ds(q)

dq =

∫ q1

0

(ξs ◦ Φ)′(q)
bs − ds1

dq =
us1 − ξs(0)

bs − ds1
.

Meanwhile, on the interval [qr, qr+1] with 1 ≤ r ≤ k, from (2.39) we have

∫ qr+1

qr

(ξs ◦ Φ)′(q)
bs − ds(q)

dq =

∫ qr+1

qr

(ξs ◦ Φ)′(q)
bs − dsr+1 −mr[usr+1 − ξs(Φ(q))]

dq

=

∫ us
r+1

us
r

1

bs − dsr+1 −mr[usr+1 − u]
du =

1

mr
log

bs − dsr+1

bs − dsr
.

The last integral to compute is

∫ 1

0

ζ
(
[0, q]

)
(θ ◦ Φ)′(q) dq =

k∑

r=1

mr(wr+1 − wr).

Putting together these computations and recalling the definition of A from (1.14), we

have

A(ζ,Φ, b) =
∑

s∈S

λs

2

(
bs − 1− log bs +

us1
bs − ds1

+

k∑

r=1

1

mr
log

bs − dsr+1

bs − dsr

)

− 1

2

k∑

r=1

mr(wr+1 − wr).

(2.41)
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Finally, by definition we have P(ζ,Φ) = infbA(ζ,Φ, b), where the infimum is over b such

that bs > ds(0) for each s ∈ S . Because of (2.40), this condition is equivalent to bs > ds1.

Now we compute the left-hand side of (2.38). Notice from (2.29) that no matter the

choice of α, we have hα · hα = qk. That is, (2.8) holds with q∗ = Φ(qk), which we have

been calling qk. Therefore, instead of referring to the quantities from (2.4), we can

start from their equivalent forms in (2.9). With the processes from (2.35a), the quantity

PM,1(ζ,Φ) from (2.9a) is equal to

E log

〈∫

TM

exp
( ∑

s∈S

∑

j∈J s

κj
∑

β∈p(α)

ηj,β
√
us|β|+1 − us|β|

)
τM (dκ)

〉
+

∑

s∈S

Ms

2
(usk+1 − usk).

(2.42)

Meanwhile, with the processes from (2.35b), the quantity PM,2(ζ,Φ) from (2.9b) is equal

to

E log
〈
exp

(√
M

∑

β∈p(α)

ηβ
√
w|β|+1 − w|β|

)〉
+
M

2
(wk+1 − wk). (2.43)

Each of these quantities can be rewritten using the formula (2.23).

Let us first consider PM,2(ζ,Φ), as the computation is simpler and explicit in this

case. The ηβ ’s in (2.43) play the role of the zβ ’s in (2.20). So let us define i.i.d. standard

normal random variables (ηr)0≤r≤k−1 to play the role of the zr’s in (2.21). That is, we

begin with

Fk =
√
M

k−1∑

r=0

ηr
√
wr+1 − wr +

M

2
(wk+1 − wk),

and then apply the formula (2.22) inductively to arrive at F0, which is equal to (2.43)

by (2.23). Using the identities E exp(cηr) = exp(c2/2) and E(η0) = 0, it is easy to verify

that the result of this induction is

PM,2(ζ,Φ) =
M

2

k∑

r=1

mr(wr+1 − wr). (2.44)

Next we consider the more complicated quantity PM,1(ζ,Φ). Now the random vectors

(ηj,β)j∈[M ] in (2.42) play the role of the zβ’s in (2.20). So let us define independent

standard normal random variables (ηj,r)j∈[M ],0≤r≤k−1 to play the role of the zr’s in (2.21).

That is, the quantity in (2.21) is given by

Fk = log

∫

TM

exp
( ∑

s∈S

∑

j∈J s

κj

k−1∑

r=0

ηj,r
√
usr+1 − usr

)
τM (dκ) +

∑

s∈S

Ms

2
(usk+1 − usk)

(2.1)
=

∑

s∈S

[
log

∫

SMs

exp
( ∑

j∈J s

κj

k−1∑

r=0

ηj,r
√
usr+1 − usr

)
µMs(dκ) +

Ms

2
(usk+1 − usk)

]
,

and then PM,1(ζ,Φ) is equal to F0 as obtained inductively from (2.22). But notice that

we have written Fk as a sum of |S | independent variables of the form

F s
k := log

∫

SMs

exp
( ∑

j∈J s

κj

k−1∑

r=0

ηj,r
√
usr+1 − usr

)
µMs(dκ) +

Ms

2
(usk+1 − usk). (2.45)

EJP 27 (2022), paper 52.
Page 24/75

https://www.imstat.org/ejp



Multi-species mixed p-spin spherical models

Therefore, applying (2.22) to Fk is equivalent to applying (2.22) to each F s
k and then

adding the results. That is, we have Fr =
∑

s∈S
F s
r by downward induction on r, where

F s
r is defined from F s

r+1 as in (2.22). We write the final quantity F s
0 as Ps

M,1(ζ,Φ) so that

PM,1(ζ,Φ) =
∑

s∈S

P
s
M,1(ζ,Φ).

While Ps
M,1(ζ,Φ) does not have an explicit expression as in (2.44), we can invoke the

large deviations calculation by Talagrand [72, Prop. 3.1], which says

lim
Ms→∞

Ps
M,1(ζ,Φ)

Ms
=

1

2
inf

bs>ds
1

[
bs − 1− log bs +

us1
bs − ds1

+
k∑

r=1

1

mr
log

bs − dsr+1

bs − dsr

]
. (2.46)

Remark 2.11. The identity (2.46) is most readily seen from (3.31) and (3.48) in [72].

Furthermore, one sees from the same places in [72] that the presence of an external

field hs adds a term of the form h2s/(b
s − ds1) to the right-hand side of (2.46).

Now sum the right-hand side of (2.46) over s ∈ S and compare with the first line

of (2.41). Since the optimization in (2.46) is decoupled over s ∈ S , the sum of infima is

the infimum of the sum. With the assumption thatMs/M → λs asM → ∞, we thus have

lim
M→∞

PM,1(ζ,Φ)

M
= inf

b

∑

s∈S

λs

2

(
bs − 1− log bs +

us1
bs − ds1

+

k∑

r=1

1

mr
log

bs − dsr+1

bs − dsr

)
.

(2.47)

Finally, to account for the second line in (2.41), subtract the quantity PM,2(ζ,Φ)/M

appearing in (2.44), and we obtain (2.38).

We saw in the proof of Proposition 2.10 that we can write PM,1(ζ,Φ) as a function of

the sequences m = (mr)0≤r≤k and q = (qr)0≤r≤k+1 from (2.17) and (2.32). That is, in a

slight abuse of notation,

PM (ζ,Φ) = PM (m; q1, . . . , qk) =
∑

s∈S

P
s
M,1(m;us1, . . . , u

s
k)− PM,2(m;w1, . . . , wk),

where usr = 1{r>0}ξ
s(qr) and wr = θ(qr). Notice that we have omitted q0 = 0 and

qk+1 = 1, as these values are constant. Our next observation is that adding duplicate

copies of any qr does not change the value of the functions seen above. This will

ultimately allow us, in the proof of (2.37), to assume ζ and ζ̃ arise from the same m

sequence.

Lemma 2.12. Consider any sequence of integers 0 = n0 < n1 < n2 < · · · < nk. Let

0 = m̃0 < m̃1 < · · · < m̃nk
= 1 be such that m̃nr

= mr for each r ∈ [k]. We then have

PM (m; q1, . . . , qk) = PM (m̃; q1, . . . , q1︸ ︷︷ ︸
n1

, q2, . . . , q2︸ ︷︷ ︸
n2 − n1

, · · · , qk, . . . , qk︸ ︷︷ ︸
nk − nk−1

).
(2.48)

Proof. It is not hard to determine (2.48) directly from definition chasing, but it is even

easier to simply appeal to Corollary 2.8. Indeed, the right-hand side of (2.48) is equal to

PM (ζ̃ ,Φ), where

ζ̃ =

k∑

r=1

nr∑

n=nr−1+1

(m̃n − m̃n−1)δqr =

k∑

r=1

(mr −mr−1)δqr = ζ.

Hence L(ζ,Φ) = L(ζ̃ ,Φ), and so by definition (2.36), we are done.
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The final preparation before proving Proposition 2.9 is to control the variability of PM

with the q sequence. The following lemma will be essential. The quantity δsr(u1, . . . , uk)

seen in (2.49) is deserving of the title “partial derivative of Ps
M,1 with respect to ur”,

but because the ur’s must stay ordered, we must be careful in how we state this. The

definition (2.55) will soon clarify these subtleties.

Lemma 2.13. Fix any sequence 0 = u0 ≤ u1 ≤ · · · ≤ uk ≤ uk+1 = ξs(1). Let

(a1, . . . , ak) ∈ Rk be such that ar ≥ ar−1 whenever ur = ur−1, where a0 = ak+1 = 0.

We then have

lim
ε↘0

Ps
M,1(m;u1 + εa1, . . . , uk + εak)− Ps

M,1(m;u1, . . . , uk)

ε
=

k∑

r=1

arδ
s
r(u1, . . . , uk),

(2.49)

where − Ms

2
(mr −mr−1) ≤ δsr(u1, . . . , uk) ≤ 0. (2.50)

Proof. The assumption on (a1, . . . , ak) is so that for all sufficiently small ε > 0, we have

u0 ≤ u1 + εa1 ≤ u2 + εa2 ≤ · · · ≤ uk + εak ≤ uk+1.

In other words, if all coordinates are perturbed simultaneously, then ordering is pre-

served. But we will need to perturb the coordinates one at a time, hence the following

claim.

Claim 2.14. There is some permutation (%(1), . . . , %(k)) of (1, . . . , k) such that for all

sufficiently small ε > 0 and any j ∈ {1, . . . , k}, we have

u0 ≤ u1 + 1{%(1)≤j}εa1 ≤ u2 + 1{%(2)≤j}εa2 ≤ · · · ≤ uk + 1{%(2)≤j}εak ≤ uk+1. (2.51)

In other words, ordering is preserved even if only coordinates %−1(1), . . . , %−1(j) have

been perturbed.

Proof. We argue by induction on k, the base case of k = 1 being trivial. So assume

k ≥ 2. If u1 < u2, then first apply the inductive hypothesis to coordinates 2 through k,

and set %(1) = k. Indeed, even if u1 is the last coordinate to be perturbed, we will have

u1 < u2 + a2ε for all ε sufficiently small. Hence (2.51) will be true for all j ≤ k − 1 by

induction, and true for j = k because u1 + a1ε < u2 + a2ε for all ε sufficiently small.

Otherwise u1 = u2 (so we must have a1 ≤ a2), and we consider two separate cases.

If a1 < 0, then set %(1) = 1. That is, we first perturb u1 to arrive at u1 + εa1, which is

now strictly less than u2, and so (2.51) holds for j = 1. We then decide in which order to

make the remaining perturbations by applying the inductive hypothesis to coordinates 2

through k, which will ensure (2.51) for all j ≥ 2.

If instead a1 ≥ 0, then again apply the inductive hypothesis to coordinates 2 through k,

and set %(1) = k. Indeed, even if u1 is the last coordinate to be perturbed, the assumption

a2 ≥ a1 ≥ 0 means that u1 ≤ u2 + a2ε for all ε ≥ 0. So as before, (2.51) will be true for

all j ≤ k − 1 by induction, and true for j = k because u1 + a1ε ≤ u2 + a2ε for all ε ≥ 0.

� (Claim)

Now fix the permutation % from Claim 2.14, and fix ε > 0 small enough that (2.51)

holds for all j ∈ [k]. We then write

P
s
M,1(m;u1 + εa1, . . . , uk + εak)− P

s
M,1(m;u1, . . . , uk) =

k∑

j=1

[fj(ε)− fj−1(ε)
]
, (2.52)
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where fj(ε
′) := P

s
M,1(m;u

(j)
1 (ε′), . . . , u(j)k (ε′)),

u(j)r (ε′) := ur + 1{%(r)<j}εar + 1{%(r)=j}ε
′ar, ε′ ∈ [0, ε].

In words, fj is the result of perturbing coordinates %−1(1), . . . , %−1(j), with a possibly

smaller perturbation on the last coordinate in this list. Given r ∈ [k], suppose %(r) = j so

that the jth summand in (2.52) is the first one in which ur is perturbed. If ar = 0, then

fj = fj−1, and we need not consider this summand further. If ar > 0, then we have

ur−1 + 1{%(r−1)<j}ar−1ε
(2.51)
≤ ur < ur + arε

(2.51)
≤ ur+1 + 1{%(r+1)<j}ar+1ε.

Squeezing an additional term between ur and ur + arε, we obtain that for all ε′ ∈ (0, ε),

ur−1 + 1{%(r−1)<j}ar−1ε < ur + arε
′ < ur+1 + 1{%(r+1)<j}ar+1ε. (2.53)

By analogous reasoning, we obtain the same inequality when ar < 0. We have thus

reduced the problem to the following claim.

Claim 2.15. Whenever ur−1 < ur < ur+1, we can differentiate Ps
M,1 with respect to ur.

The resulting derivative satisfies

−M
s

2
(mr −mr−1) ≤

∂Ps
M,1(m;x1, . . . , xk)

∂xr

∣∣∣
(x1=u1,...,xk=uk)

≤ 0. (2.54)

Furthermore, for any ũ = (ũ1 ≤ · · · ≤ ũk), the following limit exists:

δsr(ũ1, . . . , ũk) := lim
u→ũ

∂Ps
M,1(m;x1, . . . , xk)

∂xr

∣∣∣
(x1=u1,...,xk=uk)

, (2.55)

where the limit is taken along any u with ur−1 < ur < ur+1.

Before proving the claim, let us use it to complete the proof of the lemma. Consider

the jth summand from (2.52), with the assumption that %(r) = j and ar 6= 0 as discussed

above. By Claim 2.15 and the inequality (2.53), the function ε′ 7→ fj(ε
′) is differentiable

on the open interval (0, ε). As will be checked during the proof of Claim 2.15, this

map is also continuous on the closed interval [0, ε], with fj(0) obviously equal to fj−1(ε).

Therefore, by the mean value theorem, we have

fj(ε)− fj−1(ε)

ε
= ar

∂Ps
M,1

∂xr

∣∣∣
(x1=u

(j)
1 (ε′),...,xk=u

(j)
k

(ε′))
for some ε′ ∈ (0, ε).

By (2.55), we then have

lim
ε↘0

fj(ε)− fj−1(ε)

ε
= arδ

s
r(u1, . . . , uk).

Using this fact in (2.52), we are able to conclude (2.49). The inequality (2.50) follows

from (2.54).

Proof of Claim 2.15. Here we adapt the approach of [75, Lem. 14.11.1]. Recall that

Ps
M,1 = F s

0 is the result of applying (2.22) with F s
k from (2.45) as the initialization. But

then (2.23) implies that Ps
M,1(m;u1, . . . , uk) is equal to

E log
〈∫

SMs

exp
( ∑

j∈J s

κj
∑

β∈p(α)

ηj,β
√
u|β|+1 − u|β|

)
µMs(dκ)

〉
+
Ms

2
(uk+1 − uk), (2.56)
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where u0 = 0, and 〈·〉 denotes expectation according to the Poisson–Dirichlet cascade

(vα)α∈Nk−1 associated to (2.17). Let us simplify notation by writing

Z :=
〈∫

SMs

exp
( ∑

j∈J s

κjgj,α

)
µMs(dκ)

〉
=

∑

α∈Nk−1

vα

∫

SMs

exp
( ∑

j∈J s

κjgj,α

)
µMs(dκ),

where we have grouped the Gaussian variables into terms of the form

gj,α :=
∑

β∈p(α)

ηj,β
√
u|β|+1 − u|β|, j ∈ J s, α ∈ N

k−1.
(2.57)

In this notation, differentiating (2.56) with respect to ur results in

∂Ps
M,1(m;u1, . . . , uk)

∂ur
= E

[ 1
Z

· ∂Z
∂ur

]
− 1{r=k}

Ms

2
. (2.58)

Let us define

Qj1(α) :=
1

vα

∂Z

∂gj1,α
=

∫

SMs

κj1 exp
( ∑

j∈J s

κjgj,α

)
µMs(dκ) and g′j,α :=

∂gj,α
∂ur

, (2.59)

so that by the chain rule,

E

[ 1
Z

· ∂Z
∂ur

]
= E

[ ∑

(j1,α)∈J s×Nk−1

vαEg

[ 1
Z

·Qj1(α)g
′
j1,α

]]
, (2.60)

where Eg(·) denotes expectation over only the Gaussian random variables. The right-

hand side of (2.60) sets up the following Gaussian integration by parts:

Eg

[
g′j1,α1 · Qj1(α

1)

Z

]
=

∑

(j2,α2)∈J s×Nk−1

Eg(g
′
j1,α1gj2,α2) · Eg

[ ∂

∂gj2,α2

Qj1(α
1)

Z

]
. (2.61)

We will now consider two cases: r < k and r = k.

If 1 ≤ r ≤ k − 1, then it is easily seen from (2.57) that

g′j,α =
1

2

(ηj,(α1,...,αr−1)√
ur − ur−1

− ηj,(α1,...,αr)√
ur+1 − ur

)
, (2.62)

Now recall the quantity r(α1, α2) from (2.18). Since all ηj,β ’s are mutually independent,

it follows from definitions (2.57) and (2.62) that

Eg(g
′
j1,α1gj2,α2) =

1

2
1{j1=j2}

(
E(ηj1,(α1

1,...,α
1
r−1)

ηj2,(α2
1,...,α

2
r−1)

)− E(ηj1,(α1
1,...,α

1
r)
ηj2,(α2

1,...,α
2
r)
)
)

=
1

2
1{j1=j2}





0− 0 if r(α1, α2) < r,

1− 1 if r(α1, α2) > r,

1− 0 if r(α1, α2) = r.

(2.63)

Therefore, in (2.61) we need only consider (j2, α
2) such that j2 = j1 and r(α

1, α2) = r.

Notice that the latter equality implies α2 6= α1 since r < k, and so the variable gj,α2 does

not appear in Qj(α
1), which means

∂

∂gj,α2

Qj(α
1)

Z
= −Qj(α

1)

Z2
· ∂Z

∂gj,α2

(2.59)
= −vα2

Qj(α
1)Qj(α

2)

Z2
. (2.64)
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Using (2.63) and (2.64) in (2.61), and then (2.61) in (2.60), we arrive at

∂Ps
M,1

∂ur
= −1

2

∑

j∈J s

E

[ 1

Z2

∑

α1,α2∈Nk−1

1{r(α1,α2)=r}vα1vα2Qj(α
1)Qj(α

2)
]
. (2.65)

This concludes our consideration of the case r < k.

If instead r = k, then Gaussian integration by parts is still executed as in (2.61),

but (2.62) is replaced by

g′j,α =
ηj,(α1,...,αk−1)

2
√
uk − uk−1

.

Hence (2.63) is replaced by

Eg(g
′
j,α1gj2,α2) = 1{j1=j2}1{α1=α2}/2,

which in turn implies (2.64) is replaced by

∂

∂gj,α

Qj(α)

Z
= −vα

Qj(α)
2

Z2
+

1

Z
· ∂Qj(α)

∂gj,α
.

This means the outcome of using (2.61) to compute (2.58) is now

∂Ps
M,1

∂uk
=

1

2

∑

(j,α)∈J s×Nk−1

E

[
− v2α

Qj(α)
2

Z2
+
vα
Z

· ∂Qj(α)

∂gj,α

]
− Ms

2
.

But notice that the additional terms created by differentiating Qj(α) cancel with the

additional −Ms/2, since differentiating in (2.59) leads to

∑

(j,α)∈J s×Nk−1

vα
Z

· ∂Qj(α)

∂gj,α
=

∑

α∈Nk−1

vα
Z

∫

SMs

( ∑

j∈J s

κ2j

)
exp

( ∑

j∈J s

κjgj,α

)
µMs(dκ) =Ms.

Therefore, (2.65) holds even in the case r = k.

In order to rewrite (2.65) using the notation of (2.24), set

F (α) = log

∫

SMs

exp
( ∑

j∈J s

κjgj,α

)
µMs(dκ), U (j)(α) =

Qj(α)

expF (α)
. (2.66)

Then (2.65) can be rewritten as

∂Ps
M,1

∂ur
= −1

2

∑

j∈J s

E〈1{r(α1,α2)=r}U
(j)(α1)U (j)(α2)〉F

(2.25)
= −1

2
(mr −mr−1)

∑

j∈J s

E
[
W1 · · ·Wr−1(Er[Wr · · ·Wk−1U

(j)
k ])2

]
≤ 0.

(2.67)

On the other hand, by Jensen’s inequality we have

∑

j∈J s

U (j)(α)2 =
∑

j∈J s

( Qj(α)

expF (α)

)2

≤ 1

expF (α)

∫

SMs

( ∑

j∈J s

κ2j

)
exp

( ∑

j∈J s

κjgj,α

)
µMs(dκ) =Ms.

(2.68)

Consequently, an application of Cauchy–Schwarz yields
∣∣∣∣E

〈
1{r(α1,α2)=r}

∑

j∈J s

U (j)(α1)U (j)(α2)

〉

F

∣∣∣∣ ≤ E

〈
1{r(α1,α2)=r}

∣∣∣∣
∑

j∈J s

U (j)(α1)U (j)(α2)

∣∣∣∣
〉

F

≤Ms
E〈1{r(α1,α2)=r}〉F

(2.26)
= Ms(mr −mr−1).
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The proof of (2.54) is completed by using this inequality in the first line of (2.67).

Our last objective is to prove (2.55), as well as continuity of Ps
M,1 jointly in all

coordinates u1, . . . , uk. It is clear from (2.57) that gj,α is continuous in u1, . . . , uk. We

claim that as a consequence, the quantities Qj1(α) from (2.59) and eF (α) from (2.66) are

almost surely (i.e. for almost any realization of (ηj,β)j∈J s,β∈N0∪···∪Nk−1) continuous in

u1, . . . , uk. Indeed, observe that

exp(±κjgj,α) =
∏

β∈p(α)

exp(±κjηj,β
√
u|β|+1 − u|β| )

≤
∏

β∈p(α)

[
exp

(
|κj |ηj,β

√
ξs(1)

)
+ exp

(
− |κj |ηj,β

√
ξs(1)

)]
:= dj(α, κ),

where now dj(α, κ) has no dependence on u1, . . . , uk. From this inequality we have

eF (α) =

∫

SMs

∏

j∈J s

exp(κjgj,α) µMs(dκ) ≤
∫

SMs

∏

j∈J s

dj(α, κ) µMs(dκ) := D(α, κ), (2.69a)

as well as

e−F (α) =

(∫

SMs

∏

j∈J s

exp(κjgj,α) µMs(dκ)

)−1

≤
∫

SMs

∏

j∈J s

exp(−κjgj,α) µMs(dκ) ≤ D(α, κ).

(2.69b)

From the calculation

Eη

∏

j∈J s

dj(α, κ) =
∏

j∈J s

Eηdj(α, κ) =
∏

j∈J s

(
κj
√
ξs(1)

)2|p(α)| ≤ (Msξ(1))kM
s

, (2.70)

we conclude that D(α, κ) is finite with probability one. Therefore, our claim of continuity

for eF (α) follows from dominated convergence with respect to the probability measure

µMs on SMs . For Qj1(α), we need only make the additional observation that |κj | ≤
√
Ms,

and then the same argument goes through.

Given the continuity of eF (α) with respect to u1, . . . , uk, we would like to conclude

the same for Ps
M,1 = E log〈eF (α)〉 −Ms(uk+1 − uk)/2. The argument given above shows

that 〈eF (α)〉 is continuous, simply by replacing
∫
Ms(·)µMs(dκ) with

〈 ∫
Ms(·)µMs(dκ)

〉
.

Indeed, dominated convergence applies equally well to the latter, since the right-hand

side of (2.70) has no dependence on α. To conclude continuity for Ps
M,1, observe that

| log〈eF (α)〉| = log〈eF (α)〉1{〈eF (α)〉≥1} + log〈eF (α)〉−1
1{〈eF (α)〉<1}

≤ log〈eF (α)〉1{〈eF (α)〉≥1} + log〈e−F (α)〉1{〈eF (α)〉<1}
(2.69)
≤ log〈D(α, κ)〉.

Since another application of Jensen’s inequality gives

Eg log〈D(α, κ)〉 ≤ logEg〈D(α, κ)〉 = log〈EgD(α, κ)〉
(2.70)
< ∞,

it follows from dominated convergence that E log〈eF (α)〉 is continuous in u1, . . . , uk. The
same is clearly true for Ps

M,1.

Finally, since we know Qj1(α) and eF (α) are almost surely continuous in u1, . . . , uk, the

same must be true for U (j)(α) defined in (2.66). Thanks to (2.68), we can apply dominated

convergence in (2.67) with respect to E〈·〉, in order to conclude that ∂Ps
M,1/∂ur is

continuous in u1, . . . , uk, as desired. � (Claim and Lemma)
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Proof of Proposition 2.9. We are only considering λ-admissible pairs (ζ,Φ), (ζ̃ , Φ̃) such

that ζ and ζ̃ have finite support. So let (ζ,Φ) correspond to sequencesm = (mr)0≤r≤k and

(qr)0≤r≤k+1, while (ζ̃ , Φ̃) corresponds to m̃ = (m̃r)0≤r≤k̃ and (q̃r)0≤r≤k̃+1. By replacingm

and m̃ with their mutual refinement, and then creating duplicate q’s and q̃’s as needed,

we may assume k = k̃ and m = m̃ thanks to Lemma 2.12. Then observe that

Qζ(z) = qr and Qζ̃(z) = q̃r for z ∈ (mr−1,mr], 1 ≤ r ≤ k.

Since Φ(qr) = qr and Φ̃(q̃r) = q̃r, upon integrating over all possible z, we arrive at the

identity

D
(
(ζ,Φ), (ζ̃ , Φ̃)

) (1.19)
=

∫ 1

0

‖Φ(Qζ(z))− Φ̃(Qζ̃(z))‖1 dz

=

k∑

r=1

(mr −mr−1)‖qr − q̃r‖1.
(2.71)

Our goal now is to control the difference 1
M |PM (m; q1, . . . , qk)− PM (m; q̃1, . . . , q̃k)|

in terms of D
(
(ζ,Φ), (ζ̃ , Φ̃)

)
. To do this, we interpolate between q and q̃ by defining

qr(t) := (1− t)qr + tq̃r, and then usr(t) := ξs(qr(t)), wr(t) := θ(qr(t)), t ∈ [0, 1].

The quantity of interest is then |ϕ(0)− ϕ(1)|, where

ϕ(t) :=
1

M

∑

s∈S

P
s
M,1(m;us1(t), . . . , u

s
k(t))−

1

M
PM,2(m;w1(t), . . . , wk(t))

=
∑

s∈S

Ms

M
·
Ps

M,1(m;us1(t), . . . , u
s
k(t))

Ms
− θ(1)

2
+

1

2

k∑

r=1

(mr −mr−1)wr(t),

where in the second line we have applied summation by parts to (2.44). For ease of

notation, let us denote the quantity from Lemma 2.13 by

δsr(t) :=
1

Ms
δsr(u

s
1(t), . . . , u

s
k(t)),

which by (2.50) satisfies

−mr −mr−1

2
≤ δsr(t) ≤ 0. (2.72)

Note that because usr−1(t) ≤ usr(t) for all t ∈ [0, 1], the time derivatives ar = dusr(t)/dt

must satisfy the hypothesis of Lemma 2.13. So by (2.49), we have

ϕ′(t) =
∑

s∈S

Ms

M

k∑

r=1

δsr(t)
dusr(t)

dt
+

1

2

k∑

r=1

(mr −mr−1)
dwr(t)

dt
.

With further applications of the chain rule, it is elementary to calculate

dusr(t)

dt
=

∑

s′∈S

∂ξs

∂qs′

∣∣∣
q=qr(t)

(q̃s
′

r − qs
′

r ),

dwr(t)

dt
=

∑

s′∈S

∂θ

∂qs′

∣∣∣
q=qr(t)

(q̃s
′

r − qs
′

r )
(1.10)
=

∑

s′∈S

[ ∑

s∈S

qsr(t)λ
s ∂ξ

s

∂qs′

∣∣∣
q=qr(t)

]
(q̃s

′

r − qs
′

r ).
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Together, the two previous displays yield

ϕ′(t) =
k∑

r=1

∑

s∈S

[Ms

M
δsr(t) +

1

2
qsr(t)λ

s(mr −mr−1)
] ∑

s′∈S

∂ξs

∂qs′

∣∣∣
q=qr(t)

(q̃s
′

r − qs
′

r ).

Notice that we can combine (2.72) with the fact that 0 ≤ qsr(t) ≤ 1, in order to write

−λsmr −mr−1

2
≤ λsδsr(t) +

1

2
λsqsr(t)(mr −mr−1) ≤ λs

mr −mr−1

2
.

Recalling the definition of C∗ from (1.20), we thus have

|ϕ′(t)| ≤ C∗
2

k∑

r=1

∑

s∈S

(∣∣∣M
s

M
− λs

∣∣∣+ λs
)
(mr −mr−1)

∑

s′∈S

|q̃s′r − qs
′

r |

=
C∗
2

(
1 +

∑

s∈S

∣∣∣M
s

M
− λs

∣∣∣
) k∑

r=1

(mr −mr−1)‖q̃r − qr‖1

(2.71)
=

C∗
2

(
1 +

∑

s∈S

∣∣∣M
s

M
− λs

∣∣∣
)
D
(
(ζ,Φ), (ζ̃ , Φ̃)

)
.

As this inequality holds for all t ∈ [0, 1], the same upper bound holds for |ϕ(0)−ϕ(1)|. �

2.4 Extending the Parisi functional to general λ-admissible pairs

It was established in Proposition 2.9 that PM is Lipschitz continuous (in particular,

uniformly continuous) when restricted to λ-admissible pairs (ζ,Φ) in which ζ has finite

support. Such pairs are in fact dense among all λ-admissible pairs.3 Therefore, PM

admits a unique continuous extension to all λ-admissible pairs. To be precise, this

extension is defined by

PM (ζ,Φ) := lim
k→∞

PM (ζk,Φ), (2.73)

where (ζk)k≥1 is any sequence of finitely supported measures converging weakly to ζ. Of

course, Proposition 2.9 immediately generalizes to this extension.

Corollary 2.16. For any λ-admissible pairs (ζ1,Φ1) and (ζ2,Φ2), we have

|PM (ζ1,Φ1)− PM (ζ2,Φ2)|
M

≤ C∗
2

(
1 +

∑

s∈S

∣∣∣M
s

M
− λs

∣∣∣
)
D
(
(ζ1,Φ1), (ζ2,Φ2)

)
, (2.74)

where C∗ is given in (1.20).

But in order for the limit in (2.73) to be interchangeable with the limitM → ∞, we

will also need that P(ζ,Φ) = limk→∞ P(ζk,Φ). This will follow from the following result.

Proposition 2.17. Let (ζ,Φ) be any λ-admissible pair. For any ε1, ε2 > 0, there is a

measure ζ̃ on [0, 1] with finite support, such that

D
(
(ζ,Φ), (ζ̃ ,Φ)

)
≤ ε1, and (2.75)

|P(ζ,Φ)− P(ζ̃ ,Φ)| ≤ ε2. (2.76)

Before proving this proposition, let us use it to quickly establish Theorem 1.5.

3This follows from (2.75), but it can also be seen as follows: weak convergence ζk ⇒ ζ implies that for any

λ-admissible map Φ we have ζk ◦ Φ−1 ⇒ ζ ◦ Φ−1, which is equivalent to D
(

(ζk,Φ), (ζ,Φ)
)

→ 0.
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Proof of Theorem 1.5. Let (ζ1,Φ1) and (ζ2,Φ2) be given. Given any ε > 0, use Proposi-

tion 2.17 to identify finitely supported measures ζ̃1 and ζ̃2 such that

D
(
(ζi,Φi), (ζ̃i,Φi)

)
≤ ε and |P(ζi,Φi)− P(ζ̃i,Φi)| ≤ ε for i ∈ {1, 2}. (2.77)

The combination of Propositions 2.9 and 2.10 gives

|P(ζ̃1,Φ1)− P(ζ̃2,Φ2)| ≤
C∗
2
D
(
(ζ̃1,Φ1), (ζ̃2,Φ2)

)
,

and so (2.77) yields

|P(ζ1,Φ1)− P(ζ2,Φ2)| ≤ 2ε+
C∗
2

[
D
(
(ζ1,Φ1), (ζ2,Φ2)

)
+ 2ε

]
.

The proof is completed by letting ε tend to 0. �

It is also easy to check that Proposition 2.10 continues to hold for the extended PM .

Proposition 2.18. Assume that Ms/M → λs as M → ∞, for each s ∈ S . For any

λ-admissible pair (ζ,Φ), we have

lim
M→∞

PM (ζ,Φ)

M
= P(ζ,Φ). (2.78)

Proof. Given any ε > 0, use Proposition 2.17 to identify a finitely supported measure ζ̃

such that D
(
(ζ,Φ), (ζ̃ ,Φ)

)
≤ ε. Using the facts we have accumulated, we determine that

lim sup
M→∞

PM (ζ,Φ)

M

(2.74)
≤ lim

M→∞

PM (ζ̃ ,Φ)

M
+ ε

C∗
2

(2.38)
= P(ζ̃ ,Φ) + ε

C∗
2

(1.20)
≤ P(ζ,Φ) + εC∗.

An analogous chain of inequalities would also yield

lim inf
M→∞

PM (ζ,Φ)

M
≥ P(ζ,Φ)− εC∗.

As ε is arbitrary, we can safely conclude (2.78). �

The only remaining task of the section is to prove Proposition 2.17. In preparation

for the proof, let us make the following observation about quantile functions.

Lemma 2.19. Let ζ be any Borel probability measure on [0, 1]. Given f : [0, 1] → [0,∞),

let ζ ◦ f−1 denote the pushfoward of ζ under f . If f is left-continuous, non-decreasing,

and satisfies f(0) = 0, then

f(Qζ(z)) = Qζ◦f−1(z) for all z ∈ [0, 1]. (2.79)

Proof. We will prove (2.79) by exhibiting inequalities in both directions. On one hand,

since f is non-decreasing, we have f−1[0, f(q)] ⊃ [0, q] for any q ∈ [0, 1]. Consequently,

(ζ ◦ f−1)
(
[0, f(Qζ(z))]

)
≥ ζ

(
[0, Qζ(z)]

)
≥ z,

which shows that f(Qζ(z)) ≥ Qζ◦f−1(z).

For the other direction, observe that for any q ∈ [0,∞), the monotonicity and left-

continuity of f together ensure f−1
(
[0, q]

)
= [0, uq] for some uq ∈ [0, 1]; in particular,

f(uq) ≤ q. So whenever q satisfies (ζ ◦f−1)
(
[0, q]

)
≥ z, we must have ζ

(
[0, uq]

)
≥ z, which

means Qζ(z) ≤ uq and thus f(Qζ(z)) ≤ f(uq) ≤ q. Since Qζ◦f−1(z) is one such q, we

conclude that f(Qζ(z)) ≤ Qζ◦f−1(z). �
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Now, it is well known that for any Borel probability measure ζ on [0,∞), we have

∫

[0,∞)

u ζ(du) =

∫ 1

0

Qζ(z) dz. (2.80)

Lemma 2.19 leads to the following elementary extension of this fact.

Lemma 2.20. For any Borel probability measure ζ on [0, 1] and any left-continuous,

non-decreasing function f : [0, 1] → [0,∞), we have

∫

[0,1]

f(u) ζ(du) =

∫ 1

0

f(Qζ(z)) dz. (2.81)

Proof. By the definition of pushforward, the left-hand side of (2.81) is simply the inte-

gral
∫
[0,∞)

u (ζ ◦ f−1)(du), which is equal to
∫ 1

0
Qζ◦f−1(z) dz by (2.80). But Qζ◦f−1(z) =

f(Qζ(z)) by (2.79), and so we recover the right-hand side of (2.81). �

We are now ready to state the key identity to be used in the proof of Proposition 2.17.

Lemma 2.21. For any Borel probability measure ζ on [0, 1], any Lipschitz continuous,

non-decreasing function f : [0, 1] → [0,∞), and any q ∈ [0, 1], we have

∫ 1

q

ζ
(
[0, u]

)
f ′(u) du = f(1)− ζ

(
[0, q]

)
f(q)−

∫ 1

ζ([0,q])

f(Qζ(z)) dz. (2.82)

In particular,
∫ 1

0

ζ
(
[0, u]

)
f ′(u) du = f(1)−

∫ 1

0

f(Qζ(z)) dz. (2.83)

Proof. The first step is to integrate by parts:
∫ 1

q

ζ
(
[0, u]

)
f ′(u) du = f(1)− ζ

(
[0, q]

)
f(q)−

∫

(q,1]

f(u) ζ(du). (2.84)

If ζ
(
(q, 1]

)
= 0, then the right-hand side of (2.84) is clearly equal to the right-hand side

of (2.82), as the integral in each expression is 0. Otherwise, we consider the probability

measure ζq on [0, 1] obtained by

ζq(·) :=
ζ
(
· ∩(q, 1]

)

ζ
(
(q, 1]

) .

In this notation, we have
∫

(q,1]

f(u) ζ(du) = ζ
(
(q, 1]

) ∫

[0,1]

f(u) ζq(du)

(2.81)
= ζ

(
(q, 1]

) ∫ 1

0

f(Qζq (z)) dz.

(2.85)

From the definition of ζq, it is clear that

Qζq (z) = Qζ

(
ζ
(
[0, q]

)
+ z · ζ

(
(q, 1]

))
for all z ∈ [0, 1].

So by a suitable substitution of variables, we obtain

ζ
(
(q, 1]

) ∫ 1

0

f(Qζq (z)) dz =

∫ 1

ζ([0,q])

f(Qζ(z)) dz.

Using this last equality in (2.85), we can again rewrite (2.84) to be (2.82). The special

case (2.83) follows from the observation that

ζ({0})f(0) =
∫ ζ({0})

0

f(Qζ(z)) dz. �
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Proof of Proposition 2.17. Given any ε1 > 0, let K be an integer so large that

1

K

∑

s∈S

1

λs
≤ ε1. (2.86)

Given ζ, choose a sequence

0 = q0 ≤ q1 < · · · < qk ≤ qk+1 = 1 (2.87)

in the following manner:

• If ζ({0}) > 0, then set q1 = 0.

• For j ∈ {1, . . . ,K}, if ζ
(
( j−1

K , j
K ]

)
> 0, then include q = j/K as one of the elements

qr of (2.87), with r ∈ [k].

Once (2.87) has been formed, define mr = ζ
(
[0, qr]

)
for r ∈ [k], and write qr = jr/K. The

condition that ζ assign positive mass to the interval ( jr−1
K , jrK ] ensures that

0 = m0 < m1 < · · · < mk = 1.

Furthermore, since all zero-mass intervals are excluded, we have

qr − 1/K ≤ Qζ(z) ≤ qr whenever z ∈ (mr−1,mr], 1 ≤ r ≤ k. (2.88)

Equivalently, the following implication is true:

qr ≤ u ≤ qr+1 − 1/K =⇒ ζ
(
[0, u]

)
= ζ

(
[0, qr]) = mr. (2.89)

Now take the approximating measure to be

ζ̃ =

k∑

r=1

(mr −mr−1)qr.

As usual, given Φ we will write qr = Φ(qr) so that for z ∈ (mr−1,mr], we have

‖Φ(Qζ(z))− qr‖
(1.11)
≤ |Qζ(z)− qr|

∑

s∈S

1

λs

(2.88)
≤ 1

K

∑

s∈S

1

λs

(2.86)
≤ ε1. (2.90)

Since Qζ̃(z) = qr for z ∈ (mr−1,mr], this inequality leads to

∫ 1

0

‖Φ(Qζ(z))− Φ(Qζ̃(z))‖1 dz =

k∑

r=1

∫ mr

mr−1

‖Φ(Qζ(z))− qr‖1 dz
(2.90)
≤ ε1. (2.91)

This completes the proof of (2.75).

It remains to show (2.76). Let C ≥ 1 be a large enough constant that for all s ∈ S ,

q,u ∈ [0, 1]S , we have

|ξs(q)− ξs(u)| ≤ C‖q − u‖1 and |θ(q)− θ(u)| ≤ C‖q − u‖1. (2.92)

In order to distinguish between (1.12) applied to (ζ̃ ,Φ) as opposed to (ζ,Φ), we will write

d̃s(q) :=

∫ 1

q

ζ̃
(
[0, u]

)
(ξs ◦ Φ)′(u) du.
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Applying the identity (2.83), we have

|ds(0)− d̃s(0)| =
∣∣∣
∫ 1

0

ξs(Φ(Qζ(z))) dz −
∫ 1

0

ξs(Φ(Qζ̃(z))) dz
∣∣∣

(2.92)
≤ CD

(
(ζ,Φ), (ζ̃ ,Φ)

)
.

(2.93)

Given ε2 > 0, choose b∗ such that

A(ζ,Φ, b∗) ≤ P(ζ,Φ) + ε2, (2.94)

and define

α := (7ε2/8) ∧ inf
s∈S

(bs∗ − ds(0)) > 0. (2.95)

Then let ε ∈ (0, α/7) be so small that

1

α− 7ε
− 1

α
≤ ε2

2C
∑

s∈S
1/λs

, (2.96)

as well as

ξs(0)

α− ε
− ξs(0)

α
≤ ε2

2
for all s ∈ S . (2.97)

Finally, with ε1 = ε/C, take K as above so that whenever |q − u| ≤ 1/K, we have

|ξs(Φ(q))− ξs(Φ(u))|
(2.92),(1.11)

≤ C|q − u|
∑

s∈S

1

λs

(2.86)
≤ Cε1 = ε. (2.98)

In addition, because of (2.75), the inequality (2.93) now reads as

|ds(0)− d̃s(0)| ≤ Cε1 = ε. (2.99)

Claim 2.22. If b is such that bs − ds(0) ≥ α for each s ∈ S , then

|A(ζ,Φ, b)−A(ζ̃ ,Φ, b)| ≤ ε2. (2.100)

Proof. A simple calculus exercise shows that for any x0 ∈ (0, α), we have

sup
y≥α,x∈[−x0,x0]

∣∣∣ 1

y − x
− 1

y

∣∣∣ = sup
y≥α

( 1

y − x0
− 1

y

)
=

1

α− x0
− 1

α
. (2.101)

For instance, when x0 = ε and bs − ds(0) ≥ α, the inequality (2.99) allows us to write

∣∣∣ ξs(0)

bs − ds(0)
− ξs(0)

bs − d̃s(0)

∣∣∣
(2.101)
≤ ξs(0)

α− ε
− ξs(0)

α

(2.97)
≤ ε2

2
. (2.102)

In addition, it follows from (1.11) and (2.92) that if Φ is differentiable at q ∈ (0, 1), then

(ξs ◦ Φ)′(q) ≤ C
∑

s∈S

1/λs.

Since bs − ds(q) ≥ bs − ds(0) ≥ α for any q ∈ [0, 1] and s ∈ S , the two previous displays

and (2.96) lead us to conclude

sup
x∈[−7ε,7ε]

∣∣∣ (ξs ◦ Φ)′(q)
bs − ds(q)− x

− (ξs ◦ Φ)′(q)
bs − ds(q)

∣∣∣ ≤ ε2
2

whenever Φ′(q) exists. (2.103)
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The goal now is to set ourselves up to use this inequality to prove (2.100).

Thanks to (2.89), we have the following for q ∈ [qr, qr+1]:

ds(q) = ds(qr+1) +

∫ (qr+1− 1
K

)∨q

q

ζ
(
[0, u]

)
(ξs ◦ Φ)′(u) du

+

∫ qr+1

(qr+1− 1
K

)∨q

ζ
(
[0, u]

)
(ξs ◦ Φ)′(u) du

= ds(qr+1) +mr

(
ξs(Φ((qr+1 − 1/K)∨q))− ξs(Φ(q))

)

+

∫ qr+1

(qr+1− 1
K

)∨q

ζ
(
[0, u]

)
(ξs ◦ Φ)′(u) du.

Now, it is immediate from (2.98) that

|ξs(Φ(qr+1))− ξs(Φ((qr+1 − 1/K)∨q))| ≤ ε.

In addition, by using the trivial inequality 0 ≤ ζ
(
[0, u]

)
≤ 1, we obtain

0 ≤
∫ qr+1

(qr+1− 1
K

)∨q

ζ
(
[0, u]

)
(ξs ◦ Φ)′(u) du ≤ ξs(Φ(qr+1))− ξs(Φ((qr+1 − 1/K)∨q)) ≤ ε.

Since we defined qr+1 to be Φ(qr+1), the three previous displays together show

∣∣ds(q)− ds(qr+1)−mr

(
ξs(qr+1)− ξs(Φ(q))

)∣∣ ≤ 2ε for q ∈ [qr, qr+1]. (2.104)

If 0 ≤ r ≤ k − 1, then recall from (2.88) that qr+1 − 1/K ≤ Qζ(mr+1) ≤ qr+1. Therefore,

by yet another application of (2.98), we have

0 ≤ ξs(qr+1)− ξs(Φ(Qζ(mr+1))) ≤ ε.

Using Qζ(mr+1) as the value of q in (2.104), we now obtain the following special case:

|ds(Qζ(mr+1))− ds(qr+1)| ≤ 3ε, 0 ≤ r ≤ k − 1.

Since Qζ̃(mr+1) = qr+1, we can employ Lemma 2.21 to make the following comparison:

|ds(Qζ(mr+1))− d̃s(qr+1)|

=
∣∣∣
∫ 1

Qζ(mr+1)

ζ
(
[0, u]

)
(ξs ◦ Φ)′(u) du−

∫ 1

Q
ζ̃
(mr+1)

ζ̃
(
[0, u]

)
(ξs ◦ Φ)′(u) du

∣∣∣

(2.82)
≤

∣∣∣
∫ 1

mr+1

(ξs ◦ Φ)(Qζ(z)) dz −
∫ 1

mr+1

(ξs ◦ Φ)(Qζ̃(z)) dz
∣∣∣

+mr+1

∣∣ξs
(
Φ(Qζ(mr+1))

)
− ξs(qr+1)

∣∣
(2.92)
≤ C

∫ 1

mr+1

‖Φ(Qζ(z))− Φ(Qζ̃(z))‖1 dz + ε
(2.91)
≤ 2ε.

The two previous displays combine to show that

|ds(qr+1)− d̃s(qr+1)| ≤ 5ε, 0 ≤ r ≤ k − 1. (2.105)

Of course, the same inequality holds trivially when r = k, since ds(1) = 0 = d̃s(1). Putting

together (2.104) and (2.105), we find

∣∣ds(q)− d̃s(qr+1)−mr

(
ξs(qr+1)− ξs(Φ(q))

)∣∣ ≤ 7ε for all q ∈ [qr, qr+1], 0 ≤ r ≤ k.
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It thus follows from (2.103) that whenever Φ′(q) exists and q ∈ [qr, qr+1], we have

∣∣∣∣
(ξs ◦ Φ)′(q)
bs − ds(q)

− (ξs ◦ Φ)′(q)
bs − d̃s(qr+1)−mr

(
ξs(qr+1)− ξs(Φ(q))

)
∣∣∣∣ ≤

ε2
2
. (2.106)

Upon integration, this inequality yields the following for r ≥ 1:

∣∣∣∣
∫ qr+1

qr

(ξs ◦ Φ)′(q)
bs − ds(q)

dq − 1

mr
log

bs − d̃s(qr+1)

bs − d̃s(qr+1)−mr

(
ξs(qr+1)− ξs(qr)

)
∣∣∣∣ ≤

ε2
2
(qr+1 − qr).

(2.107a)

When r = 0, we have m0 = 0, and so our conclusion from (2.106) is instead

∣∣∣∣
∫ q1

0

(ξs ◦ Φ̃)′(q)
bs − ds(q)

dq − ξs(q1)− ξs(0)

bs − d̃s(q1)

∣∣∣∣ ≤
ε2
2
q1. (2.107b)

Upon recognizing (as we did in (2.41)) that the discrete nature of (ζ̃ ,Φ) implies

1

mr
log

bs − d̃s(qr+1)

bs − d̃s(qr+1)−mr

(
ξs(qr+1)− ξs(qr)

) =

∫ qr+1

qr

(ξs ◦ Φ)′(q)
bs − d̃s(q)

dq for r ≥ 1,

and
ξs(q1)− ξs(0)

bs − d̃s(q1)
=

∫ q1

0

(ξs ◦ Φ)′(q)
bs − d̃s(q)

dq,

we can conclude from (2.107) that

∣∣∣∣
∫ 1

0

(ξs ◦ Φ)′(q)
bs − ds(q)

dq −
∫ 1

0

(ξs ◦ Φ)′(q)
bs − d̃s(q)

dq

∣∣∣∣ ≤
ε2
2
. (2.108)

Finally, we apply Lemma 2.21 once more, specifically (2.83), to see that

∣∣∣
∫ 1

0

ζ
(
[0, q]

)
(θ ◦ Φ)′(q) dq −

∫ 1

0

ζ̃
(
[0, q]

)
(θ ◦ Φ)′(q) dq

∣∣∣

=
∣∣∣
∫ 1

0

θ(Φ(Qζ(z))) dz −
∫ 1

0

θ(Φ(Qζ̃(z))) dz
∣∣∣

(2.92)
≤ C

∫ 1

0

‖Φ(Qζ(z))− Φ(Qζ̃(z))‖1 dz
(2.91)
≤ ε ≤ ε2.

(2.109)

Once we recall the definition (1.14) of A(ζ,Φ, b), the desired inequality (2.100) follows

from (2.102), (2.108), and (2.109). � (Claim)

We now finish the proof of (2.76). One inequality is immediate from Claim 2.22. Since

b∗ from (2.94) trivially satisfies the hypotheses of the claim (see (2.95)), we have

P(ζ̃ ,Φ) ≤ A(ζ̃ ,Φ, b∗)
(2.100)
≤ A(ζ,Φ, b∗) + ε2

(2.94)
≤ P(ζ,Φ) + 2ε2. (2.110)

On the other hand, take any b satisfying bs > d̃s(0) for each s ∈ S , and such that

A(ζ̃ ,Φ, b) ≤ P(ζ̃ ,Φ) + ε2. Unfortunately, b may not satisfy the hypotheses of Claim 2.22.

Nonetheless, we must have

bs − ds(0)
(2.99)
≥ bs − d̃s(0)− ε > −ε.

Therefore, by simply increasing each coordinate of b by ε+ α, we can obtain a vector

that does satisfy the hypotheses of Claim 2.22. Indeed, by our choice of ε < α/7 and
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α ≤ 7ε2/8, we have −ε ≥ −α/7 = α− 8α/7 ≥ α− ε2. Consequently, the previous display

leads to

(bs + ε2)− ds(0) > α.

Furthermore, it is straightforward to differentiate (1.14) to obtain

∂

∂bs
A(ζ̃ ,Φ, b) =

λs

2

[
1− 1

bs
− ξs(0)

(bs − ds(0))2
−
∫ 1

0

(ξs ◦ Φ)′(q)
(bs − d̃s(q))2

dq
]
≤ λs

2
.

Consequently, the small change we make to b creates a correspondingly small change in

A(ζ̃ ,Φ, b):

A(ζ̃ ,Φ, b+ ε21)−A(ζ̃ ,Φ, b) ≤ ε2
∑

s∈S

λs

2
=
ε2
2
. (2.111)

Applying Claim 2.22 to b+ ε21, we thus obtain

P(ζ,Φ) ≤ A(ζ,Φ, b+ ε21)
(2.100)
≤ A(ζ̃ ,Φ, b+ ε21) + ε2

(2.111)
≤ A(ζ̃ ,Φ, b) +

3ε2
2

≤ P(ζ̃ ,Φ) +
5ε2
2
.

Combining this inequality with (2.110) results in

|P(ζ,Φ)− P(ζ̃ ,Φ)| ≤ 5ε2/2.

Of course, replacing ε2 by 2ε2/5 yields (2.76). �

3 Upper bound

In this section we prove the following result.

Proposition 3.1. For any λ-admissible pair (ζ,Φ), we have

lim sup
N→∞

EFN ≤ P(ζ,Φ). (3.1)

The proof will require that we introduce in Section 3.1 a perturbed version of the

Hamiltonian HN from (1.4). This is to guarantee that Talagrand’s positivity principle

holds, a fact we show in Section 3.2. In turn, this principle is critical to controlling how

the free energy changes along a Guerra-type interpolation of the Hamiltonian, which we

perform in Section 3.3. This interpolation ultimately proves Proposition 3.1.

In defining Hpert
N via (3.3), we are able to ensure that the Ghirlanda–Guerra identities

hold in the large-N limit. In addition to implying the positivity principle, these identities

will be needed in Section 6 for the reasons discussed in Section 1.3. Therefore, the

definitions made in Section 3.1 will be used throughout the rest of the paper.

3.1 Perturbing the Hamiltonian

We adopt the multi-species perturbation technique developed in [59]. For w ∈ [0, 1]S ,

define the following linear combination of the entries in the vector R(σ, σ′) from (1.6):

Rw(σ, σ′) :=
∑

s∈S

λs(N)wsRs(σ, σ′), w ∈ [0, 1]S . (3.2)

Let W = {w1,w2, . . . } be a countable, dense subset of [0, 1]S which contains the standard

basis vectors of RS . To avoid divide-by-zero pathologies, assume that wq 6= 0 for all q.

EJP 27 (2022), paper 52.
Page 39/75

https://www.imstat.org/ejp



Multi-species mixed p-spin spherical models

For each wq = (ws
q)s∈S and i ∈ [N ]p, we will write w

s(i)
q := w

s(i1)
q · · ·ws(ip)

q . Now consider

a collection of i.i.d. standard Gaussian random variables {gi,q : i ∈ [N ]p, p ≥ 1, q ≥ 1}
that is independent of all gi’s from (1.2). With up,q allowed to be any number in [0, 3], we

define

Hpert
N (σ) :=

∑

p,q≥1

up,qH
pert
N,p,q(σ), where Hpert

N,p,q(σ) :=
2−(p+q)

N (p−1)/2

∑

i∈[N ]p

√
w

s(i)
q gi,qσi.

(3.3)

In the next section we will select the up,q parameters randomly, in which case Eu will

denote expectation with respect to the product measure Pu under which each up,q is a

uniform random variable on [1, 2], independent of all other variables. We will continue

to write E for expectation over all Gaussian processes (and Poisson–Dirichlet cascades

whenever they are present) with fixed u = (up,q)p,q≥1.

By direct calculation, we have

E[Hpert
N,p,q(σ)H

pert
N,p,q(σ

′)] = N4−(p+q)(Rwq (σ, σ′))p. (3.4)

The covariance structure of Hpert
N is thus given by

E[Hpert
N (σ)Hpert

N (σ′)] = NξpertN (R(σ, σ′)), (3.5)

where ξpertN is analogous to (1.8):

ξpertN (x) :=
∑

p,q≥1

u2p,q
4p+q

∑

s∈S p

λs(N)ws
qx

s. (3.6)

A perturbed spin glass model is now constructed from the Hamiltonian

H̄N (σ) := HN (σ) + cNH
pert
N (σ), (3.7)

where cN is some constant. To ensure that the perturbation does not change the limiting

free energy, we will ultimately send to cN to 0 as N → ∞. The following simple result is

analogous to [75, Lem. 12.2.1].

Lemma 3.2. Define the perturbed partition function and free energy:

Z̄N :=

∫

TN

exp(H̄N (σ)) τN (dσ), F̄N :=
1

N
log Z̄N . (3.8)

If up,q ∈ [0, 3] for all p, q, then we have

EFN ≤ EF̄N ≤ EFN + c2N/2. (3.9)

Proof. Apply Lemma A.1 with the following parameters:

• In (A.1), take (Σ, τ) = (TN , τN ) and H = HN .

• In (A.4), take (hi)i≥1 = (Hpert
N,p,q)p,q≥1, c = cN so that hu = Hpert

N , Hu = H̄N .

In this case, the constant ς2(u) from (A.5) satisfies

ς2(u) =
1

N
E[Hpert

N (σ)2]
(3.5)
= ξpertN (1) ≤

∑

p≥1

∑

q≥1

9

4p+q
= 1. (3.10)

Therefore, (3.9) follows from (A.6). �
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3.2 Multi-species positivity principle

Unlike the lower bound (1.17), Proposition 3.1 requires the convexity assumption (H3).

But notice that we only demand convexity of ξ on [0, 1]S as oppposed to all of [−1, 1]S .

This will be sufficient because of the following multi-species version of Talagrand’s

positivity principle [75, Thm. 14.12.1] (see also [57, Thm. 3.4]).

Lemma 3.3. For a non-random Hamiltonian H on TN satisfying

∫

TN

exp |H(σ)| τN (dσ) <∞, (3.11)

consider the perturbed Hamiltonian H̄(σ) := H(σ) + cNH
pert
N (σ). Denote the correspond-

ing Gibbs measure by ḠN . If cN = N−$ for some $ < 1/2, then for any ε > 0, we

have

lim
N→∞

sup
H(σ)

EuEḠ
⊗2
N

( ⋃

s∈S

{Rs(σ1, σ2) ≤ −ε}
)
= 0, (3.12)

where the supremum is over all measurable functions H : TN → R satisfying (3.11).

Proof. As usual we will write 〈·〉 to denote expectation according to ḠN , we take (σ`)`≥1

to be i.i.d. samples from ḠN , and Rs
`,`′ = Rs(σ`, σ`′). Since S is finite, it suffices to prove

that for each s ∈ S we have

lim
N→∞

sup
H(σ)

EuEḠ
⊗2
N

(
{Rs

1,2 ≤ −ε}
)
= 0. (3.13)

The argument for (3.13) relies on first establishing (a subset of) the Ghirlanda–Guerra

identities. Recall the notation R`,`′ = (Rs
`,`′)s∈S and R

n = (R`,`′)`,`′∈[n].

Claim 3.4. For any bounded measurable function f = f(Rn) and any continuous func-

tion ψ : [−1, 1] → R, define the quantity

∆s(f, n, ψ) :=
∣∣∣E〈fψ(Rs

1,n+1)〉 −
1

n
E〈f〉E〈ψ(Rs

1,2)〉 −
1

n

n∑

`=2

E〈fψ(Rs
1,`)〉

∣∣∣. (3.14)

We then have

lim
N→∞

sup
H(σ)

Eu∆
s(f, n, ψ) = 0. (3.15)

Proof. Given any non-random H satisfying (3.11), we will apply Theorem A.3 with the

following parameters:

• In (A.1), take (Σ, τ) = (TN , τN ).

• In (A.4), take (hi)i≥1 = (Hpert
N,p,q)p,q≥1, c = cN so that hu = Hpert

N , Hu = H̄.

By (3.5), the constant ς2(u) from (A.5) is equal to ξpertN (1), which is at most 1 by (3.10).

Consequently, Lemma A.2 and specifically (A.9) yields the following bound on the quantity

defined in (A.10):

ϑ ≤ 2
√
πN1−2$ ≤ 4N1/2−$. (3.16)

Now fix s ∈ S . Recall that we chose the set W so that there is some q for which wq

has entries all equal to 0 except for 1 in the s-coordinate. For this value of q, we have

Rwq (σ, σ′) = λs(N)Rs(σ, σ′), and so (3.4) gives

1

N
E[Hpert

N,p,q(σ)H
pert
N,p,q(σ

′)] = 4−(p+q)λs(N)Rs(σ, σ′)p.
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Therefore, for all N large enough that

N$

√
4p+qϑ

λs(N)N

(3.16)
≤ 2p+q+1

√
λs(N)

N$/2−1/4 < 1,

the inequality (A.11) in the present setting reads as

Eu∆
s(f, n, x 7→ xp) ≤ 24‖f‖∞

2p+q

√
λs(N)

n−1N$−1/2
(
1 + 2N1/4−$/2

)
. (3.17)

Note that the right-hand side has no dependence on H, and tends to 0 as N → ∞ so long

as $ < 1/2. That is, we have proved (3.15) when ψ(x) = xp.

For general ψ, we approximate by polynomials. Indeed, given any ε > 0, by Stone–

Weierstrass we can find a polynomial ψ̃(x) =
∑L

p=1 apx
p such that

|ψ(x)− ψ̃(x)| ≤ ε for all x ∈ [−1, 1].

Simply from examining the definition (3.14), it follows that

|∆s(f, n, ψ)−∆s(f, n, ψ̃)| ≤ 2ε‖f‖∞. (3.18)

Since Eu∆
s(f, n, ψ̃) ≤ ∑L

p=1 |ap|∆s(f, n, x 7→ xp), we have ∆s(f, n, ψ̃) → 0 by (3.17),

uniformly in H. Consequently, (3.18) leads to

lim sup
N→∞

sup
H(σ)

Eu∆(f, n, ψ) ≤ 2ε‖f‖∞.

As ε is arbitrary, we conclude (3.15). � (Claim)

With (3.15) in hand, one can proceed exactly as in [57, Thm. 3.4] to prove (3.13). �

3.3 Guerra interpolation: proof of Proposition 3.1

By Proposition 2.17, specifically (2.76), it suffices to prove (3.1) when ζ has finite

support. So let us consider any λ-admissible pair (ζ,Φ) such that ζ has finite support.

That is, ζ is of the form (2.28) for some sequences (mr)0≤r≤k and (qr)0≤r≤k+1 of the

form (2.17) and (2.27). Using the same shorthand as in Section 2.3, we write

qr = Φ(qr), 0 ≤ r ≤ k + 1.

As defined in Section 2.2, let (vα)α∈Nk−1 be the weights of the Poisson–Dirichlet

cascade corresponding to the sequence (2.17). Similar to (2.35), let (Xi)i∈[N ] and Y be

centered Gaussian processes on Nk−1 whose covariance structures are given by

E[Xi(α)Xi′(α
′)] = 1{i=i′}ξ

s(qr(α,α′)) for i ∈ Is,

E[Y (α)Y (α′)] = θ(qr(α,α′)).
(3.19)

Assume that these processes are independent of each other, of the Poisson–Dirichlet

cascade, and of the Gaussian disorder defining HN and Hpert
N . We then define the

following interpolating Hamiltonian on TN ×Nk−1:

HN,t(σ, α) :=
√
1− t

(
HN (σ) +

√
NY (α)

)
+
√
t

N∑

i=1

σiXi(α) + cNH
pert
N (σ), t ∈ [0, 1].
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We assume here that cN = N−$ for some $ ∈ (0, 1/4). Let us consider the associated

free energy,

ϕN (t) := log

∫

TN

∑

α∈Nk−1

vα expHN,t(σ, α) τN (dσ).

Upon defining

φN (t) := EuEϕN (t) +
N

2

[
t
∑

s∈S

λs(ξs(1)− ξs(qk)) + (1− t)(θ(1)− θ(qk))
]
, (3.20)

we have the following estimate.

Claim 3.5. The following inequality holds:

lim sup
N→∞

1

N
sup

t∈[0,1]

φ′N (t) ≥ 0. (3.21)

Proof. Define the Gibbs measure associated to the Hamiltonian HN,t(σ, α):

GN,t(dσ, α) :=
1

expϕN (t)
vα expHN,t(σ, α) τN (dσ). (3.22)

Denote by 〈·〉t the expectation according to GN,t. By direct calculation we have

φ′N (t) = EuE

〈dHN,t(σ, α)

dt

〉
t
+
N

2

[ ∑

s∈S

λs(ξs(1)− ξs(qk))− θ(1) + θ(qk)
]
. (3.23)

By recalling the definitions of ξs and θ from (1.9) and (1.10), it is trivial to check

that (3.23) can be rewritten as

φ′N (t) = EuE

〈dHN,t(σ, α)

dt

〉
t
+NC(1, qk), (3.24a)

where

C(x,y) := 1

2

(
ξ(x)− ξ(y)− (x− y) · ∇ξ(y)

)
, x,y ∈ [−1, 1]S . (3.24b)

Note that (H3) implies

C(x,y) ≥ 0 for x,y ∈ [0, 1]S . (3.24c)

Next consider the Gibbs average in (3.24a). In light of (1.8) and (3.19), Gaussian

integration by parts (see [57, Lem. 1.1]) shows that

E

〈dHN,t(σ, α)

dt

〉
t
= −NE

〈
CN (1,1)− CN (R(σ1, σ2), qr(α1,α2))

〉
t
, (3.24d)

where (σ1, α1), (σ2, α2) are independent samples from GN,t, and

CN (x,y) :=
1

2

(
ξN (x) + θ(y)−

∑

s∈S

Ns

N
xsξs(y)

)
.

Furthermore, by substituting ξN 7→ ξ and Ns/N 7→ λs in this definition, we recover the

function C from (3.24b) while incurring negligible change:

lim
N→∞

sup
x,y∈[−1,1]S

∣∣∣CN (x,y)− C(x,y)
∣∣∣ = 0. (3.24e)
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Since C(x,x) = 0, the cumulative outcome of (3.24) is that

1

N
φ′N (t) ≥ EuE

〈
C(R(σ1, σ2), qr(α1,α2))

〉
t
− o(1),

where o(1) tends to 0 as N → ∞, uniformly in t. To set up an application of Lemma 3.3,

we observe the trivial inequality

1

N
φ′N (t) ≥ δ(ε)− ‖C‖∞EuEG

⊗2
N,t

( ⋃

s∈S

{Rs(σ1, σ2) ≤ −ε}
)
− o(1), where

δ(ε) := inf{C(x,y) : x ∈ [−ε, 1]S ,y ∈ [0, 1]S },
‖C‖∞ := sup{C(x,y) : x ∈ [−1, 1]S ,y ∈ [0, 1]S }.

(3.25)

Next we write the marginal of GN,t on TN as a Gibbs measure of form required by

Lemma 3.3. Indeed, if we define

Ht(σ) := log
∑

α∈Nk−1

vα exp
(√

1− t
(
HN (σ) +

√
NY (α)

)
+
√
t

N∑

i=1

σiXi(α)
)
,

then we have the marginal

ḠN,t(dσ) :=
∑

α∈Nk−1

GN,t(dσ, α)
(3.22)
=

1

expϕN (t)
exp

(
Ht(σ) + cNH

pert
N (σ)

)
τN (dσ).

Although Ht is random, this randomness is independent of Hpert
N . Therefore, if we denote

by E1 and E2 the expectations over Ht and H
pert
N respectively, then

EuEG
⊗2
N,t

( ⋃

s∈S

{Rs(σ1, σ2) ≤ −ε}
)
= E1EuE2Ḡ

⊗2
N,t

( ⋃

s∈S

{Rs(σ1, σ2) ≤ −ε}
)

≤ sup
t∈[0,1]

EuE2Ḡ
⊗2
N,t

( ⋃

s∈S

{Rs(σ1, σ2) ≤ −ε}
)

(3.12)
= o(1).

As the final line is uniform in t, applying this estimate to (3.25) results in

lim sup
N→∞

1

N
sup

t∈[0,1]

φ′N (t) ≥ δ(ε) for any ε > 0.

Finally, because of (3.24c) we have δ(ε) → 0 as ε→ 0. � (Claim)

We now compute φN (0) and φN (1). When t = 0, the terms involving σ are decoupled

from those involving α, and by simple algebra (3.20) becomes

φN (0) = Eu(E log Z̄N ) + E log
∑

α∈Nk−1

vα exp
(√
NY (α)

)
+
N

2

(
θ(1)− θ(qk)

)
. (3.26)

Notice that the last two terms on the right-hand side are exactly of the form (2.9b),

except here N replacesM . We computed the expectation of this expression in (2.44):

E log
∑

α∈Nk−1

vα exp
(√
NY (α)

)
+
N

2

(
θ(1)− θ(qk)

)
=
N

2

k∑

r=1

mr

(
θ(qr+1)− θ(qr)

)
.

Inserting this identity into (3.26) yields

1

N
φN (0) = Eu(EF̄N ) +

1

2

k∑

r=1

mr

(
θ(qr+1)− θ(qr)

)
. (3.27)
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Meanwhile, for t = 1 we have

φN (1) = EuE log
∑

α∈Nk−1

vα

∫

TN

exp
( N∑

i=1

σiXi(α) + cNH
pert
N (σ)

)
τN (dσ)

+
N

2

∑

s∈S

λs(ξs(1)− ξs(qk)).

In order to remove the perturbation term, we apply Lemma A.1 with the following

parameters:

• In (A.1), take (Σ, τ) = (TN ×Nk−1, τN ⊗ (vα)) and H(σ, α) =
∑N

i=1 σiXi(α).

• In (A.4), take (hi)i≥1 = (Hpert
N,p,q)p,q≥1, c = cN so that hu = Hpert

N , Hu = HN,1.

In this case, we have already seen in (3.10) that the constant ς2(u) from (A.5) satisfies

ς2(u) ≤ 1. Therefore, (A.6) implies

∣∣∣φN (1)− E log

∫

TN

∑

α∈Nk−1

vα exp
( N∑

i=1

σiXi(α)
)
τN (dσ)− N

2

∑

s∈S

λs(ξs(1)− ξs(qk))
∣∣∣

≤ c2NN

2
.

Notice that the last two terms on the left-hand side are exactly of the form (2.9a), with

(TN , τN ) replacing (TM , τM ). On the assumption that Ns/N → λs as N → ∞, we

computed the limiting value of this expression in (2.47):

lim
N→∞

1

N
E log

∫

TN

∑

α∈Nk−1

vα exp
( N∑

i=1

σiXi(α)
)
τN (dσ) +

1

2

∑

s∈S

λs
(
ξs(1)− ξs(qk)

)

= P(ζ,Φ) +
1

2

k∑

r=1

mr

(
θ(qr+1)− θ(qr)

)
.

From the two previous displays and the assumption that cN → 0 as N → ∞, we obtain

lim
N→∞

1

N
φN (1) = P(ζ,Φ) +

1

2

k∑

r=1

mr

(
θ(qr+1)− θ(qr)

)
. (3.28)

We thus have

lim sup
N→∞

EFN
(3.9)
= lim sup

N→∞
Eu(EF̄N )

(3.27)
= lim sup

N→∞

1

N
φN (0)− 1

2

k∑

r=1

mr

(
θ(qr+1)− θ(qr)

)

(3.21)
≤ lim

N→∞

1

N
φN (1)− 1

2

k∑

r=1

mr

(
θ(qr+1)− θ(qr)

)

(3.28)
= P(ζ,Φ). �

4 Lower bound part I: redefining the model

For Theorem 1.3, the only thing that is assumed about the size of each species is

that λs(N) := Λs(N)/N converges to a constant λs ∈ (0, 1] as N → ∞. In what follows,

we define an auxiliary model whose limiting free energy is no larger than that of the

original model, and this auxiliary model is different only in the sizes of each species.
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That is, we prescribe a method to change the value of Λs(N) for certain N , in order to

suit the large-M asymptotics of the cavity method pursued in Section 5. Specifically,

Proposition 4.1 will ensure that the hypothesis of Proposition 2.18 is true. The latter

result will be invoked at the very last moment in proving (1.17); see Section 6.3.

Let (Nk)k≥1 be an increasing sequence of integers such that N1 = 1, and

lim inf
N→∞

EFN = lim
k→∞

EFNk
.

Mimicking the shorthand Λs(N) = Ns from before, we write Λs(Nk) = Ns
k . By possibly

passing to a subsequence of (Nk)k≥1, we may assume both of the following statements:

(i) For each k ≥ 1, the quantity ∆k := Nk+1 −Nk is at least Nk+1/2. That is, Nk+1 ≥
2Nk.

(ii) For each s ∈ S , the sequence (Ns
k)k≥1 is strictly increasing. (This is possible

because λs > 0).

On the sequence (Nk)k≥1, we alter nothing from the original model. That is, we assume

the S -tuple ((Λs(N))s∈S has been prescribed for any N belonging to {N1, N2, . . . }, but
not for any other N . Therefore, we must declare the value of Λs(N) for every N not

belonging to {N1, N2, . . . }, which we do inductively as follows.

Suppose Nk ≤ N < Nk+1 and that (Λs(N))s∈S has been defined in such a way that

Ns
k ≤ Λs(N) ≤ Ns

k+1 for each s ∈ S . Let αs(N) be the unique number in [0, 1] such that

(1− αs(N))Ns
k + αs(N)Ns

k+1 = Λs(N). (4.1)

Now identify s∗ ∈ S such that αs∗(N) is minimal (if there are multiple such s∗, then
choose one according to some deterministic rule), and set

Λs(N + 1) =

{
Λs(N) + 1 if s = s∗,

Λs(N) if s 6= s∗.

In this way, Λs(·) is non-decreasing, and we maintain the identity N =
∑

s∈S
Λs(N). The

new model we have now defined is maintained throughout the rest of the paper, and the

desired outcome is the following.

Proposition 4.1. In the redefined model, the following limit holds for every s ∈ S :

lim
M→∞

lim sup
N→∞

∣∣∣Λ
s(N +M)− Λs(N)

M
− λs

∣∣∣ = 0. (4.2)

Proof. Let λsk = λs(Nk), and define for convenience the following quantities:

αmin(N) := min
s∈S

αs(N), λmin := min
s∈S

λs, εsk := λsk − λs,

αmax(N) := max
s∈S

αs(N), λmax := max
s∈S

λs, εk := max
s∈S

|εsk|.

Note that εk → 0 as k → ∞. Given N , let k be the unique integer such that Nk ≤ N <

Nk+1.

Claim 4.2. If k is large enough that 2εk+1 + εk < λmin, then

αmax(N)− αmin(N) ≤ 2

(λmin − 2εk+1 − εk)Nk+1
. (4.3)

EJP 27 (2022), paper 52.
Page 46/75

https://www.imstat.org/ejp



Multi-species mixed p-spin spherical models

Proof. The claim is clear when N = Nk, since α
s(Nk) = 0 for all s ∈ S . So let us assume

Nk < N < Nk+1. Since ∆k = Nk+1 −Nk ≥ Nk+1/2, we have

Ns
k+1 −Ns

k = λsk+1 ·Nk+1 − λsk ·Nk

=
(
λsk+1 − λsk

)
Nk+1 + λsk∆k

= (εsk+1 − εsk)Nk+1 + (λs + εsk)∆k ≥ (λs + 2εsk+1 − εsk)
Nk+1

2
.

Because Λs(N)− Λs(N − 1) takes the value 0 or 1, this inequality implies the following:

0 ≤ αs(N)− αs(N − 1)
(4.1)
=

Λs(N)− Λs(N − 1)

Ns
k+1 −Ns

k

≤ 1

(λmin − 2εk+1 − εk)
Nk+1

2

. (4.4)

Then, because αs(N) − αs(N − 1) can be positive only when αs(N − 1) = αmin(N − 1),

from (4.4) we deduce

αmax(N) ≤ max
{
αmax(N − 1), αmin(N − 1) +

2

(λmin − 2εk+1 − εk)Nk+1

}
.

On the other hand, we trivially have αmin(N) ≥ αmin(N − 1), and so

αmax(N)− αmin(N) ≤ max
{
αmax(N − 1)− αmin(N − 1),

2

(λmin − 2εk+1 − εk)Nk+1

}
.

Therefore, (4.3) is true by induction. � (Claim)

Writing δs(N) := αs(N) − αmin(N) ≥ 0 and observing that ∆k =
∑

s∈S
(Ns

k+1 −Ns
k),

we trivially have

N −Nk =
∑

s∈S

αs(N)[Ns
k+1 −Ns

k ] = αmin(N)∆k +
∑

s∈S

δs(N)[Ns
k+1 −Ns

k ].

By rearranging terms, we find that

0 ≤ N −Nk

∆k
− αmin(N) =

∑

s∈S

δs(N) ·
Ns

k+1 −Ns
k

∆k

≤ max
s∈S

δs(N) = αmax(N)− αmin(N).

This inequality, combined with (4.3), yields the following expression as N → ∞:

αs(N) =
N −Nk

∆k
+O(N−1

k+1) for all s ∈ S , Nk ≤ N < Nk+1. (4.5)

In particular, hypothesis (H1) is maintained, as explained by the next claim.

Claim 4.3. In the redefined model, the following limit still holds for every s ∈ S :

lim
N→∞

λs(N) = λs. (4.6)

Proof. We already know that λsk → λs as k → ∞, and so we need only worry about N not

belonging to the sequence (Nk)k≥1. For Nk < N < Nk+1, we have

λs(N) =
Λs(N)

N

(4.1)
= λsk(1− αs(N))

Nk

N
+ λsk+1α

s(N)
Nk+1

N
(4.5)
= (λs + o(1))

[(Nk+1 −N

∆k
+O(N−1

k+1)
)Nk

N
+

(N −Nk

∆k
+O(N−1

k+1)
)Nk+1

N

]
.

Now (4.6) follows from the observation that

Nk+1 −N

∆k
· Nk

N
+
N −Nk

∆k
· Nk+1

N
= 1. � (Claim)
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Now we can conclude the proof of Proposition 4.1. Suppose thatN andM are positive

integers such that Nk ≤ N < N +M < Nk+1. Note that

Λs(N +M)− Λs(N) = [αs(N +M)− αs(N)][Ns
k+1 −Ns

k ]

=⇒ Λs(N +M)− Λs(N)

M
=
αs(N +M)− αs(N)

M

[
(λs + o(1))Nk+1 − (λs + o(1))Nk

]
.

KeepingM fixed and letting N → ∞, by (4.5) this expression becomes

Λs(N +M)− Λs(N)

M
=

1

M

(M
∆k

+O(N−1
k+1)

)(
λs + o(1)

)
∆k =

(
λs + o(1)

)(
1 +

O(1)

M

)
.

This analysis goes through also if N +M = Nk+1, by simply replacing αs(N +M) with 1.

If instead Nk ≤ N < Nk+1 ≤ N +M , then we may assume N +M < Nk+2. Indeed,

given any M , by condition (i) there is k large enough that N +M ≤ Nk+2 whenever

N < Nk+1. By repeating twice the analysis from above, we can recover the same limiting

statement as before (withM fixed and N → ∞):

Λs(N +M)− Λs(N)

M

=
Ns

k+1 − Λs(N)

Nk+1 −N
· Nk+1 −N

M
+

Λs(N +M)−Ns
k+1

N +M −Nk+1
· N +M −Nk+1

M

=
(
λs + o(1)

)[(
1 +

O(1)

Nk+1 −N

)Nk+1 −N

M
+
(
1 +

O(1)

N +M −Nk+1

)N +M −Nk+1

M

]

=
(
λs + o(1)

)(
1 +

O(1)

M

)
.

That is, there is some constant C not depending onM , such that

lim sup
N→∞

∣∣∣Λ
s(N +M)− Λs(N)

M
− λs

∣∣∣ ≤ CM−1.

Upon sendingM → ∞, we have proved (4.2). �

In addition to conferring Proposition 4.1, the redefined model has the convenient

feature that Λs(N) is non-decreasing in N . Therefore, we may assume that each integer

i is assigned a species which does not change with N . That is, s(i) is the unique value

of s such that Λs(i) > Λs(i − 1); here s(1) is the unique value of s such that Λs(1) = 1.

This simplification will allow us to more easily couple the models on TN+M and TN ;

see (5.24).

5 Lower bound part II: the Aizenman–Sims–Starr scheme

The goal of this section is to establish (a rigorous version of) the inequality (1.24),

as discussed heuristically in Section 1.3. While (1.23) would be a perfectly good start-

ing place for the A.S.S. scheme, we will need in Section 6 the perturbed form of the

Hamiltonian (again, this is to guarantee the Ghirlanda–Guerra identities once N is sent

to infinity). That is, we must work with Hpert
N from (3.3) rather than HN from (1.4). As

before, let us think of the perturbation parameters (up,q)p,q≥1 as i.i.d. uniform random

variables on [1, 2] which are independent of everything else, and then we write Eu to

denote expectation over all up,q. With this modified viewpoint, we recall the definitions

from (3.8) and apply (1.22) to the sequence aN = Eu(E log Z̄N ), resulting in

lim inf
N→∞

Eu(EF̄N ) ≥ 1

M
lim inf
N→∞

Eu

(
E log

Z̄N+M

Z̄N

)
. (5.1)
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But in light of Lemma 3.2, the left-hand side is just lim infN→∞ EFN once again, provided

that cN → 0. The goal of the A.S.S. scheme is to understand the right-hand side of (5.1).

To make the relevant computations, we will need that the number of cavity coor-

dinates assigned to each species does not depend on N . So for the remainder of this

section, we will fixM and then choose an increasing sequence (Nk)k≥1 that both achieves

the limit infimum in (5.1), i.e.

lim inf
N→∞

Eu

(
E log

Z̄N+M

Z̄N

)
= lim

k→∞
Eu

(
E log

Z̄Nk+M

Z̄Nk

)
, (5.2a)

and is such that the number of cavity coordinates in each species is constant. That is,

for each s ∈ S , there is a constant Λs
cav(M) satisfying

Λs(Nk +M)− Λs(Nk) = Λs
cav(M) for all k ≥ 1. (5.2b)

The second condition (5.2b) is possible because there are only finitely many possibilities

for the value of this difference, namely the integers between 0 and M . Within any

sequence (Nk)k≥1, one of these possibilities must occur infinitely many times. To ease

our notational burden, we will henceforth write N instead of Nk, understanding that we

work only along the sequence (Nk)k≥1 chosen to satisfy (5.2).

In a slight abuse of notation, we will abbreviate Λs
cav(M) as just Ms. This quantity

should not be confused with Ns = Λs(N) from (1.1). If we take J s to be the set of

j ∈ [M ] such that s(N + j) = s, then |J s| =Ms, and we can consider the space (TM , τM )

from (2.1). While J s does depend on N , its cardinality does not because of (5.2b).

Therefore, in light of Remark 2.5, we do not concern ourselves with how J s depends

on N . Ultimately we will send M → ∞, so let us note for later that regardless of the

sequence (Nk)k≥1 chosen for eachM , it follows from Proposition 4.1 that

lim
M→∞

Ms

M
= λs. (5.3)

For the time being, though, we work with fixedM .

Let us define the following rescaled version of HN :

HM,N (σ) :=
∑

p≥1

βp

( N

N +M

)(p−1)/2

H
(p)
N (σ), (5.4)

where H
(p)
N was defined in (1.3). The rescaling in (5.4) is such that (1.7) becomes

E[HM,N (σ)HM,N (σ′)] = (N +M)ξN

( N

N +M
R(σ, σ′)

)
, σ, σ′ ∈ R

N , (5.5)

where ξN is the covariance function from (1.8), and R(σ, σ′) is the overlap vector defined

in (1.6). Mimicking the notation from (3.7), we will write

H̄M,N (σ) := HM,N (σ) + cNH
pert
N (σ). (5.6)

We also define the Gibbs measure and partition function associated to this Hamiltonian:

ḠM,N (dσ) :=
1

Z̄M,N
exp(H̄M,N (σ)) τN (dσ), Z̄M,N :=

∫

TN

exp(H̄M,N (σ)) τN (dσ).

We will write 〈·〉M,N to denote expectation over TN with respect to ḠM,N . This Gibbs

measure is random depending on the Gaussian disorder, and its law depends on the

choice of u = (up,q)p,q≥1 in (3.3).
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Now let LM,N = LM,N (u) denote the law of the random overlap array produced by

i.i.d. samples from ḠM,N . That is, in the notation of Section 2.1.3, we have LM,N =

Law(R; ḠM,N ), where R : TN × TN → [−1, 1]S is the map defined in (1.6). Note that

R(σ, σ) = 1 for all σ ∈ TN . Regarding Assumption 2.1, the existence of processes Xj

and Y on TN satisfying (2.2) is verified in Remarks 5.2 and 5.4. Therefore, we can speak

of the functional ΠM (LM,N ) defined in (2.5), which is given by

ΠM (LM,N ) = E log

∫

TM

〈
exp

( M∑

j=1

κjXj(σ)
)〉

M,N
τM (dκ)− E log

〈
exp

(√
MY (σ)

)〉
M,N

.

(5.7)

The rest of Section 5 is committed to proving the following result.

Theorem 5.1. Assume cN = N−$ for some $ > 0. Let γM be the joint law of M

independent, standard Gaussian random variables. For δ > 0, let AM,δ be the following

product of annuli:

AM,δ :=
⊗

s∈S

AMs,δ, where Am,δ :=
{
κ ∈ R

m : m ≤ ‖κ‖22 ≤ m(1 + δ)
}
. (5.8)

For any δ ∈ (0, 1] and any sequence (Nk)k≥1 satisfying (5.2), we have

lim inf
N→∞

EFN ≥ 1

M
lim sup
k→∞

EuΠM (LM,Nk
(u))− Cδ +

1

M
log γM (AM,δ), (5.9)

where C is a constant depending only on the values of λs, s ∈ S .

Proof. As before, let us just write N instead of Nk, with the understanding that we work

only along the sequence chosen to satisfy (5.2). Since cN → 0 as N → ∞, we already

know

lim inf
N→∞

EFN
(3.9)
= lim inf

N→∞
Eu(EF̄N )

(5.1), (5.2a)
≥ 1

M
lim
k→∞

Eu

(
E log

Z̄Nk+M

Z̄Nk

)
, (5.10)

and so we turn our attention to the rightmost expression. By trivial algebra we can write

E log
Z̄N+M

Z̄N
= E log

∫
AM,δ

JM,N (κ) γM (dκ)

Z̄M,N︸ ︷︷ ︸
Q1

+E log
Z̄N+M∫

AM,δ
JM,N (κ) γM (dκ)

︸ ︷︷ ︸
Q2

−E log
Z̄N

Z̄M,N︸ ︷︷ ︸
Q3

,

where

JM,N (κ) :=

∫

TN

exp
(
H̄M,N (σ) +

M∑

j=1

κjXj(σ)
)
τN (dσ). (5.11)

Because of (5.10), to prove (5.9), it suffices to show three bounds which are uniform in

u:

Q1 ≥ log γM (AM,δ) + E log

∫

TM

〈
exp

( M∑

j=1

κjXj(σ)
)〉

M,N
τM (dκ), (5.12)

Q2 ≥ −CδM − oM (1), (5.13)

Q3 ≤ E log
〈
exp

(√
MY (σ)

)〉
M,N

+ oM (1). (5.14)

Here oM (1) denotes a quantity depending on M (but not on u) that converges to 0 as

N → ∞. Verifying these three inequalities is the task of the next three sections. The

value of C may change from line to line.
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5.1 Control of Q1: proof of (5.12)

Consider the random variable in Q1:

1

Z̄M,N

∫

AM,δ

JM,N (κ) γM (dκ) =

∫

AM,δ

〈
exp

( M∑

j=1

κjXj(σ)
)〉

M,N
γM (dκ).

By Tonelli’s theorem, we can move the expectation 〈·〉M,N out of the integral over AM,δ,

and then use the product structure of (AM,δ, γM ):

∫

AM,δ

〈
exp

( M∑

j=1

κjXj(σ)
)〉

M,N
γM (dκ) =

〈∫

AM,δ

exp
( M∑

j=1

κjXj(σ)
)
γM (dκ)

〉

M,N

=

〈 ∏

s∈S

∫

AMs,δ

exp
( ∑

j∈J s

κjXj(σ)
)
γMs(dκ)

〉

M,N

.

Now we apply [24, Lem. 2.2], which says
∫

AMs,δ

exp
( ∑

j∈J s

κjXj(σ)
)
γMs(dκ) ≥ γMs(AMs,δ)

∫

SMs

exp
( ∑

j∈J s

κjXj(σ)
)
µMs(dκ),

where µMs is the normalized surface measure on the sphere SMs . Upon inserting this

inequality into the previous display, and then reversing the factorization using the fact

that
⊗

s∈S (SMs , µMs) = (TM , τM ), we arrive at

1

Z̄M,N

∫

AM,δ

JM,N (κ) γM (dκ) ≥ γM (AM,δ)

〈∫

TM

exp
( M∑

j=1

κjXj(σ)
)
τM (dκ)

〉

M,N

= γM (AM,δ)

∫

TM

〈
exp

( M∑

j=1

κjXj(σ)
)〉

M,N
τM (dκ),

where the equality is once again from Tonelli’s theorem. We obtain (5.12) by taking the

expected logarithm of both sides.

5.2 Control of Q2: proof of (5.13)

This step is done in two parts, corresponding to a decomposition of Q2 into two terms:

log
Z̄N+M∫

AM,δ
JM,N (κ) γM (dκ)

= log

∫
AM,δ

JM,N (κ)PM,N (κ) dκ
∫
AM,δ

JM,N (κ) γM (dκ)
+ log

Z̄N+M∫
AM,δ

JM,N (κ)PM,N (κ) dκ
,

(5.15)

where PM,N is a function arising out of the following computation. Since λs > 0 for

each s ∈ S , we may assume N is large enough that Ns ≥ 1 (this will avoid some

divide-by-zero pathologies). To begin, let us consider an element ρ of the sphere Sn+1

written as ρ = (σ̃, κ), where σ̃ ∈ Rn and κ ∈ R. It is well-known that if ρ is sampled

uniformly (i.e. according to µn+1), then the density of κ with respect to Lebesgue measure

on [−
√
n+ 1,

√
n+ 1] is proportional to (1 − κ2/(n + 1))n/2−1. Therefore, we have the

identity
∫

Sn+1

f(ρ) µn+1(dρ)

=

∫

Sn

∫ √
n+1

−
√
n+1

f
(√n+ 1− κ2

n
σ, κ

) Γ(n+1
2 )

Γ(n2 )
√

(n+ 1)π

(
1− κ2

n+ 1

)n
2 −1

dκµn(dσ),
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which holds so long as f is nonnegative or belongs to L1(µn+1). If we define

Bm,n := [−
√
n+ 1,

√
n+ 1 ]× · · · × [−

√
n+m,

√
n+m ],

then applying this identity inductively leads to

∫

Sn+m

f(ρ) µn+m(dρ) =

∫

Sn

∫

Bm,n

f
(
ψm,n(σ, κ)

)
pm,n(κ) dκµn(dσ), (5.16)

where the maps ψm,n : Sn ×Bm,n → Sn+m and pm,n : Bm,n → R are given by

ψm,n(σ, κ) := (a(m)
m,n(κ)σ, a

(m−1)
m,n (κ)κ1, . . . , a

(1)
m,n(κ)κm−1, κm), (5.17)

a(`)m,n(κ) :=

m∏

j=m−`+1

√
n+ j − κ2j
n+ j − 1

, 1 ≤ ` ≤ m, (5.18)

pm,n(κ) :=
m∏

j=1

Γ(n+j
2 )

Γ(n+j−1
2 )

√
(n+ j)π

(
1−

κ2j
n+ j

)n+j−1
2 −1

. (5.19)

Next consider ρ belonging to the product space TN+M , and let us write ρ = (σ̃, κ̃)

with σ̃ ∈ RN and κ̃ ∈ RM . Recall the partitions [N ] = ]s∈S Is and [M ] = ]s∈SJ s, where

|Is| = Ns and |J s| =Ms. These sets allow us to distinguish the various species:

σ̃(s) := (σ̃i)i∈Is ∈ R
Ns

, κ̃(s) := (κ̃j)j∈J s ∈ R
Ms

, ρ(s) := (σ̃(s), κ̃(s)) ∈ SNs+Ms .

Note that σ̃(s) does not in general belong to SNs (we only know ‖σ̃(s)‖22 ≤ ‖ρ(s)‖22 =

Ns +Ms), hence the decoration by a tilde. Therefore, we wish to perform the change of

variables (5.16) for each species s ∈ S . To this end, define the set

BM,N :=
⊗

s∈S

BMs,Ns ⊂ R
M ,

and let ΨM,N : TN ×BM,N → TN+M be the unique map such that the following diagram

commutes for each s ∈ S :

(σ, κ)

ΨM,N
��

// (σ(s), κ(s))

ψMs,Ns

��

ρ = (σ̃, κ̃) // (σ̃(s), κ̃(s))

Thanks to the product structure of TN+M , TN , and BM,N , generalizing (5.16) results in

∫

TN+M

f(ρ) τN+M (dρ) =

∫

TN

∫

BM,N

f
(
ΨM,N (σ, κ)

)
PM,N (κ) dκ τN (dσ), (5.20)

where

PM,N (κ) :=
∏

s∈S

pMs,Ns(κ(s)), κ ∈ BM,N .

Now observe that by applying Stirling’s approximation to (5.19), we have the following

limit for any fixed m and κ ∈ Rm:

lim
n→∞

pm,n(κ) =
1

(2π)m/2
exp

(
− ‖κ‖22

2

)
.
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By the definition of PM,N , this statement leads to

lim
N→∞

PM,N (κ) =
1

(2π)M/2
exp

(
− ‖κ‖22

2

)
=: PM (κ).

Note that PM is precisely the density function for the Gaussian measure γM . We thus

claim that the first term on the right-hand side of (5.15) satisfies

E log

∫
AM,δ

JM,N (κ)PM,N (κ) dκ
∫
AM,δ

JM,N (κ) γM (dκ)
≥ oM (1). (5.21)

Indeed, Jensen’s inequality gives the following deterministic lower bound:

log

∫
AM,δ

JM,N (κ)PM,N (κ) dκ
∫
AM,δ

JM,N (κ)PM (κ) dκ
≥

∫
AM,δ

JM,N (κ)PM (κ) log
PM,N (κ)
PM (κ) dκ

∫
AM,δ

JM,N (κ)PM (κ) dκ

≥ inf
κ∈AM,δ

log
PM,N (κ)

PM (κ)
.

Since the convergence PM,N (κ) → PM (κ) is uniform on compact sets, and PM (κ) is

bounded away from zero on the compact set AM,δ, we have that

inf
κ∈AM,δ

log
PM,N (κ)

PM (κ)
= oM (1),

thus proving (5.21).

Meanwhile, the second term on the right-hand side of (5.15) is controlled as follows.

The numerator in the logarithm is equal to

Z̄N+M
(3.8)
=

∫

TN+M

exp(H̄N+M (ρ)) τN+M (dρ)

(5.20)
=

∫

TN

∫

BM,N

exp(H̄N+M

(
ΨM,N (σ, κ)

)
PM,N (κ) dκ τN (dσ).

Assuming N is large enough that BM,N contains AM,δ, we now have the lower bound

Z̄N+M ≥
∫

TN

∫

AM,δ

exp(H̄N+M

(
ΨM,N (σ, κ)

)
PM,N (κ) dκ τN (dσ). (5.22)

Next we consider the denominator, which is
∫

AM,δ

JM,N (κ)PM,N (κ) dκ

(5.11)
=

∫

AM,δ

∫

TN

exp
(
H̄M,N (σ) +

M∑

j=1

κjXj(σ)
)
PM,N (κ) τN (dσ) dκ.

(5.23)

In view of (5.22) and (5.23), we are lead to compare H̄N+M and H̄M,N as follows.

Let us first consider the unperturbed versions of these Hamiltonians. From (5.4) we

have

HM,N (σ) =
∑

p≥1

βp
(N +M)(p−1)/2

∑

i∈[N ]p

√
∆2

s(i)giσi, σ ∈ TN .

Recall that HN+M is very similar and simply contains more terms:

HN+M (ρ) =
∑

p≥1

βp
(N +M)(p−1)/2

∑

i∈[N+M ]p

√
∆2

s(i)giρi, ρ ∈ TN+M .
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Extending HM,N to all of RN , we use the identification ρ = (σ̃, κ̃) to write

HN+M (ρ) = HM,N (σ̃) +
∑

p≥1

βp
(N +M)(p−1)/2

∑

i∈[N+M ]p\[N ]p

√
∆2

s(i)giρi. (5.24)

We next separate the sum over i ∈ [N +M ]p \ [N ]p into two parts. The first part will

consist of those terms with exactly one cavity coordinate (i.e. i contains exactly one

coordinate larger than N ). Among such terms, let κ̃jX̃j(σ̃) denote the sum of those

whose cavity coordinate is κ̃j (here we have already summed over p). The second part

will collect all remaining terms, each of which contains at least two cavity coordinates;

we call this part D(ρ). In summary, we have

∑

p≥1

βp
(N +M)(p−1)/2

∑

i∈[N+M ]p\[N ]p

√
∆2

s(i)giρi =

M∑

j=1

κ̃jX̃j(σ̃) +D(ρ). (5.25)

Note that HM,N , X̃j , and D are mutually independent with respect to the Gaussian

disorder. As is verified by a straightforward calculation, X̃j is a centered Gaussian

process with

E[X̃j(σ̃)X̃j′(σ̃
′)] = 1{j=j′} · ξsN

( N

N +M
R(σ̃, σ̃′)

)
for j ∈ J s, (5.26)

where R(·, ·) is the overlap vector from (1.6), and ξsN is the finite-volume version of ξs

from (1.9):

ξsN (x) :=
1

λs(N)

∂ξN
∂xs

(x) =
∑

p≥1

pβ2
p

∑

t∈S p−1

∆2
(t,s)λ

t(N)xt.

Also by direct calculation, the remainder term D(ρ) satisfies

E[D(ρ)2] =
1

N +M

∑

s1,s2∈S

‖κ̃(s1)‖22 · ‖κ̃(s2)‖22
∑

p≥1

p(p− 1)β2
p

∑

t∈S p−2

∆2
(t,s1,s2)

λt(N +M)

≤ ‖κ̃‖42
N +M

∑

s1,s2∈S

∑

p≥1

p(p− 1)β2
p‖∆2

p‖∞
(H2)
≤ C‖κ̃‖42

N
.

(5.27)

Remark 5.2. If we applied the same two-part decomposition as in (5.25), but for the

sum

∑

p≥1

βp
N (p−1)/2

∑

i∈[N+M ]p\[N ]p

√
∆2

s(i)λ
s(i)

λs(i)(N)
giρi =

M∑

j=1

κ̃jX̂j(σ̃) + D̂(ρ),

then the covariance structure (5.26) would be replaced by

E[X̂j(σ̃)X̂j′(σ̃
′)] = 1{j=j′} ·

1

λs(N)

∑

p≥1

pβ2
p

∑

t∈S p−1

( ∆2
(t,s)λ

tλs

λt(N)λs(N)

)
λt(N)(R(σ̃, σ̃′))t

(1.9)
= 1{j=j′}

( λs

λs(N)

)2

ξs(R(σ̃, σ̃′)).

Therefore, the process Xj(σ̃) = (λs(N)/λs)X̂j(σ̃), j ∈ J s would have the covariance

structure declared in (2.2), but for σ̃ belonging to the projection of TN+M onto the firstN

coordinates. Since this projection contains a copy of TN , the process (Xj(σ))σ∈TN ,j∈[M ]

from (2.2) does exist.
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Now let H̃M,N be an independent copy of HM,N . We define an interpolating Hamilto-

nian on TN ×AM,δ, consisting of four parts:

Ht(σ, κ) := Ht,1(σ, κ) +Ht,2(σ, κ) +Ht,3(σ, κ) +Ht,4(σ, κ),

where, if we write ΨM,N (σ, κ) = ρ = (σ̃, κ̃), then

H1,t(σ, κ) :=
√
1− tHM,N (σ) +

√
tH̃M,N (σ̃),

H2,t(σ, κ) :=
√
1− t

M∑

j=1

κjXj(σ) +
√
t

M∑

j=1

κ̃jX̃j(σ̃),

H3,t(σ, κ) :=
√
tD(ρ),

H4,t(σ, κ) :=
√
1− t cNH

pert
N (σ) +

√
t cN+MH

pert
N+M (ρ).

Here we assume that HM,N , H̃M,N , Xj , X̃j , D, Hpert
N , and Hpert

N+M are mutually indepen-

dent. The quantity of interest is the interpolating free energy

φ(t) := E log

∫

AM,δ

∫

TN

exp
(
Ht(σ, κ)

)
PM,N (κ) τN (dσ) dκ, 0 ≤ t ≤ 1. (5.28)

At the initial time t = 0, we have the expression from (5.23):

φ(0) = E log

∫

AM,δ

JM,N (κ)PM,N (κ) dκ.

At the terminal time t = 1, by (5.24), (5.25), and Fubini’s theorem, we recover the

right-hand side of (5.22):

φ(1) = E log

∫

AM,δ

∫

TN

exp
(
H̄N+M

(
ΨM,N (σ, κ)

))
PM,N (κ) τN (dσ) dκ

(5.22)
≤ E log Z̄N+M ,

where the inequality holds for all large N . Therefore, the final term in (5.15) satisfies

E log
Z̄N+M∫

AM,δ
JM,N (κ)PM,N (κ) dκ

≥ φ(1)− φ(0) ≥ − sup
t∈(0,1)

|φ′(t)|. (5.29)

To calculate the derivative of φ, let 〈·〉t denote expectation with respect to the Gibbs

measure induced by Ht (where the reference measure on TN ×AM,δ is τN ⊗PM,N (κ) dκ,

as in (5.28)), and observe that

φ′(t) = E

〈dHt(σ, κ)

dt

〉
t
.

Then using Gaussian integration by parts (see [57, Lem. 1.1]), we have

φ′(t) = E
〈
C
(
(σ1, κ1), (σ1, κ1)

)
− C

(
(σ1, κ1), (σ1, κ1)

)〉
t
, (5.30a)

where (σ1, κ1) and (σ2, κ2) are regarded as independent samples from the Gibbs measure,

and C is defined by

C
(
(σ, κ), (σ′, κ′)

)
:= E

[dHt(σ, κ)

dt
Ht(σ

′, κ′)
]
. (5.30b)
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By the mutual independence of H1,t, H2,t, H3,t, and H4,t, all cross terms in the product

(dHt/dt)Ht vanish in expectation, leaving us with

E

[dHt(σ, κ)

dt
Ht(σ

′, κ′)
]
=

4∑

k=1

E

[dHk,t(σ, κ)

dt
Hk,t(σ

′, κ′)
]
. (5.30c)

We now handle each of the four summands separately.

Concerning k = 1, we observe that

E

[dH1,t(σ, κ)

dt
H1,t(σ

′, κ′)
]
=

1

2
E[H̃M,N (σ̃)H̃M,N (σ̃′)]− 1

2
E[HM,N (σ)HM,N (σ′)]

(5.5)
=

N +M

2

[
ξN

( N

N +M
R(σ̃, σ̃′)

)
− ξN

( N

N +M
R(σ, σ′)

)]
.

(5.31)

Since (σ̃(s), κ̃(s)) = ρ(s) belongs to SNs+Ms , we have

|Rs(σ̃, σ̃′)| ≤ ‖σ̃(s)‖2‖σ̃′(s)‖2
Ns

≤ Ns +Ms

Ns
.

Since N/(N +M) ≤ (Ns +Ms)/Ns, it follows that

N

N +M
R(σ̃, σ̃′) ∈ [−1, 1]S for all (σ, κ), (σ′, κ′) ∈ TN ×AM,δ. (5.32)

Therefore, by (H2) we have the trivial bound

∣∣∣ξN
( N

N +M
R(σ̃, σ̃′)

)
− ξN

( N

N +M
R(σ, σ′)

)∣∣∣

≤ sup
x∈[−1,1]S

‖∇ξN (x)‖2 ·
N‖R(σ̃, σ̃′)−R(σ, σ′)‖2

N +M
≤ C‖R(σ̃, σ̃′)−R(σ, σ′)‖2.

(5.33)

Because (σ̃(s), κ̃(s)) = ρ(s) is taken equal to ψMs,Ns(σ(s), κ(s)), it follows from the

definition (5.17) that the two overlap vectors R(σ̃, σ̃′) and R(σ, σ′) are related by

Rs(σ̃, σ̃′) = a
(Ms)
Ms,Ns(κ(s)) · a(M

s)
Ms,Ns(κ

′(s)) ·Rs(σ, σ′), s ∈ S . (5.34)

In the following claim, we take the convention that a
(0)
m,n ≡ 1.

Claim 5.3. For all κ, κ′ ∈ AM,δ, ` ∈ {0, 1, . . . ,Ms}, and N sufficiently large, we have

∣∣a(`)Ms,Ns(κ(s))− 1
∣∣ ≤ CMN−1, and (5.35)

∣∣a(`)Ms,Ns(κ(s))a
(`)
Ms,Ns(κ

′(s))− 1
∣∣ ≤ CMN−1. (5.36)

In the special case ` =Ms, we have

∣∣a(M
s)

Ms,Ns(κ(s))a
(Ms)
Ms,Ns(κ

′(s))− 1
∣∣ ≤ 2δMs/Ns + CM2N−2. (5.37)

Proof. By definition (5.8), κ ∈ AM,δ means that

Ms ≤ ‖κ(s)‖22 ≤ (1 + δ)Ms. (5.38)

Recall from (5.18) that for x ∈ BMs,Ns , we have

a
(`)
Ms,Ns(κ) =

Ms∏

j=Ms−`+1

√

1 +
1− x2j

Ns + j − 1
.
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So let us write κ(s) = (x1, . . . , xMs), and set κj = (1−x2j )/(Ns+ j−1). For any J ⊂ [Ms],

we have

∏

j∈J
(1 + κj) = 1 +

∑

j∈J
κj +

∑

j1<j2

κj1κj2 +
∑

j1<j2<j2

κj1κj2κj3 + · · · ,

where the right-hand terminates after a suitable number of terms. Subtracting the two

leading terms, we find that

∣∣∣
∏

j∈J
(1 + κj)− 1−

∑

j∈J
κj

∣∣∣ ≤
(∑

j∈J
|κj |

)2

+
(∑

j∈J
|κj |

)3

+ · · · ≤
(∑

j∈J |κj |
)2

1−∑
j∈J |κj |

,

assuming that
∑

j∈J |κj | < 1. Now observe that

∑

j∈J
|κj | ≤

1

Ns

Ms∑

j=1

(1 + x2j )
(5.38)
≤ (2 + δ)Ms

Ns
≤ CMN−1. (5.39)

It follows from the two previous displays that for all N sufficiently large, we have

∣∣∣
∏

j∈J
(1 + κj)− 1−

∑

j∈J
κj

∣∣∣ ≤ (CMN−1)2

1− CMN−1
≤ CM2N−2.

By the mean value theorem (applied to x 7→
√
1 + x), we conclude that

∣∣∣a(`)Ms,Ns(κ(s))− 1−
Ms∑

j=Ms−`+1

1− x2j
Ns + j − 1

∣∣∣ ≤ CM2N−2. (5.40)

The first inequality (5.35) follows from (5.40) and (5.39). The second inequality (5.36)

follows from (5.35), thanks to the identity

xy − 1 = (x− 1)(y − 1) + (x− 1) + (y − 1). (5.41)

In the special case ` =Ms, we have

∣∣∣
Ms∑

j=1

1− x2j
Ns + j − 1

∣∣∣ =
∣∣∣
Ms∑

j=1

1− x2j
Ns

+

Ms∑

j=1

( 1− x2j
Ns + j − 1

−
1− x2j
Ns

)∣∣∣

=
∣∣∣M

s

Ns
− ‖κ(s)‖22

Ns
+

Ms∑

j=1

( 1− x2j
Ns + j − 1

−
1− x2j
Ns

)∣∣∣
(5.38)
≤ δMs

Ns
+ CMN−2.

Therefore, (5.40) says

∣∣a(M
s)

Ms,Ns(κ(s))− 1
∣∣ ≤ δMs

Ns
+ CM2N−2,

and then (5.37) follows from (5.41). � (Claim)

We deduce the following for all large N :

‖R(σ̃, σ̃′)−R(σ, σ′)‖2
(5.34)
≤

√∑

s∈S

[
a
(Ms)
Ms,Ns(κ(s))a

(Ms)
Ms,Ns(κ′(s))− 1

]2

(5.37)
≤

√∑

s∈S

(2δMs

Ns
+ CM2N−2

)2

≤ CδMN−1.

(5.42)
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Using this estimate in (5.33) and inserting the resulting bound into (5.31), we arrive at

the following:

sup
(σ,κ),(σ′,κ′)∈TN×AM,δ

∣∣∣∣E
[dH1,t(σ, κ)

dt
H1,t(σ

′, κ′)
]∣∣∣∣ ≤ CδM. (5.43)

This concludes the consideration of k = 1 in (5.30c).

We next handle the k = 2 case, for which a straightforward calculation gives

E

[dH2,t(σ, κ)

dt
H2,t(σ

′, κ′)
]
=

1

2

M∑

j=1

[
κ̃j κ̃

′
jE[X̃j(σ̃)X̃j(σ̃

′)]− κjκ
′
jE[Xj(σ)Xj(σ

′)]
]
.

The jth summand on the right-hand side can be computed by recalling (5.26) and (2.2)

to compute the expectations, and then applying (5.17) to express κ̃j , κ̃
′
j in terms of

κj , κ
′
j . When j ∈ J s, the resulting expression is equal to the following for some ` ∈

{0, 1, . . . ,Ms − 1}:

κjκ
′
j

[
a
(`)
Ms,Ns(κ(s)) · a(`)Ms,Ns(κ

′(s)) · ξsN
( N

N +M
R(σ̃, σ̃′)

)
− ξs(R(σ, σ′))

]
. (5.44)

By the triangle inequality and (5.32), we have

∣∣∣a(`)Ms,Ns(κ(s)) · a(`)Ms,Ns(κ
′(s)) · ξsN

( N

N +M
R(σ̃, σ̃′)

)
− ξs(R(σ, σ′))

∣∣∣

≤ sup
x∈[−1,1]S

|ξsN (x)| ·
∣∣∣a(`)Ms,Ns(κ(s)) · a(`)Ms,Ns(κ

′(s))− 1
∣∣∣

+ sup
x∈[−1,1]S

‖∇ξsN (x)‖2 ·
∥∥∥ N

N +M
R(σ̃, σ̃′)−R(σ, σ′)

∥∥∥
2

+ |ξsN (R(σ, σ′))− ξs(R(σ, σ′))|.

(5.45)

The first term on the right-hand side is controlled by (5.36):

sup
x∈[−1,1]S

|ξsN (x)| ·
∣∣∣a(`)Ms,Ns(κ(s)) · a(`)Ms,Ns(κ

′(s))− 1
∣∣∣ ≤ CMN−1.

For the second term, we apply the triangle inequality and then invoke two of our previous

inequalities:

sup
x∈[−1,1]S

‖∇ξsN (x)‖2 ·
∥∥∥ N

N +M
R(σ̃, σ̃′)−R(σ, σ′)

∥∥∥
2

≤ C
[ M

N +M
‖R(σ̃, σ̃′)‖2 + ‖R(σ̃, σ̃′)−R(σ, σ′)‖2

]

(5.32),(5.42)
≤ CMN−1 + CδMN−1

)
≤ CMN−1.

Since R(σ, σ′) ∈ [−1, 1]S , the final term in (5.45) is easily seen to tend to zero by the fact

that λs(N) → λs. Indeed, by (H2), we can employ dominated convergence to conclude

|ξsN (R(σ, σ′))− ξs(R(σ, σ′))| ≤
∑

p≥1

pβ2
p

∑

t∈S p−1

∆2
(t,s)|λt(N)− λt| = o(1).

Here o(1) denotes a quantity which tends to 0 as N → ∞, uniformly in all variables. Now

that the right-hand side of (5.45) is completely controlled by the three previous displays,

we return to (5.44). Since ‖κ‖22 ≤ (1 + δ)M for all κ ∈ AM,δ, we find that

sup
(σ,κ),(σ′,κ′)∈TN×AM,δ

∣∣∣∣E
[dH2,t(σ, κ)

dt
H2,t(σ

′, κ′)
]∣∣∣∣ = CMN−1 + o(1). (5.46)
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This concludes the consideration of k = 2 in (5.30c).

Meanwhile, the k = 3 term in (5.30c) satisfies

E

[dH3,t(σ, κ)

dt
H3,t(σ

′, κ′)
]
=

1

2
E[D(ρ)D(ρ′)]

(5.27)
≤ C‖κ̃‖22 · ‖κ̃′‖22

N
. (5.47)

Now let us recall the relationship between κ ∈ AM,δ and κ̃ once more: If j ∈ J s, then

there is some `, 0 ∈ {0, 1, . . . ,Ms − 1} such that

|κ̃j | (5.17)= a
(`)
Ms,Ns(κ(s))|κj |

(5.35)
≤ C|κj |. (5.48)

Using this fact and (5.38) in (5.47), we find

sup
(σ,κ),(σ′,κ′)∈TN×AM,δ

∣∣∣∣E
[dH3,t(σ, κ)

dt
H3,t(σ

′, κ′)
]∣∣∣∣ ≤ CMN−1. (5.49)

Finally, the k = 4 term in (5.30c) is the most delicate and satisfies

E

[dH4,t(σ, κ)

dt
H4,t(σ

′, κ′)
]

=
c2N+M

2
E[Hpert

N+M (ρ)Hpert
N+M (ρ′)]− c2N

2
E[Hpert

N (σ)Hpert
N (σ′)]

(3.5)
= (N +M)

c2N+M

2
ξpertN+M (R(ρ, ρ′))−N

c2N
2
ξpertN (R(σ, σ′)).

(5.50)

Here the overlap vector R(ρ, ρ′) = (Rs(ρ, ρ′))s∈S is given by

Rs(ρ, ρ′) =
1

Ns +Ms

( ∑

i∈Is

σ̃iσ̃
′
i +

∑

j∈J s

κ̃j κ̃
′
j

)

=
Ns

Ns +Ms
Rs(σ̃, σ̃′) +

1

Ns +Ms

∑

j∈J s

κ̃j κ̃
′
j .

By the triangle inequality, we immediately have

‖R(ρ, ρ′)−R(σ̃, σ̃′)‖2

≤ ‖R(σ̃, σ̃′)‖2 ·max
s∈S

(
1− Ns

Ns +Ms

)
+

√√√√∑

s∈S

(
1

Ns +Ms

∑

j∈J s

κ̃j κ̃′j

)2

.

Given (5.48) and the fact that ‖κ(s)‖22 ≤ (1 + δ)Ms for κ ∈ AM,δ, we can conclude from

the two previous displays that

‖R(ρ, ρ′)−R(σ̃, σ̃′)‖2 = ‖R(σ̃, σ̃′)‖2 · CMN−1 + CMN−1
(5.32)
≤ CMN−1. (5.51)

Combining (5.51) with (5.42), we arrive at

‖R(ρ, ρ′)−R(σ, σ′)‖2 ≤ CMN−1. (5.52)

In particular, since R(σ, σ′) ∈ [−1, 1]S , we may assume N is sufficiently large that

R(ρ, ρ′) ∈ [−2, 2]S regardless of ρ and ρ′. Since ξpertN+M (c1) < ∞ for all c ∈ (−4, 4)

(see (3.6)), this will be enough to bound all quantities involving ξpertN+M by a constant. We

EJP 27 (2022), paper 52.
Page 59/75

https://www.imstat.org/ejp



Multi-species mixed p-spin spherical models

can now control the final expression in (5.50) as follows:
∣∣∣(N +M)c2N+Mξ

pert
N+M (R(ρ, ρ′))−Nc2Nξ

pert
N (R(σ, σ′))

∣∣∣

≤ (N +M)c2N+M‖R(ρ, ρ′)−R(σ, σ′)‖2 sup
x∈[−2,2]S

‖∇ξpertN+M (x)‖2

+
∣∣∣(N +M)c2N+M −Nc2N

∣∣∣ sup
x∈[−1,1]S

|ξpertN+M (x)|

+Nc2N sup
x∈[−1,1]S

|ξpertN+M (x)− ξpertN (x)|.

Upon inserting cN = N−$ and using (5.52), we find that the first product on the right-

hand side is at most CMN−2$. Considering the difference (N +M)1−2$ −N1−2$, we

see that the second product is also bounded from above by CMN−2$. For the third and

final product, since we have assumed that each up,q in (3.6) does not depend on N , the

supremum satisfies

sup
x∈[−1,1]S

|ξpertN+M (x)− ξpertN (x)|
(3.10)
≤ 2max

s∈S

|λs(N +M)− λs(N)|

≤ 2max
s∈S

∣∣∣M
sN −NsM

(N +M)N

∣∣∣ ≤ CMN−1,

thereby making the third product at most CMN−2$. We have thus argued that (5.50)

can be rewritten

sup
(σ,κ),(σ′,κ′)∈TN×AM,δ

∣∣∣∣E
[dH4,t(σ, κ)

dt
H4,t(σ

′, κ′)
]∣∣∣∣ ≤ CMN−2$. (5.53)

Returning to (5.30), the inequalities (5.43), (5.46), (5.49), and (5.53) yield the follow-

ing bound as N → ∞:

|φ′(t)| ≤ CδM + CMN−1 + o(1) + CMN−2$ for all t ∈ [0, 1].

Therefore, (5.29) becomes

E log
Z̄N+M∫

AM,δ
JM,N (κ)PM,N (κ) dκ

≥ −CδM − CMN−1 − o(1)− CMN−2$,

which together with (5.21) and (5.15) results in (5.13).

5.3 Control of Q3: proof of (5.14)

In this final step, we will show

∣∣∣E log
Z̄N

Z̄M,N
− E log

〈
exp

(√
MY (σ)

)〉
M,N

∣∣∣ = oM (1). (5.54)

In particular, (5.14) will hold, and so Theorem 5.1 will be proved. To begin, note the

following equality in distribution, which is immediate from the definition (5.4) of HM,N :

HN
dist
= HM,N +

∑

p≥1

βp

√
1− Np−1

(N +M)p−1
H̃

(p)
N ,

where H̃
(p)
N is an independent copy of H

(p)
N . Let us write

Ỹ (σ) :=
1√
M

∑

p≥1

βp

√
1− Np−1

(N +M)p−1
H̃

(p)
N (σ), σ ∈ TN . (5.55)
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Now define an interpolating Hamiltonian:

Ht := HM,N +
√
M(

√
1− t Y +

√
t Ỹ ) + cNH

pert
N , t ∈ [0, 1].

Notice that H0 = H̄M,N +
√
MY and H1

dist
= H̄N ; so upon setting

φ(t) := E log

(
1

Z̄M,N

∫

TN

exp(Ht(σ)) τN (dσ)

)

= E log
〈
exp

[√
M

(√
1− t Y (σ) +

√
t Ỹ (σ)

)]〉
M,N

,

we have

φ(0) = E log
〈
exp

(√
MY (σ)

)〉
M,N

and φ(1) = E log
Z̄N

Z̄M,N
.

As before, differentiation followed by Gaussian integration by parts (see [57, Lem. 1.1])

yields

φ′(t) = E

〈dHt(σ)

dt

〉
t
= E

〈
C(σ1, σ1)− C(σ1, σ2)

〉
t
, where C(σ, σ′) := E

[dHt(σ)

dt
Ht(σ

′)
]
.

(5.56)

Here 〈·〉t denotes expectation with respect to the Gibbs measure on TN associated to Ht,

and σ1, σ2 are independent samples from said measure. By the independence of Y and

Ỹ , we have

E

[dHt(σ)

dt
Ht(σ

′)
]
=
M

2

(
E[Ỹ (σ)Ỹ (σ′)]− E[Y (σ)Y (σ′)]

)
. (5.57)

The first expectation on the right-hand side is given by

E[Ỹ (σ)Ỹ (σ′)] =
N

M

∑

p≥1

β2
p

(
1− Np−1

(N +M)p−1

) ∑

s∈S p

∆2
sλ

s(N)Rs(σ, σ′). (5.58)

Remark 5.4. If (5.55) were replaced by

Y (σ) =
∑

p≥1

βp

√
p− 1

N
H̃

(p)
N (σ) with H̃

(p)
N (σ) =

1

N (p−1)/2

∑

i∈[N ]p

√
∆2

s(i)λ
s(i)

λs(i)(N)
giσi,

then (5.58) would be replaced by

E[Y (σ)Y (σ′)] = N
∑

p≥1

β2
p

(p− 1

N

) ∑

s∈S p

( ∆2
sλ

s

λs(N)

)
λs(N)Rs(σ, σ′)

(1.10)
= θ(R(σ, σ′)),

and so the process Y from (2.2) does indeed exist.

From Taylor approximation of the function x 7→ xp−1 about x = 1, we find

∣∣∣N
M

(
1−

( N

N +M

)p−1)
− N

N +M
(p− 1)

∣∣∣ ≤ p2
MN

(N +M)2
. (5.59)

From this inequality we deduce two facts. First, we immediately have that

lim
N→∞

N

M

(
1−

( N

N +M

)p−1)
= p− 1.
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Second, for any ε > 0, we can choose a constant Cε > 0 large enough that Cε(1+ε)
p ≥ 2p2

for all p ≥ 1, and so

Cε(1 + ε)p ≥ (p− 1) + p2
(5.59)
≥ N

M

(
1−

( N

N +M

)p−1)
for all N, p ≥ 1.

Therefore, the decay condition (H2) allows us to apply dominated convergence and

conclude from (5.58) that

lim
N→∞

E[Ỹ (σ)Ỹ (σ′)] =
∑

p≥1

β2
p(p− 1)

∑

s∈S p

∆2
sλ

sRs(σ, σ′)

(1.10)
= θ(R(σ, σ′)) = E[Y (σ)Y (σ′)].

Consequently, the right-hand side of (5.57) vanishes as N → ∞, and this convergence is

uniform in σ, σ′ because R(σ, σ′) ∈ [−1, 1]S . That is,

sup
σ,σ′∈TN

E

[dHt(σ)

dt
Ht(σ

′)
]
= oM (1).

In light of (5.56), we have thus verified (5.54). �

6 Lower bound part III: synchronization and limiting overlap dis-

tributions

In this section we complete the proof of Theorem 1.3 by identifying a λ-admissible

pair (ζ,Φ) such that

lim
N→∞

FN ≥ P(ζ,Φ) a.s.

Recall the following definitions. First, we have the Hamiltonian H̄M,N from (5.6), whose

associated Gibbs measure on TN is denoted by ḠM,N . Note that the perturbative term

Hpert
N from (3.3) depends on the parameters u = (up,q)p,q≥1. Next let σ

1, σ2, . . . denote

independent samples from ḠM,N , and set R`,`′ = (Rs
`,`′)s∈S to be the overlap vector

R(σ`, σ`′) defined in (1.6). Then LM,N = LM,N (u) = Law(R; ḠM,N ) denotes the law

of the array R = (R`,`′)`,`′≥1. Finally, for w ∈ [0, 1]S , let Rw
`,`′ := Rw(σ`, σ`′) be the

quantity defined in (3.2). Recall that we chose W = {w1,w2, . . . } to be dense in [0, 1]S .

6.1 Multi-species Ghirlanda–Guerra identities

Consider any measurable function f = f(σ1, . . . , σn) mapping Tn
N → R. Denote by

∆M,N (f, n, p, q, u) the quantity

∣∣∣E〈f · (Rwq

1,n+1)
p〉M,N − 1

n
E〈f〉M,NE〈(Rwq

1,2)
p〉M,N − 1

n

n∑

`=2

E〈f · (Rwq

1,` )
p〉M,N

∣∣∣. (6.1)

The Ghirlanda–Guerra identities are the assertion that quantities of the form (6.1) are

equal to 0. Indeed, this statement is true in the large-N limit, at least in the following

averaged sense.

Theorem 6.1. Assume cN = N−$ for some $ ∈ [0, 1/4), and that up,q ∈ [0, 3] for all p, q.

Then for every pair p, q, there is a constant Cp,q not depending onM or N such that for

every bounded measurable function f = f(σ1, . . . , σn), we have

∫ 2

1

∆M,N (f, n, p, q, u) dup,q ≤ Cp,q‖f‖∞n−1N−1/4+$ for all N sufficiently large. (6.2)
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The proof of Theorem 6.1 will be to simply invoke the more general Theorem A.3.

To do so, we will need the following lemma, whose proof invokes the more general

Lemma A.2.

Lemma 6.2. Assume up,q ∈ [0, 3] for all p, q ≥ 1. Then for anyM ≥ 0, we have

E| log Z̄M,N − E log Z̄M,N | ≤ 2
√
πN(ξN (1) + c2N ). (6.3)

Proof. Apply Lemma A.2 with the following parameters:

• In (A.1), take (Σ, τ) = (TN , τN ) and H = 0.

• In (A.4), take h1 = H̄M,N (all other hi ≡ 0), c = 1, and u1 = 1 so that Hu = H̄M,N .

In this case, the constant ς2(u) from (A.5) satisfies

ς2(u) =
1

N
E[H̄M,N (σ)2]

(5.6)
=

1

N

(
E[HM,N (σ)2] + c2NE[Hpert

N (σ)2]
)

(5.5),(3.5)
=

N +M

N
ξN

( N

N +M
1

)
+ c2Nξ

pert
N (1)

(3.10)
≤ ξN (1) + c2N ,

where in the last inequality we used the fact that ξN (αq) ≤ αξN (q) for any q ∈ [0, 1]S

and α ∈ [0, 1]. Therefore, (6.3) is a special case of (A.9). �

Proof of Theorem 6.1. Apply Theorem A.3 with the following inputs:

• In (A.1), take (Σ, τ) = (TN , τN ) and H = HM,N .

• In (A.4), take (hi)i≥1 = (Hpert
N,p,q)p,q≥1, c = cN so that hu = Hpert

N , Hu = H̄M,N .

Indeed, recall from (3.4) that

1

N
E[Hpert

N,p,q(σ)H
pert
N,p,q(σ

′)] = 4−(p+q)(Rwq (σ, σ′))p.

By Lemma 6.2, the quantity defined in (A.10) satisfies ϑ ≤ 2
√
πN(ξN (1) + c2N ). Since

ξN (1) → ξ(1) as N → ∞ and c2N ≤ 1, we have ϑ = O(N1/2). Therefore, the condition

N$
√

4p+qϑ
Rwq (σ,σ)N < 1 is satisfied by all large N , since $ < 1/4. Now (A.11) yields

∫ 2

1

∆M,N (f, n, p, q, u) dup,q ≤ 24‖f‖∞2p+qn−1N$−1/2
(
1 +O(N1/4)

)
.

By inspection and the fact that $ < 1/4, we conclude (6.2). �

In order to apply Theorem 6.1 simultaneously for all test functions f , let us enumerate

for each n all monic monomials in the entries of Rn = (Rs
`,`′)`,`′∈[n],s∈S . Combining all

these enumerations, we obtain a sequence (fr)r≥1, where fr is a monomial in the entries

of Rnr . We then define

∆M,N (u) :=
∑

p,q,r≥1

∆M,N (fr, nr, p, q, u)

2p+q+r
.

Remark 6.3. To clarify possible confusion, we note that every monic monomial will

actually appear in the list (fr)r≥1 infinitely many times, but just once for each appropriate

n. For example, for each n ≥ 3, there is exactly one value of r such that fr = Rs
1,2Rs

2,3

and nr = n. These repetitions are necessary because (6.1) depends not just on f but also

on n.
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Recall that Pu is the product measure under measure each up,q is an independent

uniform random variable in [1, 2], and Eu denotes expectation with respect to Pu. Since

∆M,N (fr, nr, p, q, u) ≤ 2, it follows from Tonelli’s theorem, dominated convergence, and

Theorem 6.1 that

lim
N→∞

Eu∆M,N (u) =
∑

p,q,r≥1

Eu

[
lim

N→∞

∫ 2

1

∆M,N (fr, nr, p, q, u)

2p+q+r
dup,q

]
= 0. (6.4)

This allows us to choose a deterministic sequence of perturbation parameters (uN )N≥1,

where uN = (up,q(M,N))p,q≥1, such that

lim
N→∞

∆M,N (uN ) = 0, (6.5a)

but we need to coordinate this choice with Theorem 5.1. That is, we also want

lim sup
N→∞

[EuΠM (LM,N (u))−ΠM (LM,N (uN ))] ≥ 0. (6.5b)

Lemma 6.4. Assume cN = N−$ for some$ ∈ [0, 1/4). Then there is a sequence (uN )N≥1

(which depends onM ) such that (6.5) holds.

Proof. Here we follow the standard example of [57, Lem. 3.3]. Consider the events

AN,ε := {u : ΠM (LM,N (u)) ≤ Eu′ΠM (LM,N (u′)) + ε}, BN,ε := {u : ∆M,N (u) ≤ ε}.

The goal is to identify εN → 0 such that Pu(AN,εN ∩BN,εN ) > 0 for all large N . Recall the

centered Gaussian processes Xj and Y appearing in the expression (5.7) for ΠM (LM,N ),

which are independent of the random disorder defining ḠM,N . By applying Jensen’s

inequality twice, we see that

0 = E

∫

TM

〈 M∑

j=1

κjXj(σ)
〉
M,N

τM (dκ)

≤ E log

∫

TM

〈
exp

( M∑

j=1

κjXj(σ)
)〉

M,N
τM (dκ)

≤ log

∫

TM

E

〈
exp

( M∑

j=1

κjXj(σ)
)〉

M,N
τM (dκ)

(2.6)
=

∑

s∈S

Msξs(1)

2
.

By similar reasoning (using (2.7) instead of (2.6)), we also have

0 ≤ E log
〈
exp

(√
MY (σ)

)〉
M,N

≤ Mθ(1)

2
.

It follows from the two previous displays that

−Mθ(1)

2
≤ ΠM (LM,N (u)) ≤

∑

s∈S

Mξs(1)

2
for all N and u.

For simplicity, we will write CM := max{1,Mθ(1)/2,
∑

s∈S
Msξs(1)/2}. For any ε > 0,

we trivially have

EuΠM (LM,N (u)) ≥ (EuΠM (LM,N (u)) + ε) · Pu(A
c
N,ε)− CM · Pu(AN,ε)

=⇒ Pu(AN,ε) ≥
ε

EuΠM (LM,N (u)) + ε+ CM
≥ ε

2CM + ε
.

EJP 27 (2022), paper 52.
Page 64/75

https://www.imstat.org/ejp



Multi-species mixed p-spin spherical models

On other hand, Markov’s inequality gives

Pu(BN,ε) ≥ 1− Eu∆M,N (u)

ε
.

Now set εN = 2
√
CMEu∆M,N (u), which tends to 0 as N → ∞ by (6.4). Assuming N is

large enough that εN < CM , we have

Pu(AN,εN ) + Pu(BN,εN ) ≥ εN
3CM

+ 1− Eu∆M,N (u)

εN
= 1 +

1

6

√
Eu∆M,N (u)

CM
> 1.

This final display assumes that Eu∆M,N (u) > 0, but even if Eu∆M,N (u) were 0, we would

trivially have Pu(AN,0) > 0 and Pu(BN,0) = 1. �

6.2 Synchronization and asymptotic Gibbs measures

In accordance with Lemma 6.4, assume henceforth that cN = N−$ for some $ ∈
(0, 1/4). Once the parameters (uN )N≥1 are chosen such that (6.5) holds, let us restrict

our attention to the sequence (Nk)k≥1 from Theorem 5.1, so that

lim inf
N→∞

EFN ≥ 1

M
lim sup
k→∞

ΠM (LM,Nk
(uNk

))− Cδ +
1

M
log γM (AM,δ). (6.6)

Since the overlaps are bounded, by passing to a suitable subsequence of (Nk)k≥1, we

may assume that as k → ∞, LM,Nk
(uNk

) converges weakly to some law LM . By Corol-

lary 2.7, the quantity ΠM (LM,Nk
(uNk

)) converges to some limit we can call ΠM (LM ),

and then (6.6) becomes

lim inf
N→∞

EFN ≥ 1

M
ΠM (LM )− Cδ +

1

M
log γM (AM,δ). (6.7)

Now recall the function PM that was defined in (2.36). Namely, PM is the restriction

of ΠM to overlap distributions of the form L(ζ,Φ) for some λ-admissible pair (ζ,Φ)

in which ζ has finite support; see (2.33). What we do next is to identify—by way of

synchronization—a sequence of such pairs (ζk,Φ) such that L(ζk,Φ) → LM as k → ∞.

In this way we will be able to rewrite (6.7) as follows.

Proposition 6.5. There is a λ-admissible pair (ζM ,ΦM ) such that for any δ ∈ (0, 1],

lim inf
N→∞

EFN ≥ 1

M
PM (ζM ,ΦM )− Cδ +

1

M
log γM (AM,δ). (6.8)

The key step toward proving Proposition 6.5 is the following consequence of The-

orem 6.1: the so-called multi-species Ghirlanda–Guerra identities as put forth in [59].

Since we have (6.5a), the proof of Lemma 6.6 is identical to that of [59, Thm. 3].

Lemma 6.6. Let R be a random vector array with law LM . Given any bounded mea-

surable function ϕ : [−1, 1]S → R, define Q`,`′ = ϕ(R`,`′). For any bounded measurable

function f of the finite sub-array R
n = (R`,`′)`,`′∈[n], we have

E[f(Rn)Q1,n+1] =
1

n
E[f(Rn)] · E[Q1,2] +

1

n

n∑

`=2

E[f(Rn)Q1,`]. (6.9)

Given any realization of the vector array R = (Rs
`,`′)`,`′≥1,s∈S , define a scalar array

R = (R`,`′)`,`′≥1 by averaging the across all species:

R`,`′ :=
∑

s∈S

λsRs
`,`′ . (6.10)

Let us first check the basic fact that all relevant scalar arrays are Gram de-Finetti arrays

(i.e. symmetric, nonnegative definite, and having entries that are exchangeable under

finite permutations).
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Lemma 6.7. If R has the law LM , then Rs = (Rs
`,`′)`,`′≥1 and R are Gram–de Finetti

arrays such that Rs
`,` = R`,` = 1 for every ` ≥ 1.

Proof. Recall that LM is the large-k weak limit of LM,Nk
, where LM,N is the law of the

overlap array generated by i.i.d. samples from the Gibbs measure ḠM,N . By Skorokhod’s

representation theorem, there is coupling of Rk ∼ LM,Nk
and R ∼ LM such that

Rk → R almost surely as k → ∞. That is, almost surely every entry of Rk converges

to the corresponding entry of R. Therefore, if we write Rk = (Rs
k)s∈S , where Rs

k =

(Rs
`,`′)`,`′≥1, then it suffices to show that the desired statements hold for Rs

k, as well as

Rk defined as in (6.10).

So let us fix k and recall that the entries of Rs
k are given by

Rs
`,`′ =

1

Ns

∑

i∈Is

σ`
iσ

`′

i ,

where N = Nk and (σ`)`≥1 are i.i.d. samples from ḠM,N that are the same across all

s ∈ S . It is immediately clear that Rs
`,` = 1 (since σ ∈ TN =

⊗
s∈S SNs) and that

symmetry holds: Rs
`,`′ = Rs

`′,`. These facts extend of course to Rk, which is just a convex

combination of the Rs
k. Furthermore, the fact that the σ` are i.i.d. (conditional on ḠM,N )

implies that the entries of Rs
k are exchangeable. Again, this fact extends to the array

Rk which is the convex combination (6.10) of the Rs
k. Finally, we check nonnegative

definiteness directly: For any n ≥ 1 and any vector (x`)`∈[n], we have

∑

`,`′∈[n]

x`x`′Rs
`,`′ =

1

Ns

∑

i∈Is

∑

`,`′∈[n]

x`σ
`
ix`′σ

`′

i =
1

Ns

∑

i∈Is

( ∑

`∈[n]

x`σ
`
i

)2

≥ 0.

Indeed,Rs
k is nonnegative definite. Since this property is closed under linear combination

with nonnegative coefficients, the array Rk is also nonnegative definite. �

The purpose of Lemmas 6.6 and 6.7 is to relate R and R via synchronization. That is,

we invoke Theorem C, which is recalled here for convenience.

Theorem C. [59, Thm. 4] If R satisfies the multi-species G.G. identities (6.9), then there

exist non-decreasing (1/λs)-Lipschitz functions Φs : [0, 1] → [0, 1] such that almost surely,

Rs
`,`′ = Φs(R`,`′) for all `, `′ ≥ 1, s ∈ S , (6.11)

where R`,`′ is defined in (6.10).

Recall from Remark 1.7 that if R satisfies the multi-species Ghirlanda–Guerra iden-

tities (6.9), then the scalar array R = (R`,`′)`,`′≥1 automatically satisfies the ordinary

G.G. identities and thus has nonnegative entries almost surely. Let us make another

important remark about Theorem C.

Remark 6.8. Given the array R from (6.10), consider the probability measure ζ on [0, 1]

defined by

ζ(·) = E〈1{R1,2∈·}〉. (6.12)

It follows from (6.11) that

R1,2 =
∑

s∈S

λsRs
1,2 =

∑

s∈S

λsΦs(R1,2) a.s.

This equality implies that for every q belonging to the support of ζ, we have

q =
∑

s∈S

λsΦs(q). (6.13)

EJP 27 (2022), paper 52.
Page 66/75

https://www.imstat.org/ejp



Multi-species mixed p-spin spherical models

If necessary, we can use linear interpolation to redefine each Φs outside the support of ζ

(with Φs(0) = 0 and Φs(1) = 1) so that (6.13) holds for all q ∈ [0, 1]. In this way, we may

assume that the map Φ = (Φs)s∈S in Theorem C is λ-admissible.

We are now ready to prove Proposition 6.5.

Proof of Proposition 6.5. Let LM be the pushforward of LM under the map R 7→ R
defined in (6.10). By Lemmas 6.6 and 6.7, we can apply Theorem C, which says there

is a map Φ = (Φs)s∈S : [0, 1] → [0, 1]S such that LM = LM ◦ Φ−1. By Remark 6.8,

we may assume Φ is λ-admissible. By Lemma 6.7, we can also apply Theorem A to

identify a random measure G on the unit ball of some separable Hilbert space, such that

LM = Law(R;G). Let ζ be defined by (6.12).

By Remark 1.7, the law LM satisfies the G.G. identities (1.27). Now take any sequence

of finitely supported measures (ζk)k≥1 converging weakly to ζ. Let Gk = Gζk be the

Ruelle probability cascade (2.31) associated to ζk. By [75, Thm. 15.2.1], Law(R;Gk) also

satisfies the G.G. identities. It thus follows from (2.30) and Theorem B(c) that Law(R;Gk)

converges to Law(R;G) = LM as k → ∞. Since Φ is continuous (for instance, see (1.11)),

it must then be the case that the law L(ζk,Φ) = Law(R;Gk) ◦ Φ−1 from (2.34) converges

to LM ◦ Φ−1 = LM . Hence

PM (ζ,Φ)
(2.73)
= lim

k→∞
PM (ζk,Φ)

(2.36)
= lim

k→∞
ΠM (L(ζk,Φ))

(Cor. 2.7)
= ΠM (LM ).

In light of (6.7), the proof is complete with (ζM ,ΦM ) = (ζ,Φ). �

6.3 Conclusion of proofs for main results

We can now complete the proof of Theorem 1.3 by establishing the lower bound (1.17).

Proof of Theorem 1.3. By using the concentration inequality from Lemma 6.2 (with

M = 0 and every up,q = 0) together with Borel–Cantelli, we see that

lim
N→∞

|FN − EFN | = 0 a.s.

Therefore, to show (1.16) it suffices to prove

lim sup
N→∞

EFN ≤ inf
ζ,Φ

P(ζ,Φ) ≤ lim inf
N→∞

EFN .

By Proposition 3.1 we already have the first inequality, and so it suffices to exhibit a

λ-admissible pair (ζ,Φ) such that

lim inf
N→∞

EFN ≥ P(ζ,Φ). (6.14)

To this end, let (ζM ,ΦM ) be the λ-admissible pair from Proposition 6.5. By the Central

Limit Theorem, for any fixed δ > 0, the quantity γM (AM,δ) tends to 1/2 as M → ∞.

Therefore, the inequality (6.8) leads to

lim inf
N→∞

EFN ≥ lim sup
M→∞

1

M
PM (ζM ,ΦM ). (6.15)

Recall from (1.11) that any λ-admissible map Φ : [0, 1] → [0, 1]S is Lipschitz contin-

uous with a Lipschitz constant not depending on Φ. Therefore, by the Arzelà–Ascoli

theorem [53, Thm. 47.1], there exists a sequence (Mk)k≥1 tending to infinity such that

ΦMk
converges uniformly to some function Φ, which is necessarily λ-admissible. Since

the space of probability measures on [0, 1] is compact, we may assume that ζMk
also
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converges weakly to some ζ. It is then clear that ζMk
◦ Φ−1

Mk
converges weakly to ζ ◦ Φ−1,

hence D
(
(ζMk

,ΦMk
), (ζ,Φ)

)
→ 0 as k → ∞.

We now complete the proof by appealing to the results from Section 2.4. By the

triangle inequality and Corollary 2.16, we have

∣∣∣ 1
M

PM (ζM ,ΦM )− P(ζ,Φ)
∣∣∣

≤
∣∣∣ 1
M

PM (ζM ,ΦM )− 1

M
PM (ζ,Φ)

∣∣∣+
∣∣∣ 1
M

PM (ζ,Φ)− P(ζ,Φ)
∣∣∣

≤ C∗
2

(
1 +

∑

s∈S

∣∣∣M
s

M
− λs

∣∣∣
)
D
(
(ζM ,ΦM ), (ζ,Φ)

)
+
∣∣∣ 1
M

PM (ζ,Φ)− P(ζ,Φ)
∣∣∣.

The first term in the last line tends to 0 whenM is brought to infinity along the sequence

(Mk)k≥1. By Proposition 2.18 (which is enabled by (5.3)), the second term also tends to

0. In combination with (6.15), these observations yield (6.14). �

A General facts about perturbed Gibbs measures

In order for the results of this appendix to be widely applicable, we consider a general

setting. Let (Σ,F , τ) be a finite measure space. Take H : Σ → R to be any F -measurable

function (possibly random) satisfying
∫

Σ

E exp |H(σ)| τ(dσ) <∞. (A.1)

Let (hi)i≥1 be independent Gaussian processes on Σ, which are also independent of H.

We assume that hi(·) is almost surely F -measurable. We also assume that for each i,

there is a constant ri such that

E[hi(σ)
2] = riN for all σ ∈ Σ. (A.2)

(Here N < ∞ is merely a parameter and need not be an integer.) More generally, we

define

R
i(σ, σ′) :=

1

N
E[hi(σ)hi(σ

′)], σ, σ′ ∈ Σ. (A.3)

In particular, we have R
i(σ, σ) = ri.

Given a parameter c ≥ 0 and any sequence u = (ui)i≥1 of real numbers, define the

Hamiltonian

Hu(σ) := H(σ) + chu(σ), where hu(σ) :=
∞∑

i=1

uihi(σ). (A.4)

Whenever the following quantity is finite,

ς2(u) := E[hu(σ)
2] =

∞∑

i=1

u2i ri, (A.5)

we can consider the associated Gibbs measure:

Gu(dσ) :=
1

expϕ(u)
expHu(σ) τ(dσ), where

ϕ(u) := log

∫

Σ

expHu(σ) τ(dσ).

Let us write ϕ(0) when we wish to set all ui equal to 0. This number can be compared to

ϕ(u) as follows.
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Lemma A.1. If ς2(u) <∞, then

Eϕ(0) ≤ Eϕ(u) ≤ Eϕ(0) +
c2ς2(u)N

2
. (A.6)

Proof. We begin by writing

ϕ(u)− ϕ(0) = log

∫
Σ
exp(H(σ)) exp(chu(σ)) τ(dσ)∫

Σ
exp(H(σ)) τ(dσ)

. (A.7)

Notice that the right-hand side is simply the average of exp(chu(σ)) with respect to the

Gibbs measure associated to H. Therefore, by applying Jensen’s inequality to the map

x 7→ exp(x), we obtain

ϕ(u)− ϕ(0) ≥
∫
Σ
chu(σ) exp(H(σ)) τ(dσ)∫

Σ
exp(H(σ)) τ(dσ)

.

As hu is independent of H, the expectation of the right-hand side can be obtained by first

taking expectation of just hu(σ) in the numerator. Since E(hu(σ)) = 0, we conclude that

Eϕ(u) ≥ Eϕ(0).

For the second inequality, we again start with (A.7) and apply Jensen’s inequality, but

in this case to the function x 7→ log x:

Eϕ(u)− Eϕ(0) ≤ logE

[∫
Σ
exp(H(σ)) exp(chu(σ)) τ(dσ)∫

Σ
exp(H(σ)) τ(dσ)

]
.

As before, the expectation on the right-hand side can first be taken just over hu.

From (A.5) we have E exp(chu(σ)) = exp(c2ς2(u)N/2), and thus we obtain the second

inequality in (A.6). �

Next we state a concentration inequality together with the resulting moment bound.

Lemma A.2. If H is non-random and ς2(u) <∞, then

P(|ϕ(u)− Eϕ(u)| ≥ t
√
N) ≤ 2 exp

(
− t2

4c2ς2(u)

)
. (A.8)

In particular,

E|ϕ(u)− Eϕ(u)| ≤ 2
√
πc2ς2(u)N. (A.9)

Proof. The inequality (A.8) is a consequence of concentration for Lipschitz functions of

Gaussian random variables. For instance, see the proof of [54, Lem. 3]. The moment

estimate (A.9) is realized by integrating the tail in (A.8). �

Finally we discuss the Ghirlanda–Guerra identities. Let σ1, σ2, . . . be independent

samples from Gu, and define an array (Ri
`,`′)`,`′≥1 using the function R

i from (A.3):

R
i
`,`′ := R

i(σ`, σ`′).

With 〈·〉u denoting expectation according to Gu, and f = f(σ1, . . . , σn) some non-random

measurable function Σn → R, we define

∆(f, n, i, u) :=
∣∣∣E〈fRi

1,n+1〉u − 1

n
E〈f〉uE〈Ri

1,2〉u − 1

n

n∑

`=2

E〈fRi
1,`〉u

∣∣∣.

By averaging over just ui, we can obtain a useful upper bound on ∆(f, n, i, u).
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Theorem A.3. Assume ς2(u) <∞ whenever ui ∈ [0, 3] for every i, and define

ϑ := sup{E|ϕ(u)− Eϕ(u)| : ui ∈ [0, 3] for all i}. (A.10)

For any i, any ui′ ∈ [0, 3] for i′ 6= i, any f = f(σ1, . . . , σn) as above, and any N such that

(2c)−1
√

ϑ
riN

< 1, we have

∫ 2

1

∆(f, n, i, u) dui ≤ 2‖f‖∞(cn)−1
(
2

√
ri
N

+ 12

√
riϑ

N

)

≤ 24‖f‖∞
√
ri(cn

√
N)−1(1 +

√
ϑ).

(A.11)

Proof. Our proof is a direct adaptation of [57, Thm. 3.2]. We will use the notation

ν(·) = E〈·〉u and simply write 〈·〉 for 〈·〉u. Fix the value of i. Our access point to the

quantity ∆(f, n, i, u) is through the difference

|ν(fhi(σ1))− ν(f)ν(hi)| =
∣∣∣E

〈
(f − ν(f))(hi(σ

1)− ν(hi))
〉∣∣∣

≤ 2‖f‖∞E
〈
|hi − ν(hi)|

〉
.

(A.12)

Recalling (A.3) and applying Gaussian integration by parts (see [57, Exercise 1.1]), we

have

ν(fhi(σ
1)) = cuiN

[
E〈fRi

1,1〉+
n∑

`=2

E〈fRi
1,`〉 − nE〈fRi

1,n+1〉
]
. (A.13)

The special case of (n = 1, f ≡ 1) yields

ν(hi) = cuiN
[
ν(Ri

1,1)− ν(Ri
1,2)

]
. (A.14)

From the definition (A.3) of Ri(·, ·), it is clear that

R
i
1,2 ≤

√
Ri

1,1R
i
2,2 = ri,

and so it follows from (A.14) that

0 ≤ ν(hi) ≤ 2cuiriN. (A.15)

Now we combine (A.13) and (A.14) to obtain an expression for the difference ν(fhi(σ
1))−

ν(f)ν(hi). Since R
i
1,1 = ri for any realization of σ1, the terms involving R

i
1,1 cancel each

other, leaving us with

|ν(fhi(σ1))− ν(f)ν(hi)| = cuiNn ·∆(f, n, i, u). (A.16)

The right-hand side of (A.16) can now replace the leftmost expression in (A.12). To then

conclude (A.11), it suffices to control the expectation in the final expression of (A.12).

Indeed, we claim that

∫ 2

1

E
〈
|hi − ν(hi)|

〉
dui ≤ 2

√
riN + 12

√
ϑriN. (A.17)

Once this is proved, we will have established the desired statement (A.11).

The rest of the proof is to establish (A.17). Define

φ(u) := Eϕ(u) = E log

∫

Σ

expHu(σ) τ(dσ).
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Fixing the value of ui′ ∈ [0, 3] for every i′ 6= i, let us regard ϕ and φ as functions of only

ui ∈ [1, 2]. Direct calculation yields the standard identities

ϕ′(ui) = c〈hi〉, ϕ′′(ui) = c2
〈
(hi − 〈hi〉)2

〉
. (A.18a)

Moreover, Gaussian tails provide sufficient regularity to exchange differentiation and

expectation in order to write

φ′(ui) = cν(hi), φ′′(ui) = c2E
〈
(hi − 〈hi〉)2

〉
. (A.18b)

In particular, both ϕ and φ are convex in ui, and integrating φ′′ gives

c2
∫ 2

1

E
〈
(hi − 〈hi〉)2

〉
dui = φ′(2)− φ′(1)

(A.18b),(A.15)
≤ 4c2riN.

Canceling factors of c2 and applying Jensen’s inequality, we arrive at

∫ 2

1

E
〈
|hi − 〈hi〉|

〉
dui ≤ 2

√
riN. (A.19)

To bootstrap this inequality to (A.17), we next need to compare 〈hi〉 and ν(hi).
By appealing to [57, Lem. 3.2] and then taking expectation, we obtain the following

for any y ∈ (0, 1):

E|ϕ′(ui)− φ′(ui)| ≤ φ′(ui + y)− φ′(ui − y) +
E|ϕ(ui + y)− φ(ui + y)|

y

+
E|ϕ(ui − y)− φ(ui − y)|

y
+

E|ϕ(ui)− φ(ui)|
y

.

(A.20)

Upon integration, the first two terms on the right-hand side become

∫ 2

1

[φ′(ui + y)− φ′(ui − y)] dui = [φ(2 + y)− φ(2− y)]− [φ(1 + y)− φ(1− y)]

≤ 2y sup
x∈(0,3)

φ′(x)
(A.18b),(A.15)

≤ 12yc2riN.

By definition (A.10), the remaining three terms on the right-hand side of (A.20) are all

bounded by ϑ/y, which leads to

∫ 2

1

E|ϕ′(ui)− φ′(ui)| dui ≤ 12yc2riN + 3ϑ/y.

Recalling (A.18), we can rewrite this inequality as

∫ 2

1

E|〈hi〉 − ν(hi)| dui ≤ 12ycriN +
3ϑ

yc
.

Finally, we choose y = (2c)−1
√

ϑ
riN

, where N is assumed to be sufficiently large that

y < 1. This choice results in

∫ 2

1

E|〈hi〉 − ν(hi)| dui ≤ 12
√
ϑriN.

Combining this inequality with (A.19) yields (A.17), as claimed. �
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