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Abstract

We prove a Parisi formula for the limiting free energy of multi-species spherical spin
glasses with mixed p-spin interactions. The upper bound involves a Guerra-style
interpolation and requires a convexity assumption on the model’s covariance function.
Meanwhile, the lower bound adapts the cavity method of Chen so that it can be
combined with the synchronization technique of Panchenko; this part requires no
convexity assumption. In order to guarantee that the resulting Parisi formula has a
minimizer, we formalize the pairing of synchronization maps with overlap measures
so that the constraint set is a compact metric space. This space is not related to the
model’s spherical structure and can be carried over to other multi-species settings.
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1 Introduction

Spin glasses are models of disordered magnetism, in which interacting magnetic
spins have irregular alignments. Mean-field spin glasses, most famously the Sherrington-
Kirkpatrick (SK) model [65, 44], have served as rich prototypes for more physical models
such as that of Edwards and Anderson [31]. A centerpiece of the mean-field paradigm
is the ability to express the limiting free energy with variational formulas. Following
the inspiration of Parisi [63, 64], mathematicians have managed to make these formulas
rigorous and subsequently reveal remarkable structure arising in the associated Gibbs
measures. The landmark work of Talagrand [73] in the case of the SK model was followed
by similar results for general mixed p-spins [58, 12] and spherical models [72, 24, 26, 40].

In order to relax the mean-field assumptions of classical models, certain asymmetric
models have been promoted and studied recently. These include so-called “multi-species”
models in which the spin coordinates are partitioned into several groups, between
which various strengths of interactions are allowed, e.g. [34, 74, 18, 32, 33, 17, 16]. By
raising new challenges, this direction has repeatedly inspired upgrades to the theoretical
toolbox used to prove, among other things, variational expressions for free energy. This
paper furthers this effort by addressing a multi-species version of classical mixed p-spin
spherical models.

Our main result is a Parisi-type variational formula for the limiting free energy of
these models (Theorem 1.3). Along the way, we formally define a metric space of “syn-
chronized” overlap measures (Definition 1.2), objects which were used by Panchenko
[59] in proving the analogous formula for the multi-species SK model on the hypercube.
With this formalization we are able to establish Lipschitz continuity for the Parisi func-
tional (Theorem 1.5) and the existence of minimizers (Corollary 1.6). Furthermore, the
framework we develop here enables a companion work [20] to elucidate the effect of
interspecies interactions on the structure of minimizers.

1.1 Definitions

Fix a finite set ., to index the various species. Suppose that for each positive integer
N, we have a partition {1,2,..., N} = Wsc»Z*°. Denote the cardinality of Z° by A*(N), so
that N = > ., A°(N). When the value of N is clear from context, we will usually write
N* = A°(N).
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Multi-species mixed p-spin spherical models

We consider spin configurations o = (01,...,0x) € RY such that

> o} =N° foreachse.7.
i€z

In other words, ¢ belongs to the following product of spheres:

TN = ® SNs7 where Sn = {0’ eR™: ||G'||g = n} (11)
s€S

We say that coordinate 7 belongs to species s whenever i € 7°. Conversely, we will
write s(i) = s(, V) to express whichever species a given coordinate 7 belongs to. We

assume that the fraction of coordinates allocated to each species, which we denote by
A¥(N) := N*/N, converges as N — oc:

A}im M (N)=X€(0,1] foreachsce.”. (H1)
— 00
For each integer p > 1, let AIQ) = (Ail,i..,sp)sl,...,spey be a symmetric p-dimensional

tensor of size |.#|P, which will govern the p-spin interaction strengths between species.
The p-spin Hamiltonian on Ty is defined as

N
(p) . 1 /A2
Hy (o) = NeG-1/2 Z As(il) ,,,,, s(ip)JirsipTin = iy (1.2)
i1

yeenydp=1

where each g;, . ;, is an independent standard Gaussian random variable. To simplify
notation, we will use the following shorthands:

» The set of integers {1,2,..., N} will be denoted by [N].

 For a p-tuple of coordinates ¢ = (i1,...,47,) € [N]|?, we have the corresponding
p-tuple of species:

s(1) = s(i, N) = (s(i1),...,s(ip)) € SP.
In addition, if o € RY, then we have the p-spin product

o =00y, €R.

« For a p-tuple of species s = (s1,...,s,) € P and q = (¢°)sc.r € R”, we will write
¢’ =q°*---q¢°” € R.

For instance, given the parameters A = (A\*),c.» from (H1) governing the proportion
of coordinates belonging to each species, we can write A* = A% ... \%»,

Remark 1.1. We have elected to not burden the reader with symbolic cues such as
iorito distinguish vector quantities and scalar quantities, since the nature of such
objects should always be clear from context. The single exception is a vector indexed
by ., such as q = (¢°)sc.» € R”. For these quantities, the boldface indicates that the
analogous object in the classical single-species model would be a scalar. This distinction
will be especially important when we discuss replica overlaps. Also note that the species
identifier usually appears as a superscript and should not be mistaken for an exponent.

With these notational conventions, we can rewrite (1.2) as

(p) _ 1 2 )
Hy'(0) = Ne-D/2 Z \ Al 9iTi- (1.3)

€[NP
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The mixed Hamiltonian is then given by

Hy(o) = 8,HY (0), (1.4)

p>1

where § = (8,),>1 satisfies a decay condition of the form

2 2
;ﬂpHApHOO(l +¢)? < oo forsome e > 0. (H2)
p=

If B, = 0 for all p # 2, then (1.4) would be called an SK model.
With pu, denoting normalized surface measure on the sphere S,, we equip the
configuration space Ty from (1.1) with the product measure

TN = ® UNs.
seS

With 7y serving as a reference measure, the Hamiltonian (1.4) naturally produces a
Gibbs probability measure Gy on Ty, defined by

Gy (do) = TIN exp(Hx (o)) 7 (do). (1.5)

The random normalizing constant Zy is called the partition function,
ZN = / exp(Hy(0)) 7n(do),
Tn
and we are interested in the limiting value of its exponential growth rate, or free energy:
1
Fy = N log Zn.

1.2 Main results: the Parisi formula

We will show that limy_, ., Fiv exists, is non-random, and is given by a variational
formula called the Parisi formula. In order to define the objective function, called the
Parisi functional, we first need to introduce some other relevant functions and also define
the constraint set over which the optimization will take place.

1.2.1 Relevant functions

As a centered Gaussian process, (Hy(0))seT, is characterized by its covariance function.
If we define, for any o!,0% € Ty, the overlap vector R(c',0?) = (R*(c?,0%))sc.» with
coordinates

s 1
R*(0,0") = e Z oo, (1.6)
€T

then we have the following covariance relation:
E[Hyx(0)Hn(0")] = NEN(R(0,0")), where (1.7)
Enlq) =Y By Y AIN(N)g® forqe[-1,1]7. (1.8)

p>1 seESP

Since we assume A\ (N) — A° as N — oo, the function £ converges to

f(q) = Z/B[% Z A%AS °, g€ [_17 1}5"

p>1 SESP

EJP 27 (2022), paper 52. https://www.imstat.org/ejp
Page 4/75



Multi-species mixed p-spin spherical models

We assume ¢ is convex on [0,1]”. That is, its Hessian is nonnegative definite on this
domain:

V3¢(q) >0 forqe0,1]”. (H3)

Next define, for each s € ., the function

R 1 0¢
C@)= 5550 @ =208 D AL N (1.9)
p>1 tesP-1
as well as
0(q) =q-Vi(q) —&(@) =D (p—1)8) Y AIN¢. (1.10)
p>1 se L

Note that on [0, 1]y , both £° and # are non-decreasing in every coordinate.

1.2.2 The constraint set

The argument to the Parisi functional will be a pair ({, ®), where ( is a probability
measure on [0, 1] (always a Borel measure), and ¢ belongs to the following space of
functions.

Definition 1.2. Given A = (\*),c.», let us say that a map ® = (®*),c.»: [0,1] — [0,1]”
is A-admissible if each coordinate ®° is non-decreasing and continuous, and jointly they
satisfy

> N@(q) =g forallqe [0,1].
seS
When ( is a Borel probability measure on [0, 1], we will call (¢, ®) a A-admissible pair.

Notice that if ¢ is A-admissible, then ®* is (1/A%)-Lipschitz continuous because

X2 (q) — D°(w)] < Y N[0 (q) — ' (u)] = |g — ul.
tes
This in turn implies
1
[9(q) = () <lg—u| Y +; foranyg,ue0,1] (1.11)
se

In particular, for any Lipschitz continuous function f : [0, 1] — R, the composition f o ®
is also Lipschitz and thus differentiable almost everywhere by Rademacher’s theorem.
Therefore, given a A-admissible pair ({, ), we can define for each s € .7 the following
function:

1
d*(q) = / ¢([0,u])(€° 0 @)’ (u) du, q € [0,1]. (1.12)
q
For any vector b = (b°)sc.» satisfying the constraint

b* > d°(0) foreach s € .7, (1.13)

we define the quantity

N £(0) ' (€ 0®)(q)
A @) = 37 [0 =1 —logb = |G da
s€ES 0) /0 (@) (1.14)

-3 | c.a)@o9 ) a0

EJP 27 (2022), paper 52. https://www.imstat.org/ejp
Page 5/75



Multi-species mixed p-spin spherical models

The Parisi functional is given by
2(¢, @) =t A(C, 2, b), (1.15)

where the infimum is over b € (0,00)” satisfying (1.13). We then have the following
expression for the limiting free energy.

Theorem 1.3 (Parisi formula). Assuming (H1), (H2), and (H3), we have

li = inf [ .S.
NgrleN 2{1@‘@(4-7 ) a.8., (116)

where the infimum is over A-admissible pairs. Without the convexity assumption (H3), it
is still true that

liminf Fiy > inf 2(C, ). (1.17)

It may seem strange in (1.15) to define the objective function itself using a variational
expression. We do this because the parameter b should really be thought of as a
consequence of calculus rather than spin glass theory; it appears because of a large
deviations calculation originally carried out by Talagrand [72] (translating here to
Proposition 2.10). An optimality condition for b is given in [20, Thm. 2.12]. The objects
¢ and @, on the other hand, are physically meaningful. Very briefly, if ¢! and o2 are
independent samples from the Gibbs measure G of (1.5), then { represents the limiting
law (as NV — o0) of the overlap averaged across all species,

R(c! Zala —Z)\é VR (o, 0?).

ses

Meanwhile, ® specifies the relationship between average overlap and overlap within
each species: ®(R(c!,0?)) = R(c!,0?). More context will be provided in Section 1.3,
where we elaborate on the origins of these two order parameters.

Remark 1.4. One can also add an external magnetic field to each species, in which case
one replaces Hy (o) with

+Zhszgia

ses i€ZLs

where h; € R is a fixed number. In that case, we would add to (1.14) the following
quantity:

2 b —d*(0) :

The proofs in this case would simply require that we carry the external field through
every step. The appearance of (1.18) would come in (2.46), when we quote a calculation
from [72]; see Remark 2.11.

Following Theorem 1.3, it becomes desirable to understand the regularity of the
Parisi functional &?. Here we address its continuity. First we need a notion of distance
on X-admissible pairs. Given a probability measure { on [0, c0), let Q¢ denote its quantile
function:

Qc(z) =inf{g>0:¢([0,q]) > 2}, z€]0,1].

EJP 27 (2022), paper 52. https://www.imstat.org/ejp
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We then have the following pseudometric:

D((G1, 1), (G2, P2)) 1=/O [€1(Q¢, (2)) = P2(Qc, (2)) 1 dz. (1.19)

Note that this is simply the Wasserstein-1 distance between two pushforward measures
(1o <I>1_1 on (s 0 @{1 on [0,1]”". In particular, convergence with respect to D is equivalent
to weak convergence. Let us emphasize that if we replaced D with the seemingly natural
option of adding a metric on measures and a norm on functions, then only the forward
direction of the previous sentence would be true. Indeed, it is essential that the converse
also be true. With 1 € R denoting the vector of all ones, our continuity result is the
following.

Theorem 1.5. Assume (H2). For any A-admissible pairs (¢1, ®1) and ({2, ), we have
C

« S
|<@(<1,®1) — @(CQ,@Q)‘ S 7'D((Cl,q)1), (CQ,@Q)), where C* ‘= 8sup gs/
2 s,s'eS 8q

(1).
(1.20)

Note that the quotient topology generated by D makes the space of A-admissible
pairs compact. This is because the space of probability measures on [0, 1] is compact
in the weak topology (see [77, Rmk. 6.19]), as is the space of A-admissible maps under
the uniform ¢! norm. Indeed, thanks to (1.11), one can apply the Arzela-Ascoli theorem
(see [53, Thm. 47.1] for a general version) to conclude the latter fact. In light of this
compactness, the continuity in Theorem 1.5 implies the existence of a minimizer to the
Parisi formula (1.16).

Corollary 1.6. Assume (H2). Then there exists a A-admissible pair (Z, 5) such that
9(2@):%9(4,@). (1.21)

There is great interest in understanding properties of minimizers. In the spin glass
parlance, if (C,é) satisfies (1.21), then ( o d~! is said to be a Parisi measure. In
the single-species case (where the only admissible map is the identity function), the
Parisi functional is known to have a unique minimizer. This is because (1.16) admits
an alternative formulation known as the Crisanti-Sommers formula [28, 72], whose
objective function is strictly convex. The analogous result for Ising spin glasses (where
the spins o; only take values +1) is much less clear and was established in [11] (see
also [39]). In a companion paper [20], we provide the multi-species version of the
Crisanti-Sommers formula, and while convexity in ( still holds, the same may not be true
for ®. Therefore, addressing the uniqueness of solutions to (1.21) is left for future work.

Whether or not an optimizer in (1.6) is supported on a single point classifies the model
as either replica symmetric (RS) or replica symmetry breaking (RSB). The exact nature
of symmetry breaking remains deeply mysterious in many ways, especially for Ising spin
glasses. For various results on this front, see [62, 10, 26, 41, 14, 13], all dealing with
single-species models. In the multi-species setting, questions of symmetry breaking are
even more delicate because of the possibility that symmetry breaking occurs in one
species but not another. However, a key contribution of [20] is to rule out this possibility
under mild and natural assumptions, leading us to say there is simultaneous symmetry
breaking. See [20, Sec. 2.2].

Finally, it is worth pointing out that we have made a stylistic choice in expressing
the Parisi formula (1.16) using a continuous functional order parameter. That is, we
allow ¢ to be any Borel probability measure on [0,1]. However, for simplicity, Parisi
formulas are often expressed using just ¢ with finite support, and then (1.14) takes

EJP 27 (2022), paper 52. https://www.imstat.org/ejp
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the form (2.41). One nice outcome of extending the Parisi functional to all measures
is Corollary 1.6, although this result is not at all surprising. A more consequential
outcome takes place in [20], where the use of a continuous order parameter is essential
to obtaining simultaneous symmetry breaking in the greatest possible generality.

1.3 Proof sketch for derivation of the Parisi formula

This paper synthesizes several themes and tools from the mathematical theory of
spin glasses, suitably adapted to the multi-species spherical setting. Owing to the
many technical ingredients, it may be hard to identify a cohesive story within a linear
reading of the manuscript. Therefore, in this section we offer a generous overview of
the arguments leading to Theorem 1.3. In broad strokes, the upper bound for (1.16) is
proved in Section 3, and the lower bound (1.17) in Sections 4, 5, and 6, while Section 2
contains technical preliminaries needed throughout. Finally, Appendix A provides some
well-known facts about Gibbs measures that nevertheless cannot be read directly from
the literature. Therefore, we state and prove these facts for a very general setting.

Suppose o', 02, ... are independent samples from the Gibbs measure Gy of (1.5).
For each pair of indices ¢, ¢/, we have a vector of overlaps R, = R(o?, O’ZI) as defined
in (1.6). Since (1.7) tells us that the Gaussian field Hy is governed by these overlaps, it
can be intuited that the free energy Fy is related to the law of the array R = (R ¢ )e,0:>1,
which we denote by Law(R; Gy ).!

The Parisi formula (1.16) makes the relationship between this law and limy_, o EFy
precise, and this will be enough since it is a standard fact that Fy concentrates around
its mean (see Lemma A.2). But understanding this relationship—and indeed proving
it—requires that we develop two fundamental concepts, namely (i) how the overlap
distribution Law(R;Gy) is identified with some pair (¢,®); and (ii) how the Parisi
functional & emerges as the correct objective function. The rest of this section is to
explain (i) and (ii).

For any real-valued sequence (ay)n>1, it is an elementary fact that for any M > 1,

. .a ..
lﬂlglofl > Ml}\l}rggof(aNJrM —ay). (1.22)
Applying this observation to ay = Elog Zy, we have

ZN+M
Zn

liminf EFy > ilimianElog (1.23)
N—o0 M N-ooco
This inequality is the basis of the so-called cavity method for proving (1.17). That is, we
study how the free energy changes when a fixed number M of “cavity coordinates” are
added to the configuration space, turning o € Ty into (0, k) € Ty This is done by
rewriting the Hamiltonian Hy s in three parts:

M
Hyim(o,k) = Hy n(o) + ZKij(O’) + D(0, k).

More precisely, the first part H,; y consists of all the terms in Hy s that involve no
cavity coordinates, the second part isolates those terms with just one cavity coordinate,

I This is a slight abuse of notation because the Gibbs measure is random. We mean for Law(R; G) to be a
deterministic object depending only on the law of the random Gibbs measure G. More precisely, if we use the
shorthand £ = Law(R; G), then

[ 1) £am) = B(7(R)),

where (-) averages over the replicas (o¢),>1 according to G, and IE(+) denotes expectation over realizations of
G. A similar comment will apply to notation introduced in Theorem A.

EJP 27 (2022), paper 52. https://www.imstat.org/ejp
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while the third part contains all other terms and has negligible contribution. This
type of analysis is commonly called the Aizenman-Sims-Starr (A.S.S.) scheme after the
influential works [2, 3]. In applying this scheme to the present setting, we take as
inspiration the work of Chen [24] for single-species spherical models.

The difference between Elog Zy and Elog Zn s is captured by two effects. First,
there is the direct contribution from the terms of the form «;X;(c); these collectively
increase the free energy by an amount we call II;; ;. Second, the only difference between
H)ys v and Hy is scaling (compare (1.4) and (5.4)), which decreases the free energy by
an amount we call I,/ 2. The beauty of the A.S.S. scheme is that upon replacing Gy
by a Gibbs measure G,y corresponding to the modified Hamiltonian H,; 5, we can
express the quantities II5;; and IIy, 5 as functions of Ly = Law(R; G n). Indeed,
up to negligible terms, Theorem 5.1 gives

o 1. .
lmlglofEFN 2 M l}wglof(HALl(EALN) — HM,Q([:I\/LN)). (124)

For brevity, we will write 11y, = II5; 1 — II57 2. See Section 2.1 for a precise definition; it
is too lengthy to be reproduced here.

In view of (1.24), one is naturally motivated to pass to a subsequence (N );>1 along
which Ly n, converges weakly to some abstract law £j,. Indeed, since II,; is uniformly
continuous—a fact we check in Proposition 2.6—it can be continuously extended to a
domain including £);. The A.S.S. scheme (1.24) then leads to

.. (L)
> 7 1.25
l}\rfrs;lofEFN > % ( )

This statement in itself, however, is not so useful, for two reasons:

(a) First, there is the technical fact that I1,,(L /) is defined only by abstractly extend-
ing I, to a completed domain. That is, II; as an explicit functional is conceived as
a function of a certain type of object—namely overlap distributions produced from
Gibbs measures—and it is not clear that £, can be realized in this way. Therefore,
we do not immediately have an actual formula for I, (L ).

(b) Second, there is the more central obstacle that even if II,; were extended via an
explicit formula, its definition is too complicated for meaningful analysis (let alone
to be compatible with a matching upper bound). After all, £, is a measure on an
infinite-dimensional space, and so we should hope to simplify the dependence of
II,; on L), to some finite-dimensional statistic.

Let us first recall how issue (a) is resolved in the classical single-species case. In that
setting, R would instead be an array of scalars rather than vectors, namely the replica
overlaps averaged across all coordinates (not separately within each species). Let us
denote these averaged overlaps by

N
1 ’ S S
Rep =4 §4_1: olol = %yx (N)R; 4. (1.26)

The scalar array R = (R, )¢, >1 is easily seen to be a Gram-de Finetti array: symmetric,
nonnegative definite, and having entries that are exchangeable under finite permutations.
Moreover, as N — oo, any subsequential weak limit of this array will inherit these
properties (see Lemma 6.7). A Gibbs representation is then found by appealing to the
Dovbysh-Sudakov theorem [30, 55].

EJP 27 (2022), paper 52. https://www.imstat.org/ejp
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Theorem A. [57, Thm. 1.7] Let R = (R, )¢,0>1 be a Gram—-de Finetti array such that
Re,e = 1 with probability one for every £ > 1. Then R can be coupled with i.i.d. samples
(0%)¢>1 from a random measure G on the unit ball of a separable Hilbert space, such that
with probability one

Rep =o' 0¥ +1yepy(1 -0 0') forall 4,0 > 1.

In this case, we write Law(R;G) to denote the law of R.

As for issue (b), we need a second fundamental result, which requires that we
introduce the Ghirlanda-Guerra (G.G.) identities. Still in setting of Theorem A, let ()
denote the Gibbs average over the independent samples (o);>1, while E(-) will denote
expectation over realizations of the Gibbs measure G. We say that the array R from
Theorem A satisfies the G.G. identities if for any bounded measurable function f of the
finite sub-array R™ = (R¢,e)¢,c[n), and any bounded measurable +: [-1,1] — R, we
have

BI(f(RMY(Ra )] = TBU(RY) - BEHR12) + - S BGR)GRL). (1.27)
=2

Theorem B. [57, Thm. 2.13, 2.16, and 2.17] Let R and G be as in Theorem A. If R
satisfies the G.G. identities (1.27), then

(a) Law(R;G) depends only on the probability measure ¢ on [—1, 1] defined by
C() = E<]1{R1,2€-}>'

(b) (Talagrand’s positivity principle) In fact, ¢([0, 1]) = 1.
(c) The map ¢ — Law(R;G) is continuous with respect to weak convergence.

In summary, we have considered some distributional limit of the infinite scalar array
from (1.26). First Theorem A allows us to couple this limit to an abstract Gibbs measure.
Then Theorem B gives conditions under which this limit can be completely identified
by just a single marginal, which is some probability measure ¢ on [0,1]. The extreme
reduction brought by this second result should underscore just how strong the G.G.
identities are. Because these identities have played such a critical role in modern spin
glass theory, there is fortunately a standard perturbation technique to ensure they are
satisfied by some overlap distribution realized in the large-N limit; we carry this out in
Appendix A for a very general setting.

To connect these results back to the multi-species setting, recall the limit £,; from
before; this is some law on infinite vector arrays. Suppose R is distributed according to
L ;. The breakthrough of Panchenko [59] was to identify a “synchronization” theory by
which the vector array R is proved to be a deterministic function of the scalar array R,
provided that a multi-species version of the G.G. identities is satisfied. Namely, given
any bounded measurable function ¢: [-1,1]” — R, define Q¢ = ¢(Rs.). We say that
‘R satisfies the multi-species G.G. identities if for any bounded measurable function f of
the finite sub-array R" = (Ry¢,¢/)¢,¢rc[n), We have

n

E[f(R")Qunr] = TEF(RY)] - EQo] + - Y Ef(RMQu.  (1.28)

(=2

Then Panchenko’s result is the following.
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Theorem C. [59, Thm. 4] If R satisfies the multi-species G.G. identities (1.28), then
there exist non-decreasing (1/A*)-Lipschitz functions ®*°: [0, 1] — [0, 1] such that almost
surely,

Rip =P (Rew) foralll,l' >1,s€.7. (1.29)

Definition 1.2 can now be understood as a characterization of the fact that R, ¢ is
recoverable from ®(RR ) by way of (1.26). Regarding the hypotheses of Theorem C, the
following comment is essential and thus set aside to be referenced later on.

Remark 1.7. If R satisfies the multi-species G.G. identities (1.28), then R satisfies the
classical G.G. identities. Indeed, to verify (1.27), simply set ¢(x) = >, ., \*z°, and take
p = 1P o¢in (1.28). Once the G.G. identities are known to hold for R, Theorem B(b)
guarantees that R, > 0 with probability one. Therefore, the domain of ®° makes sense.

As we mentioned before, it is possible via perturbation to guarantee that the G.G.
identities hold, so that Theorems B and C can be applied. Correspondingly, the A.S.S.
scheme discussed previously actually needs to be performed for a perturbed Hamiltonian
which is defined in Section 3.1. But once this is done, we may assume that the law L),
appearing in (1.25) satisfies the G.G. identities and is thus a candidate for Panchenko’s
synchronization theory. More precisely, £, has the following representation. For
a random vector array R whose law is L), let £); be the law of the scalar array
R realized by the map R — R from (1.26). Then there is some synchronization map
R +— ®/(R) =R under which £, has the pushforward representation® Ly = L O(I)J_Vfl'
Furthermore, the scalar array R satisfies the hypotheses of Theorem A, and so there
is a random Gibbs measure G,; such that £, = Law(R;Gys). Putting these two facts
together, we have

Ly = Law(R;Gar) o @} (1.30)

Remark 1.8. At this point, the Gibbs representation (1.30) does make an explicit def-
inition of Ty, (L)) possible. However, the fact that the Gibbs measure G, is on an
infinite-dimensional space poses certain technical difficulties we would rather avoid.
Therefore, we will content ourselves with simply knowing that £,; has a Gibbs represen-
tation rather than trying to use that representation to write down an explicit formula for
I (Lyr). Indeed, the former is essential for overcoming issue (a) declared before, while
the latter is not.

In light of Remark 1.7, we are further able to apply Theorem B(a) to the array R.
This means that in the representation (1.30), the quantity Law(R;G,) is completely
determined by the law of ¢! - ¢ under E(Q%Q), which is just some measure (;; on
R. Since L), is now seen to depend only on the A-admissible pair ({ys, as), we can
rewrite (1.25) as

liminf EFy > PG, Q) (DM), (1.31)
N —o0 M
where now &), is a simpler function realized when 11, is restricted to overlap distribu-
tions satisfying the G.G. identities. This function is defined more precisely in Section 2.3,
and (1.31) later appears as Proposition 6.5.
The last step to prove the lower bound (1.17) is understanding the dependence
of (1.31) on M. To obtain a Parisi formula for Ising spin glasses, it suffices to consider

2We again ask the reader to tolerate a slight abuse of notation, since the argument of a synchronization map
such as ¥, is not an entire array but rather a single real number. But when it is convenient do so, we think of
® s as acting on the full array R by acting separately on every entry.
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just a single value of M; see [57, Sec. 3.5]. This remains true even in the multi-species
setting [59]. For spherical models, however, the functional 11, is too complicated to
yield a useful objective function. The strategy thus pivots to finding a limit as M — oo.

In the single-species case, a large deviations calculation of Talagrand [72] (used
here in (2.46)) would establish that &?;/M converges to a limiting functional similar to
& from (1.15). The difficulty here, however, is that the preceding steps have already
required we send N — oo, and the number of cavity coordinates assigned to each
species does not necessarily converge as N — co. An obvious workaround is to pass
to a subsequence along which these limits do exist, but even then it is not necessarily
true that as M tends to infinity, the fraction of cavity coordinates allocated to species s
converges (let alone to \®). Therefore, a critical step—carried out in Section 4 before the
cavity method and synchronization—is to actually redefine the model (1.1) in a strategic
way, in order to ensure that these species proportions behave properly even once M
is brought to infinity. For this redefined model, we can use Talagrand’s calculation to
identify (1.15) as the limiting functional; see Proposition 2.10. By further passing to a
subsequence along which ((pr, ®as) converges to some (¢, ®), we obtain

lim Pu(Car, Par)

=2((, D).

In view of (1.31), this immediately implies the lower bound (1.17).
The task of establishing the matching upper bound is less involved. In Proposition 3.1,
we use the standard approach of Guerra’s RSB interpolation to verify that

Nlim EFNy < 2((,®) forany A-admissible pair (¢, ®). (1.32)
—00

The interpolation is reminiscent of [43, Sec. 3] in that the interpolating Hamiltonian
Hy (o, @) has two arguments: ¢ € Ty and o € IN*—1, where the reference measure
on IN*—1 is a Poisson-Dirichlet cascade (see Section 2.2 for a review). When ¢ = 0, the
resulting Gibbs measure is a product measure, allowing the original free energy Fi
to be easily recovered. When ¢ = 1, the configurations ¢ and « are coupled in such
a way that the functional &), from (1.31) appears. The convexity assumption (H3)
ensures the desired inequality (1.32); see Claim 3.5. In fact, this is the only place
convexity is required. It is worth noting that (H3) is needed only on the nonnegative
orthant, even though overlaps can be negative. This narrowing of the domain is enabled
by Talagrand’s positivity principle (Theorem B(b)), a multi-species version of which is
proved in Lemma 3.3.

1.4 Related works

The Parisi formula for the classical SK model with Ising spins was first proved by Tala-
grand [73], building on the seminal work of Guerra [36] which introduced the technique
of RSB interpolation. Later, Panchenko proved the Parisi formula for general mixed
p-spin models [58] by showing that the Ghirlanda-Guerra identities imply ultrametricity
for replica overlaps [56]. Recently Mourrat [47] has reinterpreted these Parisi formulas
as the solution to a Hamilton—-Jacobi equation in the Wasserstein space of probability mea-
sures on the positive half-line; see [49, 48, 21, 23, 22] for finite-dimensional analogues,
and [52] for a generalized result.

In the context of spherical spin glasses, the Parisi formula for mixed p-spin models
with even p was proved by Talagrand [72] and extended by Chen [24] to include odd
p-spin interactions. Later, Subag [71] computed the logarithmic second-order term for
the free energy of pure p-spin models with p > 3, by developing a geometric description
of the Gibbs measure at low enough temperature. Further analysis was carried out for
mixed p-spin spherical models close to pure by Ben Arous, Subag, and Zeitouni [8].

EJP 27 (2022), paper 52. https://www.imstat.org/ejp
Page 12/75



Multi-species mixed p-spin spherical models

The general multi-species SK model (Ising case) was introduced in [16], where Barra
et. al. gave an upper bound for the free energy using a variant of Guerra’s RSB bound
[36], under a condition equivalent to (H3). Panchenko produced the matching lower
bound in [59] by using the synchronization mechanism discussed above. By generalizing
this mechanism, Panchenko obtained variational formulas for the free energy of Potts spin
glass models [61] and mixed p-spin models with vector spins [60]. The synchronization
technique has since been pivotal in a variety of related models [38, 27, 25, 43, 52, 50].
Using the formula produced by Panchenko in [59], the authors together with Sloman
[19] studied symmetry breaking for multi-species SK models (see also [37] from the
physics literature). This work has since been improved by Dey and Wu [29], who also
considered non-convex models and properties of the replica symmetric phase. The RS
condition identified in [19, 29] also leads to fluctuation results [45].

A natural and interesting special case is a bipartite model, in which two species inter-
act with each other but not among themselves. In the Ising case, there are conjectured
formulas for the limiting free energy [18, 17, 51] of the bipartite SK model, although not
much is known rigorously. See [4, 7, 35, 1] for results on a generalization of the bipartite
SK model, and [5, 6] for its restriction to a special subset of phase space.

More progress has been made for spherical bipartite models. Auffinger and Chen
[9] proved a variational formula for the free energy at high temperature (i.e. £(1) is
sufficiently small); see also the recent min-max formulation [35]. Focusing on the
SK version, Baik and Lee [15] were able to obtain a formula at all temperatures and
also determine limiting fluctuations by drawing on connections with random matrix
theory. In all of these works, the fundamental difficulty is that bipartite models do not
satisfy (H3). This causes Guerra’s interpolation method—among other things—to break
down, although certain methods can bypass this issue, for instance complexity-based
approaches [46, 42] and the TAP representation (pioneered by Thouless, Anderson, and
Palmer [76]).

Regarding the latter, a trio of works by Subag [69, 68, 70] appeared shortly after this
paper was first released, containing respectively (i) a TAP representation for the free
energy of general multi-species spherical models; (ii) an analysis of the critical inverse
temperature in such models; and (iii) a formula for the limiting free energy (1.16) in pure
models (i.e. £(q) = 3%¢® for some s € .7, p > 2), which do not satisfy (H3). The TAP
approach executed in [69, 70] is analogous to [66, 67] in the single-species case (with
[67] going beyond the aforementioned [71] to cover all temperatures); that methodology
bypasses the Parisi framework of the present paper and works on the assumption that
E(Fn) converges as N — co. At present, this assumption is not known rigorously beyond
the cases considered here and in [9, 15].

2 Properties of the Parisi functional

This section develops some preliminary facts about the Parisi functional (1.14),
including Theorem 1.5. Establishing these facts requires that we return to the analytic
origins of this functional, which are motivated by the A.S.S. scheme of Theorem 5.1.
Consequently, the motivation for some of the coming definitions may currently seem
absent, although our work here will ultimately streamline the arguments in later sections.
Since the current section is quite long, we provide the reader a road map of its contents:

* In Section 2.1 we will define a sequence of functionals (IIys)ar>1 such that, in a
suitable sense, 11, /M converges as M — oo to the Parisi functional & from (1.15).
The functional IT,, is the central player that emerges from the cavity method, which
will be developed in Section 5. The key fact we prove here is a uniform continuity
statement (Proposition 2.6).
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* Finer analysis of II;; is only possible once we restrict its domain to certain “nice”
overlap distributions which are synchronized (in the sense of (1.29)), satisfy the
Ghirlanda-Guerra identities, and are such that individual overlaps R, can only
take finitely many values. The overlap distributions satisfying the last two condi-
tions are precisely those generated by the Ruelle probability cascades. Section 2.2
gives a self-contained review of the relevant facts about these fundamental objects.

¢ We perform the restriction of II; to these nice distributions in Section 2.3. For
clarity and so that we can transition to the language of A-admissible pairs, we give
this restriction its own notation: &2);. We then prove Lipschitz continuity for &,
(Proposition 2.9) and convergence to the Parisi functional & (Proposition 2.10).

* Throughout Section 2.3 the functional &), is defined only on A-admissible pairs
(¢,®) in which ¢ has finite support. With Lipschitz continuity established on
this dense subset, we start Section 2.4 by continuously extending &), to all A-
admissible pairs. The limiting functional & could also be implicitly extended,
but we would like to know that this extension coincides with the definition (1.16).
Therefore, we prove directly that & is continuous (Proposition 2.17). A short proof
of Theorem 1.5 then follows.

2.1 Prelimit of the Parisi functional

A key difficulty is that the domain of & is, in loose terms, restricted to “synchronized”
overlap distributions. This synchronization is only realized in the large-V limit, and so the
functional IT); must be defined more broadly in order to include the overlap distributions
realized from finite-volume Gibbs measures. We will soon make this definition, but first
we require the following setup.

2.1.1 The cavity space

Suppose we have fixed a partition of the integer interval [M] into the various species, say
[M] = H,c.(T?)ser, where |7°| = M?*. Analogously to (1.1), we consider the following
product of spheres:

TM = ® SMs, (213)
se€s

which is equipped with the corresponding product measure,

v = Q& e (2.1b)
se.

2.1.2 Allowable overlap maps

In Section 1.3 we introduced the notation Law(R;G) to denote the law of the replica
overlap array R when the i.i.d. replicas are drawn from the random Gibbs measure G. In
that case R was defined via the map (o, 0’) — R(0,¢’) from (1.6), but now we allow any
map fitting the following description. Let ¥ be a metric space, and take any continuous
symmetric function R: ¥ x ¥ — [~1, 1] satisfying the following condition.

Assumption 2.1. There exist centered Gaussian processes (X;);eca and Y on ¥ whose
covariance structures are given by
E[X;(0)X; (0")] = 1;=;1&(R(0,0")) forje J°,

(2.2)
E[Y ()Y (¢")] = 0(R(c,0)).

Furthermore, these processes are almost surely measurable functions on X..
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2.1.3 The overlap distribution

Given a random (Borel) probability measure G on ¥ which is independent of the processes
from (2.2), let (O'Z)gzl be i.i.d. samples from G. Apply the overlap map R to each pair of
samples, and set

Rz’e/ :R(O'Z,O'é/)+]].{g:g/}(1—R(O'Z7O'é/))7 (23)

where 1 € R is the constant vector with 1 in every coordinate. This defines a random
array R = (Re)e,er>1. Denote the law of R by Law(R; G), where the dependence on R
is implicit (also recall Footnote 1).

Remark 2.2. When we are not using a generic ¥ and R, their identities should always
be clear from context. Outside of this Section 2.1, there are really only two cases we
need to consider. The first is when > = Ty and R is equal to the map from (1.6), in which
case Assumption 2.1 is verified in Remarks 5.2 and 5.4. Moreover, the Gibbs measure
G will usually be G/, v, meaning the distribution of (2.3), namely Law(R; Gpr,n), is the
same one discussed in Section 1.3.

The second case is when ¥ is some abstract Hilbert space and R is the composition
of its inner product with some A-admissible map ®. That is, R(c,¢’) = ®(o - ¢’'). Here
the Gibbs measure G will be some G as in Theorem A. Using the notation of (1.30), we
then have Law(R;G) = Law(R;G) o &~ 1.

2.1.4 The functional

We are finally ready to define the functional £ — II;(L£). It accepts as input any law
L = Law(R; G) realized as above.

Take (7;),ca and 7' to be standard normal random variables that are independent
of each other and everything else. Let IE,, denote expectation over just these variables,
and set

X(0) = X;(0) +n;1/&(1) — & (R(0,0)) forj e J*,
Y'(0) ==Y (o) +7'/0(1) — 6(R(0,0)).

Let (-) denote expectation with respect to G. Finally, let E(-) denote expectation over
both realizations of G and the Gaussian processes from Assumption 2.1. Now define the
following quantities:

M
(L) = Elog/r En< exp (Z Iin;](O'))> 7 (dr), (2.4a)
i 2(L) = ElogE,(exp (VMY"(0))). (2.4b)

The functional of interest is then given by
HM(L) = HMJ(E) - HM,Q(ﬁ). (25)

Remark 2.3. In order for (2.4) to make sense, we need to know that exp(ZjM:1 ki X7 ()
and exp(v/MY"(-)) are almost surely integrable with respect to the Gibbs measure
G. This is actually automatic from the boundedness of overlaps. Indeed, since the
Gaussianity is assumed to be independent of GG, we can average over the former before
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the latter. That is,

E< exp (i KJjX;(O’))> = EG<EXE77 exp (iﬁjX;’(U))>

j=1
(2.2) K3E5(1) M*¢5(1)
=" Eg( exp _ = exp —,
(o (5 5 H50)) = (5 240)
(2.6)
and by similar reasoning
E{ exp(vVMY"(0))) = exp (Mi(l)) (2.7)

In particular, the processes exp(Zj{1 #;X](-)) and exp(VMY"()) are integrable with
probability one.

Remark 2.4. In future sections, it will always be the case that R(c, ) is constant under
the Gibbs measure G. That is, there is some g, € [~1,1]” such that

(1{R(0.0)=q.}) = 1. (2.8)

For instance, when R is given by (1.6), then clearly R(o,0) = 1 for all ¢ € Ty. This
means the presence of ; and 7’ in (2.4) will be unimportant when we apply the functional
II5; to any Gibbs measure on Ty (as in Section 5). Even if g, is not equal to 1, the
assumption of (2.8) does simplify the expressions in (2.4). Indeed, by using the fact that
E exp(en) = exp(c?/2), we obtain

(L) = Elog/

JT M

M "
<exp (;Hij(U))> T (dk) + S;y : (1) - €(q.). (2.92)

M
My 2(L) = Elog (exp (VMY (0))) + 7(9(1) —0(q,))- (2.9D)
Remark 2.5. Notice that II; 1 (£) does not change if we permute the X;’s. In this way,
the functional depends on the choice of J7° only through its cardinality M?, not on
precisely which subset of [M] it is.

Even given Remark 2.3, it may still not be clear that II,; is well-defined, since
different choices of R and G may lead to the same law £ for the array in (2.3). This
will naturally be resolved as follows. Let £" denote the law of the finite sub-array
(Rg,g/)&gle[n]; this is a probability measure on .¥-tuples of symmetric n x n matrices
whose entries lie in [—1,1]. Let P" denote the set of all probability measures on this
space. By compactness, it is easy to metrize the topology of weak convergence on P™ by,
say, a Wasserstein distance with respect to the Euclidean norm. We can thus speak of
continuity with respect to weak convergence.

Proposition 2.6. For any € > 0, there is n large enough and some continuous function
1) : P* — R such that

ar (L) — Hg\?(ﬁ"ﬂ < e forany L at which 11y, is defined.

Upon taking € — 0, it is clear that I, is well-defined, since Hg\? is defined indepen-
dently of R and G; see (2.16). In practice, we will use Proposition 2.6 via the following
consequence.

Corollary 2.7. If (Cn)n>1 is any weakly convergent sequence of laws at which I, is
defined, then limy_,o I3/ (L) exists and depends only on the limit of (Ly)n>1-
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Proof. This is a standard application of uniform continuity. Given any ¢ > 0, let n and
H§§} be as in Proposition 2.6. Since H§§} is continuous on the compact space P", it is
necessarily uniformly continuous and thus Cauchy continuous. By assumption, (L3 )n>1

is Cauchy, and so (H%?(E}(,))Nzl is Cauchy as well. Consequently, for all N and N’ large
enough, the difference |l (L) — Iy (Ln+)| is at most

Mo (L) — TG (C3)] + [T (L) — T15) (L) | + [T (£%0) — Mg (L] < 3e.

That is, (IIys (L n))N>1 is Cauchy and thus convergent.
To see that limy_, oo Hzg(ﬁN) depends only on the limit of (£Ly)n>1, consider two
sequences (Ly)n>1 and (Ly)n>2 which converge to the same law. Then the sequence

£1721a£27227£3,23, e
also converges to this law, and so
HM(£1)7HM(21),H]V1(£2),HJW(Z2)7HJ\4(L3),HM(23), -

is a convergent sequence by the existence argument given above. In particular, the two
subsequences (Il (Ly))n>1 and (I (L£x))n>1 share the same limit. O

The argument for Proposition 2.6 follows a general strategy that has appeared before,
for instance [58, Lem. 3] or [57, Thm. 1.3]. One complication of note is that our overlap
map R is not assumed to be an inner product.

Proof of Proposition 2.6. We prove the desired statement for I, ;, as the argument for
ITys,2 is similar and in fact simpler. We start with a truncation procedure. For a > 0,
define

log () := (—a Vv (logz A a)), exp'® z = exp(—a V (z A a)).
Note for later that
|expx—exp(a)as| <lpsayexpr + Lo gy (2.10)

For convenience, let us introduce the following notation for a three-fold average:

(Flramo)) = / E,{f (5,1, 0)) Tar(dr),

T

where here 7 denotes the entire collection (7;),c[a- The variable of interest is then

-

20 = (exp (3 1,X0(0)) ).

1

J

When we have no truncation, we will just write Z for Z(°°). Note that II ma1(L)=ElogZ.
Observe that by averaging over the 7;’s, we obtain the following expression for Z:

M M s
Z = /erz exp (;/ﬁij(J)) exp ( Z 7(5 (1) — ¢*(R(o, J)))) (Ta ® G)(dk, do).

ses

So given any realization of the Gibbs measure G, the quantity Z is simply the integral of
exp g(z), where g is a Gaussian process, and the integral is over z € Tj; x ¥ with respect
to a finite measure. While this measure is random (depending on G), it is independent
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of the Gaussian process and thus regarded as fixed. Consequently, standard Gaussian
concentration (see the proof of [54, Lem. 3]) gives

x(|log Z —Elog Z| > a) < 2exp(—a?/(4C)), where

C= E[f X)) = 3 M)

j=1 seS

(2.11)

Since 0 < Ex log Z <logEx Z = C/2, we deduce from this concentration inequality that
|log Z| is not too large:

Px(log 2| > a) < 2exp(—(a — C/2)°/(4C)) fora > C/2
< 2exp(—a?/(16C)) fora > C.

In particular, by integrating the tail we obtain the following moment bound:
Exlog? Z < C? +/ Px(|log Z| > v/a) da < C? + 32C.
C?2

We have made this estimate in order to control the following truncation error: for a > C
we have

IElog Z — Elog'® Z| < E|Ex log Z — Ex log Z| < E|1{|10g z|>a} l0g Z|

< \/P(log 2 = a)Elog? 7 *1?

< V2exp(—a?/(32C))V/C? + 32C.

On the other hand, since log!® is e®-Lipschitz, we have

E|log® Z —log® Z(®)| < e* E|Z — Z(4)|
(2.10)
a n
e BT istt, o x0(0)5a) eXp(Z“ X5 ( )) F L5, X0 (o)<t ) (2.13)
Jj=1

= < <E<<]1{Z?iw-ij"<ff>>a}>> <<6Xp< Z”JXn )>>)§+QGE<<]1{ X 0)<-a) )
< e%exp(—a?/4C) exp(C) + e* exp(faQ/QC),

where in the last line we have again used the fact Zﬁl /@X?(o) is Gaussian with mean

zero and variance C. At last, given any € > 0, we choose a sufficiently large that (2.12)
and (2.13) combine to give

IElog Z — Elog'® Z(®| < ¢/2. (2.14)
Now recall our notation that ¢!,¢2,... are independent samples from the Gibbs
measure G. Also let n', 7%, ... be independent copies of . We then have the following

identity for any integer r > 1 (simply by definition of {-)) as an average):

(f(r,m,0) H/ E,,(fﬂno’)ern

provided both sides make sense. Applying this identity to the function of interest, we
obtain

T M

z@y =T /T Enz<exp(a) (anx;w (af))> s (dr).

=1 j=1
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Conditional on G, the Ex-expectation of the right-hand side is just some non-random
function ¢y, of the covariance matrix K = (K ¢) (j7,¢)) for (X7 (o) jem et

x[(Z29)] = parr (K).

Since exp(® is bounded and continuous, so too is ¢ M,r,» @s weak convergence of Gaussian
distributions is equivalent to convergence of their covariance matrices. Moreover,
since nonnegative definite matrices form a closed subset of all symmetric matrices, the
Tietze-Urysohn-Brouwer extension theorem allows us to extend ¢y, continuously to
this larger space. Now, by (2.2) we have K; ») (j/,¢) = 1{;=;1§°(R¢,r) whenever j € J°.
Consequently, K is a continuous function of the array R" = (R, )¢, ¢/ |- By composing
this function with ¢/, we obtain a bounded and continuous function ¢, (defined on
all symmetric r x r vector arrays) such that

Ex[(Z)] = ¢ (R").

To complete the proof, we appeal to Stone-Weierstrass to find a polynomial 2:;1 a,z”
which is within £/2 of log z for all = € [e~%,e?]. Since Z(*) always belongs to this interval,
we have the following approximation:

Ey logl® z(@ — Za@m <e/2. (2.15)

Once we average over the realizations of G, we obtain the following function of L" =
Law(R™; G):

]\11 L"n = Zar/QsMr RT En dR Zar ¢I\/Ir )> (216)

This is the map claimed by the proposition. Indeed, since each ¢, is bounded and
continuous, HS\Z)J is continuous with respect to weak convergence. And putting to-

gether (2.14) and (2.15), we have
|Elog Z — H (L',”)| <e.

By the exact same argument, we can obtain the analogous approximating function for
ITps2. In that case, the relevant function f is simply v MY (o) (no dependence on «),
and the constant C' appearing in (2.11) is M6(1). O

2.2 Review of Poisson-Dirichlet cascades and Ruelle probability cascades

Let us adopt the conventions that N = {1,2,...} and N’ = {&}. For each sequence
of the form

O=mog<mi <:---<mp_1<mp=1, (2.17)

there is a random probability measure on IN*~!, called a Poisson-Dirichlet cascade,
which satisfies certain properties described below. Since IN*~! is countable, the cascade
is naturally identified with the random weights (v, ),en+-1 constituting its probability
mass function. A precise construction can be found in [75, Sec. 14.2]; here we describe
just three properties needed in the sequel.
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2.2.1 Overlap distribution

For a = (ay,...,ax_1) € IN¥71, let p(a) denote the set of truncations of a:

pla) ={2, (1), (a1, a2),..., (1, ..., p_1)}

The similarity of two vectors o, o’ € IN*~! is measured by how many elements are shared
by p(a) and p(a’). That is, if @ = (a1,...,,-1) and &/ = (&, ..., a},_,), then define the
overlap

inf{r: a, #al.} fa#d,

k ifa=d. (2-18)

r(e, o) = [p(a) Np(d)| = {

The most basic property of the Poisson-Dirichlet cascade is that if o' and o? are indepen-
dently sampled according to the weights (v4),ens—1, then r(al, o?) follows a distribution
encoded by (2.17). Namely, if (-) denotes expectation over these independent samples,
and E(-) denotes expectation over realizations of the cascade, then by [75, Prop. 14.3.3]
we have

E<1{r(a1,a2):r}> =m; —mp_1, 1<7r< k. (2.19)

2.2.2 Expectations of hierarchical functions

Let (25)genou..unk—1 be ii.d. random variables taking values in some metric space
T. Given any function F : T¥ — R, we define (using a slight abuse of notation) its
hierarchical form:

F(a) = F(25, Z(a1) Z(a1,0) s - -+ Za1ran_1))s @ € NFTL (2.20)

Therefore, F(«) and F'(o') are statistically dependent only via the variables (23) scp(a)np(a’)-
We now describe a way of computing expectations of the form Elog(exp F(«)), using
only a single random variable for each level of overlap. First define

Fk = F(Z(),Zl,...,zk,l), (221)
where 2z, ..., 2zx—1 are i.i.d. T-valued random variables as before. Now inductively define
1
F, = log E, exp(m,.F,y1) forr € [k —1], Fy = Eo(Fy), (2.22)
where E,(-) denotes expectation over just z,,...,z,—1. By [75, Thm. 14.2.1], we then
have
Elog(exp F(«)) = Fp. (2.23)

As a matter of interpretation, the identity (2.23) has converted the hierarchical structure
of the random variables (z3)gewountu...un+—1 into an iterative procedure.

2.2.3 Tilting by hierarchical functions

The last property we need concerns the Poisson-Dirichlet cascade tilted by a function F
of the form (2.20). That is, given any other function U of the same form, we define
(U(a")U(a?) exp F(al) exp F(a?))

1 2 ._
({U(a)U(a7))r = oxp Fla))? : (2.24)
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where o' and o? are independent samples from the Poisson-Dirichlet cascade. With F,
as in (2.22), define

W, = exp(mr<Fr+1 - FT))? e [k - 1]

With Uy, as in (2.21) for the function U, [75, Prop. 14.3.2] gives the following identity for
any r € [k]:

E(l{rat,02)=r U(@)U(a®)) p = (my —my1)E[Wy - We (B [W, - - Wi 1 Ug])?].
(2.25)

Note that E,.(W,.) = 1 by (2.22), and that W, has no dependence on z,» for ' > r.
Consequently, for any ' > r we have

E W, Wy =E [W, - Wy Ep (W) = Ep[W, - W] =+ =1.
Therefore, when U = 1, (2.25) provides a generalization of (2.19):

E(]l{r(al_’oéz)zrﬁp =m, —my_1, 1€kl (2.26)

2.2.4 Ruelle probability cascades

Notice that so far we have only dealt with the sequence of weights (m, )o<,<x from (2.17).
When one also defines a sequence of locations

O=q << <q <@y =1, (2.27)

then one obtains a measure

k

(= (my—my_1)d,,. (2.28)

r=1

We will now construct a random measure G = Gp,.q,,...q, OD any separable, infinite-
dimensional Hilbert space such that if ¢! and ¢2? are two independent samples from
this measure, then ¢! - ¢2 is (-distributed (in the averaged sense of (2.30) given below).
Let (eg)gemou...unt—1 be a collection of orthonormal vectors in the Hilbert space, and for
each oo € N*~! define

he = Z es\/48|+1 — 48|

Bep(a)
where |3] = r for § € IN". Notice that
ha . ha/ = q'r*(oc,a’)~ (2.29)

Therefore, if h, is chosen with probability v, according to the Poisson-Dirichlet cascade,
then two independently chosen h,: and h,2 will yield the following analogue of (2.19):

E(ln, .4 e0,q3) = ¢([0,q]) foranyqe[0,1]. (2.30)
We thus take Gyy.q,.....q, to be a purely atomic measure with

GOmigr,....qn {ha}) = va, where (vy),ene-1 is the Poisson-Dirichlet cascade for (2.17).
(2.31)

This measure G,,,.q, ... ¢, is called a Ruelle probability cascade.
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2.3 Applying the Parisi prelimiting functional to Ruelle probability cascades

Now we return to our consideration of the function II; from Section 2.1. Here
we study the outcome of applying II); to overlap distributions obtained from Ruelle
probability cascades.

Let ¢ be any measure on [0, 1] with finite support; in other words, ( is of the form (2.28)
for some sequences (m,)1<r<k and (¢,)1<,<x of the form (2.17) and (2.27). Let G be the
associated Ruelle probability cascade following (2.31), and let ® be any A-admissible
map. As a shorthand, we will write

q,=%(q), 0<r<k+1, (2.32)

since all quantities of interest will depend on ® only through the values of q,,...,q,.
Using the map R: (ha, ha) — @(hq - har), we consider the law

L(¢, ®) = Law(R; Gmiqy.....q1.) (2.33)
from Section 2.1.3. Using the notation from Theorem A, we equivalently have
L, ) = Law(R: Gy ..g0) 0 L (2.34)

Implicit in our notation is that the right-hand side of (2.33) is completely determined by
( in (2.28). That is, even if a different collection of m’s and ¢’s give the same measure
in (2.28), Law(R; G g, .....q. ) Would remain the same. This is a consequence of Theorem B,
since overlap distributions arising from the cascades do indeed satisfy the Ghirlanda-
Guerra identities (see [75, Thm. 15.2.1] or [57, Thm. 2.10]). Let us make a formal
statement to which we can refer later.

Corollary 2.8. For any fixed ®, the map ( — L({, ) is well-defined and continuous with
respect to weak convergence.

In order to evaluate II); at £(¢, ®), we still need to check Assumption 2.1, and for
this we simply construct the desired Gaussian processes. Let (nm)je[M],BE]NOU...U]N;VA
and (73)genou...uw-1 be independent standard normal random variables, and set

Xj(ha) = Z Uj,B\/ﬁs(lI\mH) - ]l{|ﬁ|>0}§s(q‘m) for j € J°, (2.35a)
Bep(a)

Y (ha) = Z 77,8\/9((1|5|+1) - 9(‘1\50- (2.35b)
Bep(a)

The desired covariance identities (2.2) trivially follow. Therefore, we can specialize (2.5)
to the present setting by defining

ngM,i(Caq)) = HA[,Z(E(Q@)) fori e {1,2}, and

(2.36)
@M(<7CI)) = ‘@Mﬂ(ga(b) - c@]\/[,Q(qu))'

The following statement is a precursor to the Lipschitz continuity claimed in Theorem 1.5.

Proposition 2.9. For any A-admissible pairs (¢, ®) and (z, 5) such that ¢ and Ehave
finite support, we have

‘@]W <7® _f@M 55;13 O* M?* s ~ ~
s€s
where C., is given in (1.20).
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Before proving Proposition 2.9, let us make the following preliminary calculation,
which explains how the functional (¢, ®) — £({, ) emerges from the cavity method,
and how Theorem 1.5 will follow from Proposition 2.9.

Proposition 2.10. Assume that M*/M — \* as M — oo, for each s € .. Then for any
A-admissible pair (¢, ®) such that ¢ has finite support, we have

lim Pu(C,P)

Jim TR (@), (2.38)

Proof. We will use the shorthands

up = 155036°(g,) = 150167 (@(gr)) and w, = 0(q,) = 0(2(qr))-

First we compute the right-hand side of (2.38) by recalling the definition of &
from (1.15). Since ¢([0,u]) = m, for u € [¢,, ¢r+1), the quantity from (1.12) is equal to

d(q) = / C([0,u]) (€% 0 @) (u) du
! . (2.39)

=m[up g — @@+ D mp(uyy —up) forallg € [g,,gria)-
r'=r4+1

When ¢ = ¢, we will use the notation
k
d; = d%(q,) = Z mpr (Uys g —ups), 1 <7 <k
Since ¢([0,u]) = 0 for all u < ¢y, we have
d*(q) =d; forallqe0,q] (2.40)
Now consider the first integral in (1.14). In light of (2.40), we have

"o (q) [T (P (g ui—E£(0)
I A e R

Meanwhile, on the interval [g,, ¢,+1] with 1 <r < k, from (2.39) we have

/QT+1 (58 ) Q))/(q) dq _ /q7‘+1 (58 ) cI))/(q) dq
ar b —d*(q) ar b — di+1 - mr[“i-u —&5(2(q))]
“'i+1 1 1 bs — ds
- du = log ——+1
/ui bs —diyy —meluiy — my 0 b dy

The last integral to compute is

1 k
/0 C([0,4)) (00 B) () dg = 3 (s — w,).

r=1

Putting together these computations and recalling the definition of A from (1.14), we
have

k
A° uj 1 b —d?
AL, ®,b) = Z (v —1—1logh® 1 — log ——+1
ot = 3 (v 1o 4 g 4 37 g
°< . - (2.41)
1
- 5 Zmr(wr+1 - wr)~
r=1
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Finally, by definition we have £({, ®) = infy A(¢, P, b), where the infimum is over b such
that b* > d°(0) for each s € .. Because of (2.40), this condition is equivalent to b°* > d5.

Now we compute the left-hand side of (2.38). Notice from (2.29) that no matter the
choice of a, we have h,, - h, = q;. That is, (2.8) holds with g, = ®(gx), which we have
been calling q,. Therefore, instead of referring to the quantities from (2.4), we can
start from their equivalent forms in (2.9). With the processes from (2.35a), the quantity
P (¢, ®) from (2.9a) is equal to

mos ([ (X T 00 3 o= ) 00 + T k-

s€eS jeT*® Bep(a) s€S
(2.42)

Meanwhile, with the processes from (2.35b), the quantity t@MQ(C, ®) from (2.9b) is equal
to

Blog (exp (VAT 32 ns /e w1 ) )+ o (s — wg). (2.43)

Bep(a)

Each of these quantities can be rewritten using the formula (2.23).

Let us first consider &, 2((, ®), as the computation is simpler and explicit in this
case. The 7g’s in (2.43) play the role of the z3’s in (2.20). So let us define i.i.d. standard
normal random variables (7, )o<r<r—1 to play the role of the z,’s in (2.21). That is, we
begin with

k—1
M
Fp = \/Mgom Wyy1 — Wy + j(wk+1 — W),

and then apply the formula (2.22) inductively to arrive at Fj, which is equal to (2.43)
by (2.23). Using the identities E exp(cn,) = exp(c?/2) and E(n) = 0, it is easy to verify
that the result of this induction is

@MQ Ca Zmr w'r‘Jrl wr) (244)

Next we consider the more complicated quantity %), 1(¢, ®). Now the random vectors
(n4,8)je(m) in (2.42) play the role of the z5’s in (2.20). So let us define independent
standard normal random variables (7;,,), e[M],0<r<k—1 to play the role of the z,.’s in (2.21).
That is, the quantity in (2.21) is given by

F, = log/T exp(z Z’%Z% - i)TM (dw) +Z Uk+1 uj)

s€ES jET® r=0 ses
(2.1) . s s M> s s
= Z log exp( Z annj’M/u;_H—ur) MMs(d/i)—i—T(ukH—uk) ,
s€S Sns jegs  r=0

and then &) 1(¢, ®) is equal to Fj as obtained inductively from (2.22). But notice that
we have written Fj, as a sum of || independent variables of the form

S

:log/s vexp( Z K; Zn]r ) pars (dr) + Ag (ufyq —ug).  (2.45)

JETS® r=0
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Therefore, applying (2.22) to F} is equivalent to applying (2.22) to each F}] and then
adding the results. That is, we have F,. = ) __ ., F;’ by downward induction on r, where
F} is defined from £, as in (2.22). We write the final quantity F§ as 2}, (¢, ®) so that

Pua(C, @ Z«@M1C@)

seS

While 3234’1(( ,®) does not have an explicit expression as in (2.44), we can invoke the
large deviations calculation by Talagrand [72, Prop. 3.1], which says

. '@f\i 1(C7 (I)) 1. s s
WL T T 2 {b —1-let 4

S —dp
+Z 1og7;j1. (2.46)

r

dS

Remark 2.11. The identity (2.46) is most readily seen from (3.31) and (3.48) in [72].
Furthermore, one sees from the same places in [72] that the presence of an external
field hs adds a term of the form h2/(b* — d3) to the right-hand side of (2.46).

Now sum the right-hand side of (2.46) over s € . and compare with the first line
of (2.41). Since the optimization in (2.46) is decoupled over s € .#, the sum of infima is
the infimum of the sum. With the assumption that M*/M — A* as M — oo, we thus have

. Pua((P) . A s dfn+1

ses

(2.47)

Finally, to account for the second line in (2.41), subtract the quantity & 2(¢, ®)/M
appearing in (2.44), and we obtain (2.38). O

We saw in the proof of Proposition 2.10 that we can write &%), 1(¢, ®) as a function of
the sequences m = (m,)o<r<k and g = (g, )o<r<k+1 from (2.17) and (2.32). That is, in a
slight abuse of notation,

yﬂf(Caq)) = '@M(qu177qk) = Z '@;L[,l(m,uivuz;) - '@M,Q(m;wlw'wwk);
seS

where u; = 1(,501¢*(q,) and w, = 0(q,). Notice that we have omitted g, = 0 and
g1 = 1, as these values are constant. Our next observation is that adding duplicate
copies of any g, does not change the value of the functions seen above. This will
ultimately allow us, in the proof of (2.37), to assume ¢ and ( arise from the same m
sequence.

Lemma 2.12. Consider any sequence of integers 0 = ng < ny < ng < -+ < ng. Let
0=mg <my <---<my,, =1 besuch thatm,, = m, for eachr € [k]. We then have

‘@M(m;qlv"qu):‘@]V[(m;qlw"aq17q27"'7q27"' aqka"'vqk)'
ni ny — Ny N —Ng—1

Proof. It is not hard to determine (2.48) directly from definition chasing, but it is even
easier to simply appeal to Corollary 2.8. Indeed, the right-hand side of (2.48) is equal to
P (¢, P), where

Ny k
¢= Z Z (1, — Mn—1)dg, Z(m my—1)0q, = ¢
r=ln=n,_1+1 r=1
Hence L£(¢,®) = £((,®), and so by definition (2.36), we are done. O
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The final preparation before proving Proposition 2.9 is to control the variability of &2,
with the g sequence. The following lemma will be essential. The quantity 62 (ug, ..., u)
seen in (2.49) is deserving of the title “partial derivative of &7}, ; with respect to u,”,
but because the u,’s must stay ordered, we must be careful in how we state this. The
definition (2.55) will soon clarify these subtleties.

Lemma 2.13. Fix any sequence 0 = uy < u3 < -+ < wp < upyr; = €5(1). Let
(ai1,...,a) € R* be such that a, > a,_; whenever u, = u,_;, where ayp = a1 = 0.
We then have

P (myur Hear, . ug +eag) — Pap i (msua, . ug
lim ’ - —Zar u17~~~ k)v
eN\0 3
(2.49)
where — 3 (my —mp_1) <6 (ug,...,ug) <O0. (2.50)
Proof. The assumption on (a4, ...,ax) is so that for all sufficiently small € > 0, we have

ug <up +ear Lug+eax <o <up +eap < Ukt

In other words, if all coordinates are perturbed simultaneously, then ordering is pre-
served. But we will need to perturb the coordinates one at a time, hence the following
claim.

Claim 2.14. There is some permutation (o(1),...,0(k)) of (1,...,k) such that for all
sufficiently smalle > 0 and any j € {1,...,k}, we have

ug < uy + Lyyy<jyear < ug + Liyo)<jeas < - <up + Ligo<jyear < uggr.  (2.51)

In other words, ordering is preserved even if only coordinates o~ *(1),...,0"!(j) have
been perturbed.

Proof. We argue by induction on k, the base case of £k = 1 being trivial. So assume
k > 2. If u1 < ug, then first apply the inductive hypothesis to coordinates 2 through £,
and set o(1) = k. Indeed, even if u; is the last coordinate to be perturbed, we will have
u1 < us + age for all € sufficiently small. Hence (2.51) will be true for all j < k — 1 by
induction, and true for j = k because u; + a1¢ < us + age for all ¢ sufficiently small.

Otherwise u; = us (so we must have a; < as), and we consider two separate cases.
If a1 < 0, then set p(1) = 1. That is, we first perturb u; to arrive at u; + £a;, which is
now strictly less than us, and so (2.51) holds for j = 1. We then decide in which order to
make the remaining perturbations by applying the inductive hypothesis to coordinates 2
through k, which will ensure (2.51) for all j > 2.

If instead a; > 0, then again apply the inductive hypothesis to coordinates 2 through k,
and set o(1) = k. Indeed, even if u; is the last coordinate to be perturbed, the assumption
az > a1 > 0 means that u; < us + age for all e > 0. So as before, (2.51) will be true for
all j < k — 1 by induction, and true for j = k because u; + a1e < uy + aqe for all € > 0.

J (Claim)

Now fix the permutation p from Claim 2.14, and fix € > 0 small enough that (2.51)
holds for all j € [k]. We then write

k
Pira(miur +eay, ... up +eag) — Py (mu, ... ug Z — fi—1(e)],  (2.52)
j=1
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where fj() == Py (miut” (&), ... uf (),
ugj)(e’) = U, + ]l{g(r)q-}sar + ]l{g(,,):j}e’ar, e e [0, E].
In words, f; is the result of perturbing coordinates o~ !(1),...,07'(j), with a possibly
smaller perturbation on the last coordinate in this list. Given r € [k], suppose o(r) = j so

that the jth summand in (2.52) is the first one in which u, is perturbed. If a, = 0, then
f; = fj—1, and we need not consider this summand further. If a, > 0, then we have

(2.51) (2.51)
Ur—1 +Lgpr1y<jytr-16 < U <Uptare < Uppr + Lipegy<jyarpae

Squeezing an additional term between u, and u, + a,¢, we obtain that for all &’ € (0, ¢),
Up_1 + ]l{g(r_l)<j}a7~,1€ < Up + GTE/ < Ups1 + ]l{g(r+1)<j}a7‘+15~ (253)

By analogous reasoning, we obtain the same inequality when a, < 0. We have thus
reduced the problem to the following claim.

Claim 2.15. Whenever u,_; < u, < u,41, we can differentiate 3231_’1 with respect to u,..
The resulting derivative satisfies

WE 0Z:, (m;x1,...,x
——(my —my_q) < R (s 21 +) <0. (2.54)
2 8IT (x1=u1,...,xx=ug)
Furthermore, for any u = (u; < --- < uy), the following limit exists:
0% 1(ms e, ..., zk)
o2 (uy, ..., u) =1 J , (2.55)
T(UI Uk) u;nlﬂ 8mr (x1=u1,..., T =UE)

where the limit is taken along any u with u,_; < Uy < Up41.

Before proving the claim, let us use it to complete the proof of the lemma. Consider
the ;™ summand from (2.52), with the assumption that o(r) = j and a, # 0 as discussed
above. By Claim 2.15 and the inequality (2.53), the function ¢’ — f;(¢’) is differentiable
on the open interval (0,¢). As will be checked during the proof of Claim 2.15, this
map is also continuous on the closed interval [0, €], with f;(0) obviously equal to f;_1(e).
Therefore, by the mean value theorem, we have

fie) = fi(e) _ 0P} q

= . _ for some €’ € (0, ¢).
5 " oz, (azlzu(lj)(e’) ..... mk:ugcj)(s’)) ( ’ )

By (2.55), we then have

. fj(g)_fj—l(g)
lim ~—————~ = s .
61{‘1(1) - a'r57 (uh 7uk)
Using this fact in (2.52), we are able to conclude (2.49). The inequality (2.50) follows
from (2.54).

Proof of Claim 2.15. Here we adapt the approach of [75, Lem. 14.11.1]. Recall that
@5/1,1 = Fy is the result of applying (2.22) with F}] from (2.45) as the initialization. But
then (2.23) implies that 2}, , (m;u1, ..., ux) is equal to

S

M
Elog</s exp( Z Kj Z nj,g\/M) ,U]Ms(dli)> + T(Ukﬂ — Uk), (2.56)

JjET® Bep(a)
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where ug = 0, and (-) denotes expectation according to the Poisson-Dirichlet cascade
(Vo) acnr—1 associated to (2.17). Let us simplify notation by writing

7 = </ exp( Z /{jgj,a) Lars (d/{)> = Z Ua/ exp( Z /{jgj,a) wars (dr),
Shre jege aeNk-1 75w jegs
where we have grouped the Gaussian variables into terms of the form
. - s k—1
Gj,a = Z M58/ Usl+1 — wp, J €I ae N (2.57)
Bep(a)

In this notation, differentiating (2.56) with respect to u, results in

6‘@18\41(m;u17'~'auk) 1 0z M*
) — — .22 g — 2.58
Ou, B {Z 3ur} Lr=ry 2 ( )

Let us define

1 0z 99;,a
Qj, () = :/s Kjy eXP( > F«'jgj,a) v (dk) and g, = BZLT , (2.59)

Vo agjl,a jegs

so that by the chain rule,

E[% : gﬂ = E{ > valEq [% : le(a)g;,aH, (2.60)

(J1,0) €T s xINF—1

where E,(-) denotes expectation over only the Gaussian random variables. The right-
hand side of (2.60) sets up the following Gaussian integration by parts:

Q. () 0 Qi)
) = S Ee(g) m0er) By Yoz | @6

(jz’a’.’)ejs xINk—1

]Eg [gglﬂl '

We will now consider two cases: » < k and r = k.
If1 <r <k—1,then itis easily seen from (2.57) that

(2.62)

1 (nﬁ(al,mﬂr—l) _ M(enseesar) )

/
Jja = 5
e 2 \/ur — Ur_1 \/urJrl — Up

Now recall the quantity r(a!, o?) from (2.18). Since all 7;,8’s are mutually independent,
it follows from definitions (2.57) and (2.62) that

Eg(gg'l,algj’zv@z) = %]l{ﬁ:jz}(E(njh(a} ..... al )Mja(a2,..., aﬁil)) — E(ﬂjl,(o@ ,,,, a)ja,(a2,..., a%)))
) 0—0 ifr(at,a?) <r,

= 5lpi=py 1 -1 ifr(a0?) >, (2.63)
1-0 ifr(at,a?)=r

Therefore, in (2.61) we need only consider (ji, @?) such that j, = j; and r(at,a?) = r.
Notice that the latter equality implies o # o' since r < k, and so the variable Jj.a> does
not appear in Q;(a'), which means

0 Q(e') _ Qi) 97 @se Qi(a)Q;(?)
5gj,a2 A Z2 5gj’a2 * Z2 '

(2.64)
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Using (2.63) and (2.64) in (2.61), and then (2.61) in (2.60), we arrive at

89’
M1 = ——= Z [ Z ]l{r(ay’oéz):,q}val’anQj(Oél)Qj(042) . (265)

jET*® al,a?eNk-1

This concludes our consideration of the case r < k.
If instead r = k, then Gaussian integration by parts is still executed as in (2.61),
but (2.62) is replaced by

g/. _ Mj,(01,. 00 -1)
N e T
Hence (2.63) is replaced by
Eg(,019j2,02) = Liji=jo} Lar1=a2} /2,
which in turn implies (2.64) is replaced by
9 Qjla) Q) L1 00(e)

89,0 Z 7722 T Z Tog.
This means the outcome of using (2.61) to compute (2.58) is now

iy 1 g g p Qe 00w
8“‘]@ Z2 A agj)a 2

(4,0) €T xINk~1

But notice that the additional terms created by differentiating Q;(«) cancel with the
additional —M*°/2, since differentiating in (2.59) leads to

« 0Q);
Z % ' gggj.](((j) - cINk—1 »/SMs Z ’i exp( Z H]g]o{) fare (d/{/) =M.

(j,a)€T s xNk—1 JjeT?® JET®

Therefore, (2.65) holds even in the case r = k.
In order to rewrite (2.65) using the notation of (2.24), set

j Qj(@)
F(a)= log/ exp Kjgja | pars(dr), U(j)(oz) = 2.
Sape <j§s 193 ) exp F(a) (2.66)
Then (2.65) can be rewritten as
03 1 . 4
8UM71 = _5 Z E<]l{r(a1,o<2)=r}U(j)(al)U(j)(az»F
o e (2.67)
(229 _ 5y —me_1) 3 B[Wye Wit (B, W, - Wia U] <.
JjETS®
On the other hand, by Jensen’s inequality we have
G ()2 — Qj(a) 2
Z v Z (epr(a))
JjET® JjeET*® (2.68)
1 .
< — 2 Gio S(dr) = M*.
~ exp F(a) /SMS ( Z ,%J)exp( Z R395, ) s (dr)

JET® JjET®
Consequently, an application of Cauchy-Schwarz yields

‘E<]l{r(a1,oz2)—7"} Z U(j)(al)U(j)(a2)>F‘ < E<]1{7"(0417042)—7"}

JjeT*®

Z UD (o)UY (a?)

jeTs >F

s 2.26 s
<M E<]l{r((x1,a2):r}>F( = )M (mr *mr—l)'
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The proof of (2.54) is completed by using this inequality in the first line of (2.67).

Our last objective is to prove (2.55), as well as continuity of &}, ; jointly in all
coordinates uy, ..., ug. It is clear from (2.57) that g; , is continuous in uy,...,u;. We
claim that as a consequence, the quantities @, (a) from (2.59) and ef'(@) from (2.66) are
almost surely (i.e. for almost any realization of (1;3) e .7+ genou...uwe—1) continuous in
ui,...,ur. Indeed, observe that

exp(£r;950) = [ exp(Erim; o/t — ug)

BEp(c)
< I [exp (I550m55vVE (1)) +exp (= |kl p3/€(1))] = dj(, k),
Bep(a)
where now d, (o, k) has no dependence on uq, ..., u;. From this inequality we have

oF(@) :/S H exp(K;gj.a) fars(dK) /s H dj(a, k) pars(dr) = D(a, k), (2.69a)

M jegs M jea
-1
o Fl) — ( /S 1T exp(si9;.0) Ws(d"))
s e (2.69b)

/S H exp(—~K;gj,a) pars (de) < D(a, k).

M jegs

as well as

From the calculation

s

B, [T dios) = T Eqdianm) = TT (/@ @0)"" " < )™, (5.9

JET® JET*® JET®

we conclude that D(a, k) is finite with probability one. Therefore, our claim of continuity
for ef'(®) follows from dominated convergence with respect to the probability measure
piars on Syrs. For Qj, (), we need only make the additional observation that |x;| < VM5,
and then the same argument goes through.

Given the continuity of ef'(@) with respect to uy,...,u;, we would like to conclude
the same for 2}, | = Elog(e”(*)) — M*(ug41 — ux)/2. The argument given above shows
that (ef'(®)) is continuous, simply by replacing [,,.(-) pas« (ds) with { [, . (-) gz (dr)).
Indeed, dominated convergence applies equally well to the latter, since the right-hand
side of (2.70) has no dependence on «. To conclude continuity for &}, |, observe that

‘ 1og<eF(a)>| = 10g<eF(a)>]1{<eF(a)>21} + log<eF(°‘)>_1]l{<eF<a)><1}

F(a) —F(a) (2.69)
< log(e )11{<ep(a)>21}+10g<e )]1{<ep(a>><1} < log(D(a, K)).

Since another application of Jensen’s inequality gives

(2.70)
Eglog(D(a, k)) < logEy(D(c, k)) =1log(EgD(a, k)) < o0,

it follows from dominated convergence that IElog(e”(®)) is continuous in u,, ..., u;. The
same is clearly true for &}, ,

Finally, since we know Q;, (o) and e’ (@) are almost surely continuous in u,, ..., uy, the
same must be true for U () defined in (2.66). Thanks to (2.68), we can apply dominated
convergence in (2.67) with respect to IE(-), in order to conclude that 0%}, ,/0u, is
continuous in uq, ..., u, as desired. O (Claim and Lemma)
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Proof of Proposition 2.9. We are only considering A-admissible pairs (¢, ®), (E , (f)) such
that ¢ and ¢ have finite support. Solet ({, @) correspond to sequences m = (m,)o<,<x and

(g,)o<r<k+1, while (¢, ®) corresponds to 7 = (M) o<, <5 @nd (qT)O<T<,€+1 By replacing m
and m with their mutual refinement, and then creating duplicate g’s and ¢’s as needed,
we may assume k = k and m = 7 thanks to Lemma 2.12. Then observe that

Qc¢(z) =¢, and QZ(Z) =q, forze (my_i,m.],1<r<k.

Since ®(¢,) = g, and ®(§,) = q,., upon integrating over all possible z, we arrive at the
identity

0«4@465»“5”4|@«kw»—5«%u»mdz
k

X (2.71)
= Z(mT—mT—1)||qT'_a7"|1'
r=1
Our goal now is to control the difference ﬁL@M(m; qi,--5q) — Pru(m;qy, ..., q;)]

in terms of D((¢, ®), (¢, ®)). To do this, we interpolate between g and g by defining

q,(t) = (1 -t)g, +1q,, andthen wuy(t):=¢E%(q.(), wr(t)=0(q.(t), tel0,1].

The quantity of interest is then |p(0) — p(1)|, where
1 S S S 1
pt) = 57 > Pramsui(t),. . ui(t) — af Zm2(mwi(t), .. wi(t))

ses

M Pira(m;ui(t),. "uk(t)) 1<
oy © ) 4 5 ey
€S r=1

where in the second line we have applied summation by parts to (2.44). For ease of
notation, let us denote the quantity from Lemma 2.13 by

82() = 83 (ui(t) .., i (1),

MsT
which by (2.50) satisfies

—% < 53(t) <0. (2.72)

Note that because u®_;(t) < ui(t) for all t € [0, 1], the time derivatives a, = duf(t)/dt
must satisfy the hypothesis of Lemma 2.13. So by (2.49), we have

S k us
FIOED DL PLIGES LN

seS r=1 r=1

dw,.(t)
dt -

N =
-

(mr - mrfl)

With further applications of the chain rule, it is elementary to calculate

’

dus(t) o¢s /
ét = Z 0% o (t)(zﬁ“ -4 ),
ses q° 'q=q,
dw,(t) Z 00 s (1 .10) s’ /
= (@ - PRI AC @ —a).
dt s'eS Bq (1) s'es “ses q:qT'(t)
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Together, the two previous displays yield

-3 S [0+ Lo —me)] 3 e

r=1se.s s'es

& —q).
q:q,«t)( ! ")

Notice that we can combine (2.72) with the fact that 0 < ¢2(¢) < 1, in order to write

Y 1
_)\s% < NSO (E) + 5)\8(]i(t)(mr 1) N

My — Myp_1
72 .

Recalling the definition of C, from (1.20), we thus have
Ch M
/ S S
'@ < 22%(\ ) e ) 3 -

s'esd
c, M
2( Z’ -
5%
C,
2

)Z e ), - @l
(2.71) <1+

r=1

)2 ). C®).

QM

As this inequality holds for all ¢ € [0, 1], the same upper bound holds for |¢(0) — ¢(1)|. O

2.4 Extending the Parisi functional to general A-admissible pairs

It was established in Proposition 2.9 that &), is Lipschitz continuous (in particular,
uniformly continuous) when restricted to A-admissible pairs (¢, ®) in which ¢ has finite
support. Such pairs are in fact dense among all A-admissible pairs.?> Therefore, &),
admits a unique continuous extension to all A-admissible pairs. To be precise, this
extension is defined by

Pu((,®) = klijgo P (G, P), (2.73)

where ((x)r>1 is any sequence of finitely supported measures converging weakly to ¢. Of
course, Proposition 2.9 immediately generalizes to this extension.

Corollary 2.16. For any A-admissible pairs (¢;, ®1) and ({2, ®2), we have

| P (G, 1) — P (e, P2)|  Ci M
[t G T

)D((Q,‘IH),(@,‘I&))’ (2.74)

where C, is given in (1.20).

But in order for the limit in (2.73) to be interchangeable with the limit M — oo, we
will also need that & (¢, @) = limy_ 00 P ((k, ®). This will follow from the following result.

Proposition 2.17. Let ((,®) be any A-admissible pair. For any €;,e2 > 0, there is a
measure ¢ on [0, 1] with finite support, such that

D((¢, ®),((,®)) <e1, and (2.75)
|P((,®) — 2((, )] < e (2.76)

Before proving this proposition, let us use it to quickly establish Theorem 1.5.

3This follows from (2.75), but it can also be seen as follows: weak convergence (;, = ¢ implies that for any
A-admissible map ® we have ¢, o ®~! = ¢ o ®~1, which is equivalent to ’D(((k, P), (¢, <I>)) — 0.
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Proof of Theorem 1.5. Let ((1,®1) and ({2, ®2) be given. Given any ¢ > 0, use Proposi-
tion 2.17 to identify finitely supported measures (; and (, such that

D((¢i, ®,), (G ®:)) <e and | P((, @) — P(G, ®i)| <e forie {1,2}. (2.77)

The combination of Propositions 2.9 and 2.10 gives

|P(C1, 1) — P(Ca, Ba)| < %D((gh%%(é,qb)),

and so (2.77) yields

C.
|2(C1®1) = P(Go, Ba)| < 26+ = [D((G1, D), (G2, @2) + 2.
The proof is completed by letting ¢ tend to 0. (|

It is also easy to check that Proposition 2.10 continues to hold for the extended #,,.

Proposition 2.18. Assume that M*/M — X\°* as M — oo, for each s € .. For any
A-admissible pair (¢, ®), we have

Moo M 2(C, ). (2.78)

Proof. Given any ¢ > 0, use Proposition 2.17 to identify a finitely supported measure 5
such that D((¢,®), (¢, ®)) < e. Using the facts we have accumulated, we determine that

. Pu((,P) 274 WM(Z,(I’) Cy
M\ T < T MASy =)
lim sup i < Mhm i +e 5

~ (1.20)
@39 » @)+ s% < P, D) +eC,.

An analogous chain of inequalities would also yield

ljl\?ligofT > P, P) —eC,.

As ¢ is arbitrary, we can safely conclude (2.78). O

The only remaining task of the section is to prove Proposition 2.17. In preparation
for the proof, let us make the following observation about quantile functions.

Lemma 2.19. Let ¢ be any Borel probability measure on [0,1]. Given f : [0,1] — [0, c0),
let ¢ o f~! denote the pushfoward of ¢ under f. If f is left-continuous, non-decreasing,
and satisfies f(0) = 0, then

f(Qc(Z» = Qcof—l(z) forall z € [0, 1] (2.79)

Proof. We will prove (2.79) by exhibiting inequalities in both directions. On one hand,
since f is non-decreasing, we have f 1[0, f(¢)] D [0, ¢] for any ¢ € [0, 1]. Consequently,

(Co f7H([0, £(Qc(2))]) = ¢([0,Qc(2)]) > =,

which shows that f(Q¢(2)) > Qcor-1(2).

For the other direction, observe that for any ¢ € [0, 00), the monotonicity and left-
continuity of f together ensure f~!([0,q]) = [0,u,] for some u, € [0,1]; in particular,
f(uq) < q. So whenever g satisfies ((o f~1)([0,¢]) > 2, we must have ([0, uy]) > 2z, which
means Q¢(z) < u, and thus f(Q¢(2)) < f(uq) < q. Since Qcof-1(2) is one such ¢, we
conclude that f(Q¢(2)) < Qcop-1(2). O

EJP 27 (2022), paper 52. https://www.imstat.org/ejp
Page 33/75



Multi-species mixed p-spin spherical models

Now, it is well known that for any Borel probability measure ¢ on [0, cc), we have

1
/ u ¢(du) = / Qc(z) dz. (2.80)
[0,00) 0

Lemma 2.19 leads to the following elementary extension of this fact.

Lemma 2.20. For any Borel probability measure ¢ on [0,1] and any left-continuous,
non-decreasing function f: [0,1] — [0, c0), we have

f(u) ¢(du) = / f(Qc(2)) dz. (2.81)
[0,1] 0

Proof. By the definition of pushforward, the left-hand side of (2.81) is simply the inte-
gral [i, (¢ o f71)(du), which is equal to [y Qcop-1(2) dz by (2.80). But Qeop—i(2) =
f(Q¢(2)) by (2.79), and so we recover the right-hand side of (2.81). O

We are now ready to state the key identity to be used in the proof of Proposition 2.17.
Lemma 2.21. For any Borel probability measure ¢ on [0, 1], any Lipschitz continuous,
non-decreasing function f: [0,1] — [0,00), and any g € [0, 1], we have

1

/ ¢([0, u]) f'(w) du:f(l)—é([O,Q])f(Q)—/ f(Qc(2)) dz. (2.82)

¢(10,q])
In particular;,

/ C([0, u]) £ (w) du = F(1) — / F(Qc(2)) d=. (2.83)
0 0
Proof. The first step is to integrate by parts:

/ ¢([0,u]) f'(w) du = f(1) = ¢([0,4]) f(a) — o f(u) ¢(duw). (2.84)

If C((q, 1]) = 0, then the right-hand side of (2.84) is clearly equal to the right-hand side
of (2.82), as the integral in each expression is 0. Otherwise, we consider the probability
measure (, on [0, 1] obtained by

N C( ) m(qa 1])
Gol) = @)

In this notation, we have

flu) ¢(du) = ¢((g,1]) (u) Cq(du)
! (2.85)

[0,1]
28D ¢((q,1]) / £(Qe, (=) d.

From the definition of (,, it is clear that

Qc,(2) = Q¢ (ﬁ([O, q)) +2z-¢((q, 1])) forall z € [0, 1].

So by a suitable substitution of variables, we obtain
1

1
¢((g. 1) / £(Qe, (2)) dz = /C o JQ) d

Using this last equality in (2.85), we can again rewrite (2.84) to be (2.82). The special
case (2.83) follows from the observation that

¢({o})
C{ODF(0) = / (Qe(2) d. D
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Proof of Proposition 2.17. Given any €; > 0, let K be an integer so large that

It Z i (2.86)
565’ /\
Given (, choose a sequence
O=gp<qn< - <@g<g1=1 (2.87)

in the following manner:
» If (({0}) > 0, then set ¢g; = 0.

* Forje{l,...,K}, if (((%z*, £]) > 0, then include ¢ = j/K as one of the elements
g of (2.87), with r € [k].

Once (2.87) has been formed, define m, = ¢([0, ¢,]) for r € [k], and write ¢, = j./K. The
condition that ¢ assign positive mass to the interval (% 7?] ensures that

O=mpg<mi <---<my=1.
Furthermore, since all zero-mass intervals are excluded, we have
g —1/K < Q¢(2) < g wheneverz € (m,_1,m,], 1 <r <k. (2.88)
Equivalently, the following implication is true:
G <u<gn-1/K = ¢(0.]) =¢(0.0.]) = m,. (2.89)

Now take the approximating measure to be

my — mr—l)q

Il
ﬁ
M-
i
-

As usual, given ® we will write g, = ®(g,) so that for z € (m,_1, m,], we have
1 (. 88) 1 1 (2.86)
1B(@Qc(=) — a2 1Qc(2) —an D S w2 S e (2.90)

sey seS

Since Qg(z) = g, for z € (m,_1,m,], this inequality leads to

(2.90)

1
| 1e@c - @.mm—zf 18(Qc(z) — gl de 2 er. @.91)

Myr—1

This completes the proof of (2.75).
It remains to show (2.76). Let C' > 1 be a large enough constant that for all s € .7,
q,u € [0,1]”, we have
1€°(q) — &°(u)| < Cllg —uli and [0(q) — O(u)| < C|lqg — ul:. (2.92)

In order to distinguish between (1.12) applied to (E, ®) as opposed to (¢, P), we will write

f@:/ZWMM%QMNw
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Applying the identity (2.83), we have

O -F0 = | [ e@@d) a- [ @) a

(2.93)
(2.92) ~
< CD((¢, ®), (¢, ®)).
Given g5 > 0, choose b, such that
A, P,b,) < P((,P) + 2, (2.94)
and define
a = (Te2/8) A inf (b, —d*(0)) > 0. (2.95)
Then let € € (0,«/7) be so small that
1 1 < ISP} .96
a—Te a - 20% ., 1N (2.96)
as well as
5(0 5(0
f()iﬁ()geﬁ forall s € .¥. (2.97)
a—¢€ « 2

Finally, with e; = ¢/C, take K as above so that whenever |¢ — u| < 1/K, we have

@) - e@w) L Clg-u Y

ses

1 (2.86)
i < Ce =ce. (2.98)

In addition, because of (2.75), the inequality (2.93) now reads as
|d*(0) — d*(0)| < Cey =e. (2.99)

Claim 2.22. Ifb is such that b* — d*(0) > « for each s € ., then
[A(C, ®,b) — A(C, ®,b)| < &2 (2.100)

Proof. A simple calculus exercise shows that for any z¢ € (0, «), we have

11 1 1 1 1
_Lh Sup< - 7) - ——. (2.101)
y—z Yyl ysa\y—z0 ¥/ a-x «a

sup
y>o,x€[~20,20]

For instance, when zy = € and b° — d*(0) > «, the inequality (2.99) allows us to write

&) &0 @D E0) €(0) N ey

bs — d*(0) bsfds(())‘ - a-—c¢ a T2

(2.102)

In addition, it follows from (1.11) and (2.92) that if ® is differentiable at ¢ € (0, 1), then
(€ oa)(g) <C Y 1/
s€

Since b* — d*(q) > b* — d*(0) > a for any ¢ € [0,1] and s € ., the two previous displays
and (2.96) lead us to conclude

(€ o®)(q) _ (£o®)(q)

2 / :
sup - ‘ < — whenever ®(¢) exists. (2.103)
TE[—Te,Te] b — ds(q) - b* — ds(q) 2
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The goal now is to set ourselves up to use this inequality to prove (2.100).
Thanks to (2.89), we have the following for ¢ € [¢,, gr+1]:

(¢r+1—%)Va
&a) = (g + [ C(10.ul) (6° 0 8) (w) du

4 /( ¢([0,u]) (€% 0 @) (u) du

q7‘+1—%)Vq

= d*(gr41) + mr (&(2((qr1 — 1/K)VqQ)) — £°(2(q)))
o 0,u])(£° o @) (u) du.
+ /( ¢([0, ul) (€ 0 @Y ()

qr+1—%)Vq

Now, it is immediate from (2.98) that

1€°(®(gr41)) — €(2((gr41 — 1/K)Vg))| < e.

In addition, by using the trivial inequality 0 < ¢([0,4]) < 1, we obtain

0< /(q1‘+1 ¢([0,u])(€° 0 Y (u) du < € (B(gy41)) — £ (@((gr1 — 1/K)Vg)) < &.

qr+1_%)\/q

Since we defined q,.,; to be ®(¢g,,1), the three previous displays together show

|d°(q) = d*(gr1) — mr (6°(@rs1) — £°(@(q)))| < 26 for g € [gr, gryal. (2.104)

If 0 <r <k —1, then recall from (2.88) that ¢,11 — 1/K < Q¢(my11) < ¢ry1. Therefore,
by yet another application of (2.98), we have

0<8°(g,11) — £ (2(Qc(mryr))) <e.
Using Q¢(my41) as the value of ¢ in (2.104), we now obtain the following special case:
|d*(Q¢(myt1)) —d*(qry1)| <36, 0<r<k—1

Since Qz(mrﬂ) = ¢r+1, we can employ Lemma 2.21 to make the following comparison:

|ds(Q<(mr+1)) - ds(‘]r-{—l)‘

- [/ coweesymdn [ G0 o o) du
Qc¢(mri1) Qz(mrq1)

2 /m (0B de— [ (€ 0B)Qel) &

M1

+ Mg 1|5 (D(Qc (Mrg1))) — E5(qrsy)]

(2.92 1

2.92) 2.91)
< C [2(Q¢(2)) = 2(Qz(2))[1 dz+e < 2

Myg1

The two previous displays combine to show that

|d*(qrv1) — d°(qry1)] < 5e, 0<r<k-—1. (2.105)

Of course, the same inequality holds trivially when r = k, since d*(1) = 0 = d*(1). Putting
together (2.104) and (2.105), we find

|dS(Q) - gs(qr+1) — My (gs(QT+1) - gs(q)(q))” S 7e for all qc [Q'm QT+1]: 0 S r S k.
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It thus follows from (2.103) that whenever ®’(q) exists and q € [¢;,, ¢.+1], we have

’ (&0 ®)'(q) (£ 0 ®)'(q)

_ e
bs — ds(q) b — d(grs1) — m?‘(fs(qwrl) _ §S(<I>(q))) ’ =5 (2.106)

Upon integration, this inequality yields the following for » > 1:

qr+41 S o (I) 1 bs _ Js QT
‘/ 5 ) dq_ lOg ~ ( +1) ‘ S §2<QT+1 - qr>-
o ) my b* — dS(QT+1) — My (gs(qr+1) - fS(QT))
(2.107a)
When r = 0, we have my = 0, and so our conclusion from (2.106) is instead
S (b S
’ 5 o dq_é( q,) —£(0 )’ &, (2.107b)
0 bs — d*(q1)

2

Upon recognizing (as we did in (2.41)) that the discrete nature of (E , @) implies

I —
e S A (grn) — e (€(ayre) — £(2,))  Ja b —do(a)

£(q) —€°(0) _ [ (£oP) ()
b — d*(q1 _/0 bs — d*(q) a

dg forr >1,

1 b® — C?S((ITH) _ /q'+1 (£20®)'(q)

and

)

we can conclude from (2.107) that
s Cb 1 s o P)
‘/ (€0 2)(q) dqf/ qu‘SQ (2.108)
0o b*—d*(q) 2

Finally, we apply Lemma 2.21 once more, specifically (2.83), to see that
1
]/ (10.4))(60 ) (q >dq—/ C(10,4)) (6 0 ®)'(q) dd]

( dz—/ 0((Q(2) ‘ (2.109)

’ 0
(2.91)

Ry / 9(Qc(2)) — Qe ds 2 e < .

Once we recall the definition (1.14) of A(¢, @, b), the desired inequality (2.100) follows
from (2.102), (2.108), and (2.109). J (Claim)

We now finish the proof of (2.76). One inequality is immediate from Claim 2.22. Since
b, from (2.94) trivially satisfies the hypotheses of the claim (see (2.95)), we have

. - (2.100) (2.94)
P, ®) <AL ®,b.) < A ®,b)+er < P(C, D)+ 2. (2.110)

On the other hand, take any b satisfying ° > JQ(O) for each s € ., and such that
A(C, ®@,b) < Z((,P) + €. Unfortunately, b may not satisfy the hypotheses of Claim 2.22.
Nonetheless, we must have

(2.99) ~
b* —d*(0) > b —d°(0) —e > —e.

Therefore, by simply increasing each coordinate of b by € + «, we can obtain a vector
that does satisfy the hypotheses of Claim 2.22. Indeed, by our choice of ¢ < «/7 and
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a < 7eq/8, we have —¢ > —a/7 = a — 8a/7 > a — 9. Consequently, the previous display
leads to

(b° + &) — d*(0) > a.

Furthermore, it is straightforward to differentiate (1.14) to obtain

Dy Faom_ N1 &0 (o) () A
S A 2,b) = T[1- T /o(bs_{is(q))z da| < 5

Consequently, the small change we make to b creates a correspondingly small change in
A(¢, 2, b):
~ ~ N [SP)
A((, P, b+ e21) — A(C,D,b) < ey ;3:5 (2.111)

Applying Claim 2.22 to b + 51, we thus obtain

(2.100) ~
‘@(Caq)) S A(C7(I>7b+521) S A(Ca¢ab+521) + &2

(2.111) - 3 - 5
< AR+ < 2 0) + 22
Combining this inequality with (2.110) results in
|26, @) = 2(C, )| < 522/2.
Of course, replacing 5 by 2e5/5 yields (2.76). O
3 Upper bound
In this section we prove the following result.
Proposition 3.1. For any A-admissible pair ({, ®), we have
limsupEFy < £2((, D). (3.1)

N—o0

The proof will require that we introduce in Section 3.1 a perturbed version of the
Hamiltonian Hy from (1.4). This is to guarantee that Talagrand’s positivity principle
holds, a fact we show in Section 3.2. In turn, this principle is critical to controlling how
the free energy changes along a Guerra-type interpolation of the Hamiltonian, which we
perform in Section 3.3. This interpolation ultimately proves Proposition 3.1.

In defining H}f,e“ via (3.3), we are able to ensure that the Ghirlanda-Guerra identities
hold in the large-N limit. In addition to implying the positivity principle, these identities
will be needed in Section 6 for the reasons discussed in Section 1.3. Therefore, the
definitions made in Section 3.1 will be used throughout the rest of the paper.

3.1 Perturbing the Hamiltonian

We adopt the multi-species perturbation technique developed in [59]. For w € [0, l]y ,
define the following linear combination of the entries in the vector R(c,c¢’) from (1.6):

R*(0,0') =Y N (N)w'R(0,0"), wel0,1]7. (3.2)
seES

Let # = {w1,ws, ...} be a countable, dense subset of [0, 1] which contains the standard
basis vectors of R”". To avoid divide-by-zero pathologies, assume that w, # 0 for all q.
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For each w, = (w})se» and i € [N]?, we will write wi™ = w3 . i) Now consider

a collection of i.i.d. standard Gaussian random variables {g; , : ¢ € [N]?,p > 1,¢ > 1}
that is independent of all g;’s from (1.2). With u, , allowed to be any number in [0, 3], we
define

92— (p+a) -
i Z t t — ()
per Up,q R{e; q 0)7 where H]%e’;’q(o') = W U}Z ! 9i,q04-
p,q>1 i€[N]P

(3.3)

In the next section we will select the u, , parameters randomly, in which case E, will
denote expectation with respect to the product measure IP,, under which each u, 4 is a
uniform random variable on [1, 2], independent of all other variables. We will continue
to write It for expectation over all Gaussian processes (and Poisson-Dirichlet cascades
whenever they are present) with fixed u = (up,q)p.q>1-

By direct calculation, we have

E[HY . (0)Hp  (0)] = N4~ (R (0, 57))P. (3.4)
The covariance structure of H5 ™" is thus given by

E[HY" (o) HY " (0")] = NEX™ (R(0,0")), (3.5)
where §pert is analogous to (1.8):

Pcrt Z 4p+q Z )\s wixs. (3.6)

p,g>1 sesP

A perturbed spin glass model is now constructed from the Hamiltonian
Hy (o) = Hx(0) + enHY (o), (3.7)

where cy is some constant. To ensure that the perturbation does not change the limiting
free energy, we will ultimately send to cy to 0 as N — oo. The following simple result is
analogous to [75, Lem. 12.2.1].

Lemma 3.2. Define the perturbed partition function and free energy:

_ _ _ 1 _
Zn ::/ exp(Hy(0)) n(do), Fy = Nlog ZN. (3.8)
Tn

Ifuy 4 € [0,3] for all p, g, then we have
EFy < EFy <EFy +c% /2. (3.9)
Proof. Apply Lemma A.1 with the following parameters:
* In (A.1), take (3,7) = (T'n,7n) and H = Hy.
* In (A4), take (h;)i>1 = (HY' b )p.g>1, ¢ = ey so that hy, = HY™, H, = Hy.

In this case, the constant ¢?(u) from (A.5) satisfies

1 (3.5)
2 _ pert 2 J.C pert _
(u) = LB (0)%] = D =L (3.10)
p>1qg>1
Therefore, (3.9) follows from (A.6). O
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3.2 Multi-species positivity principle

Unlike the lower bound (1.17), Proposition 3.1 requires the convexity assumption (H3).
But notice that we only demand convexity of ¢ on [0,1]” as oppposed to all of [-1,1]”.
This will be sufficient because of the following multi-species version of Talagrand’s
positivity principle [75, Thm. 14.12.1] (see also [57, Thm. 3.4]).

Lemma 3.3. For a non-random Hamiltonian H on Ty satisfying
/ exp |H(o)| v (do) < o0, (3.11)
TN

consider the perturbed Hamiltonian H (o) := H(c) + cyHY " (). Denote the correspond-
ing Gibbs measure by Gy. If cy = N~% for some w < 1/2, then for any ¢ > 0, we
have

: ~R2 s/ 1 2 < _ _
Jim sup BuEG (EJ/{R (¢',0%) < —2}) =0, (3.12)

where the supremum is over all measurable functions H : Ty — R satisfying (3.11).

Proof. As usual we will write (-) to denote expectation according to Gy, we take (0¢);>1
to be i.i.d. samples from Gy, and Rie = R*(ot, 02,). Since . is finite, it suffices to prove
that for each s € . we have
lim sup E,EGS?({RS, < —e}) =0.

N—oo H(o’) N ({ 1,2 }) (313)
The argument for (3.13) relies on first establishing (a subset of) the Ghirlanda-Guerra
identities. Recall the notation R = (R} ;)se.s and R" = (Rew)ewemn)-
Claim 3.4. For any bounded measurable function f = f(R") and any continuous func-
tion ¢ : [-1,1] — R, define the quantity

S E(fU(RI )| (3.14)

1 n
n
(=2

A(fm,0) = [BUF GRS ) — T BUVBIS(RY ) —

We then have

]\}gnoo IS-Il(ltIT:)) E“Aé(.ﬂnvw) = 0. (3.15)

Proof. Given any non-random H satisfying (3.11), we will apply Theorem A.3 with the
following parameters:

* In (A.1), take (3,7) = (TN, 7n).

e In (A.4), take (hi)iZI = (H]Iz]e,;q)p,qZL Cc = cCpN SO that hu = Hj%ert, Hu = H

By (3.5), the constant ¢?(u) from (A.5) is equal to {%ert(l), which is at most 1 by (3.10).
Consequently, Lemma A.2 and specifically (A.9) yields the following bound on the quantity
defined in (A.10):

9 < 2VrN1-2w < 4N1/2-= (3.16)

Now fix s € .. Recall that we chose the set % so that there is some ¢ for which w,
has entries all equal to 0 except for 1 in the s-coordinate. For this value of ¢, we have
RYa(0,0") = A*(N)R*(0,0’), and so (3.4) gives

1 t _
SRR (VRS ()] = 4~ FHOX (V)R (0,0')7.
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Therefore, for all N large enough that

+q+1
N® 4rtay (326) 2pd N=/2-1/4
A(N)N  — A$(N)
the inequality (A.11) in the present setting reads as
2ptq
E,A%(f,n,z + 2P) < 24Hf||<>07)\8(N) nTINTTU2(1 4 2NATE/2), (3.17)

Note that the right-hand side has no dependence on H, and tends to 0 as NV — oo so long
as w < 1/2. That is, we have proved (3.15) when ¢ (x) = aP.
For general ), we approximate by polynomials. Indeed, given any € > 0, by Stone-

Weierstrass we can find a polynomial ¢ (z) = Z,€=1 apa? such that

lp(x) — p(z)| <e forallz e [—1,1].
Simply from examining the definition (3.14), it follows that

IAS(f,n, ) — A% (f,n, )] < 2] f | oo- (3.18)

Since E,A*(f,n,¥) < Y0 | |ay|A%(f,n,x — a?), we have A*(f,n,¥) — 0 by (3.17),
uniformly in H. Consequently, (3.18) leads to

lim sup sup E,A(f,n,¢) < 2| f]co-
N—oo H(o)

As ¢ is arbitrary, we conclude (3.15). O (Claim)
With (3.15) in hand, one can proceed exactly as in [57, Thm. 3.4] to prove (3.13). O

3.3 Guerra interpolation: proof of Proposition 3.1

By Proposition 2.17, specifically (2.76), it suffices to prove (3.1) when ( has finite
support. So let us consider any A-admissible pair (¢, ®) such that ¢ has finite support.
That is, ¢ is of the form (2.28) for some sequences (m,)o<r<x and (g )o<r<k+1 of the
form (2.17) and (2.27). Using the same shorthand as in Section 2.3, we write

qr:¢(q7‘)7 OSTSk+1

As defined in Section 2.2, let (vy)qent—1 be the weights of the Poisson-Dirichlet
cascade corresponding to the sequence (2.17). Similar to (2.35), let (Xi)ie[N] and Y be
centered Gaussian processes on IN*~! whose covariance structures are given by

E[Xi() Xi(a)] = 1=} €°(@p(a,0y) forieT?,

(3.19)
E[Y(OZ)Y(CY/)] = a(qr(a,a’))'

Assume that these processes are independent of each other, of the Poisson-Dirichlet
cascade, and of the Gaussian disorder defining Hy and HR,e“. We then define the
following interpolating Hamiltonian on T x IN*—1:

Hy (o, ) == V1 —t(Hy(o)+ \/NY(a)) + \/fZUiXi(a) +enHY (o), teo,1].
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We assume here that ¢y = N~ % for some w € (0,1/4). Let us consider the associated
free energy,

on(®=tog [ 3 vaexplyi(o.0) m(do),
TNOLG]N"‘*1
Upon defining
o (1) = BuBpn(t) + 5 [t 30 N (E (1)~ €(a) + (1000 ~0(a)], 320
seS

we have the following estimate.
Claim 3.5. The following inequality holds:

1
limsup — sup ¢y (t) > 0. (3.21)
N—oo te[0,1]

Proof. Define the Gibbs measure associated to the Hamiltonian Hy ;(o, «):

Gy (do,a) = voexp Hy (0, a) 7iv(do). (3.22)

exp (1)

Denote by (-); the expectation according to Gy ;. By direct calculation we have

(1) = B TUTOLY | NS N 1) (@) - 60 +0(a0)]. (3.2
ses

By recalling the definitions of £° and 6 from (1.9) and (1.10), it is trivial to check
that (3.23) can be rewritten as

P (t) = IEUE<(HHN+§"Q)>t + NC(1,q,), (3.24a)
where
Cla,y) = 5 (6@) — &) ~ (@~ ) VEW)), wye 117 (3.24D)
Note that (H3) implies
C(x,y) >0 forx,yc|0,1]7. (3.24c¢)

Next consider the Gibbs average in (3.24a). In light of (1.8) and (3.19), Gaussian
integration by parts (see [57, Lem. 1.1]) shows that

dHy (0, ) o
— ), =" - L 3.24d
]E< L >t N]E<CN(1,1) Cn(R(0",02),d, (01 0 ))>t, ( )

where (0!, al), (02, a?) are independent samples from Gy ¢, and

Cn(ay) = ¢ (en(@) +0) ~ 3 e (w)).
ses
Furthermore, by substituting {; +— £ and N°/N — \? in this definition, we recover the

function C from (3.24b) while incurring negligible change:

lim sup ‘CN x,y) —C(z,y ’ =0.
N ) - ) (3.24e)
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Since C(x,x) = 0, the cumulative outcome of (3.24) is that

1
N(bl]\/(t) = EUE<C(R(017 02)7 qT'(al,a2))>t - 0(1)’

where o(1) tends to 0 as N — oo, uniformly in ¢. To set up an application of Lemma 3.3,
we observe the trivial inequality

L (t) > 5(6) ~ € B BCS (| {R*(0),0%) < —<}) —o(1), where
ses

5(e) = inf{C(x,y) : « € [—¢,1]7,y € [0,1]”},
ICllos = sup{C(z,y) : & € [-1,1]7,y € [0,1]”}.

Next we write the marginal of Gy on Ty as a Gibbs measure of form required by
Lemma 3.3. Indeed, if we define

(3.25)

= log z vaexp(\/i( ~n (o) + VNY () Jr\[ZUl i )

ae]Nk—l
then we have the marginal

(3.22) 1

G (dO' Z GNt dO' Oé) m

a€Nk—1

exp (Hi(0) + en HY " (0)) 7n(do).

Although H; is random, this randomness is independent of HY". Therefore, if we denote
by E; and E, the expectations over H; and H]Ii,e” respectively, then

BEGE: (R (0,0%) < —¢}) = BiEEGR: (U (R (0,0 < —})
ses se

< sup E EQG%2t< U {R*(c',0?%) < —5}) 3.12) o(1).
te[0,1] se.

As the final line is uniform in ¢, applying this estimate to (3.25) results in
1
limsup — sup ¢y (t) > d(e) foranye > 0.
N—oo t€[0,1]
Finally, because of (3.24c) we have §(¢) — 0 ase — 0. O (Claim)

We now compute ¢y (0) and ¢ (1). When ¢ = 0, the terms involving o are decoupled
from those involving «, and by simple algebra (3.20) becomes
- N

on(0) = E,(Elog Zy) + Elog Z Vg €XP (\/NY(OZ)) + 7(9(1) - G(qk)). (3.26)

a€Nk—1 2

Notice that the last two terms on the right-hand side are exactly of the form (2.9b),
except here N replaces M. We computed the expectation of this expression in (2.44):

Elog Z vaexp(\/ﬁY(a))+g(0(1) Zm, (g,11) —0(a,)).

a€Nk-1

Inserting this identity into (3.26) yields

1
§ O~ (0) = Eu(EFy) + Zmr (4,41) — 0(a,)). (3.27)
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Meanwhile, for ¢ = 1 we have

on(1) = E,Elog Z va/ exp Zol (@) + ey HY (o )) 7~ (do)

a€elNk-1

+*Z/\ £°(qx))-

seS

In order to remove the perturbation term, we apply Lemma A.1 with the following
parameters:

* In (A.1), take (%, 7) = (Ty x N*=1 7y @ (v,)) and H(o,a) = YN | 0, X, ().
* In (A4), take (h;)i>1 = (HY p ) p.g>1, ¢ = cy so that hy, = HY™, H, = Hy 1.

In this case, we have already seen in (3.10) that the constant <2(u) from (A.5) satisfies
¢2(u) < 1. Therefore, (A.6) implies

— Elog 3 vaexp(ZJl @) TN(da)fgZ)\S(fs(l)fgs(qk))

TN a€ENk—1 se€S
2

cy N

S N

2

Notice that the last two terms on the left-hand side are exactly of the form (2.9a), with
(Tn,7n) replacing (Tas, 7ar). On the assumption that N°/N — A* as N — oo, we
computed the limiting value of this expression in (2.47):

A}i_r}rloo %IElog/T Z Vg €XP (ZUZ i(a ) T~ (do) + Z )\6 gé(qk))

N aelNk—1 se/
= Zm7 qr+1 G(q,))

From the two previous displays and the assumption that cy — 0 as N — oo, we obtain

ngn NQSN( ) ZmT qr+1 e(q'r’)) (328)
We thus have
lim sup EFN hmsup]E (EFN) 27 lim sup — qu - = ZmT (g,41) H(q,.))
N—oo N—oo N—oo
B2 1 1
< ]\}E)noo NQSN(]-) - 5 ;mr (g(q'r+1) - g(qr))
G289 2, @) 0

4 Lower bound part I: redefining the model

For Theorem 1.3, the only thing that is assumed about the size of each species is
that A\*(IV) := A%(N)/N converges to a constant A* € (0,1] as N — oco. In what follows,
we define an auxiliary model whose limiting free energy is no larger than that of the
original model, and this auxiliary model is different only in the sizes of each species.
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That is, we prescribe a method to change the value of A*(N) for certain N, in order to
suit the large-M asymptotics of the cavity method pursued in Section 5. Specifically,
Proposition 4.1 will ensure that the hypothesis of Proposition 2.18 is true. The latter
result will be invoked at the very last moment in proving (1.17); see Section 6.3.

Let (Ni)r>1 be an increasing sequence of integers such that N; =1, and

liminf EFNy = lim EFy,.
N—o0 k—o0

Mimicking the shorthand A®*(N) = N* from before, we write A°(Ny) = Nj. By possibly
passing to a subsequence of (Ny);>1, we may assume both of the following statements:

(i) For each k > 1, the quantity Ay := Ny — Ny is at least Ny11/2. That is, Nx41 >
2Np,.

(ii) For each s € ., the sequence (N;f)kzl is strictly increasing. (This is possible
because \° > 0).

On the sequence (Ny)i>1, we alter nothing from the original model. That is, we assume
the .-tuple ((A®*(N))sc.» has been prescribed for any N belonging to { N1, Na, ...}, but
not for any other N. Therefore, we must declare the value of A*(N) for every N not
belonging to {Ni, No, ...}, which we do inductively as follows.

Suppose Ny < N < Ngy; and that (A*(N))sc.» has been defined in such a way that

Np < A*(N) < Ni,, for each s € .7. Let o*(N) be the unique number in [0, 1] such that

(1—a*(N))N; + a*(N)N,, = A*(N). 4.1)

Now identify s, € . such that o®+(N) is minimal (if there are multiple such s,, then
choose one according to some deterministic rule), and set

AS(N)+1 if s = sy,

AW 1) = {AS(N) if s # s,.

In this way, A®(-) is non-decreasing, and we maintain the identity N =) __ ., A*(N). The
new model we have now defined is maintained throughout the rest of the paper, and the
desired outcome is the following.

Proposition 4.1. In the redefined model, the following limit holds for every s € .9 :

— A =0. (4.2)

AS(N+ M) — A*(N
i, Ty |25

Proof. Let A\j = A\*(IN), and define for convenience the following quantities:

amin(N) = ?euﬁ a’ (N)’ )\min = ?ellyr} )\37 EZ = )‘Z - )‘Sa
Qmax(N) = Isréa;’gas(N), Amax = max A%, €k = Mmax lez].

Note that e, — 0 as £ — oco. Given N, let k£ be the unique integer such that N, < N <
Nk+1-

Claim 4.2. If k is large enough that 211 + €, < Amin, then

2

Omax N) - Qmin N S .
(V) (V) (Amin — 26541 — €k)Ni41

(4.3)
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Proof. The claim is clear when N = N, since o*(Ny) = 0 for all s € .. So let us assume
N < N < Nk+1. Since Ay = Nk+1 — Ni > Nk+1/2, we have

Nigr = Nig = X1 - Negr — A - Ny,
= (Njg1 = A0) Nig1 + AL A

N,
= (ki1 — e Nier + (N D) Ak = (A + 2641 — ) =5
Because A®*(N) — A*(N — 1) takes the value 0 or 1, this inequality implies the following:
s s 4.1) A*(N) —A%(N -1 1
Oga(N)—a(N—l)(:) (2\25 (NS )g N (4.4)
k41— N (Amin — 2641 — €1) =5

Then, because a®*(N) — a*(N — 1) can be positive only when a®(N — 1) = apin(N — 1),
from (4.4) we deduce

2
Omax(N) < max {amax N —1),apin(N — 1) + }
() ( ) ( ) (Amin — 2641 — €1)Net1

On the other hand, we trivially have auin(N) > amin(N — 1), and so

2 J
()\min - 2€k+1 - 5k)Nk+1 '

amax(N) - amin(N) S max {amax(N - ]-) - amin(N - 1)7

Therefore, (4.3) is true by induction. O (Claim)

Writing §°(N) == a*(N) — amin(IN) > 0 and observing that Ay = > (N7, — N;),
we trivially have

N =N =Y a*(N)[Nipy — Ni] = amin(N)Ag + Y 6°(N)[Nitpy — N
ses ses

By rearranging terms, we find that

N_Nk? k+1 ng
0< _amln (58 - A
< S(N) = Amax(N) — Qmin (N).
< max 8 (N) = tmax(N) = @min(N)

This inequality, combined with (4.3), yields the following expression as N — oo:

N — N,
Ay

In particular, hypothesis (H1) is maintained, as explained by the next claim.

a®(N) = +O(N ) forallse.?, Ny <N < Nppi. (4.5)

Claim 4.3. In the redefined model, the following limit still holds for every s € .%:

lim A°(N) =A%, (4.6)

N—o00

Proof. We already know that \; — A\° as £ — oo, and so we need only worry about N not
belonging to the sequence (Ny)i>1. For N, < N < Nj11, we have

s A® (N) (4 1) s o N Nk-i-l
(4.5) Nk+1 Ni N — Ny, —1 3\ NVe+1
(O + <>>[(T+O< m)) o +( X OW)) T )
Now (4.6) follows from the observation that
Nigti—N Ny N—-Np Nip .
LR . =1. 0 (Cl
AL N + A, N (Claim)
EJP 27 (2022), paper 52. https://www.imstat.org/ejp

Page 47/75



Multi-species mixed p-spin spherical models

Now we can conclude the proof of Proposition 4.1. Suppose that N and M are positive
integers such that N, < N < N + M < Ni4;. Note that

AN+ M) = A*(N) = [o*(N + M) — a*(N)|[Nigq — Ny

. A+ Z\JQ —A*(N) _ a*(N+ J‘JQ —o'd) [(A° + 0(1)) N1 — (\° + o(1>)Nk]

Keeping M fixed and letting N — oo, by (4.5) this expression becomes

AS(N+M)—AS(N) 1 (M 0(1)
T; i

At O(N,;:l)) (A +0(1)) Ay = (A + 0(1)) (1 + 7)
This analysis goes through also if N + M = N1, by simply replacing o*(N + M) with 1.

If instead N, < N < Niy1 < N + M, then we may assume N + M < Ni4o. Indeed,
given any M, by condition (i) there is k large enough that N + M < Ny,s whenever
N < Ni41. By repeating twice the analysis from above, we can recover the same limiting
statement as before (with M fixed and N — o0):

A*(N + M) — A*(N)

M
_N]g_’_l—AS(N)'Nk_i_l—N AS(N+M)—N[§+1.N—|—M—N]§+1
T TN N M N+ M- News M
— (s O() \Ngt1-N o(1) N+ M — Nia
_(/\+0(1))[<1+Nk+1—N) M +<1+N+M—Nk+1> M ]
(s o)
= (A —|—0(1))<1+W).

That is, there is some constant C' not depending on M, such that

A*(N + M) — A*(N)

lim sup - X <CcML,
N —oc0 M
Upon sending M — oo, we have proved (4.2). (|

In addition to conferring Proposition 4.1, the redefined model has the convenient
feature that A®(N) is non-decreasing in N. Therefore, we may assume that each integer
i is assigned a species which does not change with N. That is, s(¢) is the unique value
of s such that A®(:) > A°(i — 1); here s(1) is the unique value of s such that A*(1) = 1.
This simplification will allow us to more easily couple the models on Ty and Ty;
see (5.24).

5 Lower bound part II: the Aizenman-Sims-Starr scheme

The goal of this section is to establish (a rigorous version of) the inequality (1.24),
as discussed heuristically in Section 1.3. While (1.23) would be a perfectly good start-
ing place for the A.S.S. scheme, we will need in Section 6 the perturbed form of the
Hamiltonian (again, this is to guarantee the Ghirlanda-Guerra identities once N is sent
to infinity). That is, we must work with H}i,ert from (3.3) rather than Hy from (1.4). As
before, let us think of the perturbation parameters (uy q)pq>1 as i.i.d. uniform random
variables on [1, 2] which are independent of everything else, and then we write IE, to
denote expectation over all u, ,. With this modified viewpoint, we recall the definitions
from (3.8) and apply (1.22) to the sequence ay = E,(Elog Zy), resulting in

o 1 ZAESY
1 Iniary 5.1
1}6%? E,(EFy) > i lﬁlglcf E, (E log Zn ) (5.1)
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But in light of Lemma 3.2, the left-hand side is just liminf y_,, lEFy once again, provided
that cy — 0. The goal of the A.S.S. scheme is to understand the right-hand side of (5.1).
To make the relevant computations, we will need that the number of cavity coor-
dinates assigned to each species does not depend on N. So for the remainder of this
section, we will fix M and then choose an increasing sequence (N )x>1 that both achieves
the limit infimum in (5.1), i.e.
lim inf B, (]E log ZJYW) — lim E, (E log M) (5.2a)
N—oo ZN k— o0 ZNk,

and is such that the number of cavity coordinates in each species is constant. That is,
for each s € .7, there is a constant A2, (M) satisfying

A*(Ng + M) — A*(Ng) = A2, (M) forall k> 1. (5.2b)

The second condition (5.2b) is possible because there are only finitely many possibilities
for the value of this difference, namely the integers between 0 and M. Within any
sequence (Ng),>1, one of these possibilities must occur infinitely many times. To ease
our notational burden, we will henceforth write IV instead of Nj, understanding that we
work only along the sequence (Ny),>1 chosen to satisfy (5.2).

In a slight abuse of notation, we will abbreviate A2, (M) as just M*. This quantity
should not be confused with N° = A*(N) from (1.1). If we take J° to be the set of
j € [M] such that s(N +j) = s, then |J°| = M*, and we can consider the space (T, Tar)
from (2.1). While J° does depend on N, its cardinality does not because of (5.2b).
Therefore, in light of Remark 2.5, we do not concern ourselves with how 7° depends
on N. Ultimately we will send M — oo, so let us note for later that regardless of the
sequence (Vi )x>1 chosen for each M, it follows from Proposition 4.1 that

lim =\ (5.3)
M — o0

For the time being, though, we work with fixed M.
Let us define the following rescaled version of H:

N )(pfl)/

2
Hyn(o) = Z@’p(NJrM HY (o), (5.4)
p>1

where H](\’,’) was defined in (1.3). The rescaling in (5.4) is such that (1.7) becomes

E[Ha n (o) Hyrn(0")] = (N + M)gN( R(o, a')), 0,0 € RV, (5.5)

N
N+ M
where ¢y is the covariance function from (1.8), and R(c,¢’) is the overlap vector defined
in (1.6). Mimicking the notation from (3.7), we will write

HM,N(O') = H]\LN(U)-%CNHII\)[GM(O'). (5.6)

We also define the Gibbs measure and partition function associated to this Hamiltonian:

GM,N(dO') = _]\i - exp(HMW(a)) 7n(do), ZM,N = /qr exp(HM,N(o)) 7n(do).

We will write (), v to denote expectation over Ty with respect to G M,n- This Gibbs
measure is random depending on the Gaussian disorder, and its law depends on the
choice of u = (up,q)p,q>1 in (3.3).
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Now let Ly v = Lar,n(u) denote the law of the random overlap array produced by
i.i.d. samples from G‘MW. That is, in the notation of Section 2.1.3, we have Ly n =
Law(R; G ), where R : Ty x Ty — [—1,1]” is the map defined in (1.6). Note that
R(0,0) =1 for all 0 € Ty. Regarding Assumption 2.1, the existence of processes X
and Y on T satisfying (2.2) is verified in Remarks 5.2 and 5.4. Therefore, we can speak
of the functional IT); (L s n) defined in (2.5), which is given by

My (Lyn) = Elog/

Twm

<exp (ianj(a)) >M’N 7m(dk) — Elog ( exp (\/MY(J)»M’N.
(5.7)

The rest of Section 5 is committed to proving the following result.

Theorem 5.1. Assume cy = N~% for some w > 0. Let vy be the joint law of M
independent, standard Gaussian random variables. For 6 > 0, let A ;s be the following
product of annuli:

Ays = Q@ Ayes, where A, s:= {/{ eR™:m < x5 <m(1+ 5)} (5.8)
se

For any ¢ € (0,1] and any sequence (Ny),>1 satisfying (5.2), we have

1 1
liminf EFy >— limsup E, I (LN, (w)) — C6 + — logyar(Anrs), (5.9)
N—o0 M ’ M ’

k—o0

where C' is a constant depending only on the values of \*, s € ..

Proof. As before, let us just write IV instead of Ni, with the understanding that we work
only along the sequence chosen to satisfy (5.2). Since ¢y — 0 as N — oo, we already
know
_ (5.1, (5.2a) 1 Z
liminf EFy 2 liminf B, (EFy) > — lim Eu(Eﬂogglgdﬁg), (5.10)

N—o0 k—o0 Ny,

and so we turn our attention to the rightmost expression. By trivial algebra we can write

Elog LA&M = Elog fAM"; JMLN(H) () og Zn+n —Elog ?N ,
2N Sans, Trn(K) Y (dr) Jﬂ/
Q1 Q2 Qs
where
M
WM@:A“MEW@+Z@&@%WW' (5.11)
N j=1

Because of (5.10), to prove (5.9), it suffices to show three bounds which are uniform in
u:

M
@1 = logya(Anrs) + Elog / (exp (Yo miXi(0)))  Tas(dn), (5.12)
Twm j=1 ’
Q2 > —C6M —on(1), (5.13)
Qs < Elog ( exp (\/MY(O’))>M’N—|—OJM(1). (5.14)

Here o,,(1) denotes a quantity depending on M (but not on u) that converges to 0 as
N — oo. Verifying these three inequalities is the task of the next three sections. The
value of C' may change from line to line.
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5.1 Control of );: proof of (5.12)

Consider the random variable in Q:

1 I N (k) v (de) = / <exp (i anj(0)>> yar (dr).
Anss = M,N

ZMN JAy s ;

By Tonelli’s theorem, we can move the expectation (-),/, y out of the integral over A,
and then use the product structure of (A5, va):

/AM,S <€Xp <§I:1Hij(0))>M,N Yar(dr) = </A exp (f[:'inj(U)) vM(dfi)>

M6 = M,N
(I [ en( X mb@) )
s’ Ams s jeTs M,N

Now we apply [24, Lem. 2.2], which says

/ exp( Z ki X ) Yars (dR) > yars (Apgs, )/ exp( Z /inj(O’)) pars (dr),
Ans s jegs Ss jegs

where p)/s is the normalized surface measure on the sphere S);s. Upon inserting this

inequality into the previous display, and then reversing the factorization using the fact

that .o (Sars, pars) = (Tar, Tar), We arrive at

ZMl,N/AM,(; Iv, N (K) Y (&) > var(Anss) </PM eXP(Z"% )TM(d/‘f)>M’N
=y (Ans) /r <eXP(Z“J )>M)N v (dw),

where the equality is once again from Tonelli’s theorem. We obtain (5.12) by taking the
expected logarithm of both sides.

5.2 Control of ();: proof of (5.13)

This step is done in two parts, corresponding to a decomposition of ()5 into two terms:

ZNiM
Jan s Jun (K) 7 (dr)
Jan s Jrn (5) Par v (1) s Znnt
fAM,L; Ju,n () Y (dk) fAM,s Ju,N (K)Pur,n (k) di”

where P, n is a function arising out of the following computation. Since A\* > 0 for
each s € ., we may assume N is large enough that N° > 1 (this will avoid some
divide-by-zero pathologies). To begin, let us consider an element p of the sphere 5,11
written as p = (6, k), where & € R” and x € R. It is well-known that if p is sampled
uniformly (i.e. according to p,+1), then the density of x with respect to Lebesgue measure

n [—/n + 1,+/n + 1] is proportional to (1 — x?/(n + 1))"*/2~!. Therefore, we have the
identity

/ f(p) pnt1(dp)
ntl-r2 (") k2 \3-1
/ / \/TU’H) F(Z)F\/(i_i_ﬁ(l n+1) dk pn(do),

EJP 27 (2022), paper 52. https://www.imstat.org/ejp
Page 51/75

log
(5.15)

= log + log




Multi-species mixed p-spin spherical models

which holds so long as f is nonnegative or belongs to L!(u,,1). If we define
By =[-vVn+1L,vn+1]x- - x[-vVn+m,v/n+m],

then applying this identity inductively leads to

/S f( ) Hn+m dp / / wm n U /’f))pm n( ) dﬁﬂn(d0)7 (5.16)
n+m
where the maps ¥, n: Sp X Brmn — Sntm and pp o By — R are given by
’(/}m,n(a-ﬂ%) = ( (m)( )Uaa%nn 1)( )Hla---v Sq}b)n( )"melaﬁm); (517)
i n+j— kK2
a0 )= T Vool i<i<m, (5.18)
’ ) n+j—1
j=m—L+1
m T n+j Ii2« ntj—1_q
() = [ n+j_1( £ (1-—=) " (5.19)
S FE=)v(n+g)m n+j

Next consider p belonging to the product space T x4 s, and let us write p = (5, &)
with & € RY and # € RM. Recall the partitions [N] = Wse »Z° and [M] = Wse » T %, where
|Z¢] = N* and |J*®| = M*. These sets allow us to distinguish the various species:

5(s) = (Gi)iers € RN, &(s) = (Rj)jeqs € RM,  p(s) = (6(s),i(s)) € Snoyare-

Note that G(s) does not in general belong to Sy: (we only know ||5(s)(|3 < ||p(s)|13 =
N?® + M?), hence the decoration by a tilde. Therefore, we wish to perform the change of
variables (5.16) for each species s € .. To this end, define the set

) M
Buny = @ Buysn: CRY,
s€S

and let Uy n: Ty X Byr,y — Tn4ar be the unique map such that the following diagram
commutes for each s € .¥:

(0, k) ——(0(s), K(5))

\I’M,Nl inS,NS

p=(0,k) —=(0(s),k(s))

Thanks to the product structure of T s, T, and By, n, generalizing (5.16) results in

/ F(p) Taa1(dp) = / / F(Uar (00 )) Pary () dery(do),  (5.20)
TN+M Tn /Bum,N
where

Pun (k) = [] prene(5(s)), 5 €Bun.
s€S

Now observe that by applying Stirling’s approximation to (5.19), we have the following
limit for any fixed m and Kk € R™:

o 1113
nhlﬂ Pmn(K) = Wexp ( - T)
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By the definition of Py n, this statement leads to

. 1 =03y _.
)= e (- 188) < o

Note that Py, is precisely the density function for the Gaussian measure v;;. We thus
claim that the first term on the right-hand side of (5.15) satisfies

fAM,s JMJV(K)PM,N(R) dk
fAZ\l,(S JMJ\/(H) ’YM(dIQ)

Elog > op(1). (5.21)

Indeed, Jensen’s inequality gives the following deterministic lower bound:

Jans s TN () Prn(R) i [y Tnin (5) Par (k) log T30 L dx
fAI\/I,S Jun(R)Py(k)de — fAI\/I,S JIm N (£)Par (k) ds

. Py (k)
> f log————.
- IiGl.:EM,J 8 PM(FL)

log

Since the convergence Py n(k) — Py (k) is uniform on compact sets, and Py (k) is
bounded away from zero on the compact set A, s, we have that

P,
inf log Parn (k)

= y 1 ,
RGAAL(; P]W(K/) O]\/[( )

thus proving (5.21).
Meanwhile, the second term on the right-hand side of (5.15) is controlled as follows.
The numerator in the logarithm is equal to

= 3.8 =
Znin &Y / exp(Hy+m(p)) v+ (dp)
TN+m

5.20 =
(5:20) / / exp(Hy+m (Y ar,n (0, &) Py (k) de 7y (do).
TN YBm,N
Assuming N is large enough that B, x contains A ), s, we now have the lower bound
Inem > / / exp(Hnym (Yar,n (0, ) Pun (k) di 7y (dor). (5.22)
Ty JAns

Next we consider the denominator, which is

/ Ja,n (k) Prn (k) di
Ans
" (5.23)
G / / exp (HM,N(U) + Z ’ijj(U))PM,N(“) 7n(do) dk.
Ay /TN j=1

In view of (5.22) and (5.23), we are lead to compare fIN+M and f_IM’N as follows.
Let us first consider the unperturbed versions of these Hamiltonians. From (5.4) we
have

By /A2
HM7N(U):Z (N+M)(P*1)/2 Z As(i)giai’ O'E’]TN.
p>1 i€[N]P

Recall that H s is very similar and simply contains more terms:

p
Hyim(p) = Z m Z Ai(i)gil)m peTNim.
p>1 i€[N+M]P
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Extending H)s n to all of RY, we use the identification p = (5, &) to write

Bp
Hyim(p) = Hun(6) + Z ]\HM—)(}’D/Q Z ( yJiPi- (5.24)
p>1 N+M \

We next separate the sum over i € [N + M]? \ [N]? into two parts. The first part will
consist of those terms with exactly one cavity coordinate (i.e. ¢ contains exactly one
coordinate larger than N). Among such terms, let /@]X (6) denote the sum of those
whose cavity coordinate is k; (here we have already summed over p). The second part
will collect all remaining terms, each of which contains at least two cavity coordinates;
we call this part D(p). In summary, we have

By
2 (N + M)-D/2 > \/79% = Z RiX D(p). (5.25)

p>1 1€[N+M]P\[N

Note that Hy v, X j, and D are mutually independent with respect to the Gaussian
disorder. As is verified by a straightforward calculation, X; is a centered Gaussian
process with

v =\ V ~/ s N =~ =/ ; s
BIX,(0)X; (6] = 1=y - & (57757 R(@:9)) fori € T, (5.26)

where R(-,-) is the overlap vector from (1.6), and ¢3; is the finite-volume version of £°
from (1.9):

s 1
5N($) = s ( Zp62 Z A (t s))\t
p>1 tesp=1
Also by direct calculation, the remainder term D(p) satisfies
1 . ~
D)) = 557 2o [RGB IREI3Y pr =182 D Al X (N + M)
51,826 p>1 te.spP—2
1%l 2 a2 (22 ||’~fH§ (5.27)
< -1)BA < .
<Syaar 2 2re-1El ||oo_
81,526 p>1

Remark 5.2. If we applied the same two-part decomposition as in (5.25), but for the
sum

AQ( s M
Z p 1)/2 Z )\S(’L glpl Z (p)7
1 i€[N+M]P\[N]» j=1
then the covariance structure (5.26) would be replaced by
~ ~ A2 AENS
E[X;(5) X, (5)] = 2 L)\tNR~”t
X(0)X (@) = Ly AS 308 Y (e N (D(RG.)

p>1 te#r—1
(1.9) AN
Therefore, the process X;(5) = ()\S(N)//\S))A(j(&), j € J° would have the covariance
structure declared in (2.2), but for ¢ belonging to the projection of T 5 s onto the first N
coordinates. Since this projection contains a copy of T, the process (X;(0))sery,je[m]
from (2.2) does exist.

EJP 27 (2022), paper 52. https://www.imstat.org/ejp
Page 54/75



Multi-species mixed p-spin spherical models
Now let H M~ be an independent copy of Hj, . We define an interpolating Hamilto-
nian on Ty x A,y s, consisting of four parts:
Hi(o,k) =H1(0, k) + Hyo(0, k) + Hy 3(0, k) + He a0, k),
where, if we write ¥y, n(0, ) = p = (G, k), then
]Hl,t(07 H) =+v1- tHM’N(O') + \/IgﬁM’N(&),
M Mo
Hgyt(d, Ii) =V 1-— tZHij(O') =+ \/gz I%ij(&),
j=1 j=1

Hs (0, k) = VtD(p),
Hyy(o,k) = V1—tenHY ™ (0) + VEenmHY o (p)-

Here we assume that Hy,n, Huv, X;, X;, D, HY™, and HY",, are mutually indepen-
dent. The quantity of interest is the interpolating free energy

p(t) = Elog/ / exp (Hi(o, k) Par,n (k) v (do) dr, 0 <t <1 (5.28)
An,s /TN
At the initial time ¢ = 0, we have the expression from (5.23):

¢(0) = ElOg/A JM’N(F;)P]\/[,N(FL) dk.

At the terminal time ¢ = 1, by (5.24), (5.25), and Fubini’s theorem, we recover the
right-hand side of (5.22):

o(1) = Elog/A /T exp(I_{N+M(\I/M7N(a,/£)))PM,N(/£) 7n(do) dk

(5.22) _
< ElogZnim,

where the inequality holds for all large N. Therefore, the final term in (5.15) satisfies

IN+M

Elog > ¢(1) — $(0) > — sup |¢/(t)]. (5.29)

fAZ\/I,J JIu N (K)Pun(K) de te(0.1)

To calculate the derivative of ¢, let (-); denote expectation with respect to the Gibbs
measure induced by H; (where the reference measure on Ty X Az is v @ Pa,n (k) dk,
as in (5.28)), and observe that

e

Then using Gaussian integration by parts (see [57, Lem. 1.1]), we have
¢'(t) = E{C((c", k"), (0", k")) —=C((c", k"), (o, H1)>>t, (5.30a)

where (0!, k') and (02, k?) are regarded as independent samples from the Gibbs measure,
and C is defined by

dH;(o, k)

C((U, Ii),(o’l,li/)) = E[ P

H, (o, n’)} . (5.30b)
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By the mutual independence of H, ;, H,;, H3, and H,,, all cross terms in the product
(dH,/d¢)H; vanish in expectation, leaving us with

4
E{M]Ht(al,ml)] = ZE[Mﬂkt(U/ﬁ/) . (5.30¢)

We now handle each of the four summands separately.
Concerning k£ = 1, we observe that

E[‘”Hl’éif’“)ml,t(g’,ﬁ’)] - %E[ﬁM,N(&)fIM,N((}')] - %E[HMVN(U)HM,N(U')}
(5.5) N+M[§ ( YR 7)) - en( N R )] o
2 PM\N+ M MN+M™™
Since (6(s), k(s)) = p(s) belongs to Sy=1r+, we have
, 5(s)2)l" (s N* 4+ M#
R*(5,6")] < llo( )Hf\us (s)]l2 < ;VL .
Since N/(N + M) < (N*® + M?®)/N?, it follows that
N R(5,6') € [-1,1]7 forall (0,k), (0',x') € T X Aprs. (5.32)
N+ M :
Therefore, by (H2) we have the trivial bound
’&V(N fMR((}’&/)) - gN(zijLMR(”’ ”I))‘ 5.3

< sup  ||Vén(D)|2 - N||R(G,5") — R(o,0")

2 - )
< C|R(5,5") — R(o, )
ze[-1,1)7 N+M < C||R(3,6") = R(o,0")[|2

Because (6(s),%(s)) = p(s) is taken equal to = n<(0(s),k(s)), it follows from the
definition (5.17) that the two overlap vectors R(5,¢') and R(o,c’) are related by

R*(5,6") = alyh N (k(5)) - alyh he (W(5)) - R(0,0), s € 7. (5.34)
In the following claim, we take the convention that a523n =1.

Claim 5.3. Forall ks, k' € Ay, £ € {0,1,...,M?}, and N sufficiently large, we have

|al. e (k(s)) = 1| <CMN™', and (5.35)
e e (5(9)) 3 v (' (5)) = 1 < CMNTY, (5:36)

In the special case ¢ = M*, we have
|aSt Ve (r(s))alys he (K () — 1] < 20M°/N® + CM?N ™2, (5.37)
Proof. By definition (5.8), k € Aj; s means that
M* < ||k(s)||3 < (1 +0)M*. (5.38)

Recall from (5.18) that for z € Byss ns, we have

M? 1 22
(&) _ Y
aps e (K) = H I+ PR
j=Ms—0+1
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So let us write (s) = (21,..., 2+ ), and set s¢; = (1—3)/(N*+j—1). Forany J C [M*],
we have

[TOa+) =14 s+ D s+ D s+,
JjET JjeT J1<j2 J1<j2<j2

where the right-hand terminates after a suitable number of terms. Subtracting the two
leading terms, we find that

2
2 3 e
‘H(1+%j)_1_2%j’§(2|%j|) +(Z|%j|> +"'SM,
jeg JET jeT jeg 1— Zjej EA

assuming that ;. 7 |5;| < 1. Now observe that

M?®
1 (538) (2446
Sl e S B o 63
jeT Jj=1

It follows from the two previous displays that for all N sufficiently large, we have

(CMN—')? 2 Ar—2
‘H1+%J—1—Z e Tt S CMAN 2,
jeT jeT

By the mean value theorem (applied to x — /1 4+ x), we conclude that
0 - 1 — a3
J 2 2
’aMS ) —1- % Nep o] S OMPN (5.40)
j=Ms—£+1

The first inequality (5.35) follows from (5.40) and (5.39). The second inequality (5.36)
follows from (5.35), thanks to the identity

zy—1l=(@—-1)@y—-1)+@@—-1)+ @y —-1). (5.41)

In the special case ¢ = M?, we have
22 M 2 2
Syl L S (e )
N9—|—j—1 Ns = Ns4+35-1 Ns

M® 2
M |lk(s)]I3 1—a3 1 —:v ‘ . 38) SMS -
“INs T Ns MN

Ns Ns +Z(Ns+j_l Ns ) > Ns +C

Therefore, (5.40) says

OM?
|aMS 3\/5(5(8)) - 1’ S W + CM2N72,
and then (5.37) follows from (5.41). O (Claim)
We deduce the following for all large N:
o (5 34) . 2
|R(5,5) — R(o, ) > [afi ke (a()afi ke (w1 (5)) — 1]
o i - (5.42)
20 M's 2
- ( CM2N—2) < COMN1.
ses
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Using this estimate in (5.33) and inserting the resulting bound into (5.31), we arrive at
the following:

sup
(01'{)7(0/7’{/)61\1\7 XAIM,S

dH; (o, k)
T

lHl,t(a’,f-c’)H < C§M. (5.43)

This concludes the consideration of £ = 1 in (5.30c).
We next handle the k£ = 2 case, for which a straightforward calculation gives

M
My i(o', )] = 12_31 (737 B, (5) X (6")] — g} BLX; (0) X (7).

E |:dIE[2’t (0’, Ii)

dt
The ;™ summand on the right-hand side can be computed by recalling (5.26) and (2.2)
to compute the expectations, and then applying (5.17) to express R]-,R;» in terms of
Kj, /@3. When j € J°, the resulting expression is equal to the following for some ¢ €
{0,1,...,M* —1}:

ik [al e ((5) - e e (6()) - 8 (a7 f —R(3,5)) ~&(Rlo.0)]. (549

By the triangle inequality and (5.32), we have

N
|afe v ((5)) - aggz, e (8 () - 6 (37 R(6.6)) = € (R(0.0")
< s 2)| - [0l e (5()) - e e (7 (5)) = 1]
wel- “]y (5.45)

+ sup VER( H
e Ve @l |y

+[§x (R(0,0")) — £ (R(0,0"))].
The first term on the right-hand side is controlled by (5.36):

R(6,6") — R(o,0") ,

sup €k (@) |ae ne (6(5)) - 0l . (4 (5) = 1| < CMNTL,
xze[-1,1]

For the second term, we apply the triangle inequality and then invoke two of our previous
inequalities:

sup Ve (@)l - |

xe[—1,1]7

=~ ~/\ _ /
N+M (070) R(O-’O-) 2

M

Ol 51 37B@. )2 + | RG.5) — Rio.0")o]

(5.32),(5.42)
<Y oMNT 4 C’(SMN‘l) < CMN™'.

Since R(o,0’) € [~1,1]”, the final term in (5.45) is easily seen to tend to zero by the fact
that A*(N) — A°. Indeed, by (H2), we can employ dominated convergence to conclude

63 (R(0,0") =& (R(0,0")| <> pBy D AL oM (V) = M| =o(1).
p>1 te.sr—1

Here o(1) denotes a quantity which tends to 0 as N — oo, uniformly in all variables. Now
that the right-hand side of (5.45) is completely controlled by the three previous displays,
we return to (5.44). Since ||x|3 < (1+ 6§)M for all kK € Ay, 5, we find that

dH
sup B[l g, (o1, w)] ‘ = CMN™" +o(). (5.46)
(0,k),(c’,k")ETNXAN 5 dt
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This concludes the consideration of £ = 2 in (5.30c¢).
Meanwhile, the £ = 3 term in (5.30c) satisfies

dH; (o, k)

(5.47)
dit

| Hy (o', 1)] = SEID()D()] < 2

Now let us recall the relationship between x € A, s and k once more: If j € 7%, then
there is some ¢, 0 € {0,1,..., M* — 1} such that

(517 (e (5.35)
175 U=" 0l e (s()rs| < iyl (5.48)
Using this fact and (5.38) in (5.47), we find

dIHgyt (O’, Ii)

sup at

(0,6),(0",k")ETN X Ap,s

E[ Hgyt(olﬂil)H < CMN-. (5.49)

Finally, the k£ = 4 term in (5.30c) is the most delicate and satisfies

E dIH4,(t1§O'7 '%) H4,t (0_/’ /{/):|
CQ r r CQ T T
= MR (HE ()] - DEHE ) HE )] (550

2 2
(3.5) CN4+M sper c r
=" (N + M) (R, o) = NJHER™ (R(0,07)).

Here the overlap vector R(p, p') = (R*(p, p'))se. is given by
s 1 ~ ~ P
R (p’p’) — W(Z O'ia'g =+ Z Iin})
i€Ls JETS
S

N S/~ ~/ 1 ~ ~/
- NerMsR (U’U)+NS+MS j;sﬁj’%j'

By the triangle inequality, we immediately have

[R(p,p') — R(5,5")|2

N* 1 ?
~ ~/ ~ o~
g“R(U’U)“2‘§%§5<1_NS+MS>+ ;ﬂ(N%MSgﬁ”;) '

Given (5.48) and the fact that ||x(s)||3 < (1 +6)M* for k € A5, we can conclude from
the two previous displays that

(5.32)
IR(p,p') — R(5,5")||2 = |R(5,5")||2- CMN~' + CMN~' < cmMnN—'  (5.51)

Combining (5.51) with (5.42), we arrive at

|R(p,p') — R(o,0")]» < CMN~L. (5.52)
In particular, since R(o,0’) € [-1,1]”, we may assume N is sufficiently large that
R(p,p') € [-2,2]” regardless of p and p’. Since &i,(c1) < oo for all ¢ € (—4,4)

(see (3.6)), this will be enough to bound all quantities involving SR,TM by a constant. We
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can now control the final expression in (5.50) as follows:

(N + M) a5 (Rip, ) = N&ER™ (R0, ")

< (N+ M)k vl Rp. p') — R(o,0")|2 s IVERT A (@)l
xe|—2,2]-

+‘(N+M)c§\,+M—Nc?V sup €7 (@)]

ze[—1,1]7
+ Nk sup [T () — (@)

ze[-1,1]7

Upon inserting cy = N~ and using (5.52), we find that the first product on the right-
hand side is at most CM N ~2%. Considering the difference (N + M)!=2% — N172% we
see that the second product is also bounded from above by CM N 2%, For the third and
final product, since we have assumed that each u, , in (3.6) does not depend on N, the
supremum satisfies

(3.10)

sup €T (@) — X ()] < 2max |X*(N + M) — A*(N)]
ze[—1,1]7 seS
MSN — N°M
< 2 7‘< MN~ 1
S N vara

thereby making the third product at most CM N ~2¥. We have thus argued that (5.50)
can be rewritten

sup
(0,5),(0" k" )ETN XA s

Returning to (5.30), the inequalities (5.43), (5.46), (5.49), and (5.53) yield the follow-
ing bound as N — oo:

d]H4_¢ (O’, Ii)
B[

Hy (0, n’)] ‘ < CMN~—*®. (5.53)

¢/ (t)] < CSM + CMN~' +0(1) + CMN 2% forallt € [0,1].

Therefore, (5.29) becomes

Zn+m ) .
Elo ~C6M — CMN™! — CMN™*=,
° fAM,cs Jai,n (B) Parn (K )dn —o(1)

which together with (5.21) and (5.15) results in (5.13).

5.3 Control of ()3: proof of (5.14)

In this final step, we will show

Zyn
Elog =
ogZ

. — Elog < exp (\/MY(J)»M’N‘ = op(1). (5.54)

In particular, (5.14) will hold, and so Theorem 5.1 will be proved. To begin, note the
following equality in distribution, which is immediate from the definition (5.4) of Hy/ n

Np—1 ~
Hy = Hap + Zﬁp\/ L= e AN

p>1
where flj(\’,’) is an independent copy of H](\f). Let us write
~ 1 Np-1 ~(p)
Y(o) = — 11— ——————H¥ (o), o0€cTy. 5.55
( ) m;ﬂp\/ (N+M)p_1 N( ) N ( )
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Now define an interpolating Hamiltonian:
H; = Hyn +VMKNT—tY +VtY) + enHY™, te[0,1].

Notice that Hy = HM,N + VMY and H; dist Hy; so upon setting

o(t) == Elog ( _M’N /T exp(H (o)) TN(dO')>
= Elog < exp [\/M(EY(U) + \/7?17(0))} >M N

)

we have

9(0) = Elog (exp (VMY (0))),, v and ¢(1) = Elog ZiNN'

As before, differentiation followed by Gaussian integration by parts (see [57, Lem. 1.1])
yields

dH (o)
de

dH, (o) >

¢’(t):E< g” =E<C(Ul,01)—6(01,02)>t, where C(o,0') =E|———=H;(c)|.

(5.56)

Here (-); denotes expectation with respect to the Gibbs measure on T associated to H;,
and o', 02 are independent samples from said measure. By the independence of Y and
Y, we have

dHt (0‘)
dt

B[S L7 (0)| = 5 (BIY ()Y ()] ~ EIY (0)Y (o). (5.57)

The first expectation on the right-hand side is given by

B[V (0)¥ (o) MZﬂ?(lwf”Mpl) > AWM 650)

Remark 5.4. If (5.55) were replaced by

~ )\S(Z)
Z'BP“ H with H](\],D)(a) = N0o- 1)/2 Z )\S( gzo'ia

p>1

then (5.58) would be replaced by

BV =N Y #(5) T (e N @) 2 0(R(o.0),

p>1 sESP ( )

and so the process Y from (2.2) does indeed exist.

From Taylor approximation of the function = — zP~! about z = 1, we find

‘%(1 N (NfM)pﬂ) NfM ‘ =P #JJ\\[J)Z’ (5.59)

From this inequality we deduce two facts. First, we immediately have that

J\flgnoo%<l - (NfM)p_l) =r-1L
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Second, for any ¢ > 0, we can choose a constant C. > 0 large enough that C.(1+¢)? > 2p?
forall p > 1, and so

(5.59) N N p—1
Cl+eP>(p—1)+p> > M(l - (m) ) for all N,p > 1.
Therefore, the decay condition (H2) allows us to apply dominated convergence and
conclude from (5.58) that

lim EY(0)V(o)] = Y Ar—1) Y AR (0,0)
p>1 seSP
@29 9(R(0,0")) = E[Y (0)Y (o).

Consequently, the right-hand side of (5.57) vanishes as N — oo, and this convergence is
uniform in 0,0’ because R(c,d’) € [~1,1]”. That is,

sup [E

o,0'€Tn

[d]Ht(O')

- Ht(a')} = o (1).

In light of (5.56), we have thus verified (5.54). O

6 Lower bound part III: synchronization and limiting overlap dis-
tributions

In this section we complete the proof of Theorem 1.3 by identifying a A-admissible
pair (¢, @) such that

lim Fy > 2((,®) aus.
N—o00

Recall the following definitions. First, we have the Hamiltonian H wm,n from (5.6), whose
associated Gibbs measure on Ty is denoted by G m,~n- Note that the perturbative term
HY'* from (3.3) depends on the parameters u = (u, 4)p4>1. Next let o', 02, ... denote
independent samples from (_¥M$N, and set R, = (RZZ,)Sey? to be the overlap vector
R(c',0") defined in (1.6). Then Ly = Ly n(u) = Law(R; G ) denotes the law
of the array R = (Ry)ee>1. Finally, for w € [0,1]7, let RY, = R¥(o',0") be the
quantity defined in (3.2). Recall that we chose # = {w;,w>, ...} to be dense in [0, 1]”.

6.1 Multi-species Ghirlanda-Guerra identities

Consider any measurable function f = f(c',...,0™) mapping T% — R. Denote by
AI\I,N(fv n,p,q, ’LL) the quantity

w 1 w 1¢ w
B{f - (R harn = ~ B NE(RED ) rn = — > B(F - (RY) )| (6.1)
£=2

The Ghirlanda-Guerra identities are the assertion that quantities of the form (6.1) are
equal to 0. Indeed, this statement is true in the large-N limit, at least in the following
averaged sense.

Theorem 6.1. Assume cy = N~ 7 for some w € [0,1/4), and that u, 4 € [0, 3] for all p, q.
Then for every pair p, g, there is a constant C,, , not depending on M or N such that for
every bounded measurable function f = f(c!,...,0"), we have

2
/ Ay n(fyn,pgou) dupy < Cpgll flloon *N~Y44¥  for all N sufficiently large. (6.2)
1
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The proof of Theorem 6.1 will be to simply invoke the more general Theorem A.3.
To do so, we will need the following lemma, whose proof invokes the more general
Lemma A.2.

Lemma 6.2. Assume u,, , € [0,3] for all p,q > 1. Then for any M > 0, we have

E|log Zus.n — Elog Zur.x| < 2/mN(Ex(1) + ). (6.3)
Proof. Apply Lemma A.2 with the following parameters:
* In (A.1), take (X,7) = (T, 7n) and H = 0.
* In (A4), take hy = Hys n (all other h; =0), c =1, and uy; = 1 so that H, = Hy n.
In this case, the constant gz(u) from (A.5) satisfies

5.6 1 er

2 (Bl (0)%] + K EIHE ™ (0)7])

(5.5),35) N+ M N
= e

1
N N+M

() = ElHun (0]

(3.10)
)+ AT TS en(1) +

where in the last inequality we used the fact that ¢y (aq) < aén(q) for any g € [0,1]
and « € [0, 1]. Therefore, (6.3) is a special case of (A.9). O

Proof of Theorem 6.1. Apply Theorem A.3 with the following inputs:
e In (A.1), take (Z,T) = (TN,TN) and H = Hy n.
* In (A4), take (h)i>1 = (HYh ) p.g>1, ¢ = ey so that hy, = HY™, H, = Hy x.

Indeed, recall from (3.4) that

1 er er — w
ﬁE[H%,pfq(U)Hz"v,pfq(o')] = 4~ WHD (R (0, 0"))7.

By Lemma 6.2, the quantity defined in (A.10) satisfies ¥ < 2\/7N({n(1) + ¢%,). Since
én(1) = €(1) as N — oo and ¢% < 1, we have ¥ = O(N'/2). Therefore, the condition

N7, /ﬁijg)z\/ < 1 is satisfied by all large N, since w < 1/4. Now (A.11) yields

2
/ Anrn (fin,p,g,u) duy g < 24)| fllo2PFIn I NT712(1+ O(NYV4)).
1

By inspection and the fact that @w < 1/4, we conclude (6.2). O

In order to apply Theorem 6.1 simultaneously for all test functions f, let us enumerate
for each n all monic monomials in the entries of R" = (R} ;1 )¢.¢'¢[n),sc.- Combining all
these enumerations, we obtain a sequence (f;),>1, where f, is a monomial in the entries
of R™". We then define

Z AM,N(franrapv%u)

Qp+q+r

AJ\LN (u) =
P,q,r>1

Remark 6.3. To clarify possible confusion, we note that every monic monomial will
actually appear in the list (f,.),>; infinitely many times, but just once for each appropriate
n. For example, for each n > 3, there is exactly one value of r such that f, = R} ,R3 3
and n, = n. These repetitions are necessary because (6.1) depends not just on f but also
on n.
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Recall that PP, is the product measure under measure each u, , is an independent
uniform random variable in [1,2], and E, denotes expectation with respect to P,,. Since
Ap N (frynr, p, q,u) < 2, it follows from Tonelli’s theorem, dominated convergence, and
Theorem 6.1 that

lim E, A n(u ZE[hm

N—o00 N—o00
p,q,r>1

AM,N(fT7n7‘7p7Qﬂu)
/ P quy, | =0 (6)

This allows us to choose a deterministic sequence of perturbation parameters (uy) N>1,
where uy = (up,4(M, N)), 4>1, such that

lim A]\{ N(UN) = 0 (65a)

N—oc0

but we need to coordinate this choice with Theorem 5.1. That is, we also want

lim sup [, I (Lar,n(w) — (L, (un))] > 0. (6.5b)

N—o00

Lemma 6.4. Assumecy = N~ ¥ for some w € [0,1/4). Then there is a sequence (un)n>1
(which depends on M) such that (6.5) holds.

Proof. Here we follow the standard example of [57, Lem. 3.3]. Consider the events
AN,E = {'LL : HM(L:M’N(’U,)) S Eu/H]w(L‘,A{’N(u’)) + 8}7 BN,E = {u : AM’N(U) S E}.

The goal is to identify ey — 0 such that P, (An ., NBn,,) > 0 for all large N. Recall the
centered Gaussian processes X; and Y appearing in the expression (5.7) for I (Larn),
which are independent of the random disorder defining G M,N. By applying Jensen’s
inequality twice, we see that

/TM<ZK] > TM(dFa)

< Elog/T <exp (Z Hij(U))>M,NTM(dK)
M s¢s
<log [I‘M E< exp (; anj(cr)> >A4,NTA1(dK) (2.6) Sezy %(1)

By similar reasoning (using (2.7) instead of (2.6)), we also have

M6(1)
O§E10g<exp(\/MY(a))>M’N§ 5

It follows from the two previous displays that

Mo(1) Més(1)
B <My (Lar,n(u)) < Z — for all N and u.
s€s
For simplicity, we will write Cy; = max{1, M0(1)/2,> .., M*¢*(1)/2}. For any € > 0,

we trivially have

E Oy (Lar,n (w) > (Bl (Lar,n () +€) - Pu(Ay ) — Cu - Pu(An )

—  P,(An.) > ° >__°
ulfiNe/ = EuH]w(L:M’N(u)) +e+Cy ~ 2Cy +e
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On other hand, Markov’s inequality gives

Py (By.) > 1 - w.

Now set ey = 2/CyE, A n(u), which tends to 0 as N — oo by (6.4). Assuming N is
large enough that ey < Cj;, we have

EN EUAM N(U) 1 EuAIW N(u)
P.(Anc P.Byey) 2 ——+1— ———— =14 -/ ———= > 1.
( N, N)+ ( N, N) SCM + <€N + 6 CM >

This final display assumes that E, Az v (u) > 0, but even if E, Ay, v (u) were 0, we would
trivially have P, (An,) > 0 and P, (Bno) = 1. |

6.2 Synchronization and asymptotic Gibbs measures

In accordance with Lemma 6.4, assume henceforth that c;y = N~% for some w €
(0,1/4). Once the parameters (ux)n>1 are chosen such that (6.5) holds, let us restrict
our attention to the sequence (Ny)g>1 from Theorem 5.1, so that

1 1
liminf EFy > — limsup I (L n, (un,)) — CO + — log var(Anrs)- (6.6)
N—o0 M M

k—oco

Since the overlaps are bounded, by passing to a suitable subsequence of (Ny)i>1, we
may assume that as & — oo, L n, (un, ) converges weakly to some law L. By Corol-
lary 2.7, the quantity Iy (LN, (un,)) converges to some limit we can call I (L),
and then (6.6) becomes

- 1 1
1}\%?ofEFN > MH]\[(LM) —Cd+ M log"yM(AM,(;). (6.7)

Now recall the function #),; that was defined in (2.36). Namely, &), is the restriction
of I, to overlap distributions of the form L£(¢,®) for some A-admissible pair (¢, D)
in which ¢ has finite support; see (2.33). What we do next is to identify—by way of
synchronization—a sequence of such pairs (¢*, ®) such that £(¢*, ®) — L, as k — oo.
In this way we will be able to rewrite (6.7) as follows.

Proposition 6.5. There is a A-admissible pair ((as, ®ps) such that for any ¢ € (0, 1],

.. 1 1
l}wglofEFN > MgZM(CM?q)M)_Cé'i‘Mlog'YM(AM,S)' (6.8)

The key step toward proving Proposition 6.5 is the following consequence of The-
orem 6.1: the so-called multi-species Ghirlanda-Guerra identities as put forth in [59].
Since we have (6.5a), the proof of Lemma 6.6 is identical to that of [59, Thm. 3].

Lemma 6.6. Let R be a random vector array with law L,;. Given any bounded mea-
surable function ¢: [-1,1]” — R, define Q. = ¢(Re ). For any bounded measurable
function f of the finite sub-array R" = (Ry,¢')e,0c[n), We have

n

BIf(RM)Q1 1] = TE[F(RM)] EIQ1a] + - S Bf(RMQ1]. 6.9)
(=2

Given any realization of the vector array R = (RZ @/) t.0'>1,s¢.7, define a scalar array
R = (Ree)e.0>1 by averaging the across all species:

Ree = Z ARG pr- (6.10)
seS

Let us first check the basic fact that all relevant scalar arrays are Gram de-Finetti arrays
(i.e. symmetric, nonnegative definite, and having entries that are exchangeable under
finite permutations).
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Lemma 6.7. If R has the law L,;, then R® = (RZZ')M’Zl and R are Gram-de Finetti
arrays such that Rj , = R = 1 for every £ > 1.

Proof. Recall that L), is the large-k weak limit of £/ n,, where L), y is the law of the
overlap array generated by i.i.d. samples from the Gibbs measure G M,N - By Skorokhod’s
representation theorem, there is coupling of R, ~ Ly n, and R ~ Ly such that
R — R almost surely as k — co. That is, almost surely every entry of R converges
to the corresponding entry of R. Therefore, if we write Ry = (R} )sc.», where R; =
(R¢.¢)er>1, then it suffices to show that the desired statements hold for R}, as well as
R defined as in (6.10).
So let us fix k and recall that the entries of R}, are given by

1 /
s _ E Y4
nge/ = 7NS g, 0; ,
i€Ls

where N = N and (O’Z)g21 are i.i.d. samples from GMN that are the same across all
s € . It is immediately clear that Rj, = 1 (since 0 € Ty = Qsec.» Sn+) and that
symmetry holds: R ,, = Ry, ,. These facts extend of course to R, which is just a convex
combination of the Rj. Furthermore, the fact that the o* are i.i.d. (conditional on G, n)
implies that the entries of Rj are exchangeable. Again, this fact extends to the array
‘R which is the convex combination (6.10) of the R;. Finally, we check nonnegative
definiteness directly: For any n > 1 and any vector (z¢)sc[»), We have

2
Z xExE’RZ,E’ — % Z Z :cgafa:g/af, = ]\]/:s Z (Z :L’gO’f) > 0.
]

L,0'eln i€LS (0 €[n] 1€ Mle[n]

Indeed, R; is nonnegative definite. Since this property is closed under linear combination
with nonnegative coefficients, the array Ry is also nonnegative definite. O

The purpose of Lemmas 6.6 and 6.7 is to relate R and R via synchronization. That is,
we invoke Theorem C, which is recalled here for convenience.
Theorem C. [59, Thm. 4] If R satisfies the multi-species G.G. identities (6.9), then there
exist non-decreasing (1/A%)-Lipschitz functions ®*: [0, 1] — [0, 1] such that almost surely,

Rip = P (Rep) foralll, V>1,s€.7, (6.11)

where Ry is defined in (6.10).

Recall from Remark 1.7 that if R satisfies the multi-species Ghirlanda-Guerra iden-
tities (6.9), then the scalar array R = (R )e,er>1 automatically satisfies the ordinary
G.G. identities and thus has nonnegative entries almost surely. Let us make another
important remark about Theorem C.

Remark 6.8. Given the array R from (6.10), consider the probability measure ¢ on [0, 1]
defined by

C() = E(L{r, ,e})- (6.12)

It follows from (6.11) that

Riz=» NRi,=) MO (Ria) as.
ses seS
This equality implies that for every ¢ belonging to the support of (, we have
g= Y Nd(g). (6.13)

ses
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If necessary, we can use linear interpolation to redefine each ®° outside the support of
(with ®°(0) = 0 and ®*(1) = 1) so that (6.13) holds for all g € [0,1]. In this way, we may
assume that the map ® = ($¥);c.» in Theorem C is A-admissible.

We are now ready to prove Proposition 6.5.

Proof of Proposition 6.5. Let L;; be the pushforward of £;; under the map R — R
defined in (6.10). By Lemmas 6.6 and 6.7, we can apply Theorem C, which says there
is a map ® = (®*)sc.r: [0,1] — [0,1]7 such that £y = Ly o ®!. By Remark 6.8,
we may assume ¢ is A-admissible. By Lemma 6.7, we can also apply Theorem A to
identify a random measure G on the unit ball of some separable Hilbert space, such that
Ly = Law(R;G). Let ¢ be defined by (6.12).

By Remark 1.7, the law £, satisfies the G.G. identities (1.27). Now take any sequence
of finitely supported measures ((;)x>1 converging weakly to ¢. Let G, = G, be the
Ruelle probability cascade (2.31) associated to (;. By [75, Thm. 15.2.11, Law(R; Gi) also
satisfies the G.G. identities. It thus follows from (2.30) and Theorem B(c) that Law(R; Gx)
converges to Law(R;G) = Ly as k — oco. Since @ is continuous (for instance, see (1.11)),
it must then be the case that the law £((x, ®) = Law(R;Gx) o @1 from (2.34) converges
to Ly 0o ®~ ! = L. Hence

2.73) . 2.36) .. Cor. 2.7
(¢, ®) Y lim Par(Ge,®) P2 lim s (£(G, @) O s (L),
In light of (6.7), the proof is complete with ((ar, @) = (¢, ). O

6.3 Conclusion of proofs for main results

We can now complete the proof of Theorem 1.3 by establishing the lower bound (1.17).

Proof of Theorem 1.3. By using the concentration inequality from Lemma 6.2 (with
M = 0 and every u, , = 0) together with Borel-Cantelli, we see that

lim |Fy —EFyN|=0 as.
N—oo
Therefore, to show (1.16) it suffices to prove

limsup EFy < inf 2((,®) < liminf EFy.
N—oo ¢® N—oo

By Proposition 3.1 we already have the first inequality, and so it suffices to exhibit a
A-admissible pair (¢, ®) such that

liminf EFy > 2((, D). (6.14)
N—oco
To this end, let ({ar, @s) be the A-admissible pair from Proposition 6.5. By the Central
Limit Theorem, for any fixed § > 0, the quantity vy (A ,s) tends to 1/2 as M — oc.
Therefore, the inequality (6.8) leads to

1
liminf EFyN > limsup — 2y (Car, Por)- (6.15)
N—o00 M

M —o0

Recall from (1.11) that any A-admissible map @ : [0,1] — [0,1]” is Lipschitz contin-
uous with a Lipschitz constant not depending on ®. Therefore, by the Arzela-Ascoli
theorem [53, Thm. 47.1], there exists a sequence (Mk)k21 tending to infinity such that
@), converges uniformly to some function ®, which is necessarily A-admissible. Since
the space of probability measures on [0, 1] is compact, we may assume that (s, also
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converges weakly to some (. It is then clear that (s, © <I>Kjk converges weakly to ( o 71,
hence D((Car, Pary,); (¢, @) — 0 as k — oo.

We now complete the proof by appealing to the results from Section 2.4. By the
triangle inequality and Corollary 2.16, we have

‘M«@M(CM#I’M) (C#I’)‘

< |37 23 ®an) = P ®)| + |5 Pui (¢, ®) - 2 (9|
< 2*(1 T - )D(@M,@M),(c, )+ |3 2u(c @) - 2 0)|
s€S

The first term in the last line tends to 0 when M is brought to infinity along the sequence
(Mk)kZL By Proposition 2.18 (which is enabled by (5.3)), the second term also tends to
0. In combination with (6.15), these observations yield (6.14). |
A General facts about perturbed Gibbs measures

In order for the results of this appendix to be widely applicable, we consider a general
setting. Let (X, F,7) be a finite measure space. Take H: ¥ — R to be any F-measurable
function (possibly random) satisfying

/ Eexp |H(o)| 7(do) < 0. (A1)
Jx

Let (h;);>1 be independent Gaussian processes on ¥, which are also independent of H.
We assume that h,(-) is almost surely F-measurable. We also assume that for each 1,
there is a constant r; such that

Elhi(0)*] =N forallo € X. (A.2)

(Here N < oo is merely a parameter and need not be an integer.) More generally, we
define

: 1
R'(0,0') = NE[hi(a)hi(a’)], 0,0 €. (A.3)
In particular, we have R(0,0) = r;.

Given a parameter ¢ > 0 and any sequence u = (u;);>; of real numbers, define the
Hamiltonian

H,(c) = H(o)+ chy(o), where hy,( Zul i (A.4)
Whenever the following quantity is finite,
*(u) = Elhy(0)’] =Y uiri, (A.5)
i=1

we can consider the associated Gibbs measure:

Gy(do) = exp Hy (o) 7(do), where

exp ¢(u)
o(u) = log/zexp H,(0) 7(do).

Let us write ¢(0) when we wish to set all u; equal to 0. This number can be compared to
©(u) as follows.
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Lemma A.1. If¢*(u) < oo, then

2.2
Ep(0) < Ep(u) < Ep(0) + % (A.6)

Proof. We begin by writing
() — (0) — log 12 P xp(ch(0) 7(do) )

fz exp(H (o)) 7(do)

Notice that the right-hand side is simply the average of exp(ch, (o)) with respect to the
Gibbs measure associated to H. Therefore, by applying Jensen’s inequality to the map
x — exp(x), we obtain

- fz chy (o) exp(H(o)) 7(do)
Js exp(H (o)) 7(do)

As h,, is independent of H, the expectation of the right-hand side can be obtained by first
taking expectation of just h, (o) in the numerator. Since E(h,(c)) = 0, we conclude that
Ep(u) > Ep(0).

For the second inequality, we again start with (A.7) and apply Jensen’s inequality, but
in this case to the function x — log x:

E Js exp(H (o)) exp(chy (o)) T(do)
Jsexp(H(0)) 7(do)

Ep(u) — Ep(0) < log

As before, the expectation on the right-hand side can first be taken just over h,.
From (A.5) we have Eexp(ch, (o)) = exp(c®*s?>(u)N/2), and thus we obtain the second
inequality in (A.6). O

Next we state a concentration inequality together with the resulting moment bound.

Lemma A.2. If H is non-random and s*(u) < oo, then

t2
Bllp(n) ~ Bp(w)] > tVN) < 20 ( ~ 13a705)- (A.8)
In particular,
Elp(u) — Ep(u)| < 24/mc?s?(u)N. (A.9)

Proof. The inequality (A.8) is a consequence of concentration for Lipschitz functions of
Gaussian random variables. For instance, see the proof of [54, Lem. 3]. The moment
estimate (A.9) is realized by integrating the tail in (A.8). (|

Finally we discuss the Ghirlanda-Guerra identities. Let o!,0?,... be independent
samples from G, and define an array (SR; ¢ )e.0r>1 using the function M? from (A.3):

Ry o= Ri(ot, ab).

With (-),, denoting expectation according to G,, and f = f(c?,...,0™) some non-random
measurable function X" — R, we define

=2

S|

. i 1 i
A(f,n,i,u) = E<fm1,n+1>u - ZE<f>uE< 1,2>u -
By averaging over just u;, we can obtain a useful upper bound on A(f,n,,u).
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Theorem A.3. Assume ¢?(u) < co whenever u; € [0, 3] for every i, and define
9 = sup{E|p(u) — Ep(u)| : u; € [0,3] for all i}. (A.10)

For any i, any u; € [0,3] fori’ # 1, any f = f(o',...,0") as above, and any N such that
(20)71

9
~ < 1, we have

/QAU ) du; < 2]/ Yoy 2 a2y
n,i,u) du; < solcn)™
) h e (A.11)

<mmmfmfvu+f

Proof. Our proof is a direct adaptation of [57, Thm. 3.2]. We will use the notation
v(-) = E(-), and simply write (-) for (-),,. Fix the value of i. Our access point to the
quantity A(f,n,4,u) is through the difference

[w(fhi(e) = v(Fv(hi)| = [B((f = (D) (hi(e) = () )|
< 2| flloo B |i — v(hi)l).

Recalling (A.3) and applying Gaussian integration by parts (see [57, Exercise 1.1]), we
have

(A.12)

v(fhio")) = cus [B(fRL 1)+ D BURY ) —nBURE )] A13)

The special case of (n =1, f = 1) yields
v(h;) = cu,»N[u(D%ﬁ)l) - V(%ﬁz)] (A.14)
From the definition (A.3) of RR%(-, ), it is clear that
12 < \/mi,lmé,z =T
and so it follows from (A.14) that
0 <wv(h;) < 2cu;r;N. (A.15)

Now we combine (A.13) and (A.14) to obtain an expression for the difference v(fh;(c!))—
v(f)v(hi). Since R} | = r; for any realization of ¢!, the terms involving R} ; cancel each
other, leaving us with

lv(fhi(ah)) — v(f)v(hi)| = cusNn - A(f,n,i,u). (A.16)
The right-hand side of (A.16) can now replace the leftmost expression in (A.12). To then

conclude (A.11), it suffices to control the expectation in the final expression of (A.12).
Indeed, we claim that

2
/ E(|h; — v(h;)|) du; < 24/ N 4 124/9r; N (A.17)
1

Once this is proved, we will have established the desired statement (A.11).
The rest of the proof is to establish (A.17). Define

o(u) = Ep(u) = IElog/E exp H, (o) 7(do).
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Fixing the value of u;s € [0, 3] for every i’ # i, let us regard ¢ and ¢ as functions of only
u; € [1,2]. Direct calculation yields the standard identities

' (w;) =clhy), " (u;) = A((hi — (hs))?). (A.18a)

Moreover, Gaussian tails provide sufficient regularity to exchange differentiation and
expectation in order to write

¢ (u;) = cv(hy),  ¢"(w) = E((h; — (h))?). (A.18b)
In particular, both ¢ and ¢ are convex in u;, and integrating ¢” gives

(A.18D),(A.15)

02/1 E{(hi — (h))?) dui = 9'(2) — /(1) 2 4PmN

Canceling factors of ¢? and applying Jensen’s inequality, we arrive at

2
/ E<|hl — <h2>|> dui S 2\/7“,‘N. (A19)
1

To bootstrap this inequality to (A.17), we next need to compare (h;) and v(h;).
By appealing to [57, Lem. 3.2] and then taking expectation, we obtain the following
for any y € (0,1):

Elp(u; — o(u;
El¢’(ui) — ¢ (wi)| < ¢'(ui +y) — ¢'(ui —y) + ol +9) - dlus +v)
Y (A.20)

N Elp(u; —y) — ¢(u; —y)| N Elp(ui) — d(ui)|
y y '

Upon integration, the first two terms on the right-hand side become

2
/1 6 (i + ) — & (s — )] dus = [6(2+4) — S2 — )] — [6(1 +9) — S — )

(A.18b),(A.15) 9
<2y sup ¢'(x) < 12ycr; N.
z€(0,3)

By definition (A.10), the remaining three terms on the right-hand side of (A.20) are all
bounded by ¥/y, which leads to

2
/ Elo’ (u;) — ¢ (w;)| du; < 12yc®r;N + 39 /y.
1
Recalling (A.18), we can rewrite this inequality as
2 39
E[{h;) — v(h;)| du; < 12yer; N + e
1

Finally, we choose y = (2¢)~! %, where N is assumed to be sufficiently large that

y < 1. This choice results in
2
1
Combining this inequality with (A.19) yields (A.17), as claimed. O
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