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Abstract

The odds ratio is a common measure to asses the association between a binary pre-

dictor variable and a binary outcome. In epidemiology, the outcome is often disease

status and the predictor of interest is a suspected risk factor for the disease. The

purpose of a study is an attempt to establish a causal association between exposure

and disease. If the object of a study is the estimation of a marginal odds ratio, de-

fined as the ratio of the odds that would be observed in a population if everyone were

exposed versus the odds in the same population if no one were exposed, methods

such as the Mantel-Haenszel estimator are commonly used. When it is necessary to

adjust for many confounders and/or continuous confounders, this approach results

in a biased and inconsistent estimator, including matching and stratification by the

propensity score. An alternative to matching is inverse probability weighting by the

propensity score. The resulting estimator is consistent, provided the propensity score

model is correct and adjusts for all confounders.



Introduction

The odds ratio is a common measure to assess the association between a predictor

variable and a binary outcome. Often, the predictor is also binary. In epidemiology,

the outcome is often disease status and the predictor of interest is a suspected risk

factor for the disease. The purpose of a study is to establish an association between

exposure and disease, in particular, interest is in establishing that this association is

causal. Causality cannot typically be confirmed without a randomized experiment.

Nevertheless a suspected causal relationship may be considered to exist in a carefully

conducted epidemiology study. A statistical analysis accounting for other factors that

may create spurious associations where there are none or hide causal associations that

exist is also necessary when trying to establish a causal relationship.

Another issue to consider in establishing causation is the measure to be used.

When outcome variables of interest are continuous, responses are often quantified

by mean responses and causal effects are measured by differences of means. If the

outcome is binary such as presence or absence of disease, disease risk defined as

the probability of disease during a period of follow-up may be used as a measure of

interest. Risk differences or risk ratios to allow for comparisons between those who

are exposed to and those who are free from exposure to a suspected risk factor may

be chosen as measures of exposure effects. Generally, risk and risk differences or risk

ratios are well understood as quantities of exposure effects. However, one drawback to

these measures is dependence on the study design. If the response is continuous it is

possible to calculate differences in mean responses between exposed and unexposed

based on cross-sectional as well as prospective studies. Similarly, if exposure is

measured on a continuous scale it is possible to compare the average exposure among

those with and without disease. Risk, however, cannot be established from cross-

sectional or retrospective studies. Risk is defined as the probability of developing

disease in a population of disease free subjects over a specified time period. It can be

calculated as the proportion of subjects who develop disease over a fixed time period.



This requires knowledge of who is at risk for disease at the start of observation and

at a minimum, who will have developed disease by the end of observation.

A variety of models and measures are used to assess associations between dis-

eases and exposures as possible causes of disease. Two predominant approaches

used are that of regression modeling and using simple measures of association based

on summary measures, typically adjusted for what are called confounders or re-

ported separately for what are considered effect modifiers. One approach allows for

causal inference only in randomized studies. Neyman[1] discusses agricultural exper-

iments where randomization allows the extrapolation of measurements on randomly

selected plots to what would be observed on average per plot if the whole field had

been treated in a specific way. By randomly assigning some plots to one treatment

and the others to a comparison treatment, it was possible to estimate what would

have been observed on average per plot for both treatments. The difference in av-

erage yield between these estimates can then be attributed to different treatments.

Randomized experiments and their role in establishing causation are extensively dis-

cussed in Fisher[2] and Kempthorne[3][4] who discuss the planning of experiments and

the mathematical justification for causal inference. Kempthorne[4], in particular dis-

cusses the differences in statistical approaches to a planned, randomized experiment

vs an observational study. Experiments with random assignment of human subjects

are not always feasible. Humans may not consent to randomization. Randomized

studies using human subjects are often conducted on a narrowly defined population.

It is unethical to study causes that are harmful as is the case in much of epidemiol-

ogy. Such studies have to rely on observational studies of human populations. Simple

effect measures are desirable and require careful planning of observational studies.

The design of such studies is discussed extensively in the literature, particularly the

need for careful selection of samples and identification of confounders that impact

the calculation of effect measures and the drawing of causal conclusions. Cochran[5]

presents a detailed discussion of observational studies of human populations. Such



studies typically involve careful selection of samples from populations to be com-

pared that one might argue are reasonably comparable with respect to the outcome

of interest in the absence of an exposure effect but differ with regard to exposure.

Much of the statistical literature is focused on comparisons of means in exper-

imental as well as in observational studies. Two-sample comparisons using t-tests

and analysis of variance comparing more than two treatments are well known and

used extensively in evaluating the effects of treatments/exposures on outcomes of

interest. Blocking is used in experiments and observational studies use matching

and subclassification on variables known or suspected of affecting the outcome and

having different distributions among exposed and non-exposed. These procedures

are attempts to approximate the design and analysis of comparative experiments. If

a suspected confounder is continuous, matching can be challenging and exact unex-

posed matches may not exist for many of the exposed observational units. Cochran[6]

suggests that most of the bias due to a continuous confounder can be removed by

forming about 5 or 6 strata of similar size. It is assumed that the relationship between

outcome and confounder is monotone and additive. Comparative observational stud-

ies often compare populations where confounders have different distributions within

the treatment groups. To obtain estimates of exposure effects a statistical analysis

must account for the effects of these confounders.

Epidemiological studies seeking to investigate or identify risk factors for disease,

often have outcomes that are not continuous such as whether or not disease occurs,

sometimes it is time to an event or number of occurrences of a disease. In this

case comparisons of means are not meaningful. When the outcome is occurrence

of disease, we might be interested in the risk of disease, comparing those who are

exposed to those who are not exposed. The risk of disease is typically defined as

the probability of developing disease within the time horizon of the study. In some

studies the outcome of interest is a binary variable Y = 1 if disease develops and

Y = 0 if it does not. We define the risk of disease as P (Y = 1). We might then



define an individuals risk of disease as P (Yi = 1 | Zi) where Zi = 1 if a subject were

to be exposed and Zi = 0 otherwise. A measure of exposure effect could then be

defined by the difference Ri or the relative risk RRi

Ri = P (Yi = 1 | Zi = 1)− P (Yi = 1 | Zi = 0) (1)

RRi =
P (Yi = 1 | Zi = 1)

P (Yi = 1 | Zi = 0)
(2)

To estimate risk it is necessary to know the number at risk for disease in a defined

population. This typically assumes that a population free from disease is identified

and then followed over time to observe who develops disease. For comparison a

similar population, also free from disease, is required to be followed for an estimate

of risk of disease in an unexposed population. This type of study is feasible only if the

disease is not rare and if the time from exposure to disease is much shorter than the

duration of the study. When either a disease is rare and/or the time from exposure to

development of the disease is long a prospective study may not be feasible. A case-

control study samples subjects on the basis of disease status and then establishes

exposure. While this design is much weaker for establishing causality, it was the

basis for much of the research on establishing causation between smoking and lung

cancer as well as between smoking and cardiovascular disease (Doll and Hill[7]).

The Odds Ratio

The odds of disease is defined as the ratio of the probability of the disease occurring

divided by the probability of disease not occurring. If we let Y be an indicator

variable where Yi = 1 if disease occurs and Yi = 0 if disease does not occur, then the

odds are defined as

oddsi =
P (Yi = 1)

P (Yi = 0)
(3)



An equivalent measure to the risk ratio is given by the odds ratio

ORi =
P (Yi = 1 | Zi = 1)/P (Yi = 0 | Zi = 1)

P (Yi = 1 | Zi = 0)/P (Yi = 0 | Zi = 0)
(4)

The benefit of the odds ratio over relative risk and risk difference lies in the fact that

the odds ratio can be calculated from prospective studies where a cohort of subjects,

some exposed, some not exposed, is followed over time to see who develops disease as

well as from case-control studies where subjects are selected on the basis of disease

status and exposure status is ascertained. The assumption that exposure precedes

onset of disease has to be made, however. Another argument for that is that the

parameters in logistic regression are log-odds ratios. Though the odds ratio is widely

used it is still not always well understood as a measure of association. It should be

noted that the relative risk RRi and ORi as defined here are unobservable and cannot

be estimated directly without assumptions. These are relative risk and odds ratio for

an individual if that subject were to be exposed (Zi = 1) or not exposed (Zi = 0).

The measures are clearly causal. However, these measures are subject-specific and

have to be summarized. There is clearly a need for some statistical measure that

allows summary statements regarding association and causal effects. One approach

is based on regression models. Typically a mean function is modeled as a function

of several factors, one of which is the exposure of interest. For a continuous outcome

the effects of several factors are modeled to be additive and we obtain a model of

the form

E[Yi | Xi, Zi] = β′Xi + δZi (5)

In this model the parameter δ represents the exposure effect of the ith individual

adjusted for other factors that have an effect on outcome. This exposure effect is

causal if we believe X contains all other factors that are causally associated with

Y and possibly associated with the exposure Z. It is a conditional, subject specific

effect. However, it is, if the model is to be believed, the same for all subjects.

This subject-specific effect is conceptually different from a marginal effect which



compares the potential outcomes in a population under two conditions exposure and

non-exposure to the factor of interest. In terms of the above linear additive model

it is

EX[E[Yi | Xi, Zi = 1]]− EX[E[Yi | Xi, Zi = 0]] = EX[β′Xi] + δ − EX[β′Xi] = δ (6)

Here, expectation is with respect to the distribution of X in the population of interest.

In the linear model with additive effect, marginal and subject-specific effect are the

same. This property of equal marginal and subject-specific effect is not retained

by nonlinear regression models. In a typical study where a sample of exposed and

another sample of unexposed subjects is taken, the marginal effect may be biased

since

EX[E[Yi | X, Z = 1]]− EX[E[Y | X, Z = 0]]

= β′
(
EX[Xi | Z = 1] + δ − EX[Xi | Z = 0]

)
+ δ

(7)

Here, expectation is over the populations of exposed (Z = 1) and unexposed (Z = 0).

The marginal estimate of δ may be biased if no adjustment is made. In estimating

the odds ratio, several issues need to be addressed. First, marginal and conditional

odds ratio differ. This is commonly referred to as non-collapsibility (Greenland etal

1999). To further discussion of causal inference and subject-specific vs marginal odds

ratio we will use the terminology of the Rubin Causal model (Rubin[8], Holland[9]).

Rubin’s model postulates two potential outcomes for each subject Y1, if a subject is

exposed, and Y0 if a subject is not exposed. In any study, one of the outcomes is

observed and the other is not. An individual causal effect is defined as the comparison

between these two outcomes. In recent years there has been explicit discussion of the

differences between marginal and subject-specific measures, their interpretation and

what is assessed in relation to the objectives of a study. It is generally recognized

that regression based measures using linear, generalized linear models, GAMs or

quasi-likelihood estimate effects conditional on the variables included in the model.



The parameter related to exposure measures by how much the response will change

for a subject with this particular profile. In the linear model the effect will be the

same for all subjects. This is not necessarily true for non-linear models.

Conditional measures may not be useful in epidemiological studies. The question

may be by how much a disease experience may change in an exposed population if

there were no exposure or similarly, by how much the experience may change in an

unexposed population if everyone is exposed. More often we consider a population in

which some are exposed and some are not. We might want to study the prevalence

or rate of disease in the population if everyone is exposed vs if no one is exposed.

Measures of disease association suitable to answering such a question are referred to

as marginal measures. The marginal odds ratio is defined as the odds that would

be observed in a population if everyone is exposed versus the odds that would be

observed if no one is exposed. It is given by the following equation

ORmarg =

[
P (Y1 = 1)

P (Y1 = 0)

]
�

[
P (Y0 = 1)

P (Y0 = 0)

]
=
P (Y1 = 1)P (Y0 = 0)

P (Y1 = 0)P (Y0 = 1)
(8)

This quantity cannot be estimated directly. The variable Y1 is the response we

observe for a randomly selected subject if the subject experienced the factor and

we observe the response Y0 if the subject did not experience the exposure. We only

observe Y1i or Y0i for th eith subject but never both. It should be pointed out that

that ORmarg is different from the crude odds ratio given by

ORcrude =

[
P (Y1 = 1 | Z = 1)

P (Y1 = 0 | Z = 1)

]
�

[
P (Y0 = 1 | Z = 0)

P (Y0 = 0 | Z = 0)

]

=
P (Y1 = 1 | Z = 1)P (Y0 = 0 | Z = 0)

P (Y1 = 0 | Z = 1)P (Y0 = 1 | Z = 0)

(9)

Note, the crude odds ratio compares the odds in a population that is exposed

to the odds in a population that is not exposed. Such a comparison is for two sub-

populations that differ in their background profiles and might have different risk

for disease in the absence of an exposure effect and is not causal. A comparison



is causal if the argument can be made, had the cause (the exposure) been differ-

ent, the effect would have also been different. The marginal odds ratio would be

appropriate for a population average causal effect. The marginal odds ratio but it

cannot be estimated from observed data without untestable assumptions. Further-

more, there is still a considerable amount of confusion about the effect measured by

an odds ratio. Estimating an odds ratio from a logistic model with adjustment for

confounders results in a conditional odds ratio. The odds ratio from such a model,

if the model accounts for all confounders and risk factors would be the odds ratio

for a subject in the population if that subject were to exposed to the factor or not.

The marginal odds ratio will be smaller than the subject-specific odds ratio. This is

not a bias. It is a reflection of the fact that the marginal odds ratio is an average

over conditional effects and is not collapsible (Gail etal[10]). Confounding is different

from collapsibility and refers to the fact that exposed and non-exposed populations

have different distributions of the confounding variable and this variable is causally

related to the outcome of interest (Miettinen and Cook[11], Greenland and Robins[12],

Wickramarate and Holford[13]) thus some or possibly all of the observed effect is due

to the confounder.

Propensity scores to obtain causal effects

Regression models, in particular logistic regression, are often used to estimate an

odds ratio adjusted for confounders. The estimate produced, as stated previously,

is a conditional or subject-specific estimate, Gail etal[10]. In a regression model, if

one believes all variables related to the outcome have been included, the regression

parameter related to the exposure of interest is interpreted as the amount by which an

outcome will change if the cause is changed by a specified amount. When the target

quantity is a marginal causal effect, the question arises how to obtain an unbiased

estimate when some of the quantities required cannot be observed. The Rubin Causal

Model[8] provides a framework for a solution. The model defines potential outcomes



(Y0, Y1) that would be observed if a subject were to not be exposed (Z = 0) or exposed

(Z = 1). In this counterfactual framework each subject has two potential responses

with a joint distribution f(y0, y1). Treatment assignment (used exchangeably with

exposure assignment) is said to be strongly ignorable if

f(Y0, Y1 | z = 1) = f(Y0, Y1 | Z = 1) and if 0 < P (Z = 1) < 1 (10)

When treatment is strongly ignorable a comparison between an exposed unit and a

non-exposed unit is causal. It is unlikely that an observational study of exposure

effects would result in groups with strongly ignorable treatment assignment. How-

ever, if all confounders are known treatment assignment is strongly ignorable given

the values of the confounders. If subjects can be categorized according to these

values comparisons among exposed and non-exposed are causal. If the number of

confounders is small and they are categorical subclassification on confounders is pos-

sible. The typical observational study contains many variables and at least some are

continuous. Subclassification by all confounders is usually not possible in such a case

since each subject will have a unique set of values for the confounders. Rosenbaum

and Rubin[14] showed that adjustment based on the propensity score

e(x) = P (z = 1 | x) (11)

is sufficient for strongly ignorable treatment assignment. They suggest subclassi-

fication or matching by the propensity score as well as regression adjustment. While

the propensity score is continuous, subclassification based on quintiles of e(x) can

reduce bias by as much as 90% (Cochran[6], Rosenbaum and Rubin[15]). Therefore, it

is common practice to use subclassification or matching (Rosenbaum and Rubin[16],

Dehejia and Wahba[17], Foster[18], Rosenbaum[19]) by the propensity score when the



estimate of the causal effect is defined by

∆ = E[Y1]− E[Y0] (12)

Another approach is introduced by Robins etal[20] who suggest that the unobserved

counterfactuals are treated as missing data and observed values should be assigned

to represent the missing counterfactuals similar to the way in which surveys treat

sampled units. The Horvitz-Thompson estimator uses as weights the inverse of

the selection probability to estimate a population total. A unit ui sampled with

probability pi represents wi = p−1i units like it. In a simple random sample where

pi = n/N with n the sample size and N the population size, each sampled unit

represents N/n units in the population. Thus the value wi · Yi represents the total

value of N/n units. Weighting results in unbiased estimates of totals. Rosenbaum[19]

suggested propensity weighting of the observed outcomes. Lunceford and Davidian[21]

compare propensity weighting to stratification by the propensity score. They also

provide a theoretical framework for calculating standard errors of weighted estimates

and show their consistency as long as the propensity score is correctly specified.

Weighted odds ratios

As shown before, the marginal odds ratio is a different measure than the conditional,

subject-specific odds ratio. For this reason adjustment for confounders by stratifi-

cation on confounders may not result in consistent estimates. The Mantel-Haenszel

estimator[22] of the odds ratio is commonly used. It can be shown to be consistent

under asymptotics where the number of strata remains fixed while the number of

observations goes to n→∞ as well as under sparse asymptotics where the number

of strata k → ∞ as n increases as is the case when observations are matched. This

property has been applied to propensity matching as well. However, it can be shown

(Loux etal[23]) that stratification and matching by the propensity score typically re-



sult in biased estimates of the marginal odds ratio. Austin[24] first investigated several

methods of estimating a marginal odds ratio through a series of Monte Carlo studies

and concluded that propensity score matching did not result in the same reduction

in bias as the estimation of differences of means or risk differences. In a letter to the

editor in response to the study by Austin[24] Forbes and Shortreed[25] demonstrate

that an IPW (inverse probability weighted) estimator they constructed was nearly

unbiased.

Stampf etal[26] proposed another approach to estimating a marginal odds ratio.

The authors use a logistic regression model to estimate a conditional probability of

disease given exposure P (Y = 1 | X,Z) where Z = 1 if exposed and Z = 0 if not

exposed. The covariates X are considered random variables and expectation is taken

with respect to X to obtain the marginal probabilities P (Y1 = 1) and P (Y0 = 1)

where Z = 1 is substituted into the logistic model to obtain P (Y1 = 1) and similarly

for P (Y0 = 1). They also propose a stratified estimator of the probability of disease,

with strata defined by the propensity score and then calculate a weighted average of

the stratum specific probabilities of disease when Z = 1 and Z = 0. In both cases

the marginal probabilities are used to calculate a marginal odds ratio.

Loux etal[23] calculate marginal probabilities P (Y1 = 1) and P (Y0 = 1) by weight-

ing by the estimated propensity score. The propensity score is usually not known

and must be estimated. Often, a logistic regression is used Rosenbaum and Rubin[14].

The primary purpose in many of the models using the propensity score has been on

stratification and the balance achieved with respect to confounders. Drake[27] has

shown that the estimated propensity score is less sensitive to misspecification of the

functional form of the propensity score than the maximum likelihood estimates of re-

gression parameters such as the conditional odds ratio. However, balance can only be

achieved for known confounders. Loux etal[23] proposed two versions of the weighted

estimator

p̂1,IPW =

(
n∑

i=1

Zi

êi

)−1 n∑
i=1

ZiYi
êi

(13)



and similarly

p̂0,IPW =

(
n∑

i=1

1− Zi

1− êi

)−1 n∑
i=1

(1−)Zi)Yi

1̂− ei
(14)

These semi-parametric estimators are consistent provided the propensity score is

correctly specified. Based on the work by Lunceford and Davidian[21], an expression

for the variance of the estimator can be derived. It is based on M-estimation in a pa-

per by Stefanski and Boos[28]. The calculations are complicated and it is much easier

to use a bootstrap approach to estimating the variance. This was the method used in

the example by Loux etal[23]. The propensity score is the probability of being exposed

(treated) and some subjects may have very high propensity for exposure or very low

propensity. Such extreme probabilities result in potentially very large weights and

can lead to a poorly performing estimator. In this case one possibility is to truncate

the probability at some pre-specified value. This introduces a small bias as long as

the number of truncated weights is small. In the case of a large number of very

extreme probabilities and therefore, weights, the data should be carefully inspected

and the source of the data should be examined. The two treatment/exposure groups

have limited overlap and causal inference is problematic. In a final note, the validity

of drawing causal conclusions from the calculated weighted odds ratio as with all

other approaches rests on the assumption, not testable, that treatment assignment

is strongly ignorable.

References

[1] Neyman, J (1923). Sur les applications de la théoriedes probabilities aux exper-
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