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Abstract—In a broad class of sparse random constraint
satisfaction problems (CSP), deep heuristics from statistical
physics predict that there is a condensation phase transition
before the satisfiability threshold, governed by one-step
replica symmetry breaking (1RSB). In fact, in random
regular k-NAE-SAT, which is one of such random CSPs,
it was verified [1] that its free energy is well-defined and
the explicit value follows the 1RSB prediction. However, for
any model of sparse random CSP, it has been unknown
whether the solution space indeed condensates on O(1)
clusters according to the 1RSB prediction. In this paper,
we give an affirmative answer to this question for the
random regular k-NAE-SAT model. Namely, we prove that
with probability close to one, most of the solutions lie inside
a bounded number of solution clusters whose sizes are
comparable to the scale of the free energy. Furthermore,
we establish that the overlap between two independently
drawn solutions concentrates precisely at two values. This
is the defining property of the one-step replica symmetry
breaking class which we establish for the first time in
a sparse random CSP. Our proof is based on a detailed
moment analysis of a spin system, which has an infinite
spin space that encodes the structure of solution clusters.
We develop new techniques to study the partition function
as well as enhance previous approaches which were only
applicable to spin systems with finitely many spins. We
believe that our method is applicable to a broad range of
random CSPs in the 1RSB universality class.

Keywords-random constraint satisfaction problems, ran-
dom regular NAE-SAT model, one-step replica symmetry
breaking, condensation phase transition

I. INTRODUCTION

A random constraint satisfaction problem (rCSP) is

defined by a collection of variables whose configuration

should satisfy a set of randomly chosen constraints.

Namely, there are n variables x = {xi}ni=1 ∈ Xn taking

values in a finite alphabet set X, and they are subject

to m ≡ αn randomly drawn constraints. The major

interest is to understand the structure of the solution

space of rCSPs as n,m → ∞ while α being fixed.

Indeed, statistical physicists developed a deep but non-

rigorous theory to study these problems and conjectured

that in a wide class of rCSPs, there is a fascinating series

of phase transitions as α varies ([2], [3]; cf. [4] and

Chapter 19 of [5] for a survey). As we detail below,

the present paper focuses on investigating the solution

space structure when α is in the condensation regime,

for a rCSP model called the random regular k-NAE-SAT.

The canonical rCSP is random k-SAT, a random

Boolean CNF formula formed by taking the AND of

clauses, each of which is the OR of k variables or

their negations. A not-all-equal-satisfiability (NAE-SAT)

formula, has the same form as k-SAT but asks that both

x an assignment of the variables and ¬x its negation

evaluate to true in the formula. We call such formula

k-NAE-SAT if the clauses appearing in the CNF formula

have exactly k literals, and it is called d-regular if each

variable appears precisely in d clauses. One can then

choose a d-regular k-NAE-SAT problem of n variables

uniformly at random, which gives the random d-regular

k-NAE-SAT problem, with clause density α = d/k.

Compared to the k-SAT problem, the NAE-SAT problem

possesses extra symmetries that make it more tractable

from a mathematical perspective. Nevertheless, it is

predicted to belong to the same universality class of

rCSPs as random k-SAT and random graph coloring,

and hence is expected to share the most interesting

qualitative behaviors with them.

Let Z ≡ Zn denote the number of solutions for a

given random d-regular k-NAE-SAT instance. Physicists

predict that for each fixed α, there exists f(α) such that

1

n
logZ −→ f(α) in probability.

A direct computation of the first moment EZ gives that

EZ = 2n
(
1− 2−k+1

)m
= enf

RS(α), where

f
RS(α) ≡ log 2 + α log

(
1− 2−k+1

)
,

(the superscript RS refers to the replica-symmetric free

energy) and we see that f ≤ f
RS

, by Markov’s inequality.

The previous works of Ding-Sly-Sun [7] and Sly-Sun-

Zhang [1] established some of the physics conjectures

on the description of Z and f given in [8], [3], [9], which

can be summarized as follows.
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Figure 1: Figure adapted from [3], [6]. A pictorial description of the conjectured phase diagram of random regular k-NAE-SAT.
In the condensation regime (αcond, αsat), there remains a bounded number of clusters containing most of the solutions.

• ([7]) For large enough k, there exists the satisfia-

bility threshold αsat ≡ αsat(k) > 0 such that

lim
n→∞

P(Z > 0) =

{
1 for α ∈ (0, αsat);

0 for α > αsat.

• ([1]) For large enough k, there exists the conden-

sation threshold αcond ≡ αcond(k) ∈ (0, αsat) such

that

f(α) =

{
f

RS(α) for α ≤ αcond;

f
1RSB(α) for α > αcond,

(1)

where f
1RSB ≡ f

1RSB(α) is the 1RSB free energy.

Moreover, f
RS > f

1RSB
on (αcond, αsat). For the

explicit formula and derivation of f
1RSB

, we refer

to Section 1.6 of [1] for a concise overview.

Furthermore, the physics predictions say that the

solution space of the random regular k-NAE-SAT is

condensed when α ∈ (αcond, αsat) into a finite number

of clusters (Figure 1). Here, clusters are defined by the

connected components of the solution space, where we

connect two solutions if they differ by one variable. Our

first main result verifies the prediction for all k ≥ k0,

where k0 is a universal constant. It is the first to provide

a rigorous cluster-level description of the solution space

of a sparse rCSP in the condensation regime.

Theorem I.1. Let k ≥ k0 and α ∈ (αcond, αsat) such

that d ≡ αk ∈ N. For all ε > 0 and M ∈ N,

there exist constants K ≡ K(ε, α, k) ∈ N and C ≡
C(M, ε, α, k) > 0 such that with probability at least

1−ε, the random d-regular k-NAE-SAT instance satisfies

the following:

(a) The number of solutions is no greater than

exp(nf
1RSB(α) − c� log n + C), where f

1RSB
is the

1RSB free energy and c� ≡ c�(α, k) > 0 is a fixed

constant (see (6) for the definition).

(b) The K largest solution clusters, C1, . . . , CK , oc-

cupy at least 1− ε fraction of the solution space.

(c) There are at least exp(nf
1RSB(α) − c� log n − C)

many solutions in C1, . . . , CM , the M largest clus-

ters.

We now briefly discuss the principles underlying the

condensation predictions which are helpful in under-

standing the main theorem. As shown in Figure 1,

the solution space of the random regular k-NAE-SAT

is predicted to be clustered into exponentially many

clusters with each of them occupying an exponentially

small mass when α ∈ (αclust, αcond). As α gets larger

than αcond(> αclust) (the condensation regime), the

solution space becomes condensed, which causes the

failure of the first moment analysis as seen in (1). When

α ∈ (αcond, αsat), the number of clusters that contribute

the most to EZ is exponentially small in n, meaning that

those clusters are no longer present in a typical instance

of the rCSP. Thus, the leading order of Z is given by

the largest clusters that can typically exist (which are

thus smaller than the main contributors to EZ), and

the number of such clusters is believed to be bounded.

Moreover, it is expected that the sizes of those clusters

are comparable to the 1RSB free energy.

Theorem I.1 verifies that the solution space indeed

becomes condensed in the condensation regime, while

the previous works [10], [1] obtained the evidence

of the condensation phenomenon in the level of free

energy. Furthermore, it is believed that the nature of the

condensation is governed by one-step replica symmetry

breaking, which we detail in the following subsection.

Compared to the previous related works [6], [11],

[7], [1] in similar settings, we interpret the partition

function from a different perspective in order to acquire

information on the number of clusters of particular

sizes. Our approach requires a detailed analysis of an

auxiliary spin system with an infinite spin space, and

one of our major accomplishments is to develop new

ideas and generalize existing theories to understand such

a system.

A. One-step replica symmetry breaking

In the condensation regime α ∈ (αcond, αsat), the

random regular k-NAE-SAT model is believed to possess

a single layer of hierarchy of clusters in the solution

space. Roughly speaking, the prediction is that within

a cluster, we can move from one solution to another
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by flipping one (or a small number of) variable(s) at

once, in such a way that the intermediate steps all

belong to the same cluster. Thus, the solutions are

fairly well-connected inside each cluster so that no addi-

tional hierarchical structure occurs in it. Such behaviors

are conjectured in various other models, called 1RSB

universality class, such as random graph coloring and

random k-SAT. However, we remark that there are also

other models such as maximum independent set (or

high-fugacity hard-core model) in random graphs with

small degrees [12] and Sherrington-Kirkpatrick model

(on the complete graph) [13], which are expected (or

proven [14]) to undergo full RSB, meaning that there are

infinitely many levels of hierarchy inside the solution

clusters.

One way to characterize 1RSB is to look at the over-

lap between two uniformly and independently drawn

solutions. In the condensation regime, since there are

a bounded number of clusters containing most of the

mass, with a non-trivial probability the two solutions

belong to the same cluster. According to the description

of 1RSB, there is no additional structure inside each

cluster, and hence the Hamming distance between two

independently selected solutions is expected to be con-

centrated precisely at two values, depending on whether

they came from the same cluster or not.

Our second result verifies that this is indeed the

case for the random regular k-NAE-SAT with large k,

establishing for the first time a rigorous characterization

of 1RSB in sparse rCSPs.

Definition I.2. For x1, x2 ∈ {0, 1}n, let yi = 2xi − 1.

The overlap ρ(x1, x2) is defined by

ρ(x1, x2) ≡ 1

n
y1 · y2 =

1

n

n∑

i=1

y1i y
2
i .

Theorem I.3. Let k ≥ k0, α ∈ (αcond, αsat) such

that d ≡ αk ∈ N. There exists an explicit constant

p� ≡ p�(α, k) ∈ (0, 1) such that the following holds:

for all ε > 0, there exists a constant δ = δ(ε) > 0
such that with probability at least 1− ε, the random d-

regular k-NAE-SAT instance G satisfies the following.

Let x1, x2 ∈ {0, 1}n be independent, uniformly chosen

satisfying assignments given G . Then, the absolute value

ρabs ≡ |ρ| of their overlap ρ ≡ ρ(x1, x2) satisfies

(a) P
(
ρabs ≤ n−1/3

∣∣ G
)
≥ δ;

(b) P
(∣∣ρabs − p�

∣∣ ≤ n−1/3
∣∣ G

)
≥ δ;

(c) P
(
min{ρabs, |ρabs − p�|} ≥ n−1/3

∣∣ G
)
≤ n−1/3.

We remark that in (b), ρ can take either p�+O(n−1/3)
or −p�+O(n−1/3) with asymptotically equal probabil-

ity as n → ∞. This is due to the symmetric nature of

the NAE-SAT, where −x is also a solution if x is. Thus,

the clusters of solutions come in pairs as well: if C is a

cluster, then so is −C := {−x : x ∈ C}.

According to the physics predictions [3], the relative

sizes of the largest clusters in the rCSPs with 1RSB in

the condensation regime are conjectured to converge

to a Poisson-Dirichlet process. Although we provide a

cluster-level illustration of the solution space and show

that it follows the 1RSB prediction, our method is not

strong enough to study the limiting distributions of the

cluster sizes, and the conjecture is left as an important

open problem in the field.

Remark I.4. Although our definition of a cluster in

Theorem I.1 is a connected component of the solution

space, our proof shows that Theorem I.1 also holds for a

slightly different definition of clusters, where we merge

the connected components if they differ in a small, say

log n, number of variables. The conjectured description

of cluster sizes according to Poisson-Dirichlet process

actually corresponds to the latter definition of clusters.

B. Related works

Earlier works on rCSPs focused on determining their

satisfiability thresholds and verifying the sharpness of

SAT-UNSAT transitions. For rCSP models that are known

not to exhibit RSB, such goals were established. These

models include random 2-SAT [15], [16], random 1-IN-

k-SAT [17], k-XOR-SAT [18]–[20], and random linear

equations [21]. On the other hand, for the models which

are predicted to display the condensation phenomenon,

intensive studies have been conducted to estimate their

satisfiability threshold, as shown in [22]–[24] (random

k-SAT), [25]–[27] (random k-NAE-SAT), and [28]–[31]

(random graph coloring).

The satisfiability thresholds for rCSPs with RSB have

been rigorously determined in several models (random

regular k-NAE-SAT [7], maximum independent set [11],

random regular k-SAT [24] and random k-SAT [6]),

where they looked at the number of clusters instead

of the number of solutions and carried out a demanding

second moment method. Although determining the lo-

cation of colorability threshold is left open, the conden-

sation threshold for random graph coloring was settled

in [10], where they conducted a technically challenging

analysis based on a clever “planting” technique, and the

results were further generalized to other models in [32].

Similarly, [33] identified the condensation threshold for

random regular k-SAT, where each variable appears d/2-

times positive and d/2-times negative.

Further theory was developed in [1] to establish the

1RSB free energy prediction for random regular k-NAE-

SAT in the condensation regime. However, [1] was not

able to present a cluster-level description of an rCSP

instance, nor to explain the nature of the condensation

phenomenon. Our main contribution is to illustrate the

solution space of the random regular NAE-SAT instance
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(A)

(B)

(C)

s

(B)

s1
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s

Figure 2: A description of Σ(s;α) in s for different values of α. In the left, the curves correspond to the different values of
α, with (A) α ∈ (αclust, αcond), (B) α ∈ (αcond, αsat), and (C) α > αsat, with the gray lines depicting the locations of s1. In the
right, curve (B) is shown with the values s1 and s�.

at the cluster-level and to verify that its condensation is

governed by 1RSB.

Lastly, the recent work [34] studied the random k-

MAX-NAE-SAT beyond αsat, where they verified that

the 1RSB description breaks down before α � k−34k.

Indeed, the Gardner transition from 1RSB to FRSB is

expected at αGa � k−34k > αsat [35], [36], and [34]

provides evidence of this phenomenon.

C. Heuristic description of condensation

We briefly overview what happens in an rCSP in 1RSB

class as the clause density α = d/k varies, as well as a

heuristic illustration of condensation.

When α is fairly small, most of the solutions lie inside

a single well-connected cluster (in the sense explained

in Section I-A). As α becomes larger than αclust, the

clustering threshold, the solution space becomes shat-

tered into exponentially many clusters, each containing

exponentially many solutions yet exponentially small

compared to the whole solution space. In this regime,

define Σ(s) ≡ Σ(s;α), the cluster complexity function,

as

exp(nΣ(s)) ≡ expected number of clusters of size ens.

Indeed, the number of size–ens clusters is believed to be

concentrated around its mean enΣ(s). Thus, the expected

number of solutions can be written as

EZ =
∑

s

exp(n{s+Σ(s)})
.
= exp(n ·max{s+Σ(s) : s ≥ 0}),

where
.
= denotes the equality up to the leading expo-

nential order. The function Σ(s;α) is believed to be

smooth and concave in s for each fixed α, and indeed

physicists predict an explicit formula for Σ(s) via the

1RSB cavity method [3], [5]. Hence, if this is the case,

we have that

EZ
.
= exp(n{s1 +Σ(s1)}),

where s1 ≡ s1(α) > 0 is the unique solution of

Σ′(s1;α) = −1. However, if Σ(s1;α) < 0, meaning

that the expected number of size–ens1 clusters are

exponentially small, those clusters are unlikely to exist

in a typical instance and hence the main contribution to

Z is given by

Z
.
= exp(n{s� +Σ(s�)}),

where s� is defined as

s� ≡ s�(α) ≡ argmax
s

{s+Σ(s) : Σ(s) ≥ 0}. (2)

This is the regime where the condensation phenomenon

occurs, and hence the condensation threshold αcond is

defined by

αcond ≡ max{α : Σ(s1(α);α) ≥ 0}
= max{α : s�(α) ≥ s1(α)}.

Thus, for α > αcond, typically we have Z 	 EZ, which

causes the failure of the second moment method applied

to Z.

For α beyond the satisfiability threshold αsat, the

problem becomes unsatisfiable (Z = 0) with high

probability, where αsat is given by

αsat ≡ min{α : Σ(s;α) ≤ 0 for all s}.

An illustration of the above discussion is given in

Figure 2. We can also see that when α ∈ (αcond, αsat),
Σ(s�(α);α) = 0, implying that the primary contribution

to Z should come from a bounded number of clusters

of size roughly ens� , whereas if α < αcond the leading

term consists of the clusters of size roughly ens1 whose

numbers are exponentially large. Indeed, in the latter

case Z becomes concentrated around EZ [25]–[27] and

the overlap is expected to concentrate around one point

as opposed to two points, stated in Theorem I.3.
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As k → ∞, asymptotic values of the thresholds are

known to be

αcond =
(
2k−1 − 1

)
log 2 + ok(1),

αsat =

(
2k−1 − 1

2
− 1

4 log 2

)
log 2 + ok(1).

The known upper bound for αclust [37] tells us that it

is relatively much smaller than αcond and αsat if k is

large. Moreover, αclust is believed to coincide with the

reconstruction threshold, where we refer the readers to

[38], [3], [39], [40] for further information.

D. Tilted cluster partition function and encoding clus-

ters

The main object of study in the present paper shares

the same spirit as [1], and its derivation is based on the

ideas discussed in Section I-C. We consider the tilted

cluster partition function Zλ, defined as

Zλ ≡
∑

Υ

|Υ|λ, (3)

where the sum is taken over all clusters Υ. If we

compute EZλ for λ ≡ λ(α) ≡ −Σ′(s�;α) (with

s� as in (2)), then we see that the main contribution

comes from the clusters of size ens� , following the

same reasoning as Section I-C. Thus, we expect to have

Zλ
.
= EZλ, and indeed [1] carried out challenging

moment computations in a similar setting to obtain the

1RSB free energy f
1rsb

for random regular k-NAE-SAT.

The next issue is to obtain a combinatorial represen-

tation of a cluster. We follow the coarsening algorithm,

which is an inductive process starting from a solution x
that sets a variable in x to be f (free) one by one, if no

clause is violated when the variable is flipped (that is,

0 → 1 or 1 → 0). Then, it was observed in [7], [1] that

the resulting frozen configuration y ≡ y(x) ∈ {0, 1,f}n
obtained by such a procedure serves as a good repre-

sentation for a cluster.

To study the size of a cluster, we adapt the framework

from [1] to count the number of ways to assign 0/1-

values to free variables in a frozen configuration, which

we detail as follows. In the regime of our interest, an

important observation is that most of the variables in

a solution x are frozen (so that those variables cannot

be flipped in the solution space), while a small constant

fraction of them are free. Thus, in a frozen configuration

y ∈ {0, 1,f}n, the connected structure among the free

variables (and their neighboring clauses) would mostly

look like trees that are not too large. Heuristically,

they can be thought of subcritical branching processes,

so the maximal connected free component will have

size O(log n). In [1], they utilize the idea of belief

propagation from statistical physics to effectively count

the number of NAE-SAT assignments on a given tree of

free variables.

The previous work [1] studied the truncated partition

function Zλ,L, which only counts the contributions from

the clusters whose free components are trees of size

at most some finite threshold L. Again based on the

branching process heuristics, there is always a constant

probability for a subcritical branching process to be

larger than L, and hence we may expect that

Zλ,L
.
= e−δnZλ,

where δ(L) → 0 as L tends to infinity. Thus, they inves-

tigated the moments of Zλ,L and let L → ∞ to deduce

the conclusion on the free energy of the original model.

Imposing the finite-size truncation played a crucial role

in their work, since it makes the space of free trees to

be finite so that some of the important methods from the

earlier works [6], [11], [7] are applicable without signif-

icant changes. However, to obtain Theorem I.1, working

with the truncated model is insufficient, since we cannot

afford the cost of e−δn for any small δ > 0. In the

following subsection, we describe a brief overview on

the ideas to overcome such difficulties along with an

outline of the proof.

E. Proof ideas

The major difficulties in understanding the solution

space in the cluster-level can be summarized as follows.

1) In addition to investigating Zλ, we need to study

the contributions from clusters of sizes in a con-

stant window [ens, ens+1):

Zλ,s :=
∑

Υ

|Υ|λ 1{|Υ| ∈ [ens, ens+1)}. (4)

2) As mentioned above, it is required to work with

the full space of free trees which is infinite.

The ideas to overcome the difficulties above is explained

in Section I-E1 below.

In fact, we first compute the first and second moments

of Zλ,s for λ = λ(α) ≡ −Σ′(s�;α) and s sufficently

close to the free energy f
1RSB(α). Let Ns denote the num-

ber of clusters whose size is in the interval [ens, ens+1):

Ns :=
∑

Υ

1{|Υ| ∈ [ens, ens+1)}.

Since e−λZλ,s ≤ enλsNs ≤ Zλ,s, a successful compu-

tation of first and second moments of Zλ,s will give us

information on Ns based on the second moment method.

Indeed, we show that for |s− f
1RSB(α)| = O(n−2/3),

EZλ(α),s equals up to constant

EZλ(α),s �
1√
n
exp

(
nλ(α)f1RSB(α)

)
. (5)

Thus, in order for ENs � 1 which we expect from the

discussion in Section I-C, we must take s to be

s◦ ≡ s◦(n, α,C) ≡ f
1RSB(α)− c� log n

n
+

C

n
, where
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c� ≡
(
2λ(α)

)
−1

, (6)

and C ∈ R is a constant which does not depend on

n. Moreover, we show that the second moment can be

bounded by

ENs◦ �k e−2λ(α)C + e−λ(α)C . (7)

Therefore, the estimates (5), (7) and the Paley-Zygmund

inequality imply

lim inf
n→∞

P
(
Ns◦ ≥ 1

)
> 0 (8)

for any C ∈ R. The equations (5), (7), (8) will serve as

the building blocks of the proof of Theorem I.1.

In the rest of the Section, we describe the high-level

ideas on how to compute the first and second moment

of Zλ(α),s◦ , and to establish Theorem I.1 and I.3 from

such computations.

1) Moment computations: The previous approaches

in [6], [11], [7], [1] to study the moments of Zλ were

to decompose the quantity into the contributions from

different types of “local neighborhood profile” of con-

figurations. However, in our case which has infinitely

many types of free components, such methods do not

give a good enough understanding on Zλ, since the

Stirling approximations which were crucial in the earlier

works are no longer precise.

Instead, we focus on computing the cost of containing

each type of free component inside a cluster. One of the

interesting observations we make is that conditioned on

the “boundary profile” of non-free variables and clauses,

the profile of free components is essentially given as the

result of independently throwing in each type of free

component with a prescribed probability.

In an informal manner, we describe this crucial ob-

servation for the first moment analysis. Denote B by

the boundary profile, which is a collection of empirical

measures of certain “types” of non-free variables and

clauses, and denote nf by the number of the free

component f. Let Zλ[B, (nf)f] be the contribution to Zλ

(cf. (3)) from the clusters having the boundary profile

B and the number of free components (nf)f. Then, we

show that

EZλ [B, (nf)f] � g(n,B)·
∏

f

[
1

nf!

(( e

n

)γ(f)

Jfw
λ
f

)nf
]
,

(9)

where g(n,B) is a certain explicit function of n and B,

γ(f) + 1 equals the number of tree-excess edges of f,

wf is the number of ways to fill NAE-SAT solutions into

the free variables of f, and Jf is a certain embedding

number of f.

From (9), we observe that conditioned on B, the

distribution of (nf)f is a multinomial. Moreover, fixing

B and s amounts to a linear constraint on the number

of free components (nf)f. Thus, calculating EZλ,s[B],

where Zλ,s[B] is the contribution to Zλ,s (cf. (4)) from

clusters having the boundary profile B, is equivalent to

calculating the probability of a large deviation event. We

thus introduce an exponential tilting factor and appeal

to local central limit theorem to compute EZλ,s[B] for

λ = λ(α) and s close to f
1RSB(α), which is a technique

often used in large deviations theory [41].

However, to sum up the EZλ,s[B] for different bound-

ary profiles B, we need to show that the negative

definiteness of the free energy of B, i.e. the leading

exponent of 1
n logEZλ,s[B]. In order to so, we use the

resampling method which we describe below.

2) The resampling method: The resampling method

was first introduced in [1] to show negative definiteness

of the free energy around its maximizer. The main

idea behind the method can be summarized as follows.

Given a NAE-SAT instance G and a frozen configuration

y ∈ {0, 1, f}n, sample small, say ε, fraction of variables

Y . We sample v ∈ Y far away from each other so

that each free tree containing v ∈ Y do not intersect.

Next, resample the spins around Y conditioned on the

configuration outside of depth 1 neighborhood of Y .

Then, the empirical profile should become closer to

the optimal profile, which is obtained by solving a

fixed point equation of a certain tree recursion called

belief propagation. The main issue is to quantify the

improvement coming from this local update procedure,

and it turns out that it is closely related to a convex tree

optimization.

However, the techniques from [1] are limited to the

analysis of spin systems with bounded number of spins.

In the untruncated partition function Zλ, the large trees

inevitably appear and we can no longer sample Y so that

the free trees around Y are guaranteed to never intersect.

In order to overcome this issue, we first show that the

frequency of large free trees decays exponentially in the

number of variables. We then appeal to this rareness of

the large free trees to show that if we sample |Y | = �εn�
vertices uniformly at random, the free trees around Y
do not intersect with good enough probability. Then,

we perform the resampling procedure O(1ε ) times. This

step is the most technically challenging part out of the

whole proof.

3) Achieving probability 1: One may hope to have

EN
2
s◦ ≈ (ENs◦)

2 to show that the right hand side

of (8) can be pushed near 1, but this is indeed false

in the case of random regular NAE-SAT. One of the

main reasons is that the existence of short cycles in

the graph causes multiplicative fluctuations of Ns◦ .

Therefore, our approach is to show that if we rescale

Ns◦ according to the effects of short cycles, then the

resulting rescaled partition function concentrates, that

is, E[Ñ
2

s◦ ] ≈ (EÑs◦)
2 (to be precise, this will only

be true when C is negative with a huge magnitude,
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due to the intrinsic correlations coming from the largest

clusters). Furthermore, we argue that the fluctuations

coming from the short cycles are not too big, and

hence can be absorbed by Ns◦ if ENs◦ is large. To

this end, we develop a new argument that combines the

ideas of small subgraph conditioning [42], [43] and the

Doob martingale approach [11], [7], [1], which are not

effective in our model if used alone.

The small subgraph conditioning method ([42], [43];

for a survey, see Chapter 9.3 of [44]) is proven to be

useful in many settings [45]–[47] to derive a precise

distributional limit of partition functions. Indeed, in

[46], this method was applied to the proper coloring

model of bipartite random regular graphs, where they

determined the limiting distribution of the number of

colorings. However, this method relies much on alge-

braic identities specific to the model which may not

robust and is not clear in the current model.

Another technique that inspired our proof is the

Doob martingale approach introduced in [11], [7].

This method rather directly controls the multiplicative

fluctuations of N, by investigating the Doob martingale

increments of logN. It has proven to be useful in the

study of the models like random regular NAE-SAT, as

seen in [1]. However, in the spin systems with infinitely

many spins like our model, some of the key estimates

in the argument become false, due to the existence of

rare spins which appear with probability o(1).

Our approach blends the two techniques in a novel

way to back up each other’s limitations. We derive

the algebraic identities required for the small subgraph

conditioning not in a combinatorial manner, but by a

modified Doob martingale approach for the truncated

partition function Zλ,L which has a finite spin space.

Then, we take L → ∞ limit on these algebraic identi-

ties, and show that they converge to the corresponding

formulas for the untruncated partition function EZλ.

This step requires a refined knowledge on the first

and second moments of Zλ,s including the constant

coefficient in front of the leading exponential term,

which was not needed in the earlier works [7], [1]. We

then appeal to the small subgraph conditioning method

to deduce the conclusion based on those identities.

4) Concentration of the overlap: Observe that for

two uniformly and independently drawn solutions x1, x2

from a random regular k-NAE-SAT instance, Theorem

I.1 shows that they can be contained either in the same

cluster or in different ones, each with strictly positive

probability. If they are from the same cluster, the set

of frozen variables in both solutions will be the same.

Moreover, from the moment computations, the number

of free trees will concentrate around an explicit value.

Since the 0/1-values for the free variables are assigned

independently for each free trees, we show that the

absolute value of the overlap concentrates on a single

value p�. On the other hand, if the two solutions are

from different clusters, the results from the second

moment computation show that the corresponding two

frozen configurations are near-independent and from the

0/1 symmetry of NAE-SAT model, we will conclude that

the overlap concentrates around 0.

The actual proof is more complicated than the de-

scription above, since we need to take account of

the free components containing a cycle. Based on our

methods, we develop a coupling argument between the

clusters containing cyclic free components and those

without cyclic components, which requires an extended

analysis on the moment computations.

The full version of this paper is available as an

online preprint.

(https://arxiv.org/abs/2011.14270).
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merjian, and L. Zdeborová, “Gibbs states and the set of
solutions of random constraint satisfaction problems,”
Proceedings of the National Academy of Sciences,
vol. 104, no. 25, pp. 10 318–10 323, 2007. [Online].
Available: https://www.pnas.org/content/104/25/10318

[4] D. Achlioptas, A. Naor, and Y. Peres, “Rigorous location
of phase transitions in hard optimization problems,”
Nature, vol. 435, no. 7043, pp. 759–764, 2005.
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transition in random hypergraph 2-coloring,” in Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, ser. SODA ’12. ACM, New
York, 2012, pp. 241–250.

[27] A. Coja-Oghlan and K. Panagiotou, “Catching
the k-NAESAT threshold [extended abstract],”
in STOC’12—Proceedings of the 2012 ACM
Symposium on Theory of Computing. ACM, New
York, 2012, pp. 899–907. [Online]. Available:
https://doi.org/10.1145/2213977.2214058

[28] D. Achlioptas and A. Naor, “The two possible values of
the chromatic number of a random graph,” Ann. of Math.
(2), vol. 162, no. 3, pp. 1335–1351, 2005. [Online].
Available: https://doi.org/10.4007/annals.2005.162.1335

317

Authorized licensed use limited to: Stanford University. Downloaded on August 19,2022 at 02:59:01 UTC from IEEE Xplore.  Restrictions apply. 



[29] A. Coja-Oghlan, “Upper-bounding the k-colorability
threshold by counting covers,” Electron. J. Combin.,
vol. 20, no. 3, pp. Paper 32, 28, 2013.

[30] A. Coja-Oghlan and D. Vilenchik, “Chasing the k-
colorability threshold,” in 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science—
FOCS ’13. IEEE Computer Soc., Los Alamitos,
CA, 2013, pp. 380–389. [Online]. Available: https:
//doi.org/10.1109/FOCS.2013.48

[31] A. Coja-Oghlan, C. Efthymiou, and S. Hetterich, “On the
chromatic number of random regular graphs,” J. Combin.
Theory Ser. B, vol. 116, pp. 367–439, 2016. [Online].
Available: https://doi.org/10.1016/j.jctb.2015.09.006

[32] A. Coja-Oghlan, F. Krz̧akała, W. Perkins, and
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