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Abstract—In a broad class of sparse random constraint
satisfaction problems (CSP), deep heuristics from statistical
physics predict that there is a condensation phase transition
before the satisfiability threshold, governed by one-step
replica symmetry breaking (1RSB). In fact, in random
regular k-NAE-SAT, which is one of such random CSPs,
it was verified [1] that its free energy is well-defined and
the explicit value follows the 1RSB prediction. However, for
any model of sparse random CSP, it has been unknown
whether the solution space indeed condensates on O(1)
clusters according to the 1RSB prediction. In this paper,
we give an affirmative answer to this question for the
random regular k-NAE-SAT model. Namely, we prove that
with probability close to one, most of the solutions lie inside
a bounded number of solution clusters whose sizes are
comparable to the scale of the free energy. Furthermore,
we establish that the overlap between two independently
drawn solutions concentrates precisely at two values. This
is the defining property of the one-step replica symmetry
breaking class which we establish for the first time in
a sparse random CSP. Our proof is based on a detailed
moment analysis of a spin system, which has an infinite
spin space that encodes the structure of solution clusters.
We develop new techniques to study the partition function
as well as enhance previous approaches which were only
applicable to spin systems with finitely many spins. We
believe that our method is applicable to a broad range of
random CSPs in the 1RSB universality class.

Keywords-random constraint satisfaction problems, ran-
dom regular NAE-SAT model, one-step replica symmetry
breaking, condensation phase transition

I. INTRODUCTION

A random constraint satisfaction problem (rCSP) is
defined by a collection of variables whose configuration
should satisfy a set of randomly chosen constraints.
Namely, there are n variables z = {x;} ; € X" taking
values in a finite alphabet set X, and they are subject
to m = an randomly drawn constraints. The major
interest is to understand the structure of the solution
space of rCSPs as m,m — oo while o being fixed.
Indeed, statistical physicists developed a deep but non-
rigorous theory to study these problems and conjectured
that in a wide class of rCSPs, there is a fascinating series
of phase transitions as « varies ([2], [3]; cf. [4] and

Chapter 19 of [5] for a survey). As we detail below,
the present paper focuses on investigating the solution
space structure when « is in the condensation regime,
for a rcSP model called the random regular k-NAE-SAT.

The canonical rCSP is random k-SAT, a random
Boolean CNF formula formed by taking the AND of
clauses, each of which is the OR of k variables or
their negations. A not-all-equal-satisfiability (NAE-SAT)
formula, has the same form as k-SAT but asks that both
x an assignment of the variables and —z its negation
evaluate to true in the formula. We call such formula
k-NAE-SAT if the clauses appearing in the CNF formula
have exactly k literals, and it is called d-regular if each
variable appears precisely in d clauses. One can then
choose a d-regular k-NAE-SAT problem of n variables
uniformly at random, which gives the random d-regular
k-NAE-SAT problem, with clause density o = d/k.
Compared to the k-SAT problem, the NAE-SAT problem
possesses extra symmetries that make it more tractable
from a mathematical perspective. Nevertheless, it is
predicted to belong to the same universality class of
rCSps as random k-SAT and random graph coloring,
and hence is expected to share the most interesting
qualitative behaviors with them.

Let Z = Z,, denote the number of solutions for a
given random d-regular k-NAE-SAT instance. Physicists
predict that for each fixed «, there exists f(«) such that

1
—logZ — f(«) in probability.
n
A direct computation of the first moment EZ gives that

fRS
()

EZ =27 (1—27F+1)" =
(@) =log2 + alog (1 —27FF1) |

where

(the superscript Rs refers to the replica-symmetric free
energy) and we see that f < f°, by Markov’s inequality.
The previous works of Ding-Sly-Sun [7] and Sly-Sun-
Zhang [1] established some of the physics conjectures
on the description of Z and f given in [8], [3], [9], which
can be summarized as follows.
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Figure 1: Figure adapted from [3], [6]. A pictorial description of the conjectured phase diagram of random regular k-NAE-SAT.
In the condensation regime (icond, Csat), there remains a bounded number of clusters containing most of the solutions.

e ([7]) For large enough k, there exists the satisfia-
bility threshold aigy = ay (k) > 0 such that

{

([1]) For large enough k, there exists the conden-
sation threshold ceond = Qcond(k) € (0, cigy) such

that
fla) = {

where " = f"(q) is the IRSB free energy.
Moreover, ¢ > ™% on (ond, ). For the
explicit formula and derivation of f***, we refer
to Section 1.6 of [1] for a concise overview.

1
0

for « € (0, cvgay);

for a > gyt

lim P(Z >0) =

n—oo

() for o < Qeond;

.I:lRSB(

ey

a) for a > qeond,

Furthermore, the physics predictions say that the
solution space of the random regular k-NAE-SAT is
condensed when « € (Qcond, sat) into a finite number
of clusters (Figure 1). Here, clusters are defined by the
connected components of the solution space, where we
connect two solutions if they differ by one variable. Our
first main result verifies the prediction for all £ > ko,
where kg is a universal constant. It is the first to provide
a rigorous cluster-level description of the solution space
of a sparse rCSP in the condensation regime.

Theorem L.1. Let k > ko and o € (Qicond, Qsar) Such
that d = ak € N. For all ¢ > 0 and M € N,
there exist constants K = K(e,a,k) € N and C =
C(M,e,a, k) > 0 such that with probability at least
1—e¢, the random d-regular k-NAE-SAT instance satisfies
the following:

(@) The number of solutions is no greater than

exp(nf™®(a) — ¢, logn + C), where £ is the
IRSB free energy and c, = ¢, (a, k) > 0 is a fixed
constant (see (6) for the definition).
The K largest solution clusters, C1,...,Ck, oc-
cupy at least 1 — € fraction of the solution space.
There are at least exp(nf™*(a) — ¢, logn — C)
many solutions in Cy,...,Cyp, the M largest clus-
ters.

(b)
(©
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We now briefly discuss the principles underlying the
condensation predictions which are helpful in under-
standing the main theorem. As shown in Figure 1,
the solution space of the random regular k-NAE-SAT
is predicted to be clustered into exponentially many
clusters with each of them occupying an exponentially
small mass when & € (lust, Qeond)- AS « gets larger
than cena(> @enst) (the condensation regime), the
solution space becomes condensed, which causes the
failure of the first moment analysis as seen in (1). When
@ € (cond, (sat), the number of clusters that contribute
the most to [EZ is exponentially small in n, meaning that
those clusters are no longer present in a typical instance
of the rcsp. Thus, the leading order of Z is given by
the largest clusters that can typically exist (which are
thus smaller than the main contributors to EZ), and
the number of such clusters is believed to be bounded.
Moreover, it is expected that the sizes of those clusters
are comparable to the 1RSB free energy.

Theorem 1.1 verifies that the solution space indeed
becomes condensed in the condensation regime, while
the previous works [10], [1] obtained the evidence
of the condensation phenomenon in the level of free
energy. Furthermore, it is believed that the nature of the
condensation is governed by one-step replica symmetry
breaking, which we detail in the following subsection.

Compared to the previous related works [6], [11],
[7], [1] in similar settings, we interpret the partition
function from a different perspective in order to acquire
information on the number of clusters of particular
sizes. Our approach requires a detailed analysis of an
auxiliary spin system with an infinite spin space, and
one of our major accomplishments is to develop new
ideas and generalize existing theories to understand such
a system.

A. One-step replica symmetry breaking

In the condensation regime o € (Qond, (sat), the
random regular k-NAE-SAT model is believed to possess
a single layer of hierarchy of clusters in the solution
space. Roughly speaking, the prediction is that within
a cluster, we can move from one solution to another
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by flipping one (or a small number of) variable(s) at
once, in such a way that the intermediate steps all
belong to the same cluster. Thus, the solutions are
fairly well-connected inside each cluster so that no addi-
tional hierarchical structure occurs in it. Such behaviors
are conjectured in various other models, called 1RSB
universality class, such as random graph coloring and
random k-SAT. However, we remark that there are also
other models such as maximum independent set (or
high-fugacity hard-core model) in random graphs with
small degrees [12] and Sherrington-Kirkpatrick model
(on the complete graph) [13], which are expected (or
proven [14]) to undergo full RSB, meaning that there are
infinitely many levels of hierarchy inside the solution
clusters.

One way to characterize 1RSB is to look at the over-
lap between two uniformly and independently drawn
solutions. In the condensation regime, since there are
a bounded number of clusters containing most of the
mass, with a non-trivial probability the two solutions
belong to the same cluster. According to the description
of IRSB, there is no additional structure inside each
cluster, and hence the Hamming distance between two
independently selected solutions is expected to be con-
centrated precisely at two values, depending on whether
they came from the same cluster or not.

Our second result verifies that this is indeed the
case for the random regular k-NAE-SAT with large k,
establishing for the first time a rigorous characterization
of 1RSB in sparse rCSPs.

Definition L.2. For z',2? € {0,1}", let y* = 2z' — 1.
The overlap p(z!, 2?) is defined by

1 1 &
vyt == ui
=1

Theorem L.3. Let k > ko, o € (Qconds Osar) Such
that d = ak € N. There exists an explicit constant
p* = p*(a, k) € (0,1) such that the following holds:
for all € > 0, there exists a constant § = 6(e) > 0
such that with probability at least 1 — ¢, the random d-
regular k-NAE-SAT instance ¢ satisfies the following.
Let x',x* € {0,1}" be independent, uniformly chosen
satisfying assignments given 9. Then, the absolute value
Pabs = |p| of their overlap p = p(zt, 2?) satisfies

@ P(pus < n 13| 9) > 5;

(b) P(‘pabs _p*‘ < n—1/3‘ g) >4

© P(min{pabm |pabs - p*|} > n_1/3| g) < n=1/3,

p(z', ) =

3|

We remark that in (b), p can take either p*+O(n~'/3)
or —p* +0(n~'/3) with asymptotically equal probabil-
ity as n — oo. This is due to the symmetric nature of
the NAE-SAT, where —z is also a solution if x is. Thus,
the clusters of solutions come in pairs as well: if C is a
cluster, then so is —C := {—z : z € C}.
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According to the physics predictions [3], the relative
sizes of the largest clusters in the rCSPs with 1RSB in
the condensation regime are conjectured to converge
to a Poisson-Dirichlet process. Although we provide a
cluster-level illustration of the solution space and show
that it follows the 1RSB prediction, our method is not
strong enough to study the limiting distributions of the
cluster sizes, and the conjecture is left as an important
open problem in the field.

Remark I.4. Although our definition of a cluster in
Theorem 1.1 is a connected component of the solution
space, our proof shows that Theorem I.1 also holds for a
slightly different definition of clusters, where we merge
the connected components if they differ in a small, say
log n, number of variables. The conjectured description
of cluster sizes according to Poisson-Dirichlet process
actually corresponds to the latter definition of clusters.

B. Related works

Earlier works on rCcSPs focused on determining their
satisfiability thresholds and verifying the sharpness of
SAT-UNSAT transitions. For rCSP models that are known
not to exhibit RSB, such goals were established. These
models include random 2-SAT [15], [16], random 1-IN-
k-SAT [17], k-XOR-SAT [18]-[20], and random linear
equations [21]. On the other hand, for the models which
are predicted to display the condensation phenomenon,
intensive studies have been conducted to estimate their
satisfiability threshold, as shown in [22]-[24] (random
k-SAT), [25]-[27] (random k-NAE-SAT), and [28]-[31]
(random graph coloring).

The satisfiability thresholds for rCSPs with RSB have
been rigorously determined in several models (random
regular k-NAE-SAT [7], maximum independent set [11],
random regular k-SAT [24] and random k-SAT [6]),
where they looked at the number of clusters instead
of the number of solutions and carried out a demanding
second moment method. Although determining the lo-
cation of colorability threshold is left open, the conden-
sation threshold for random graph coloring was settled
in [10], where they conducted a technically challenging
analysis based on a clever “planting” technique, and the
results were further generalized to other models in [32].
Similarly, [33] identified the condensation threshold for
random regular k-SAT, where each variable appears d/2-
times positive and d/2-times negative.

Further theory was developed in [1] to establish the
IRSB free energy prediction for random regular k-NAE-
SAT in the condensation regime. However, [1] was not
able to present a cluster-level description of an rCSP
instance, nor to explain the nature of the condensation
phenomenon. Our main contribution is to illustrate the
solution space of the random regular NAE-SAT instance
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Figure 2: A description of X(s;«) in s for different values of «. In the left, the curves correspond to the different values of
a, with (A) a € (Qelust, Ceond)s (B) @ € (teond, sar), and (C) a > cusar, With the gray lines depicting the locations of si. In the

right, curve (B) is shown with the values s; and s,.

at the cluster-level and to verify that its condensation is
governed by 1RSB.

Lastly, the recent work [34] studied the random k-
MAX-NAE-SAT beyond ag,, where they verified that
the 1RSB description breaks down before o =< k=34F.
Indeed, the Gardner transition from 1RSB to FRSB is
expected at agy < E=34F > ag [35], [36], and [34]
provides evidence of this phenomenon.

C. Heuristic description of condensation

We briefly overview what happens in an rCSP in 1RSB
class as the clause density « = d/k varies, as well as a
heuristic illustration of condensation.

When « is fairly small, most of the solutions lie inside
a single well-connected cluster (in the sense explained
in Section I-A). As « becomes larger than oy, the
clustering threshold, the solution space becomes shat-
tered into exponentially many clusters, each containing
exponentially many solutions yet exponentially small
compared to the whole solution space. In this regime,
define X(s) = X(s; ), the cluster complexity function,
as

exp(nX(s)) = expected number of clusters of size e"°.

Indeed, the number of size—e™* clusters is believed to be
concentrated around its mean ¢">(*), Thus, the expected
number of solutions can be written as

EZ — Zexp(n{s + %(s)})

= exp(n - max{s + X(s) : s > 0}),

where = denotes the equality up to the leading expo-
nential order. The function X(s; ) is believed to be
smooth and concave in s for each fixed «, and indeed
physicists predict an explicit formula for ¥(s) via the
IRSB cavity method [3], [5]. Hence, if this is the case,
we have that

EZ = exp(n{s; + X(s1)}),
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where s; si(a) > 0 is the unique solution of
¥/ (s1;) = —1. However, if X(s1;a) < 0, meaning
that the expected number of size—e™®' clusters are
exponentially small, those clusters are unlikely to exist
in a typical instance and hence the main contribution to
Z is given by

7Z = exp(n{s« + 2(sx)}),
where s, is defined as

Sy = Si(a) = argmax{s + X(s) : (s) > 0}. (2)
S

This is the regime where the condensation phenomenon

occurs, and hence the condensation threshold ocong 18

defined by

Qcond = max{a : X(s1(a);a) >0}

= max{a : s,(a) > s1(a)}.

Thus, for o > aeong, typically we have Z < EZ, which
causes the failure of the second moment method applied
to Z.

For o beyond the satisfiability threshold ayy, the
problem becomes unsatisfiable (Z 0) with high
probability, where o, is given by

Qg = min{a : B(s; ) <0 for all s}.

An illustration of the above discussion is given in
Figure 2. We can also see that when & € (cond, Qsat)>
Y (s4(a); @) = 0, implying that the primary contribution
to Z should come from a bounded number of clusters
of size roughly e™®*, whereas if o < qcong the leading
term consists of the clusters of size roughly e™*' whose
numbers are exponentially large. Indeed, in the latter
case Z becomes concentrated around EZ [25]-[27] and
the overlap is expected to concentrate around one point
as opposed to two points, stated in Theorem 1.3.

Authorized licensed use limited to: Stanford University. Downloaded on August 19,2022 at 02:59:01 UTC from IEEE Xplore. Restrictions apply.



As k — oo, asymptotic values of the thresholds are
known to be

Qeond = (2"71 — 1) log 2 + 0k (1),
1
= (21— ———)log2 1).
Csat ( 2 4log2) 0g2+ox(1)

The known upper bound for aqs [37] tells us that it
is relatively much smaller than oong and agy if k is
large. Moreover, o, 1S believed to coincide with the
reconstruction threshold, where we refer the readers to
[38], [3], [39], [40] for further information.

D. Tilted cluster partition function and encoding clus-
ters

The main object of study in the present paper shares
the same spirit as [1], and its derivation is based on the
ideas discussed in Section I-C. We consider the tilted
cluster partition function Zy, defined as

Z/\ = Z |T|’\,
T

where the sum is taken over all clusters Y. If we
compute EZ), for X = Ma) = —Y/(s4;a) (with
s, as in (2)), then we see that the main contribution
comes from the clusters of size e™*+, following the
same reasoning as Section I-C. Thus, we expect to have
Z, = EZ,, and indeed [1] carried out challenging
moment computations in a similar setting to obtain the
IRSB free energy " for random regular k-NAE-SAT.

The next issue is to obtain a combinatorial represen-
tation of a cluster. We follow the coarsening algorithm,
which is an inductive process starting from a solution x
that sets a variable in z to be £ (free) one by one, if no
clause is violated when the variable is flipped (that is,
0 — 1 or 1 — 0). Then, it was observed in [7], [1] that
the resulting frozen configuration y = y(z) € {0,1, £}
obtained by such a procedure serves as a good repre-
sentation for a cluster.

To study the size of a cluster, we adapt the framework
from [1] to count the number of ways to assign 0/1-
values to free variables in a frozen configuration, which
we detail as follows. In the regime of our interest, an
important observation is that most of the variables in
a solution z are frozen (so that those variables cannot
be flipped in the solution space), while a small constant
fraction of them are free. Thus, in a frozen configuration
y € {0,1, £}", the connected structure among the free
variables (and their neighboring clauses) would mostly
look like trees that are not too large. Heuristically,
they can be thought of subcritical branching processes,
so the maximal connected free component will have
size O(logn). In [1], they utilize the idea of belief
propagation from statistical physics to effectively count
the number of NAE-SAT assignments on a given tree of
free variables.

3
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The previous work [1] studied the truncated partition
function z,\ L, which only counts the contributions from
the clusters whose free components are frees of size
at most some finite threshold L. Again based on the
branching process heuristics, there is always a constant
probability for a subcritical branching process to be
larger than L, and hence we may expect that

Zy 1 = e "7y,

where 6(L) — 0 as L tends to infinity. Thus, they inves-
tigated the moments of z,\, 1, and let L — oo to deduce
the conclusion on the free energy of the original model.
Imposing the finite-size truncation played a crucial role
in their work, since it makes the space of free trees to
be finite so that some of the important methods from the
earlier works [6], [11], [7] are applicable without signif-
icant changes. However, to obtain Theorem 1.1, working
with the truncated model is insufficient, since we cannot
afford the cost of e~ for any small § > 0. In the
following subsection, we describe a brief overview on
the ideas to overcome such difficulties along with an
outline of the proof.

E. Proof ideas
The major difficulties in understanding the solution
space in the cluster-level can be summarized as follows.

1) In addition to investigating Zy, we need to study
the contributions from clusters of sizes in a con-
stant window [, e"st1):

ZA,S — Z |T|/\ ]l{|T| e [ens’ens-‘rl)}.
T

“4)

2) As mentioned above, it is required to work with
the full space of free trees which is infinite.
The ideas to overcome the difficulties above is explained
in Section I-E1 below.

In fact, we first compute the first and second moments
of Zy s for A = M) = —Y/(s,;a) and s sufficently
close to the free energy f'*** (). Let N, denote the num-
ber of clusters whose size is in the interval [e"*, e™$T1):

No = > I{|T] € [e"*,e" )}
T

Since e**im < "N, < ZA,S, a successful compu-
tation of first and second moments of Z,\’S will give us
information on N, based on the second moment method.

Indeed, we show that for |s — "% ()| = O(n=%/3),
]EZ,\(Q))S equals up to constant

NG exp (n/\(a)flRSB(a)) .

Thus, in order for EN, =< 1 which we expect from the
discussion in Section I-C, we must take s to be

EZA(Q)’S = (5)

¢y logn

C
S0 = 5o(n,a,0) =" () — =——"+ = where
n n
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e = (2M(a)) 7, 6)

and C' € R is a constant which does not depend on
n. Moreover, we show that the second moment can be
bounded by

ENSO Sk 6—2/\(04)0 +6_>\(Q)C.

)

Therefore, the estimates (5), (7) and the Paley-Zygmund
inequality imply

liminf P (Ny, > 1) >0 (8)
n—oo

for any C' € R. The equations (5), (7), (8) will serve as
the building blocks of the proof of Theorem I.1.

In the rest of the Section, we describe the high-level
ideas on how to compute the first and second moment
of z/\(a),so’ and to establish Theorem 1.1 and 1.3 from
such computations.

1) Moment computations: The previous approaches
in [6], [11], [7], [1] to study the moments of Zy were
to decompose the quantity into the contributions from
different types of “local neighborhood profile” of con-
figurations. However, in our case which has infinitely
many types of free components, such methods do not
give a good enough understanding on Z,, since the
Stirling approximations which were crucial in the earlier
works are no longer precise.

Instead, we focus on computing the cost of containing
each type of free component inside a cluster. One of the
interesting observations we make is that conditioned on
the “boundary profile” of non-free variables and clauses,
the profile of free components is essentially given as the
result of independently throwing in each type of free
component with a prescribed probability.

In an informal manner, we describe this crucial ob-
servation for the first moment analysis. Denote B by
the boundary profile, which is a collection of empirical
measures of certain “types” of non-free variables and
clauses, and denote m; by the number of the free
component f. Let Z[B, (n;);] be the contribution to Zy
(cf. (3)) from the clusters having the boundary profile
B and the number of free components (7). Then, we

show that
7(f) i
) Jf’LU;\) :|

(©))
where g(n, B) is a certain explicit function of n and B,
~(f) + 1 equals the number of tree-excess edges of f,
wy is the number of ways to fill NAE-SAT solutions into
the free variables of f, and Jj is a certain embedding
number of .

From (9), we observe that conditioned on B, the
distribution of (n;); is a multinomial. Moreover, fixing
B and s amounts to a linear constraint on the number
of free components (n)s. Thus, calculating EZ, s[B].

EZy [B. (n)f] = g(n, B) ]| [1

ns!
§ f

e

(

n

)
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where Z [B] is the contribution to Zy s (cf. (4)) from
clusters having the boundary profile B, is equivalent to
calculating the probability of a large deviation event. We
thus introduce an exponential tilting factor and appeal
to local central limit theorem to compute EZ) ¢[B] for
A = A(a) and s close to f"**(«), which is a technique
often used in large deviations theory [41].

However, to sum up the EZ, ,[B] for different bound-
ary profiles B, we need to show that the negative
definiteness of the free energy of B, i.e. the leading
exponent of 1 logEZ, [B]. In order to so, we use the
resampling method which we describe below.

2) The resampling method: The resampling method
was first introduced in [1] to show negative definiteness
of the free energy around its maximizer. The main
idea behind the method can be summarized as follows.
Given a NAE-SAT instance ¢ and a frozen configuration
y € {0,1, £}", sample small, say ¢, fraction of variables
Y. We sample v € Y far away from each other so
that each free tree containing v € Y do not intersect.
Next, resample the spins around Y conditioned on the
configuration outside of depth 1 neighborhood of Y.
Then, the empirical profile should become closer to
the optimal profile, which is obtained by solving a
fixed point equation of a certain tree recursion called
belief propagation. The main issue is to quantify the
improvement coming from this local update procedure,
and it turns out that it is closely related to a convex tree
optimization.

However, the techniques from [1] are limited to the
analysis of spin systems with bounded number of spins.
In the untruncated partition function Z,, the large trees
inevitably appear and we can no longer sample Y so that
the free trees around Y are guaranteed to never intersect.
In order to overcome this issue, we first show that the
frequency of large free trees decays exponentially in the
number of variables. We then appeal to this rareness of
the large free trees to show that if we sample |Y| = |en |
vertices uniformly at random, the free trees around Y
do not intersect with good enough probability. Then,
we perform the resampling procedure O(%) times. This
step is the most technically challenging part out of the
whole proof.

3) Achieving probability 1: One may hope to have
IEN?O (ENg,)? to show that the right hand side
of (8) can be pushed near 1, but this is indeed false
in the case of random regular NAE-SAT. One of the
main reasons is that the existence of short cycles in
the graph causes multiplicative fluctuations of Nj_.
Therefore, our approach is to show that if we rescale
N,, according to the effects of short cycles, then the
resultin% rescaled partition function concentrates, that
is, E[N,.] =~ (EN,,)? (to be precise, this will only
be true when C is negative with a huge magnitude,

~
~
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due to the intrinsic correlations coming from the largest
clusters). Furthermore, we argue that the fluctuations
coming from the short cycles are not too big, and
hence can be absorbed by N, if EN,, is large. To
this end, we develop a new argument that combines the
ideas of small subgraph conditioning [42], [43] and the
Doob martingale approach [11], [7], [1], which are not
effective in our model if used alone.

The small subgraph conditioning method ([42], [43];
for a survey, see Chapter 9.3 of [44]) is proven to be
useful in many settings [45]-[47] to derive a precise
distributional limit of partition functions. Indeed, in
[46], this method was applied to the proper coloring
model of bipartite random regular graphs, where they
determined the limiting distribution of the number of
colorings. However, this method relies much on alge-
braic identities specific to the model which may not
robust and is not clear in the current model.

Another technique that inspired our proof is the
Doob martingale approach introduced in [11], [7].
This method rather directly controls the multiplicative
fluctuations of N, by investigating the Doob martingale
increments of log N. It has proven to be useful in the
study of the models like random regular NAE-SAT, as
seen in [1]. However, in the spin systems with infinitely
many spins like our model, some of the key estimates
in the argument become false, due to the existence of
rare spins which appear with probability o(1).

Our approach blends the two techniques in a novel
way to back up each other’s limitations. We derive
the algebraic identities required for the small subgraph
conditioning not in a combinatorial manner, but by a
modified Doob martingale approach for the rruncated
partition function Z, ; which has a finite spin space.
Then, we take L. — oo limit on these algebraic identi-
ties, and show that they converge to the corresponding
formulas for the untruncated partition function EZy.
This step requires a refined knowledge on the first
and second moments of Z, , including the constant
coefficient in front of the leading exponential term,
which was not needed in the earlier works [7], [1]. We
then appeal to the small subgraph conditioning method
to deduce the conclusion based on those identities.

4) Concentration of the overlap: Observe that for
two uniformly and independently drawn solutions z', z2
from a random regular k-NAE-SAT instance, Theorem
I.1 shows that they can be contained either in the same
cluster or in different ones, each with strictly positive
probability. If they are from the same cluster, the set
of frozen variables in both solutions will be the same.
Moreover, from the moment computations, the number
of free trees will concentrate around an explicit value.
Since the 0/1-values for the free variables are assigned
independently for each free trees, we show that the
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absolute value of the overlap concentrates on a single
value p*. On the other hand, if the two solutions are
from different clusters, the results from the second
moment computation show that the corresponding two
frozen configurations are near-independent and from the
0/1 symmetry of NAE-SAT model, we will conclude that
the overlap concentrates around 0.

The actual proof is more complicated than the de-
scription above, since we need to take account of
the free components containing a cycle. Based on our
methods, we develop a coupling argument between the
clusters containing cyclic free components and those
without cyclic components, which requires an extended
analysis on the moment computations.

The full version of this paper is available as an
online preprint.

(https://arxiv.org/abs/2011.14270).
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