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ABSTRACT

In the Ross Sea sector of Antarctica, periodic large-scale marine ice-sheet fluctuations
since the mid-Miocene are recorded by drill core and seismic data, revealing a dynamic
ice-sheet response to past increases in temperature and atmospheric CO,. In the adjacent,
predominantly ice-free McMurdo Dry Valleys (MDVs), preserved terrestrial landscapes re-
flect persistent cold conditions and have been interpreted as indicators of a stable polar ice
sheet, implying that the Antarctic Ice Sheet was largely insensitive during past warm periods.
These disparate data-based perspectives highlight a long-standing debate around the past
stability of the Antarctic Ice Sheet, with direct implications for the future ice-sheet response
to ongoing climate warming. We reconcile marine records of dynamic ice-sheet behavior
and episodic open-marine conditions with nearby ancient terrestrial landscapes recording
consistent cold-polar conditions. Coupled ice-sheet and regional climate models nested at a
high resolution are used to investigate surface temperatures in the MDVs during past warm
periods. We find that high-elevation regions of the MDVs remain below freezing even when
ice-free conditions prevail in the nearby Ross Sea. We compare observed landscapes with the
spatial extent of modeled persistent cold conditions required for preservation of these ancient
features, demonstrating that frozen MDVs landscapes could have coexisted with receded or
collapsed ice sheets during past warm periods.

INTRODUCTION

Drill-core reconstructions and seismic
surveys record dynamic ice-sheet behavior
throughout the late Miocene and Plio—Pleis-
tocene. In the Ross Sea, Antarctica, episod-
ic marine ice expansion created large-scale
unconformities across the continental shelf
(e.g., Anderson and Bartek, 1992; Brancolini
et al., 1995; De Santis et al., 1995; Bart et al.,
2000), alternating with ice-free periods during
warm interglacials. At the ANtarctic DRILL-
ing Project (ANDRILL) core site 1B (A1B in
Fig. 1C), multi-proxy sedimentary and micro-
paleontology investigations have reconstructed
periodic open-marine hemipelagic and pelag-
ic sedimentation within a productive ice-free
ocean environment (Fig. 1A; Naish et al., 2009;
Rosenblume and Powell, 2019). Although gla-
cial sedimentation at the ANDRILL-1B site
is primarily sourced from East Antarctic Ice
Sheet (EAIS) outlet glaciers, numerical mod-
eling suggests that open-marine conditions

at the drill site reflect a receded or even col-
lapsed West Antarctic Ice Sheet (WAIS; Pol-
lard and DeConto, 2009). The combination of
drill-core data, seismic records, and ice-sheet
modeling demonstrates that the Antarctic ice
sheets are sensitive to relatively small CO, and
temperature fluctuations and receded during
past warm periods (Bart and Anderson, 2000;
Naish et al., 2009; Pollard and DeConto, 2009;
Gasson et al., 2016; Levy et al., 2016).

Less than 100 km away from the ANDRILL-
1B site, along the coast of the Transantarctic
Mountains, the McMurdo Dry Valleys (MDVs;
Fig. 1C) are a primarily ice-free region bound-
ed to the west by the EAIS and to the east by
the Ross Sea and the seasonally open waters of
McMurdo Sound. The MDVss are characterized
by high local relief (elevations range from sea
level to ~2800 m) and are dominated by large
east-west-trending valleys that once hosted out-
let glaciers draining the EAIS into McMurdo
Sound. Numerous studies have documented the

presence of well-preserved cold-climate land-
forms and sedimentary deposits in the MDV's
(Fig. 1B). These features lack evidence for sur-
face modification from glacial advance or cryo-
turbation, suggesting that cold-desert conditions
have persisted in high-elevation sectors of the
MDVs since the Pliocene (Sugden and Denton,
2004; Marchant and Head, 2007) or possibly
mid-Miocene (Lewis et al., 2007). These relict
terrestrial features have prompted the inference
that the EAIS did not recede significantly past
its modern configuration during past warm pe-
riods (e.g., Sugden et al., 1993) and therefore
may be less susceptible to climate perturbations
in the future.

We attempt to reconcile these conflicting
perspectives on large-scale ice-sheet behavior
by revisiting the terrestrial and marine records
underpinning these assumptions about the sta-
bility of past ice sheets and their imprint on
the terrestrial geomorphic record. We employed
coupled ice-sheet and climate models, quasi-
equilibrated under warm boundary conditions
such as those reconstructed at the ANDRILL-
1B site, to reproduce surface temperatures in the
MDVs. We identify the environmental condi-
tions that could have preserved these ancient
terrestrial landscapes while also remaining
compatible with the dynamic marine geologic
record.

NESTED CLIMATE MODELING

We employed representative model snap-
shots of ice sheets and climate under warm
interglacial boundary conditions. Ice-sheet
model evolution is driven by temperature and
precipitation from an asynchronously coupled
climate model with elevated CO, and orbital
parameters favorable for Antarctic deglaciation
(Halberstadt et al., 2021). Here we imposed a
modern MDYV ice-free configuration (Fig. 2B;
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Figure 1. Dynamic glacial variability in McMurdo Sound and landscape preservation in the McMurdo Dry Valleys (MDVs), Antarctica. (A) Facies
variability at ANtarctic DRILLing Project (ANDRILL) site 1B (A1B; 77.89°S, 167.09°E) with tie points (wavy lines) to geomagnetic polarity time
scale (black and white bars represent global polarity chrons). Gaps reflect discontinuous core recovery. Environmental conditions range
from full glaciation to warm ice-free interglacials; glacial proximity varies between ice-contact (i), ice-proximal (p), ice-distal (d), and marine
(m) environments, reflecting dynamic Ross Sea ice-sheet behavior (Naish et al., 2009; Rosenblume and Powell, 2019). (B) Ages of relict land-
scapes across the same time period from various studies. Gray bars therefore indicate the time period of landscape stability. Any reported
age errors are represented by the gray whisker plot or labeled accordingly. Locations of features a—h are shown in Figure S5 and described
further in Table S1 (see footnote 1). (C) Location of site A1B and MDV landforms and deposits (black diamonds). WAIS—West Antarctic Ice

Sheet; EAIS—East Antarctic Ice Sheet.

see the Supplemental Material') and performed
nested regional climate model simulations over
the MDVs region that downscale coarser cli-
mate model output to a 10 km grid resolution.
Model CO, concentrations (280 and 460 ppm)
fall within the range of geologic proxies for the
Miocene and Plio—Pleistocene (Rae et al., 2021).
The absolute value of CO, in our modeling ap-
proach is dependent on climate model physics,
so CO, concentrations should be considered
relative and not absolute; we interpret our 280
and 460 ppm simulations as representative of
two possible warm interglacials during this time

!Supplemental Material. Additional details on the
numerical climate and ice-sheet modeling methods, the
impact of prevailing wind patterns on MDVs climate,
temperature dependence on regional ice sheet geometry,
the compilation of MDVs landforms and sedimentary
deposits, and modeled snow accumulation. Please visit
https://doi.org/10.1130/GEOL.S.18822092 to access
the supplemental material, and contact editing@
geosociety.org with any questions.
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period. We also included an additional 690 ppm
simulation as a “high-CO,” scenario. Compari-
son with modern meteorological observations
provides confidence that our modeling approach
can robustly represent the complex climatology
of the MDVs (see the Supplemental Material).

RELICT LANDSCAPES AND
PALEOCLIMATIC IMPLICATIONS

Ancient landscapes in the MDVs can serve
as paleoclimate indicators, reflecting environ-
mental conditions at the time of formation as
well as subsequent temperature and precipita-
tion patterns.

Across the highest elevations in the MDVs,
in the upland frozen zone (UFZ), mean daily
maximum summer air temperatures and soil
temperatures have remained well below freez-
ing (Marchant and Head, 2007). Unique fea-
tures that form and remain intact under UFZ
conditions include cold-based drift deposits
and sublimation tills associated with cold-based

glaciation, as well as stable rectilinear ice-ce-
mented slopes.

Cold-based glaciers and their resultant cold-
based drift lack the glacial abrasions, striations,
and polishing that are commonly associated with
wet-based basal conditions. Post-depositional
wet-based or supraglacial conditions with
significant melt production would result in strat-
ified outwash deposits and reworking of cold-
based drift deposits, which is not observed in
the UFZ. Sublimation of cold-based glaciers in
the UFZ produces sublimation till commonly
superimposed by sublimation polygons formed
from the thermal contraction of underlying mas-
sive ice. Long-term preservation of sublimation
polygons requires climatic conditions that pro-
hibit the formation of a true active layer in the
soil, characterized by percolation of liquid wa-
ter into the thermal contraction crack (Sugden
et al., 1993; Marchant et al., 2002; Marchant
and Head, 2007). Mean summer atmospher-
ic temperatures below —3 °C are required to
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Figure 2. Nested high-resolution climate modeling of the McMurdo Dry Valleys (MDVs), Antarctica. Star denotes location of the ANDRILL-1B
core site, which was ice free during past warm periods. (A) Continent-wide ice-sheet configurations during past warm interglacials (Halber-
stadt et al., 2021) used as boundary conditions for our nested climate models (see the Supplemental Material [see footnote 1]). (B) Ice-free
MDVs mask (white) imposed on our 10-km-resolution paleoclimate model simulations, shown relative to modern ice sheet configuration
(Morlighem et al., 2019). (C-E) Modeled mean summer temperatures (DJF—December-January-February) across the MDVs under 280 ppm,

460 ppm, and 690 ppm CO,, respectively.

prevent modification of these landscapes via
supraglacial melt (Lewis et al., 2008).

Stable rectilinear ice-cemented slopes have
also been identified throughout the MDVs. The
top 10-50 cm of unconsolidated deposits typi-
cally overlies an ice-cemented layer. Sufficient
thawing of this layer or surface meltwater produc-
tion upslope would likely induce sliding and is
estimated to occur if modern mean summer soil
surface temperatures increase to a range between
—5°Cto —1 °C (Swanger and Marchant, 2007).

The pristine preservation and ancient ages
of these UFZ landscapes rule out the past oc-
currence of active cryoturbation, supraglacial
melt, and slope destabilization, which are as-
sociated with mean summer surface tempera-
tures above approximately —3 °C. The presence
of these preserved features also excludes past
glacial advance across these landscapes. UFZ
landscapes have thus been used to support ar-
guments for Antarctic ice-sheet stability since
the mid-Miocene (e.g., Sugden et al., 1993;
although other terrestrial evidence from the

Transantarctic Mountains has been interpreted
to indicate marine flooding of EAIS basins;
Webb and Harwood, 1987).

LANDSCAPE PRESERVATION DURING
PAST WARM PERIODS

Under warm boundary conditions, our model
simulates frozen high-elevation regions of the
MDVs at CO, levels consistent with proxy re-
constructions, despite open marine conditions in
the nearby McMurdo Sound (Figs. 2C and 2D).

The modeled relationship between summer
temperature and elevation under past warm condi-
tions resembles that of a present-day climatology
translated to a warmer mean state, regardless of

(1) Large-scale prevailing wind patterns. De-
spite the intermixing of onshore and offshore
winds across the MDVs, a generally linear rela-
tionship is observed between summer tempera-
ture and elevation (Fig. 3; see the Supplemental
Material).

(2) Microclimate variability. Complex topog-
raphy and intermixing winds in the MDV's create
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microclimate zones observed today. Although
modern microclimate variability generally oc-
curs below the resolution of our 10 km simu-
lations (cf. Doran et al., 2002), nested climate
modeling under modern boundary conditions
is able to adequately replicate modern meteo-
rological measurements (Fig. S2). We therefore
conclude that our modeled elevation-dependent
summer temperature pattern is robust.

(3) Ice configuration surrounding the MDVs.
Sensitivity experiments with and without a
surrounding ice mass over the Transantarctic
Mountains (see the Supplemental Material; Fig.
S4) show that glacial proximity does not exert
a primary control on maintaining persistently
cold upland regions.

We leverage the observed elevation-depen-
dent summer temperature pattern to extrapolate
model results onto the modern topography at
an even higher resolution. For each modeled
climate, we identified a representative elevation
characterizing the —3 °C isotherm (Fig. 3).
Isotherm elevations were used to identify the
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Figure 3. Mean summer
temperature versus ele-
vation under past warm
boundary conditions in
the McMurdo Dry Valleys,
Antarctica. To compare
similar regions across dif-
ferent CO, levels (280 ppm,
460 ppm, and 690 ppm),
we plot only grid cells
contained by a modern
ice-free mask. Modern
climate model results are
similar to high-resolution
weather prediction model
M output over the McMurdo
“ Dry Valleys (gray; Antarc-

-25

Temperature (°C)

tic Mesoscale Prediction
System [AMPS] model
at 0.89 km resolution;
Powers, 2012) that is aver-

aged across three different days (15 December 2017, 15 January 2018, and 15 February 2018)
to approximate December-January-February (DJF) average temperature. Isotherm elevations
are identified (horizontal dashed lines) where least-squares fit lines intersect -3 °C degrees.

spatial extent of modeled cold zones (Fig. 3)
where air temperatures remained below —3 °C
throughout the summer during past warm in-
terglacials, precluding landscape modification.

Relict landscapes in the MDVs are gener-
ally observed only at high elevations (Fig. 4),
indicating that climatic conditions supporting
landscape preservation were restricted to MDV
uplands during the warmest interglacials (March-
ant and Head, 2007). Model results are consis-
tent with an elevation-based stability transition
across the MDVs, separating regions of landscape
modification from those of landscape preserva-
tion; persistently cold temperatures existed at
high elevations while valley floors experienced
summer thaw (Fig. 4). A spatial comparison be-
tween modeled cold zones and a compilation of
mapped MDYV landforms and deposits (see the
Supplemental Material) underscores the climatic
sensitivity of these features to warm conditions
(Fountain et al., 2014). We find that the oldest
preserved landscapes are broadly situated along

the fringes of modeled cold zones and are not
present at elevations significantly below the mod-
eled —3 °C isotherm under 280 and 460 ppm
CO, boundary conditions. Under the “high-CO,”
scenario (690 ppm CQO,), the —3 °C isotherm oc-
curs significantly higher than all relict landscapes
(Fig. 4), suggesting that those conditions have not
been experienced since the mid-Miocene. The
“high-CO,” scenario is further incompatible with
the MDVs geologic record because it produces
significant snow accumulation, which could have
supported glacial advance and landscape modi-
fication, while the 280 and 460 ppm simulations
maintain generally ice-free conditions across
MDYV uplands (see the Supplemental Material).

RECONCILING HIGH-ELEVATION
LANDSCAPE PRESERVATION WITH
DYNAMIC ICE-SHEET BEHAVIOR

We find that persistent cold conditions in high-
elevation regions of the MDVs can coexist with
receded sections of the EAIS, a reduced or col-

Figure 4. Spatial compar-
ison between modeled
cold zones and mapped
relict landscapes in the
McMurdo Dry Valleys, Ant-
arctica, with ages labeled
in Ma (see the Supplemen-
tal Material [see footnote
1] for landscape compila-
tion and an explanation
of confidence rankings).
Topography is from
Morlighem et al. (2019).
FG—Ferrar Glacier; TV—
Taylor Valley; WV—Wright
Valley. Additional location
context is shown in Figure

. Debris-covered cold-based glacier / Sublimation polygon (highest confidence)
0 Rectilinear slope (medium confidence)

{ Cold based drift and/or cold-based glacier (lowest confidence)

690 ppm CO, S5 in the Supplemental
460 pom €O, Material.
280 ppm CO,
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lapsed WAIS, and an open marine Ross Sea. If we
extrapolate this finding to other ice-free regions
around Antarctica, we can similarly reconcile
large-scale ice-mass loss during past warm peri-
ods with persistent polar desert conditions at other
high-elevation ice-free locations since the mid-
Miocene across Antarctica (Bibby et al., 2016;
Spector and Balco, 2020). We note that landscape
preservation does not require a present-day EAIS
configuration during past warm periods; our 460
ppm model member shows substantial ice loss in
the Wilkes Subglacial Basin (Fig. 2A).

Because temperature patterns are primarily
controlled by elevation, climate across the MDV's
warms uniformly with elevated atmospheric CO,
and coastal warmth, and the zone of persistently
cold temperatures migrates upland (Figs. 3 and
4). We can therefore use the distribution of relict
frozen landscapes in the MDVs to establish an
upper limit of climate warming during past warm
periods. For example, the extreme “high-CO,”
scenario (690 ppm CO,; Fig. 2E) restricts persis-
tent cold conditions to the very tops of mountain
peaks and would have exposed relict landscapes
to potential thaw (as well as glacial advance; see
the Supplemental Material).

‘We have demonstrated that dynamic Antarctic
ice sheets during past warm periods are compat-
ible with persistent cold conditions in the MDV
uplands; this finding reconciles previously con-
tradictory data sets but does not conclusively rule
out a large and stable EAIS during past warm
climates. To better understand past (and future)
ice-sheet stability, potentially divergent responses
of the WAIS and EAIS to environmental forc-
ings should be considered. For example, increased
precipitation during past warm periods may have
contributed to positive surface-mass balance over
the EAIS (Hall et al., 2015) while warming ocean
temperatures, global sea-level rise, and surface
melt on ice shelves may have destabilized the
WAIS and marine-based sectors of the EAIS (e.g.,
DeConto and Pollard, 2016; Gomez et al., 2020).
Although terrestrial and marine ice sheets can be
susceptible to divergent feedbacks under warm
climates, increasing geologic evidence suggests
that large portions of the EAIS likely deglaciated
during past warm periods (e.g., Cook et al., 2013;
Grant et al., 2019) while still preserving ancient
landscapes in high-elevation regions of the MDVs.

SUMMARY

High-elevation landscape preservation in
the MDVs indicates sustained cold-desert
conditions; these landscapes have been used
to infer EAIS stability since the mid-Miocene.
By demonstrating that frozen MDYV landscapes
could have coexisted with open marine condi-
tions in the nearby McMurdo Sound during
past warm periods, we reconcile the possible
preservation of ancient MDVs landscapes
with dynamic marine and terrestrial ice-sheet
fluctuations.
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Nested high-resolution climate modeling of
the MDVs under past warm interglacial condi-
tions reveals elevation-based cold zones char-
acterized by persistent sub-zero temperatures.
These modeled cold zones protect high-eleva-
tion MDV landscapes, but only below a CO,
threshold. Thus, relict landscapes in the MDV's
provide a valuable constraint on Antarctic warm-
ing in the geologic past.
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