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Abstract-- Within the deregulation process of distribution 

systems, the distribution locational marginal price (DLMP) 
provides effective market signals for future unit investment. In 
that context, this paper proposes a two-stage stochastic bilevel 
programming (TS-SBP) model for investors to best allocate 
battery energy storage systems (BESSs). The first stage obtains the 
optimal siting and sizing of BESSs on a limited budget. The second 
stage, a bilevel BESS arbitrage model, maximizes the arbitrage 
revenue in the upper level and clears the distribution market in 
the lower level. Karush-Kuhn-Tucker (KKT) optimality 
conditions, strong duality theory, and the big-M method are 
utilized to transform the TS-SBP model into a tractable two-stage 
stochastic mixed-integer linear programming (TS-SMILP) model. 
A novel statistics-based scenario extraction algorithm is proposed 
to generate a series of typical operating scenarios. Then, scale 
reduction strategies for BESS candidate buses and inactive voltage 
constraints are proposed to reduce the scale of the TS-SMILP 
model. Finally, case studies on the IEEE 33-bus and 123-bus 
systems validate the effectiveness of the DLMP in incentivizing 
BESS planning and the efficiency of the two proposed scale 
reduction strategies. 
 

Index Terms-- distribution locational marginal price (DLMP), 
siting and sizing, scenario extraction, two-stage stochastic bilevel 
programming (TS-SBP), scale reduction, battery energy storage 
systems (BESSs). 

NOMENCLATURE 

Sets  

T  Set of time slots 

G  Set of generators, G MT SVC     

MT  Set of MTs 
SVC  Set of SVCs 
N  Set of buses 

BS  Set of candidate buses for BESS installation 

V  Set of buses at which voltage constraints can 
be maintained 

S Set of scenarios 

Constants 
Mfc / Mvc  Fixed/variable O&M cost 

max
BSN  Maximal number of BESSs  

pk / ek  Fixed power/energy cost for installing a BESS 
BgtC  Budget limit 
minP / maxP  Minimum/maximum rated power of a BESS 
minE / maxE  Minimum/maximum rated energy of a BESS 

p(s) Probability of scenario s 

i  Round-trip efficiency of BESS i 
min
iSOC /
max
iSOC  

Minimum/maximum SOC of BESS i 

,
,

p s
sub t / ,

,
q s
sub t  Active/reactive LMP of the substation at time 

t 
,

,
p s

i t / ,
,
q s
i t  Active/reactive bidding price of generator i at 

time t 
,

,
D s

i tP / ,
,
D s

i tQ  Fixed active/reactive load demand of bus i at 
time t 

minV / maxV  Minimum/maximum voltage limits 

,
s

sub tV  Voltage of the substation at time t 
,minG

iP / ,maxG
iP  Minimum/maximum active power of 

generator i at time t 
,minG

iQ / ,maxG
iQ  Minimum/maximum reactive power of 

generator i at time t 

i  Power factor of generator i 
pZ / qZ  Matrices of nodal voltage change concerning 

net active/reactive power injection 

Variables  
rated

iP / rated
iE  Rated power/energy of BESS i 

i  Binary variable indicating whether a BESS is 
installed at bus i 

,
s
i t  Active DLMP of node i at time t 

,
,
c s

i tP / ,
,
d s

i tP  Charging/discharging power of BESS i at time 
t 

,
,
BESS s

i tP  Power exchange of BESS i at time t with the 
power grid  

,
s
i tE  Energy stored in BESS i at time t 

,
,

G s
sub tP / ,

,
G s
sub tQ  Active/reactive power drawn from the 

wholesale market at time t 
,

,
G s

i tP / ,
,
G s
i tQ  Active/reactive power of generator i at time t 

,L s
tP / ,L s

tQ  Active/reactive power loss at time t 

,
s
j tV  Voltage of bus j at time t 

,p s
t / ,q s

t  Lagrangian multipliers associated with 
active/reactive equality power constraints 

(.) min,
,

s
i t /
(.) max,
,

s
i t  

Lagrangian multipliers associated with 
inequality voltage and active/reactive power 
constraints 
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,
,

s
i t  / ,

,
s

i t   Lagrangian multipliers associated with 
inequality reactive power constraints 

I.  INTRODUCTION 

RADITIONALLY, a power system has a unidirectional 
structure where electricity is generated by generators and 

then delivered via transmission and distribution lines to 
consumers, who are at the end of the supply chain. However, 
over the last 20 years, the electricity industry has witnessed the 
emergence of distributed energy resources (DERs) in 
distribution systems [1]. The proliferation of DERs has 
transformed the unidirectional system into a bidirectional 
system, making the distribution system more flexible and more 
active, and also more complex. To take advantage of these new 
opportunities and to keep pace with deregulation in power 
distribution systems, the concept of a distribution market has 
been proposed and widely studied [2][3].  

The distribution locational marginal price (DLMP), the 
extension of locational marginal price (LMP) to distribution 
networks, has been proposed to either guide the consumption of 
flexible loads, or act as the bidding price of DERs when 
participating in the distribution market. In [4][5], the DLMP 
varies throughout the course of a day and is utilized to optimize 
the charging schedule for electric vehicles (EVs) and household 
demand response to alleviate congestion issues. In [6], the 
DLMP is regarded as both the microgrid (MG) bidding price 
and the clearing price of the distribution system operator 
(DSO). A bilevel model is built and a strategic bidding strategy 
is proposed to maximize MG profits. A similar bi-level model 
is proposed in [7] to achieve optimal EV aggregator scheduling. 

The above studies mainly focus on short-term operations. 
However, the DLMP also releases continuous and effective 
market signals to practitioners, which can incentivize future 
DERs investment. Among all types of DERs, the battery energy 
storage system (BESS) plays a significant role due to both its 
flexible charging/discharging characteristic and its increasing 
penetration level. Between 2011 and 2020, the Federal Energy 
Regulatory Commission (FERC) Orders No. 755 [8], 841 [9] 
and 2222 [10] have gradually removed the barriers to BESS 
participation in the energy and ancillary market. In the industry 
field, various related trading products, such as CAISO’s 
flexible ramping product [11] and PJM’s Regulation D [12], 
have promoted the deployment of BESSs. The cost of BESSs 
also continues to decrease as technology advances. All of these 
advantages are driving the acceleration of BESS installation, 
which is likely to continue into the foreseeable future [13]. In 
this context, the optimal allocation of BESSs has already been 
extensively studied.  

In normal operating conditions, the optimal allocation of 
BESSs or distributed generators (DGs) traditionally aimed to 
either 1) minimize the investment cost and the long-term 
cumulative operating cost of distribution systems, or 2) to 
satisfy the system operating conditions (e.g. meeting load 
growth, improving voltage profile and reducing power losses), 
usually from the viewpoint of the DSO or a utility [14]-[18]. In 
[14], a stochastic mixed-integer linear programming (MILP) 
model was formulated to optimally site and size BESSs to 

minimize both the system operating cost and the BESS 
investment cost. The optimal placement and sizing of energy 
storage (ES) to minimize total energy losses was studied in [15]. 
A single-level mixed-integer second-order cone programming 
(MISOCP) model was established in [16] to determine the 
optimal siting and sizing for BESSs. Reference [17] determined 
the optimal BESS allocation to maximize net revenue. The 
same problem in an imbalanced system was further studied in 
[18]. Reference [19] aimed to characterize the economic effect 
of ES geometrically and investigate the optimal energy-power 
ratio for ES.  

These studies were performed in a regulated distribution 
system. However, in deregulated distribution systems, the 
planning objective and investment goal differ from the 
regulated case because of the profitability of private DER 
owners. Considering the characteristics of electricity prices in 
competitive distribution systems, such as the spatial and 
temporal difference of the DLMP, private DER owners are 
motivated to install DERs at optimal locations in optimal sizes 
to maximize profits.   

A few studies have been developed in this background. The 
authors in [20] proposed a bi-level wind-storage expansion 
model to maximize investor profits in the transmission level 
market, in which only the capacity was optimized. In [21], a 
three-stage model for network reinforcement and DERs 
planning was proposed. The objective was to maximize asset 
owners’ profit by optimizing the location and construction time 
of new lines or DERs. In the third stage, the DLMP was utilized 
as the market signal to modify the planning in the first two 
stages. In [22], MGs were assumed to trade with the DSO. MG 
locations were based on the weighted sum of loss sensitivity 
factors and voltage sensitivity factors. The installation time and 
DER type were determined by solving a bilevel model with the 
DSO in the upper level and MGs in the lower level. Reference 
[23] determined the optimal sizes for renewable generators and 
ES in a deregulated market with given candidate sites. An 
adaptive robust model for investment planning of DERs was 
proposed in [24], in which the 8760-hour operating conditions 
in each planning year were clustered to a tractable count. In 
[25], with the constraint of wind turbines (WTs) of a fixed size, 
an exhaustive search method was proposed to find the most 
convenient WT allocations and the priority of installations.  

In the above studies, electricity price and earned profit have 
been proposed and deployed to motivate system investment. 
These studies have provided some insights for planning in a 
distribution market environment. However, there are still 
important issues that have not been well addressed in the 
literature: 1) Daily day-ahead market clearing is seldom 
considered, as shown in [22][24] in which the operating 
conditions are reduced or clustered to a low resolution, not to a 
consecutive 24 hours.  2) The methods proposed in previous 
studies may not be suitable for BESS planning since the daily 
operating constraints for BESSs cannot be included, such as 
constraint (10) in Section II-B. 3) In [22]-[25], as an indicator 
of the physical operating conditions, the DLMP is not fully 
modeled or utilized, meaning that its potential in incentivizing 
system planning can be further explored. 

T
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To fill these gaps, this paper focuses on the optimal siting 
and sizing of BESSs for private investors. This planning is 
formulated as a two-stage stochastic bilevel programming (TS-
SBP) problem. The first stage determines the locations, sizes, 
and number of BESSs within a limited budget. The second stage 
maximizes investors’ arbitrage profits over long-term 
operation, which is modeled as a bi-level problem with the 
investors in the upper level and the DSO in the lower level. The 
contributions of this paper are summarized as follows: 

1) The DLMP is applied as a price signal to incentivize 
BESS planning in a deregulated distribution system. The 
proposed planning approach maximizes investor profit and 
improves system operating conditions, which is aligned with 
the incentive compatibility that benefits both the BESS owners 
and the distribution system.  

2) A TS-SBP arbitrage model is established, in which the 
planning stage and the operating stage are combined as a two-
stage problem, and the operating stage is formulated as a bi-
level problem. The objective of the TS-SBP model is to 
minimize maintenance costs and maximize arbitrage revenue. 

3) From the 1-year historical LMP and system load dataset, 
a k-means-based scenario extraction algorithm is proposed to 
extract the most representative patterns of a consecutive 24 
hours LMP, as well as system load profiles and their 
corresponding discrete joint probabilities. The extraction 
accuracy is validated, and this innovation enables day-ahead 
market clearing.  

4) Based on the unique characteristics of this problem, such 
as the limited number of BESSs to be installed and the huge 
number of inactive constraints, two scale-reduction strategies, 
BESS candidate buses reduction and inactive voltage 
constraints reduction, are proposed to reduce computational 
complexity for this large-scale optimization problem. The 
simulation results demonstrate the accuracy of these strategies.   

It should be noted that this work addresses profit-oriented 
BESS planning, which is appropriate for areas where resilience 
is not a considerable concern. However, in areas with resilience 
as a significant concern such as coastal regions prone to extreme 
weather like hurricanes, the problem may follow a 
fundamentally different model with resilience as a major factor; 
that is a problem for a future work to investigate.  

The rest of this paper is organized as follows. Section II 
describes the TS-SBP model. Section III proposes the scenario 
extraction algorithm. Section IV presents the solution methods 
and two scale-reduction strategies. Section V presents case 
studies. Section VI concludes the paper. 

II.  PROBLEM FORMULATION 

The mathematical formulation of the TS-SBP model is 
presented in this section. The overall framework is shown in 
Fig. 1.  

 
Fig. 1. The framework of the TS-SBP model  

A.  The First Stage Problem: Optimal Siting & Sizing  

The first stage aims to optimize the site and size of BESS 
units, which means private investors intend to determine the 
best locations and best sizes to maximize their profit.  

    max ,
BS

Mf rated Mv rated
i i

i

c P c E E f s


      x  (1) 

     s.t.              max

BS

i BS
i

N


   (2) 

 
BS

p rated e rated Bgt
i i

i

k P k E C


   (3) 

 min maxrated
i i iP P P    (4) 

 min maxrated
i i iE E E    (5) 

 4rated rated
i iE P   (6) 

      , 365 ,
s S

E f s p s f s


    x x  (7) 

where (1) minimizes the operation and maintenance (O&M) 
costs and maximizes the arbitrage revenue of the BESS over a 
year, the decision variables include the BESS locations, rated 
power, and rated energy: 

 1 1 1, , , , , , , ,rated rated rated rated
N N NP P E E    x , the first two 

items in (1) are the expression of the O&M costs; (2) restricts 
the number of BESSs to be installed; (3) is the investment 
budget limit [26], where the installation cost of a BESS is 

approximated as a linear function of rated
iP  and rated

iE  [27][28]; 

(4) and (5) are BESS size constraints; (6) simplifies the BESS 

energy-power ratio to a fixed value [27]; and in (7),  ,f sx  is 

the optimal value of scenario s in the second stage problem.  

B.  The Second Stage Problem: BESS Operation in a 
Deregulated Distribution Market  

In this stage, BESSs participate in the distribution-level 
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electricity market to maximize their arbitrage revenue. This 
problem has the following assumptions: 
 A day-ahead electricity market is established in the 

distribution level. DERs provide bids and offers to the 
DSO, which clears the market and broadcasts the DLMP to 
all participants.  

 BESSs are modeled as price takers that only submit 
load/generation quantities and the DSO decides the DLMP.  

Based on these assumptions, the BESS owner and the DSO 
have different interests. At the same time, BESSs’ 
charging/discharging power and system DLMP are coupled 
variables. Thus, a bilevel model is an appropriate representation 
of the coupled relationship. Note that (8)-(24) represent the 
scenario s. For simplicity, the expressions Tt  and s S   

behind each equation are neglected.  
1) The upper level: The BESS sells energy during high 

DLMP hours and buys during low DLMP hours. Its objective is 
to maximize the arbitrage revenue.  

 

 

 

,
, ,

, ,
, , ,

, max

max

T BS

T BS

s BESS s
i t i t

t i

s d s c s
i t i i t i t i

t i

f s P

P P



  

 

 

 

  

 

 

x

 (8) 

            s.t.             , ,
, 1 , , ,
s s c s d s
i t i t i t i tE E P P     (9) 

 , 0 ,
s s
i t i t TE E   (10) 

 min max
, 1

rated s rated
i i i t i iSOC E E SOC E     (11) 

 ,
,0 c s rated

i t iP P  , ,
,0 d s rated

i t iP P   (12) 

where in (8), round-trip efficiency ηi is used instead of using 
charging and discharging efficiencies [29]; (9) calculates the 
stored energy in the BESS with 1 hour as the time interval; (10) 
ensures that the daily charged and discharged energy are equal; 
(11) is the state of charge (SOC) constraint; (12) provides the 
charging and discharging power limits. 

2) The lower level: The DSO clears the market intending to 
minimize total generation costs as well as maintain physical 
operating constraints.  

 

 , , , , , , , ,
, , , , , , , ,

min , ,

T G

p s G s q s G s p s G s q s G s
sub t sub t sub t sub t i t i t i t i t

t i

h s

P Q P Q   
 



 
    

 
 

 
z y

 (13) 

s.t. 
, , , , , ,
, , , , :

G BS N

G s G s BESS s D s L s p s
sub t i t i t i t t t

i i i

P P P P P 
  

       (14) 

, , , , ,
, , , :

G N

G s G s D s L s q s
sub t i t i t t t

i i

Q Q Q Q 
 

     (15) 

   , , , , ,
, , , , , , , , ,

N N

s s p G s BESS s D s q G s D s
j t sub t j i i t i t i t j i i t i t

i i

V V Z P P P Z Q Q
 

        (16) 

min max min, max,
, , ,: , ,s v s v s

j t j t j t NV V V j      (17) 
,min , ,max min, max,

, , ,: , ,G G s G p s p s
i i t i i t i t MTP P P i      (18) 

, , min, max,
, , , ,0 tan(arccos ) : , ,G s G s q s q s

i t i t i i t i t MTQ P i       (19) 
,min , ,max min, max,

, , ,: , ,G G s G q s q s
i i t i i t i t SVCQ Q Q i      (20) 

, , , , , ,
, , , , , ,, : , ,G s G s G s G s s s

i t i t i t i t i t i t GQ Q Q Q i      
 

  (21) 

 

, ,
, , ,

, , ,
, ,

min, max,
, , ,

N

loss s loss s
s p s p s q st t
i t t t tD s D s

i t i t

v s v s p
j t j t j i

j

P Q

P P

Z

   

 


 
    

 

 
 (22) 

where (14) and (15) are active and reactive equality power 
constraints with the substation regarded as a large capacity 
generator; (16) is the linearized voltage expression derived 
from [2][30];  (17) is the voltage limit; (18)-(19) are the active 
and reactive power limits of microturbines (MTs); (20) is the 
reactive power limit of static var compensators (SVCs); in (21), 

, ,
, ,
G s G s
i t i tQ Q


 since it is assumed that both absorbing and 

generating reactive power can induce cost [3]; and (22) is the 
DLMP expression derived from the Lagrangian function of this 
level. The power losses are linearized according to Taylor’s 
series [2]:  

 
 

 

,
, , * , ,

, ,,
,

,
, ,

, ,,
,

N

N

L s
L s L s G s D st

t t i t i tG s
i i t

L s
G s D st
i t i tG s

i i t

P
P P P P

P

P
Q Q

Q






    




   






 (23) 

 

 

 

,
, , * , ,

, ,,
,

,
, ,

, ,,
,

N

N

L s
L s L s G s D st
t t i t i tG s

i i t

L s
G s D st
i t i tG s

i i t

Q
Q Q P P

P

Q
Q Q

Q






    




   






 (24) 

where , , , *
, , ,
G s G s G s

i t i t i tP P P    represents the power difference 

between two close operating points, and ,
,
G s
i tQ  , ,

,
D s

i tP  and 
,

,
D s
i tQ have similar expressions.  

In (22), the DLMP is shown to consist of three components: 
marginal energy price, marginal power loss price, and voltage 
support price. The marginal energy price is determined by the 
bidding price of the marginal unit. The marginal power loss 
price reflects the power loss associated with delivering power. 
Since the power loss percentage in a distribution system is 
usually high (relative to transmission systems), it is not 
negligible and should be priced. Similarly, voltage is an 
important operating criterion and should be included. The 
voltage support price represents the cost of maintaining voltage 
within the acceptable boundary. It is calculated using the 
shadow price and will be zero if there is no binding voltage 
constraint. The detailed analysis and discussion of the three 
DLMP components and their impacts on flexible loads can be 
found in [34]. 

C.  Compact Notation 

To make the whole model concise and clear, a compact 
notation is used to elaborate the proposed TS-SBP model [31]. 
The first stage is:  

    max 365 ,T

s S

p s f s


  c x x  (25) 

 . .s t Ax b  (26) 

where 1 1 1p n p
   x  represents the binary and continuous 

decision variables; (26) is the matrix representation of 
constraints (2)-(7) with 1 1m n

 A , 1m
 b ;  p1 is the number 

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TSG.2022.3150768

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.



 5 

of candidate buses; n1 is the number of total decision variables; 
and m1 is the number of constraints.  

The second stage is given by:  
  , max Tf s x π y  (27) 

      . .s t s s s W y r T x  (28) 

  arg min , ,h sπ z y  (29) 

      . .s t s s s G z e K y  (30) 

where 2n
 y , 2n

 π , 2 2m n
 W , 2m

 r , 2 1m n
 T , 

3n
 z , 3 3m n

 G , 3m
 e , 3 2m n

 K .  

III.  SCENARIO EXTRACTION AND VARIABLE NODAL LOADS 

The DLMP plays an important role in the TS-SBP planning 
problem. In the meantime, the DLMP is significantly 
influenced by the wholesale market LMP and the distribution 
system load. However, because the LMP and load vary every 
hour and every day, applying all historical data will 
significantly increase the computational burden, making this 
problem intractable. Thus, a natural alternative is to extract a 
series of representative operating scenarios from the historical 
dataset, which are defined as possible LMP profile and system 
load profile combinations in this study.  

A.  Scenario Extraction 

The statistics-based scenario extraction includes three steps: 
historical LMP and load clustering, scenario generation, and 
scenario reduction. The detailed procedures are shown in 
Algorithm 1.  
Algorithm 1: Scenario Extraction and Reduction  

Input 
Historical hourly LMP and system load profiles in a 
year 

Output 
Typical LMP and system load scenarios associated with 
discrete joint probabilities  

1 K-means clustering:  
2 Utilize the elbow method to obtain the optimal 

number of LMP clusters and system load clusters, 
respectively. 

3 Partition the daily LMP and system load profiles into 

LMPk  and loadk  clusters. 
4 For each cluster, calculate its centroid: 
      

,
,1 ,

LMP i
LMP LMP i LMPj

i n i j


  π π  

      
,

,1 ,
load i

load load i loadj
i n i j


  D D  

5 Scenario generation: 
6 For LMP cluster i and system load cluster j, calculate 

the discrete joint probability: 
      , , ,, 365LMP load LMP i load jp s p i j n     

7 In total, LMP loadk k  scenarios and corresponding 

probabilities are generated. 
8 Scenario reduction: 
9 Remove scenarios with probabilities below a 

threshold.  
10 Normalize the discrete joint probabilities of the 

remaining scenarios (let their summation be 1). 

where  , , ,LMP i k nd d    and  , , ,load i l md d    refer to 

the LMP cluster i and the system load cluster i, respectively; kd  

is the kth day in a year;  n   represents the number of elements 

in a set;  ,LMP i jπ  and  ,load i jD  are the LMP and system 

load profiles in day j in cluster i, respectively, which represent 

the LMP and load for 24 hours;  ,LMP i jπ  and  ,load i jD  are 

the centroids of the LMP and system load cluster i, respectively; 
 p s is the discrete joint probability.  

Note that each centroid is regarded as an LMP or a load 
profile pattern that is most likely to appear in one year.  p s is 

the probability that one LMP pattern and one load pattern 
happen on the same day in one year. Each LMP and load pattern 
combination is regarded as a scenario.  

B.  Variability in Nodal Loads 

In the preceding subsection, the system load profile refers to 
the total load profile of all nodes in a distribution system. 
However, the load at each node is usually hard to forecast with 
high variability. Thus, for simplicity, it is assumed that all nodal 
loads have the same normalized active and reactive load 
profiles with the system load in each scenario [31][32]. 
Additionally, a random multiplier is applied to each nodal load 
to simulate the randomness of the load.  

 , ,
, , ,
D s s P D s

i t i t i t tP M P    (31) 

 , ,
, , ,
D s s Q D s
i t i t i t tQ M Q    (32) 

where ,
s
i t  refers to a multiplier that follows a Gaussian 

distribution,  2
, 1,0.04s

i t N  ; ,
P
i tM  and ,

Q
i tM  are the 

normalized active and reactive load; ,D s
tP  and ,D s

tQ  are the 

active and reactive system loads of scenario s. 

IV.  SOLUTION METHODS 

The previous Sections II and III build the proposed model 
for siting and sizing BESSs. The mathematical solution is 
discussed in this section.  

The solution to the proposed TS-SBP model includes two 
steps. In the first step, the bilevel problem of the second stage 
is converted to a single-level problem via Karush-Kuhn Tucker 
(KKT) optimality conditions. After that, the TS-SBP model 
becomes a two-stage stochastic MILP (TS-SMILP) problem. In 
the second step, based on the unique characteristics of this TS-
SMILP problem, two relaxation methods are proposed to make 
this problem tractable.  

A.  Solving the Bilevel Problem 

1) MPEC formulation: Due to the linear property of the 
lower level, its optimal solution can be obtained by solving the 
KKT optimality conditions [33]. Thus, the bilevel problem is 
converted into a single-level problem by adding the KKT 
conditions to the constraints of the upper level. Then the single-
level problem is a mathematical program with equilibrium 
constraints (MPEC).  

max (8)   (33) 
. .s t  constraints (9)-(12), (14)-(16), (22)-(24), (31)-(32) (34) 
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 
,

, , min, max,
, , , ,,

,

,
, min, max,

, ,,
,

1

0,

N

L s
p s p s v s v s pt

i t t j t j t j iG s
ji t

L s
q s p s p st
t i t i t GG s

i t

P
Z

P

Q
i

P

   

  



 
      


     



  (35) 

, , ,
, , , 0,q s s s

i t i t i t Gi         (36) 

 
, ,

, min, max,
, , ,, ,

, ,

min, max, , ,
, , , ,

1

0,

N

L s L s
p s q v s v s qt t

t t j t j t j iG s G s
ji t i t

q s q s s s
i t i t i t i t G

P Q
Z

Q Q

i

   

   



 

  
       

      


 (37) 

 min, min
, ,0 0,v s s

j t j t NV V j       (38) 

 max, max
, ,0 0,v s s

j t j t NV V j       (39) 

 min, , ,min
, ,0 0,p s G s G

i t i t i GP P i       (40) 

 max, ,max ,
, ,0 0,p s G G s

i t i i t GP P i       (41) 

 min, , ,min
, ,0 0,q s G s G

i t i t i GQ Q i       (42) 

 max, ,max ,
, ,0 0,q s G G s

i t i i t GQ Q i       (43) 

 , , ,
, , ,0 0,s G s G s

i t i t i t GQ Q i      


 (44) 

 , , ,
, , ,0 0,s G s G s

i t i t i t GQ Q i      


 (45) 

where (35)-(37) are stationary conditions, and (38)-(45) are 
complementary slackness conditions.  

2) MILP formulation: The MPEC is a nonlinear problem 
featuring the bilinear terms found in (33) and nonlinear 
complementary slackness conditions. Thus, strong duality 
theory and the big-M method are used to reformulate the MPEC 
problem as a MILP problem that is tractable [33][34].  

,
, ,

, ,
, ,

, ,
,, ,

,
min, max,
, , ,
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N
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T G
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sub t sub t sub t sub t i t i t i t i t

t i
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 







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

 
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 
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   (46) 

The objective function (33) is reformulated as (46). Each 
constraint in (38)-(45) is reformulated as:  

    , , , , , ,0 ,0 1i t i t i t i t i t i tM v g x M v      (47) 

So far, the completed MILP problem can be presented as 
follows:  

 max (46) (48) 
 . .s t constraints (34) - (37), (47)  (49) 

B.  Solving the Two-stage Problem 

With the reformulation of the second stage in the preceding 
subsection, the TS-SBP problem becomes a TS-SMILP 
problem which is a large-scale optimization problem that 
requires huge computational resources. To reduce the 
computational burden, the problem scale can be reduced via 
two aspects according to the specific characteristics of the 
original problem. 

1) Candidate BESS buses reduction: The candidate BESS 
buses are binary variables that are associated with a series of 
constraints. However, only a limited number of buses are 
realistic candidate sites for BESSs due to geographical, physical, 
and spatial limits in industrial practices. Thus, these candidate 
buses can be reduced to a limited set of probable buses instead 
of all buses.  

2) Inactive voltage constraints reduction: Continuous and 
binary variables, especially voltage-related ones in the second 
stage, account for most of the constraints and decision variables 
throughout the entire problem. However, most voltage 
constraints are inactive, and they can be omitted to reduce the 
number of complementary slackness conditions.  

The complete solution procedure including detailed 
candidate buses and inactive voltage constraints reduction is 
described in Algorithm 2.  

Algorithm 2:  Overall Solution Procedure 
1. Decomposition: Since there is a finite set of scenarios, (25) can 
be reformulated as:  

   max 365 T T
s s s

s S

p s +


  c x π y   

Decompose it into S subproblems. 
2. Initialization: For each s ∈ S, compute:  

 , arg max T T
s s s s s+ x y c x π y  

3. Candidate buses reduction: Obtain the aggregated binary 

variable: ˆ ( )ss S
p s


 sδ δ , where  1̂

ˆˆ= ,
N

δ δ,δ ; remove
îδ  

with low values; the rest are the most probable buses.  

4. Voltage constraints reduction: Check  1 ,
NsV V V , , s ∈ S, 

identify buses at which at which voltage constraints are never 
violated; then, remove constraints at these buses. 
5. Solving: With reduced candidate buses and voltage constraints, 

compute:    , arg max 365T T
s s ss S

+ p s


  x y c x π y . 

6. Voltage constraints update: Check whether the removed 
voltage constraints are violated or not. If yes, add the violated ones 
and go back to Step 5; otherwise, the algorithm terminates.   

It should be noted that step 3 is more like data pre-processing, 
since candidate buses may be influenced by the investor’s 
preference as well as the actual operating conditions which are 
hard to handle quantitively. Here, step 3 obtains the most 
probable installation buses, but does not ensure equivalence 
with the original problem.  
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V.  CASE STUDIES 

The proposed model is tested on the modified IEEE 33-bus 
and 123-bus distribution systems. Simulations are performed on 
a personal laptop with an Intel Core i7-8650U CPU and 16GB 
RAM. The codes are carried out in MATLAB R2020a, 
YALMIP and GUROBI 9.0.0.   

A.  IEEE 33-Bus Distribution System 
1) System description: The modified IEEE 33-bus system is 

illustrated in Fig. 2. Two MTs are located at buses 18 and 33, 
respectively, and two SVCs are located at buses 16 and 30, 
respectively. The parameters of DGs, the distribution system, 
BESS investment and operating constraints are listed in 
TABLE I.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25

26 27 28 29 30 31 32 33

M

Wholesale 
market

S

S M

M Microturbine

SVCS

 
Fig. 2. Modified IEEE 33-bus system 

TABLE I. PARAMETERS OF THE MODIFIED IEEE 33-BUS SYSTEM 

Class Parameter Typical Value 

MT 

Location Bus #18, 33 
Bidding price $ 70/MWh 

Capacity  0.5 MW 
αi 0.95 

SVC 
Location Bus #16, 30 

Bidding price $ 0/MVarh 
Capacity  0.5 MVar 

System 
constraints 

Vmin 0.95 p.u. 
Vmax 1.05 p.u. 
Vsub 1.0 p.u. 

Peak load 6.316 MW + j3.026 MVar 

Investment 
constraints 

max
BSN  5 

BgtC  $ 1×106 
minP / m axP  0.1 MW / 0.4 MW 
minE / maxE  0.4 MWh / 1.2 MWh 

BESS operating 
constraints 

min
iSOC / max

iSOC  0.2 / 0.8 

ηi 0.81 

2) Scenario extraction: The daily day-ahead LMP and load 
profiles in one year have been obtained from PJM [35], and the 
time range is 1/1/2020-12/31/2020. After k-means clustering, 
the optimal cluster numbers obtained via the elbow method are 

7LMPk   and 6loadk  , respectively. The normalized LMP 

patterns, load patterns, and their discrete joint probabilities are 
shown in Fig. 3. It can be seen that some probabilities are 0 
which means the corresponding LMP pattern and load pattern 
have never appeared on the same day. Thus, among the 42 
scenarios, we can remove the scenarios with probabilities less 
than 0.01. Then, 21 scenarios are kept.   

(a) LMP patterns  (b) Load patterns 
1

2

3

4

5

6

7

0.0493

0.0082

0.0027

0

0.0466

0.0055

0

0.0055

0

0

0

0.0055

0.0027

0.0274

0

0

0.0247

0

0

0.0274

0

0.0384

0.0493

0.011

0.0137

0.0411

0

0.0219

0.0137

0.0438

0.0164

0.011

0

0

0.0521

0

0

0.0849

0.1123

0.0932

0.1178

0.074

Load pattern

L
M

P 
pa

tte
rn

 
(c) Probability 

Fig. 3. LMP patterns, load patterns, and their discrete joint probabilities 

 
Fig. 4. Average annual net profit of all scenarios and that of extracted scenarios 

The best method for validating the effect of the scenario 
extraction is comparing the optimal sites and sizes by solving 
the proposed TS-SBP model with both 365 scenarios (1-year 
LMP and load data) and only the extracted scenarios, 
respectively. However, solving the proposed TS-SBP model 
with a full 365 scenarios requires huge computational 
resources, and is therefore unmanageable in our current 
laboratory environment. Thus, an alternative method is 
proposed to achieve the validation: given the optimal sites and 
sizes obtained by the extracted scenarios, we compare the 
annual net profit of all 365 scenarios with the annual net profit 
of the extracted scenarios. Due to the variability consideration 
of nodal loads in (31)(32), the simulation is run multiple times. 

The average annual net profit curves are illustrated in Fig. 4, 
which shows that the curves in the two cases become flat and 
closer as the simulation time increases. Beyond the 32nd 
simulation, the profits of all 365 scenarios ($8124.02-
$8147.70), and the profits of only the extracted scenarios 
($8140.08-$8164.32) both stay within a tight range. This 
comparison demonstrates that given the BESS allocations, the 
expected annual profit obtained by the extracted scenarios can 
be very close to that of all 365 scenarios, which validates the 
effectiveness of the scenario extraction strategy.  

3) BESS siting and sizing results: After Algorithm 2 has been 
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performed, 11 buses are selected as the most probable BESS 
candidate buses, ΩBS = {10-12, 14-18, 31-33}, the voltage 
constraints at 12 buses are kept, ΩV = {9-15, 17-18, 31-33}.  

To verify the effectiveness of the proposed scale reduction 
methods, five cases with different reduced items are formulated 
in TABLE II. TABLE III presents the siting and sizing results.  

TABLE II. DIFFERENT CASES  

Cases 
Reduced Items 

Scenarios Voltage constraints Candidate buses 
Case 1 × × × 
Case 2 √ × × 
Case 3 √ × √ 
Case 4 √ √ × 
Case 5 √ √ √ 
*×: not reduced, √: reduced.  

TABLE III. RESULTS OF DIFFERENT CASES 

Cases 
BESS bus 

(#) 

rated ratedP E  

(kW/ kWh) 

Annual net 
profit ($) 

Time (s) 

Case 1 
11, 15, 

18, 31, 33 

100/400, 149/597, 
103/414, 107/426, 

100/400 
9302.22 7936 

Case 2 11, 15, 
18, 31, 33 

100/400, 149/597, 
103/414, 107/426, 

100/400 
9129.37 3442 

Case 3 11, 15, 
18, 31, 33 

100/400, 149/597, 
103/414, 107/426, 

100/400 
9129.38 1338 

Case 4 
11, 15, 

18, 31, 33 

100/400, 149/597, 
103/414, 107/426, 

100/400 
9129.38 2390 

Case 5 
11, 15, 

18, 31, 33 

100/400, 149/597, 
103/414, 107/426, 

100/400 
9129.38 1077 

TABLE IV. COMPARISON OF INTERMEDIATE RESULTS 
Cases Constraint Variable ∆V ∆DLMP  ∆PDG  ∆PBESS  
Case 2 410801 227907 -- -- -- -- 
Case 3 321063 183489 0.0162 0.0938 0.0317 0.4189 
Case 4 326129 185571 0.0162 0.0938 0.0317 0.4189 
Case 5 236391 141153 0.0162 0.0938 0.0317 0.4189 

 
TABLE III shows that Cases 1-5 have the same BESS siting 

and sizing results. The annual net profit of Case 1 is slightly 
different, which is reasonable because Case 1 considers more 
scenarios. Cases 2-5 have close annual net profits, but 
significantly different computational times. In these cases, both 
candidate bus reduction and inactive voltage constraint 
reduction improve computational efficiency. Their combination 
makes for the best-observed performance.  

A comparison of intermediate results among Cases 2-5 is 
presented since Cases 2-5 are all simulated using the same 
reduced number of scenarios. Here, Case 2 is set as the 
benchmark and Cases 3-5 are compared with Case 2. The 
number of constraints and variables, the accumulated difference 
of voltage, the DLMP, DG power output, and BESS power 
output are provided in TABLE IV. The accumulated voltage 
difference is calculated using the following equation:  

 
, ,

, ,

,max
T N

s rel s ben
j t j t

ben
s S t j

V V
V

V  


     (50) 

where ,
,
s rel
j tV  and ,

,
s ben
j tV  are the voltage of scenario s at bus j and 

time t for the relaxed case and benchmark case respectively, and 

,maxbenV  is the maximum value. The DLMP difference 

(∆DLMP), DG power output difference (∆PDG), and BESS 
power output difference (∆PBESS) are calculated using a similar 
formula. Note that the accumulated difference is the summation 
of individual differences across all scenarios at all time slots 
and all buses. 

From TABLE IV, it can be found that the application of 
relaxations reduces the number of constraints and decision 
variables, and all of the accumulated differences are small in 
value. All of these cases validate the effectiveness of the 
proposed scale reduction methods. 

 
Fig. 5. Expected DLMP  

The expected DLMP is defined as the weighted sum of the 
DLMPs of all scenarios. It is illustrated in Fig. 5. The optimal 
BESS locations are buses #11, 15, 18, 31, and 33. These 
locations are intuitively reasonable because the daily DLMP 
gap (the difference between the highest DLMP and the lowest 
DLMP) is high in these buses, as shown in Fig. 5. Therefore, 
BESS owners make a higher profit. It can be concluded that the 
DLMP provides effective market signals for BESS investment. 
On the other hand, the higher DLMP reflects the scarcity of 
generation resources and stressed operating conditions. Thus, 
from the perspective of the DSO, installing BESSs in these 
locations will increase the local power supply, and benefit the 
stressed distribution system with a positive effect for the DSO. 
This is aligned with the incentive compatibility mechanism. 
System improvement is discussed in the next subsection.  

4) Load profile and voltage improvement: Among the 
reduced scenarios, we select scenario 13 which has the highest 
system load level. In the second stage, system load profiles over 
one day before and after BESS installation are shown in Fig. 6. 
It can be found that with the integration of BESSs, peak load at 
t = 13:00-19:00 is shifted to off-peak hours t = 2:00-6:00. The 
operation stress under heavy load conditions is relieved.  

The nodal voltage profiles in this scenario after BESS 
installation are shown in Fig. 7. It can be observed that the 
voltage profiles over one day are well maintained within the 
voltage boundaries.  
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Fig. 6. System load profiles with and without BESSs 

 
Fig. 7. Nodal voltage profiles with BESSs 

5) Effect of DERs penetration level: With the integration of 
various DERs, the number of existing DERs can also affect the 
optimal allocation of BESSs. In this subsection, four cases are 
formulated to study the effects of different DERs penetration 
levels. Here, photovoltaics (PVs) are selected as a new DER 
with a bidding price of $15/MWh and a capacity of 0.5 MW. 
The locations of DERs are listed in TABLE V. The simulation 
results can be found in TABLE VI.  

From TABLE VI, it can be seen that with an increasing level 
of DERs penetration, the optimal BESS allocation is changed 
and the annual net profit is reduced. The main reason is as 
follows: Compared to MTs and the wholesale LMP, PVs 
usually have the lowest bidding price, thus they easily win the 
bidding. With the large-scale integration of PVs, the DLMP 
profile changes and the overall system DLMP is reduced. Since 
the optimal allocation of BESSs is closely related to the DLMP, 
the allocation and profit are changed as well. A more 
comprehensive analysis of profit reduction can be found in [34]. 

PVs are studied here because they are one of the most 
common DGs that can be installed in the distribution system. 
PVs can be replaced by other DGs and the simulation results 
will be different, but the in-depth reasoning should be similar. 
Also note, BESS mitigation of the volatility of PVs is not the 
focus of this paper.  

TABLE V. DIFFERENT DERS PENETRATION LEVELS 
Cases DERs Amount Bus (#) 

Case 1 
SVC 2 16, 30 
MT 2 18, 33 
PV 0 None  

Case 2 
SVC 2 16, 30 
MT 2 18, 33 

PV 2 12, 28 

Case 3 
SVC 2 16, 30 
MT 3 8, 18, 33 
PV 3 12, 14, 28 

Case 4 
SVC 3 10, 16, 30 
MT 4 8, 18, 26, 33 
PV 5 12, 14, 17, 31, 32 

TABLE VI. SIMULATION RESULTS 

Cases 
BESS bus 

(#) 

rated ratedP E  

(kW/ kWh) 

Annual net 
profit ($) 

Time (s) 

Case 1 
11, 15, 

18, 31, 33 

100/400, 149/597, 
103/414, 107/426, 

100/400 
9129.37 1077 

Case 2 15, 18, 
32, 33 

100/400, 149/597, 
100/400, 210/840 

5858.96 492 

Case 3 16, 18, 
32, 33 

101/405, 141/563, 
100/400, 217/869 

5705.55 580 

Case 4 
16, 18, 
32, 33 

100/400, 129/514, 
100/400, 231/923 

5184.61 1692 

 
6) Comparison with other models: To demonstrate the 

advantage of the proposed model, the optimal BESS allocation 
of our proposed model is compared with two other models. The 
formulation of these two comparative models are elaborated 
next. In Model 2, it is assumed that all BESSs have the same 
fixed sizes and only the BESS sites are to be determined. In 
Model 3, the candidate bus set is ΩBS = {11-18, 33}, which is 
obtained by the method proposed in [22], and other conditions 
are kept the same as in our proposed model. The simulation 
results are shown in TABLE VII. The BESS locations in Model 
2 are close to the BESS locations of the proposed model, but 
the annual net profit is suboptimal. In Model 3, the candidate 
bus set determination and optimal siting and sizing are 
separated, and its profit is not the best. This indicates that a 
comprehensive algorithm (e.g., Algorithm 2) that combines 
these two items is truly effective and promising. 

TABLE VII. COMPARISON WITH OTHER MODELS 

Models 
BESS bus 

(#) 
rated ratedP E  (kW/ kWh) Annual net 

profit ($) 
Proposed 

model 
11, 15,  

18, 31, 33 
100/400, 149/597, 

103/414, 107/426, 100/400 
9129.37 

Model 2 
11, 15,  

17, 32, 33 
112/448, 112/448, 

112/448, 111/445, 112/448 
8780.28 

Model 3 
11, 15,  

16, 18, 33 
100/400, 110/439, 

100/400, 103/413, 146/585 
8794.21 

B.  IEEE 123-Bus Distribution System 
1) System description: The topology of the modified IEEE 

123-bus system is shown in Fig. 8. Six MTs, five SVCs and six 
PVs are already installed in the system. Parameters of the 
system are listed in TABLE VIII. System constraints, BESS 
investment, and operating constraints are the same as those in 
TABLE I. 
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Fig. 8. Modified IEEE 123-bus system 

TABLE VIII. PARAMETERS OF THE MODIFIED IEEE 123-BUS SYSTEM 
Class Parameter Typical Value 

MT 

Location Bus #65, 71, 85, 95, 102, 110 
Bidding price $ 70/MWh 

Capacity  0.5 MW 
αi 0.95 

SVC 
Location Bus #27, 46, 75, 93, 108 

Bidding price $ 0/MVarh 
Capacity  0.5 MVar 

PV 

Location Bus #18, 47, 59, 67, 86, 104 
Bidding price $ 15/MWh 

Capacity  0.5 MW 
αi 0.95 

System 
parameters Peak load 7.06 MW + j3.88 MVar 

 
2) BESS siting and sizing results: The normalized LMP 

patterns, load patterns, and their discrete joint probabilities are 
the same as those in Fig. 3. To reduce the computational burden, 
scenarios with probabilities less than 0.02 were removed. Then, 
16 scenarios have been kept.  

After Algorithm 2 is performed, seven buses are selected as 
the candidate BESS buses, ΩBS = {65, 66, 85, 94, 104, 112, 
114}, while the voltage constraints at twenty buses are kept, ΩV 
= {65, 66, 71, 75, 83-85, 87-96, 104, 113, 114}. TABLE IX and 
TABLE X present the simulation results of the five cases that 
are formulated in TABLE II. TABLE IX shows that the sites 
and sizes of Cases 2 & 4 and Cases 3 & 5 are slightly different. 
This validates the discussion at the end of Section IV that the 
reduction of candidate buses does not ensure equivalence with 
the original problem. However, these results are still very close; 
the cases all have similar annual net profit, similar sizes, and 
similar BESS locations. Thus, the allocation results of Case 5 
are acceptable for investors.  

TABLE X shows that all of the accumulated differences 
between Cases 2-5 are still small in value. Comparing the 
number of constraints and variables in TABLE X with that in 
TABLE IV, we can observe that a greater portion of the 
constraints and variables have been eliminated. This indicates 
that these relaxation strategies perform better as the system 
scale increases. The computational time is maintained at an 
acceptable level, further demonstrating that the proposed 

relaxation strategies can achieve a tradeoff between accuracy 
and efficiency. 

TABLE IX. RESULTS OF DIFFERENT CASES 

Cases 
BESS bus 

(#) 

rated ratedP E  

(kW/ kWh) 

Annual net 
profit ($) 

Time (s) 

Case 1 N/A N/A N/A N/A 

Case 2 65, 66, 
85, 113 

100/400, 159/635, 
200/802, 100/400 

4604.90 9808 

Case 3 
65, 66, 
85, 114 

100/400, 160/642, 
199/795, 100/400 

4604.30 2790 

Case 4 
65, 66, 
85, 113 

100/400, 159/635, 
200/802, 100/400 

4604.90 2126 

Case 5 
65, 66, 
85, 114 

100/400, 160/642, 
199/795, 100/400 

4604.30 1272 

TABLE X. COMPARISON OF INTERMEDIATE RESULTS 
Cases Constraint Variable ∆V ∆DLMP  ∆PDG  ∆PBESS  
Case 2 100426 554079 -- -- -- -- 
Case 3 662277 384789 0.1175 0.0456 0.0615 1.2686 
Case 4 709355 406623 9.3e-9 9.4e-10 2.3e-8 9.3e-9 
Case 5 367365 237333 0.1175 0.0456 0.0615 1.2686 

 
3) Load profile and voltage improvement of BESS: In this 

subsection, scenario 4 is selected. Fig. 9 shows the load shifting 
effect, as the load at t = 16:00-18:00 is shifted to off-peak hours 
t = 3:00-4:00. The nodal voltage profiles with BESSs are shown 
in Fig. 10, and the voltage profiles are well maintained. 

 
Fig. 9. System load profiles with and without BESSs 

 
Fig. 10. Nodal voltage profiles with BESSs 

4) Comparison with other models: A comparison of our 
proposed model with other models is presented in TABLE XI. 
In Model 3, the candidate bus set is ΩBS = {66, 71, 75, 84, 85, 
104, 111-114}. It can be found that Model 2 and the proposed 
model have the same optimal BESS sites, but Model 2’s profit 
is not the best. In Model 3, the number of optimal BESS sites is 
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reduced to just 3. This further shows that the joint optimization 
of sites and sizes is the best choice for the profit-oriented BESS 
planning problem.   

TABLE XI. COMPARISON WITH OTHER MODELS 

Models 
BESS bus 

(#) 
rated ratedP E  (kW/ kWh) Annual net 

profit ($) 
Proposed 

model 
65, 66, 85, 

114 
100/400, 160/642, 
199/795, 100/400 

4604.30 

Model 2 
65, 66, 85, 

114 
140/560, 140/560, 
140/560, 139/557 

4589.28 

Model 3 66, 85, 113 
256/1023, 203/814, 

100/400 
4601.14 

VI.  CONCLUSION 

In this paper, a profit-oriented BESS planning problem that 
sites and sizes BESSs, is proposed in a deregulated distribution 
system with the integration of the DLMP. This problem is 
formulated as a TS-SBP model, in which the first stage 
determines the optimal sites and sizes of BESSs, and the second 
stage maximizes investors’ operating revenue. Typical 
operating scenarios are extracted from a historical dataset by 
statistical methods. Two scale-reduction strategies are proposed 
to relax the original problem. Numerical studies on two systems 
illustrate the following conclusions: 

1) The DLMP can act as an effective price signal to 
incentivize BESS planning. This is a special attribute of the 
deregulated system that is quite different from traditional 
systems.  

2) The two proposed scale-reduction strategies are verified 
to both significantly improve computational efficiency and 
maintain result accuracy.  

3) Optimal siting and sizing are shown to be beneficial for 
both BESS investors and the DSO, such that our proposed 
model is aligned with incentive compatibility in market 
operation.  

Although only the energy market is studied in this paper, 
BESSs can also participate in the ancillary service market to 
mitigate the uncertainty of renewable generators or regulate 
system frequency, topics which we may explore in future works. 
Additionally, the proposed model and solution methods can be 
easily extended to other DER planning problems. Future work 
may also be extended to resilience-oriented BESS planning for 
areas where resilience or extreme weather events are a major 
concern.  

APPENDIX A: COST OF LFP BATTERIES 

According to [27], BESS costs mainly consist of capital and 
operation costs. The capital cost refers to the BESS installation 
cost which includes power-related costs and energy-related 
costs. The former consists of power equipment costs (costs of 
the converter, protection, breaker, communication, software, 
etc.), controls & communication costs (cost of the energy 
management system for the BESS), and grid integration costs 
(cost of integrating the BESS to the power system, including 
transformers and isolation breakers).  

 The energy-related costs consist of storage block costs (cost 
of the storage elements in a BESS), storage balance of system 
costs (cost of supporting components like containers, cabling, 

switchgears, flow battery pumps, and HVAC), system 
integration costs (costs of integrating subcomponents of a 
BESS into a functional system), and project development costs 
(costs of permitting, power purchase agreements, etc.).  

Operation costs include the fixed and variable costs for 
O&M. The fixed O&M cost refers to the costs necessary to keep 
the BESS operational, such as planned maintenance. The 
variable O&M cost represents the usage impacted cost 
necessary to operate the storage system. 

BESS costs are summarized in TABLE A1. In this paper, all 
BESSs are lithium-ion iron phosphate (LFP) batteries due to 
their good safety performance and long lifespan. For more 
details, references [36][37] have presented a detailed analysis 
and comparison of different types of batteries.  

TABLE A1. COST OF LFP BATTERIES 
kp ($/kW) 156 
ke ($/kWh) 408 

cMf ($/kW-yr) 4.4 
cMv ($/kWh) 0.5125e-3 

APPENDIX B: COMPARISON BETWEEN BESSS AND MESSS 

In addition to BESSs, mobile energy storage systems 
(MESSs) are another promising storage technology [38]. 
BESSs and MESSs share many similar functions such as load 
shifting, peak shaving, reactive power support, renewable 
energy integration, transmission deferral, energy arbitrage, and 
voltage profile improvement. The general operational and 
economic differences between BESSs and MESSs are 
summarized in Table A2. It can be concluded that the main 
advantage of a BESS is its lower cost (e.g., investment plus 
transportation), while the main advantage of a MESS is its 
better location-based services (e.g., voltage regulation and 
power loss minimization) due to its locational flexibility. In a 
competitive distribution system, it may be difficult to claim that 
BESSs will always be more attractive than MESSs, or vice 
versa. Thus, the preliminary conclusion regarding the decision 
of whether to invest in BESSs or MESSs really depends on the 
requirements and preferences of the investors and the features 
of the distribution system. A more rigorous study should be 
conducted for a given system to make the best decision. 

TABLE A2. DIFFERENCES BETWEEN BESSS AND MESSS 
Features BESSs MESSs 

Investment cost Expensive Very expensive 
Operation style Stationary Transportable 
Moving time No Yes 

Transportation cost No Yes 
Localized services Good Excellent 
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