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Abstract-- Within the deregulation process of distribution
systems, the distribution locational marginal price (DLMP)
provides effective market signals for future unit investment. In
that context, this paper proposes a two-stage stochastic bilevel
programming (TS-SBP) model for investors to best allocate
battery energy storage systems (BESSs). The first stage obtains the
optimal siting and sizing of BESSs on a limited budget. The second
stage, a bilevel BESS arbitrage model, maximizes the arbitrage
revenue in the upper level and clears the distribution market in
the lower level. Karush-Kuhn-Tucker (KKT) optimality
conditions, strong duality theory, and the big-M method are
utilized to transform the TS-SBP model into a tractable two-stage
stochastic mixed-integer linear programming (TS-SMILP) model.
A novel statistics-based scenario extraction algorithm is proposed
to generate a series of typical operating scenarios. Then, scale
reduction strategies for BESS candidate buses and inactive voltage
constraints are proposed to reduce the scale of the TS-SMILP
model. Finally, case studies on the IEEE 33-bus and 123-bus
systems validate the effectiveness of the DLMP in incentivizing
BESS planning and the efficiency of the two proposed scale
reduction strategies.

Index Terms-- distribution locational marginal price (DLMP),
siting and sizing, scenario extraction, two-stage stochastic bilevel
programming (TS-SBP), scale reduction, battery energy storage
systems (BESSs).

NOMENCLATURE
Sets
Q, Set of time slots
Q. Set of generators, Q. =Q,,, UQg,.
Q. Set of MTs
Qe Set of SVCs
Q, Set of buses
Qs Set of candidate buses for BESS installation
Q, Set of .bus.es at which voltage constraints can
be maintained
S Set of scenarios
Constants
My Fixed/variable O&M cost
NG& Maximal number of BESSs
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Fixed power/energy cost for installing a BESS
Budget limit

Minimum/maximum rated power of a BESS
Minimum/maximum rated energy of a BESS

Probability of scenario s
Round-trip efficiency of BESS i

Minimum/maximum SOC of BESS i

Active/reactive LMP of the substation at time
t

Active/reactive bidding price of generator i at
time ¢

Fixed active/reactive load demand of bus i at
time ¢

Minimum/maximum voltage limits

Voltage of the substation at time ¢

Minimum/maximum  active power of
generator [ at time ¢
Minimum/maximum reactive power of

generator [ at time ¢
Power factor of generator i

Matrices of nodal voltage change concerning
net active/reactive power injection

Rated power/energy of BESS i
Binary variable indicating whether a BESS is
installed at bus i

Active DLMP of node i at time ¢

Charging/discharging power of BESS i at time
t

Power exchange of BESS i at time ¢ with the
power grid

Energy stored in BESS i at time ¢
Active/reactive power drawn from
wholesale market at time #

Active/reactive power of generator 7 at time ¢

the

Active/reactive power loss at time ¢

Voltage of bus j at time ¢

Lagrangian multipliers associated with
active/reactive equality power constraints
Lagrangian multipliers associated with
inequality voltage and active/reactive power
constraints
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kK Lagrangian multipliers associated with
inequality reactive power constraints

1. INTRODUCTION

RADITIONALLY, a power system has a unidirectional

structure where electricity is generated by generators and
then delivered via transmission and distribution lines to
consumers, who are at the end of the supply chain. However,
over the last 20 years, the electricity industry has witnessed the
emergence of distributed energy resources (DERs) in
distribution systems [1]. The proliferation of DERs has
transformed the unidirectional system into a bidirectional
system, making the distribution system more flexible and more
active, and also more complex. To take advantage of these new
opportunities and to keep pace with deregulation in power
distribution systems, the concept of a distribution market has
been proposed and widely studied [2][3].

The distribution locational marginal price (DLMP), the
extension of locational marginal price (LMP) to distribution
networks, has been proposed to either guide the consumption of
flexible loads, or act as the bidding price of DERs when
participating in the distribution market. In [4][5], the DLMP
varies throughout the course of a day and is utilized to optimize
the charging schedule for electric vehicles (EVs) and household
demand response to alleviate congestion issues. In [6], the
DLMP is regarded as both the microgrid (MG) bidding price
and the clearing price of the distribution system operator
(DSO). A bilevel model is built and a strategic bidding strategy
is proposed to maximize MG profits. A similar bi-level model
is proposed in [7] to achieve optimal EV aggregator scheduling.

The above studies mainly focus on short-term operations.
However, the DLMP also releases continuous and effective
market signals to practitioners, which can incentivize future
DERs investment. Among all types of DERSs, the battery energy
storage system (BESS) plays a significant role due to both its
flexible charging/discharging characteristic and its increasing
penetration level. Between 2011 and 2020, the Federal Energy
Regulatory Commission (FERC) Orders No. 755 [8], 841 [9]
and 2222 [10] have gradually removed the barriers to BESS
participation in the energy and ancillary market. In the industry
field, various related trading products, such as CAISO’s
flexible ramping product [11] and PJM’s Regulation D [12],
have promoted the deployment of BESSs. The cost of BESSs
also continues to decrease as technology advances. All of these
advantages are driving the acceleration of BESS installation,
which is likely to continue into the foreseeable future [13]. In
this context, the optimal allocation of BESSs has already been
extensively studied.

In normal operating conditions, the optimal allocation of
BESSs or distributed generators (DGs) traditionally aimed to
either 1) minimize the investment cost and the long-term
cumulative operating cost of distribution systems, or 2) to
satisfy the system operating conditions (e.g. meeting load
growth, improving voltage profile and reducing power losses),
usually from the viewpoint of the DSO or a utility [14]-[18]. In
[14], a stochastic mixed-integer linear programming (MILP)
model was formulated to optimally site and size BESSs to
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minimize both the system operating cost and the BESS
investment cost. The optimal placement and sizing of energy
storage (ES) to minimize total energy losses was studied in [15].
A single-level mixed-integer second-order cone programming
(MISOCP) model was established in [16] to determine the
optimal siting and sizing for BESSs. Reference [17] determined
the optimal BESS allocation to maximize net revenue. The
same problem in an imbalanced system was further studied in
[18]. Reference [19] aimed to characterize the economic effect
of ES geometrically and investigate the optimal energy-power
ratio for ES.

These studies were performed in a regulated distribution
system. However, in deregulated distribution systems, the
planning objective and investment goal differ from the
regulated case because of the profitability of private DER
owners. Considering the characteristics of electricity prices in
competitive distribution systems, such as the spatial and
temporal difference of the DLMP, private DER owners are
motivated to install DERs at optimal locations in optimal sizes
to maximize profits.

A few studies have been developed in this background. The
authors in [20] proposed a bi-level wind-storage expansion
model to maximize investor profits in the transmission level
market, in which only the capacity was optimized. In [21], a
three-stage model for network reinforcement and DERs
planning was proposed. The objective was to maximize asset
owners’ profit by optimizing the location and construction time
of new lines or DERs. In the third stage, the DLMP was utilized
as the market signal to modify the planning in the first two
stages. In [22], MGs were assumed to trade with the DSO. MG
locations were based on the weighted sum of loss sensitivity
factors and voltage sensitivity factors. The installation time and
DER type were determined by solving a bilevel model with the
DSO in the upper level and MGs in the lower level. Reference
[23] determined the optimal sizes for renewable generators and
ES in a deregulated market with given candidate sites. An
adaptive robust model for investment planning of DERs was
proposed in [24], in which the 8760-hour operating conditions
in each planning year were clustered to a tractable count. In
[25], with the constraint of wind turbines (WTs) of a fixed size,
an exhaustive search method was proposed to find the most
convenient WT allocations and the priority of installations.

In the above studies, electricity price and earned profit have
been proposed and deployed to motivate system investment.
These studies have provided some insights for planning in a
distribution market environment. However, there are still
important issues that have not been well addressed in the
literature: 1) Daily day-ahead market clearing is seldom
considered, as shown in [22][24] in which the operating
conditions are reduced or clustered to a low resolution, not to a
consecutive 24 hours. 2) The methods proposed in previous
studies may not be suitable for BESS planning since the daily
operating constraints for BESSs cannot be included, such as
constraint (10) in Section II-B. 3) In [22]-[25], as an indicator
of the physical operating conditions, the DLMP is not fully
modeled or utilized, meaning that its potential in incentivizing
system planning can be further explored.
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To fill these gaps, this paper focuses on the optimal siting
and sizing of BESSs for private investors. This planning is
formulated as a two-stage stochastic bilevel programming (TS-
SBP) problem. The first stage determines the locations, sizes,
and number of BESSs within a limited budget. The second stage
maximizes investors’ arbitrage profits over long-term
operation, which is modeled as a bi-level problem with the
investors in the upper level and the DSO in the lower level. The
contributions of this paper are summarized as follows:

1) The DLMP is applied as a price signal to incentivize
BESS planning in a deregulated distribution system. The
proposed planning approach maximizes investor profit and
improves system operating conditions, which is aligned with
the incentive compatibility that benefits both the BESS owners
and the distribution system.

2) A TS-SBP arbitrage model is established, in which the
planning stage and the operating stage are combined as a two-
stage problem, and the operating stage is formulated as a bi-
level problem. The objective of the TS-SBP model is to
minimize maintenance costs and maximize arbitrage revenue.

3) From the 1-year historical LMP and system load dataset,
a k-means-based scenario extraction algorithm is proposed to
extract the most representative patterns of a consecutive 24
hours LMP, as well as system load profiles and their
corresponding discrete joint probabilities. The extraction
accuracy is validated, and this innovation enables day-ahead
market clearing.

4) Based on the unique characteristics of this problem, such
as the limited number of BESSs to be installed and the huge
number of inactive constraints, two scale-reduction strategies,
BESS candidate buses reduction and inactive voltage
constraints reduction, are proposed to reduce computational
complexity for this large-scale optimization problem. The
simulation results demonstrate the accuracy of these strategies.

It should be noted that this work addresses profit-oriented
BESS planning, which is appropriate for areas where resilience
is not a considerable concern. However, in areas with resilience
as a significant concern such as coastal regions prone to extreme
weather like hurricanes, the problem may follow a
fundamentally different model with resilience as a major factor;
that is a problem for a future work to investigate.

The rest of this paper is organized as follows. Section II
describes the TS-SBP model. Section III proposes the scenario
extraction algorithm. Section IV presents the solution methods
and two scale-reduction strategies. Section V presents case
studies. Section VI concludes the paper.

II. PROBLEM FORMULATION

The mathematical formulation of the TS-SBP model is
presented in this section. The overall framework is shown in
Fig. 1.
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Fig. 1. The framework of the TS-SBP model

A. The First Stage Problem: Optimal Siting & Sizing

The first stage aims to optimize the site and size of BESS
units, which means private investors intend to determine the
best locations and best sizes to maximize their profit.

max — Z(CWBmted+chEirat€d)+E|:f(xys):| (1)
i€Qpq
st 35 <N )
i€Qyg
Z kpBrated +keEvirated < CBgt (3)
ieQyg
Pmin 5, < Pirated < Pmax 5[ ( 4)
Eminé; < Eirated < Emaxaj (5)
Eirated — 4 Pimted (6)
E[f(x,s)}:365-Zp(s)f(x,s) @)
seS§

where (1) minimizes the operation and maintenance (O&M)
costs and maximizes the arbitrage revenue of the BESS over a
year, the decision variables include the BESS locations, rated
power, and rated energy:

xz(é‘l,...,5N,131"“’ed,...,B’v”’ed,El"’”ed,...,E[(}"Ed) , the first two
items in (1) are the expression of the O&M costs; (2) restricts

the number of BESSs to be installed; (3) is the investment
budget limit [26], where the installation cost of a BESS is

approximated as a linear function of P/ and E/““ [27][28];
(4) and (5) are BESS size constraints; (6) simplifies the BESS
energy-power ratio to a fixed value [27]; and in (7), f (x,s) is
the optimal value of scenario s in the second stage problem.
B. The Second Stage Problem: BESS Operation in a
Deregulated Distribution Market

In this stage, BESSs participate in the distribution-level
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electricity market to maximize their arbitrage revenue. This

problem has the following assumptions:

e A day-ahead electricity market is established in the
distribution level. DERs provide bids and offers to the
DSO, which clears the market and broadcasts the DLMP to
all participants.

e BESSs are modeled as price takers that only submit
load/generation quantities and the DSO decides the DLMP.

Based on these assumptions, the BESS owner and the DSO
have different interests. At the same time, BESSs’
charging/discharging power and system DLMP are coupled
variables. Thus, a bilevel model is an appropriate representation
of the coupled relationship. Note that (8)-(24) represent the
scenario s. For simplicity, the expressions Vie Q, and s €S
behind each equation are neglected.

1) The upper level: The BESS sells energy during high

DLMP hours and buys during low DLMP hours. Its objective is

to maximize the arbitrage revenue.

= max Z Z ﬂ' PBESS&

teQr ieQpg

(®)
= max Z (\/777[ i Pc 5/\/777[)
teQy IEQBY
St E,.=E,+Ry R ©)
E;t 0= E:it:T (10)
SOCmm Emtcd < E,Yt . < SOC,-max .Eirated (11)
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where in (8), round-trip efficiency #; is used instead of using
charging and discharging efficiencies [29]; (9) calculates the
stored energy in the BESS with 1 hour as the time interval; (10)
ensures that the daily charged and discharged energy are equal;
(11) is the state of charge (SOC) constraint; (12) provides the
charging and discharging power limits.

2) The lower level: The DSO clears the market intending to
minimize total generation costs as well as maintain physical
operating constraints.

minA(z, p,s) =
s s s N s $ (13)
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0< Q% < PS* tan(arccos ;) : 0!, @!™* ,VieQ,,  (19)
Q.G,l'nlll < QG\ < QG max .o qmm s .qma“,Vl. < QSVC (20)
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where (14) and (15) are active and reactive equality power
constraints with the substation regarded as a large capacity
generator; (16) is the linearized voltage expression derived
from [2][30]; (17) is the voltage limit; (18)-(19) are the active
and reactive power limits of microturbines (MTs); (20) is the
reactive power limit of static var compensators (SVCs); in (21),

o =|Q,G,S| since it is assumed that both absorbing and

generating reactive power can induce cost [3]; and (22) is the
DLMP expression derived from the Lagrangian function of this
level. The power losses are linearized according to Taylor’s
series [2]:

B g 3 S (are a2

ieQy aPGJ !
(23)
z G s (AQ - AQI’,DtJ )
eQy
L,s
Q’L,s ~ QIL,S* z 2}Q)GS (ARI APD:)
ieQy (24)

00" } i
’ z;‘i an(,;[S (AQi’G’ B AQ’S )

where APS* = Pp§* - pS*" represents the power difference

between two close operating points, and AQ’* , AP"* and
AQ/* have similar expressions.

In (22), the DLMP is shown to consist of three components:
marginal energy price, marginal power loss price, and voltage
support price. The marginal energy price is determined by the
bidding price of the marginal unit. The marginal power loss
price reflects the power loss associated with delivering power.
Since the power loss percentage in a distribution system is
usually high (relative to transmission systems), it is not
negligible and should be priced. Similarly, voltage is an
important operating criterion and should be included. The
voltage support price represents the cost of maintaining voltage
within the acceptable boundary. It is calculated using the
shadow price and will be zero if there is no binding voltage
constraint. The detailed analysis and discussion of the three
DLMP components and their impacts on flexible loads can be
found in [34].

C. Compact Notation
To make the whole model concise and clear, a compact
notation is used to elaborate the proposed TS-SBP model [31].
The first stage is:
max —ch+365-2p(S)f(x,s)
ses

st. Ax<b (26)

where x e Z” xR"™" represents the binary and continuous

(25)

decision variables; (26) is the matrix representation of
constraints (2)-(7) with 4 e R™*" , b e R™ ; p1 is the number
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of candidate buses; n; is the number of total decision variables;
and m; is the number of constraints.
The second stage is given by:

f(x,s):max nTy 27)

st. W(s)y<r(s)-T(s)x (28)
meargminh(z,y,s) 29)

st. G(s)z<e(s)-K(s)y (30)

where yeR™, 7eR™ ,W eR™™ ,reR™, T e R"*" ,

zeR”, GeR™™ ,ecR™, K R"™.

III. SCENARIO EXTRACTION AND VARIABLE NODAL LOADS

The DLMP plays an important role in the TS-SBP planning
problem. In the meantime, the DLMP is significantly
influenced by the wholesale market LMP and the distribution
system load. However, because the LMP and load vary every
hour and every day, applying all historical data will
significantly increase the computational burden, making this
problem intractable. Thus, a natural alternative is to extract a
series of representative operating scenarios from the historical
dataset, which are defined as possible LMP profile and system
load profile combinations in this study.

A. Scenario Extraction

The statistics-based scenario extraction includes three steps:
historical LMP and load clustering, scenario generation, and
scenario reduction. The detailed procedures are shown in
Algorithm 1.

Algorithm 1: Scenario Extraction and Reduction

Historical hourly LMP and system load profiles in a

Input year

Typical LMP and system load scenarios associated with

Output discrete joint probabilities

1 K-means clustering:
Utilize the elbow method to obtain the optimal
number of LMP clusters and system load clusters,

respectively.

3 Partition the daily LMP and system load profiles into
ke and k,,, clusters.

4 For each cluster, calculate its centroid:

T (l) = l/n(QLMPJ.) . ZI_EQMJ e (i,j)

D,

load (l) = l/n(Qload,i) ) z‘fegmd.’ D,, (i,j)

Scenario generation:
6 For LMP cluster i and system load cluster j, calculate
the discrete joint probability:

P(S) =pL1W3,luad(i’j) =n<QLA/ﬂ3,i nQIoaa’,j)/365

7 In total, k,,,‘k,, scenarios and corresponding

W

probabilities are generated.

8 Scenario reduction:

9 Remove scenarios with probabilities below a
threshold.

10 Normalize the discrete joint probabilities of the

remaining scenarios (let their summation be 1).

where Q,,,. ={d,,....d,} and Q,,, ={d,....d,} refer to

the LMP cluster i and the system load cluster i, respectively; d,
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is the k" day in a year; n() represents the number of elements

in a set; m,,,(i,j) and D, (i,j) are the LMP and system

load profiles in day j in cluster i, respectively, which represent
the LMP and load for 24 hours; 7,,,,(i,j) and D, (i, /) are

the centroids of the LMP and system load cluster 7, respectively;
p () is the discrete joint probability.

Note that each centroid is regarded as an LMP or a load
profile pattern that is most likely to appear in one year. p(s)is

the probability that one LMP pattern and one load pattern
happen on the same day in one year. Each LMP and load pattern
combination is regarded as a scenario.

B. Variability in Nodal Loads

In the preceding subsection, the system load profile refers to
the total load profile of all nodes in a distribution system.
However, the load at each node is usually hard to forecast with
high variability. Thus, for simplicity, it is assumed that all nodal
loads have the same normalized active and reactive load
profiles with the system load in each scenario [31][32].
Additionally, a random multiplier is applied to each nodal load
to simulate the randomness of the load.

D,s _ __s . P . D,s
Pi,t - Tz',t Mi,t E

D,s _ __s o D,s
Q[ =T 'Mi,z -0,

ot t

€2))
(32)
where 7, refers to a multiplier that follows a Gaussian
distribution, 7;, ~N (1,0.042) ;

normalized active and reactive load; p”* and Q" are the

M and MP? are the

active and reactive system loads of scenario s.

IV. SOLUTION METHODS

The previous Sections II and III build the proposed model
for siting and sizing BESSs. The mathematical solution is
discussed in this section.

The solution to the proposed TS-SBP model includes two
steps. In the first step, the bilevel problem of the second stage
is converted to a single-level problem via Karush-Kuhn Tucker
(KKT) optimality conditions. After that, the TS-SBP model
becomes a two-stage stochastic MILP (TS-SMILP) problem. In
the second step, based on the unique characteristics of this TS-
SMILP problem, two relaxation methods are proposed to make
this problem tractable.

A. Solving the Bilevel Problem

1) MPEC formulation: Due to the linear property of the
lower level, its optimal solution can be obtained by solving the
KKT optimality conditions [33]. Thus, the bilevel problem is
converted into a single-level problem by adding the KKT
conditions to the constraints of the upper level. Then the single-
level problem is a mathematical program with equilibrium
constraints (MPEC).

max (8)
s.t. constraints (9)-(12), (14)-(16), (22)-(24), (31)-(32)

(33)
(34)
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where (35)-(37) are stationary conditions, and (38)-(45) are
complementary slackness conditions.

2) MILP formulation: The MPEC is a nonlinear problem
featuring the bilinear terms found in (33) and nonlinear
complementary slackness conditions. Thus, strong duality
theory and the big-M method are used to reformulate the MPEC
problem as a MILP problem that is tractable [33][34].
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The objective function (33) is reformulated as (46). Each
constraint in (38)-(45) is reformulated as:

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

0<@, <M, v, 0<g, (x)SMi’,(l—vu) (47)

So far, the completed MILP problem can be presented as
follows:

max (46)
s.t. constraints (34) - (37), (47)

(48)
(49)

B. Solving the Two-stage Problem

With the reformulation of the second stage in the preceding
subsection, the TS-SBP problem becomes a TS-SMILP
problem which is a large-scale optimization problem that
requires huge computational resources. To reduce the
computational burden, the problem scale can be reduced via
two aspects according to the specific characteristics of the
original problem.

1) Candidate BESS buses reduction: The candidate BESS
buses are binary variables that are associated with a series of
constraints. However, only a limited number of buses are
realistic candidate sites for BESSs due to geographical, physical,
and spatial limits in industrial practices. Thus, these candidate
buses can be reduced to a limited set of probable buses instead
of all buses.

2) Inactive voltage constraints reduction: Continuous and
binary variables, especially voltage-related ones in the second
stage, account for most of the constraints and decision variables
throughout the entire problem. However, most voltage
constraints are inactive, and they can be omitted to reduce the
number of complementary slackness conditions.

The complete solution procedure including detailed
candidate buses and inactive voltage constraints reduction is
described in Algorithm 2.

Algorithm 2: Overall Solution Procedure
1. Decomposition: Since there is a finite set of scenarios, (25) can
be reformulated as:
max 365~Zp(s)
seS
Decompose it into S subproblems.
2. Initialization: For each s € S, compute:

(_CTxS + ﬂbTyS)

(x,,p,)eargmax —c'x +x"y,
3. Candidate buses reduction: Obtain the aggregated binary

variable: 522@ p,(s)0, , where 3={(§1, ..,6}2)\,} ; remove 4,

with low values; the rest are the most probable buses.
4. Voltage constraints reduction: Check V {VI, W \} ,SES,

identify buses at which at which voltage constraints are never
violated; then, remove constraints at these buses.

5. Solving: With reduced candidate buses and voltage constraints,
compute: (x, ,)€argmax —¢'x+365->" _p(s)xy,.

6. Voltage constraints update: Check whether the removed
voltage constraints are violated or not. If yes, add the violated ones
and go back to Step 5; otherwise, the algorithm terminates.

It should be noted that step 3 is more like data pre-processing,
since candidate buses may be influenced by the investor’s
preference as well as the actual operating conditions which are
hard to handle quantitively. Here, step 3 obtains the most
probable installation buses, but does not ensure equivalence
with the original problem.
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V. CASE STUDIES

The proposed model is tested on the modified IEEE 33-bus
and 123-bus distribution systems. Simulations are performed on
a personal laptop with an Intel Core i7-8650U CPU and 16GB
RAM. The codes are carried out in MATLAB R2020a,
YALMIP and GUROBI 9.0.0.

A. IEEE 33-Bus Distribution System

1) System description: The modified IEEE 33-bus system is
illustrated in Fig. 2. Two MTs are located at buses 18 and 33,
respectively, and two SVCs are located at buses 16 and 30,
respectively. The parameters of DGs, the distribution system,

BESS investment and operating constraints are listed in
TABLE L.

23 24 25
——o—e M Microturbine
2627 28 29 30 31 32 33 1 S SVC
| 1
S M
Wholesale! 2 |3 4 5 |6 7 8 9 1011 12 13 14 15 16 17 18
market ° | |
S M
1920 21 22
o—o—o—8

Fig. 2. Modified IEEE 33-bus system

TABLE 1. PARAMETERS OF THE MODIFIED IEEE 33-BUS SYSTEM

Class Parameter Typical Value
Location Bus #18, 33
MT Bidding price $ 70/MWh
Capacity 0.5 MW
a; 0.95
Location Bus #16, 30
SvC Bidding price $ 0/MVarh
Capacity 0.5 MVar
ymin 0.95 p.u.
System pmex 1.05 p.u.
constraints Vs 1.0 p.u.
Peak load 6.316 MW +/3.026 MVar
Ny 5
Investment c™ $ 1x10°
constraints prin/ pmor 0.1 MW /0.4 MW
E™/ E™ 0.4 MWh /1.2 MWh
BESS operating soc™ | soc™ 0.2/0.8
constraints 0 0581

2) Scenario extraction: The daily day-ahead LMP and load
profiles in one year have been obtained from PJM [35], and the
time range is 1/1/2020-12/31/2020. After k-means clustering,
the optimal cluster numbers obtained via the elbow method are
k=7 and k, ., =6 , respectively. The normalized LMP

patterns, load patterns, and their discrete joint probabilities are
shown in Fig. 3. It can be seen that some probabilities are 0
which means the corresponding LMP pattern and load pattern
have never appeared on the same day. Thus, among the 42
scenarios, we can remove the scenarios with probabilities less
than 0.01. Then, 21 scenarios are kept.

load
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Fig. 4. Average annual net profit of all scenarios and that of extracted scenarios

The best method for validating the effect of the scenario
extraction is comparing the optimal sites and sizes by solving
the proposed TS-SBP model with both 365 scenarios (1-year
LMP and load data) and only the extracted scenarios,
respectively. However, solving the proposed TS-SBP model
with a full 365 scenarios requires huge computational
resources, and is therefore unmanageable in our current
laboratory environment. Thus, an alternative method is
proposed to achieve the validation: given the optimal sites and
sizes obtained by the extracted scenarios, we compare the
annual net profit of all 365 scenarios with the annual net profit
of the extracted scenarios. Due to the variability consideration
of nodal loads in (31)(32), the simulation is run multiple times.

The average annual net profit curves are illustrated in Fig. 4,
which shows that the curves in the two cases become flat and
closer as the simulation time increases. Beyond the 32
simulation, the profits of all 365 scenarios ($8124.02-
$8147.70), and the profits of only the extracted scenarios
($8140.08-$8164.32) both stay within a tight range. This
comparison demonstrates that given the BESS allocations, the
expected annual profit obtained by the extracted scenarios can
be very close to that of all 365 scenarios, which validates the
effectiveness of the scenario extraction strategy.

3) BESS siting and sizing results: After Algorithm 2 has been
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performed, 11 buses are selected as the most probable BESS
candidate buses, Qps = {10-12, 14-18, 31-33}, the voltage
constraints at 12 buses are kept, Qp= {9-15, 17-18, 31-33}.
To verify the effectiveness of the proposed scale reduction
methods, five cases with different reduced items are formulated
in TABLE II. TABLE III presents the siting and sizing results.

TABLE II. DIFFERENT CASES

Cases Reduced Items
Scenarios | Voltage constraints Candidate buses
Case 1 x X x
Case 2 v X x
Case 3 S X N
Case 4 RN \ X
Case 5 v v v
#x: not reduced, V: reduced.
TABLE III. RESULTS OF DIFFERENT CASES
Cases BESS bus proed | groed Annual net Time (s)
# (kW/ kWh) profit ($)
1. 15 100/400, 149/597,
Case 1 18 él §3 103/414, 107/426, 9302.22 7936
T 100/400
1. 15 100/400, 149/597,
Case 2 18 él 53 103/414, 107/426, 9129.37 3442
T 100/400
1. 15 100/400, 149/597,
Case 3 18 él 3’3 103/414, 107/426, 9129.38 1338
T 100/400
1. 15 100/400, 149/597,
Case 4 18 él 3’3 103/414, 107/426, 9129.38 2390
T 100/400
1. 15 100/400, 149/597,
Case 5 18 él 3’3 103/414, 107/426, 9129.38 1077
T 100/400
TABLE IV. COMPARISON OF INTERMEDIATE RESULTS
Cases  Constraint  Variable AV ADLMP  APP®  APPESS
Case 2 410801 227907 - - - -
Case 3 321063 183489  0.0162  0.0938  0.0317 0.4189
Case 4 326129 185571  0.0162  0.0938  0.0317 0.4189
Case 5 236391 141153  0.0162  0.0938  0.0317 0.4189

TABLE III shows that Cases 1-5 have the same BESS siting
and sizing results. The annual net profit of Case 1 is slightly
different, which is reasonable because Case 1 considers more
scenarios. Cases 2-5 have close annual net profits, but
significantly different computational times. In these cases, both
candidate bus reduction and inactive voltage constraint
reduction improve computational efficiency. Their combination
makes for the best-observed performance.

A comparison of intermediate results among Cases 2-5 is
presented since Cases 2-5 are all simulated using the same
reduced number of scenarios. Here, Case 2 is set as the
benchmark and Cases 3-5 are compared with Case 2. The
number of constraints and variables, the accumulated difference
of voltage, the DLMP, DG power output, and BESS power
output are provided in TABLE IV. The accumulated voltage
difference is calculated using the following equation:

|Vx,rel _ Vs,ben

weyy ¥

seS teQp jeQy

(50)

where V7 and ¥’ are the voltage of scenario s at bus j and

time ¢ for the relaxed case and benchmark case respectively, and
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pherma g the maximum value. The DLMP difference

(ADLMP), DG power output difference (APP), and BESS
power output difference (APP£5S) are calculated using a similar
formula. Note that the accumulated difference is the summation
of individual differences across all scenarios at all time slots
and all buses.

From TABLE 1V, it can be found that the application of
relaxations reduces the number of constraints and decision
variables, and all of the accumulated differences are small in
value. All of these cases validate the effectiveness of the
proposed scale reduction methods.

55

50

40 |

DLMP (S/WMh)
o
S

(3]
-
o

. B
Time (hour) 0 o

Bus

Fig. 5. Expected DLMP

The expected DLMP is defined as the weighted sum of the
DLMPs of all scenarios. It is illustrated in Fig. 5. The optimal
BESS locations are buses #11, 15, 18, 31, and 33. These
locations are intuitively reasonable because the daily DLMP
gap (the difference between the highest DLMP and the lowest
DLMP) is high in these buses, as shown in Fig. 5. Therefore,
BESS owners make a higher profit. It can be concluded that the
DLMP provides effective market signals for BESS investment.
On the other hand, the higher DLMP reflects the scarcity of
generation resources and stressed operating conditions. Thus,
from the perspective of the DSO, installing BESSs in these
locations will increase the local power supply, and benefit the
stressed distribution system with a positive effect for the DSO.
This is aligned with the incentive compatibility mechanism.
System improvement is discussed in the next subsection.

4) Load profile and voltage improvement. Among the
reduced scenarios, we select scenario 13 which has the highest
system load level. In the second stage, system load profiles over
one day before and after BESS installation are shown in Fig. 6.
It can be found that with the integration of BESSs, peak load at
t = 13:00-19:00 is shifted to off-peak hours # = 2:00-6:00. The
operation stress under heavy load conditions is relieved.

The nodal voltage profiles in this scenario after BESS
installation are shown in Fig. 7. It can be observed that the
voltage profiles over one day are well maintained within the
voltage boundaries.
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Fig. 7. Nodal voltage profiles with BESSs

5) Effect of DERs penetration level: With the integration of
various DERs, the number of existing DERs can also affect the
optimal allocation of BESSs. In this subsection, four cases are
formulated to study the effects of different DERs penetration
levels. Here, photovoltaics (PVs) are selected as a new DER
with a bidding price of $15/MWh and a capacity of 0.5 MW.
The locations of DERs are listed in TABLE V. The simulation
results can be found in TABLE VI.

From TABLE VI, it can be seen that with an increasing level
of DERs penetration, the optimal BESS allocation is changed
and the annual net profit is reduced. The main reason is as
follows: Compared to MTs and the wholesale LMP, PVs
usually have the lowest bidding price, thus they easily win the
bidding. With the large-scale integration of PVs, the DLMP
profile changes and the overall system DLMP is reduced. Since
the optimal allocation of BESSs is closely related to the DLMP,
the allocation and profit are changed as well. A more
comprehensive analysis of profit reduction can be found in [34].

PVs are studied here because they are one of the most
common DGs that can be installed in the distribution system.
PVs can be replaced by other DGs and the simulation results
will be different, but the in-depth reasoning should be similar.
Also note, BESS mitigation of the volatility of PVs is not the
focus of this paper.

TABLE V. DIFFERENT DERS PENETRATION LEVELS

Cases DERs Amount Bus (#)
SvC 2 16,30

Case 1 MT 2 18,33
PV 0 None
SvC 2 16, 30

Case 2 MT 2 18,33
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PV 2 12,28
SVC 2 16, 30
Case 3 MT 3 8,18, 33
PV 3 12, 14,28
SVC 3 10, 16, 30
Case 4 MT 4 8, 18,26, 33
3% 5 12,14, 17,31, 32
TABLE VI. SIMULATION RESULTS
rated rated
Cases BESS bus Pt |E Annual net Time (s)
#) (kW/ kWh) profit ($)
L 1s 100/400, 149/597,
Case 1 | 10313y | 103/414,107/426, 912937 1077
220 100/400
15, 18, 100/400, 149/597,
Case 2 32,33 100/400, 210/840 >858.96 492
16, 18, 101/405, 141/563,
Case 3 32,33 100/400, 217/869 3705.55 >80
16, 18, 100/400, 129/514,
Case 4 32,33 100/400, 231/923 >184.61 1692

6) Comparison with other models: To demonstrate the
advantage of the proposed model, the optimal BESS allocation
of our proposed model is compared with two other models. The
formulation of these two comparative models are elaborated
next. In Model 2, it is assumed that all BESSs have the same
fixed sizes and only the BESS sites are to be determined. In
Model 3, the candidate bus set is Qg = {11-18, 33}, which is
obtained by the method proposed in [22], and other conditions
are kept the same as in our proposed model. The simulation
results are shown in TABLE VII. The BESS locations in Model
2 are close to the BESS locations of the proposed model, but
the annual net profit is suboptimal. In Model 3, the candidate
bus set determination and optimal siting and sizing are
separated, and its profit is not the best. This indicates that a
comprehensive algorithm (e.g., Algorithm 2) that combines
these two items is truly effective and promising.

TABLE VII. COMPARISON WITH OTHER MODELS

BESS bus rated | prrated Annual net
preed [Ereed (Iew/ kWh
Models ) / (kW/ kWh) orofit (5)
Proposed 11, 15, 100/400, 149/597, 012937
model 18,31,33 | 103/414, 107/426, 100/400 :
11, 15, 112/448, 112/448,
Model 2 17,32,33 | 112/448, 111/445, 112/448 8780.28
11, 15, 100/400, 110/439,
Model 3 16,18,33 | 100/400, 103/413, 146/585 8794.21

B. IEEE 123-Bus Distribution System

1) System description: The topology of the modified IEEE
123-bus system is shown in Fig. 8. Six MTs, five SVCs and six
PVs are already installed in the system. Parameters of the
system are listed in TABLE VIII. System constraints, BESS
investment, and operating constraints are the same as those in
TABLE L.
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Fig. 8. Modified IEEE 123-bus system

TABLE VIII. PARAMETERS OF THE MODIFIED IEEE 123-BUS SYSTEM

Class Parameter Typical Value
Location Bus #65, 71, 85, 95,102, 110
MT Bidding price $ 70/MWh
Capacity 0.5 MW
o 0.95
Location Bus #27, 46, 75, 93, 108
SvC Bidding price $ 0/MVarh
Capacity 0.5 MVar
Location Bus #18, 47, 59, 67, 86, 104
PV Bidding price $ 15/ MWh
Capacity 0.5 MW
o 0.95
System Peak load 7.06 MW + 3.88 MVar
parameters

2) BESS siting and sizing results: The normalized LMP
patterns, load patterns, and their discrete joint probabilities are
the same as those in Fig. 3. To reduce the computational burden,
scenarios with probabilities less than 0.02 were removed. Then,
16 scenarios have been kept.

After Algorithm 2 is performed, seven buses are selected as
the candidate BESS buses, Qgs = {65, 66, 85, 94, 104, 112,
114}, while the voltage constraints at twenty buses are kept, Qr
= {65, 66,71, 75, 83-85,87-96, 104, 113, 114}. TABLE IX and
TABLE X present the simulation results of the five cases that
are formulated in TABLE II. TABLE IX shows that the sites
and sizes of Cases 2 & 4 and Cases 3 & 5 are slightly different.
This validates the discussion at the end of Section IV that the
reduction of candidate buses does not ensure equivalence with
the original problem. However, these results are still very close;
the cases all have similar annual net profit, similar sizes, and
similar BESS locations. Thus, the allocation results of Case 5
are acceptable for investors.

TABLE X shows that all of the accumulated differences
between Cases 2-5 are still small in value. Comparing the
number of constraints and variables in TABLE X with that in
TABLE IV, we can observe that a greater portion of the
constraints and variables have been eliminated. This indicates
that these relaxation strategies perform better as the system
scale increases. The computational time is maintained at an
acceptable level, further demonstrating that the proposed
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relaxation strategies can achieve a tradeoff between accuracy
and efficiency.

TABLE IX. RESULTS OF DIFFERENT CASES

BESS bus preed [ groed Annual net .
Cases Time (s)
#) (kW/ kWh) profit ($)
Case | N/A N/A N/A N/A
65, 66, 100/400, 159/635,
Case2 | ¢5'113 200/802, 100/400 4604.90 9808
65, 66, 100/400, 160/642,
Case3 | g5 114 199/795, 100/400 4604.30 2790
65, 66, 100/400, 159/635,
Cased | g5 113 200/802, 100/400 4604.90 2126
65, 66, 100/400, 160/642,
CaseS | g5 114 199/795, 100/400 4604.30 1272
TABLE X. COMPARISON OF INTERMEDIATE RESULTS
Cases | Constraint | Variable AV ADLMP | APP¢ | APPESS
Case2 | 100426 | 554079 - - - -
Case3 | 662277 | 384789 | 0.1175 | 0.0456 | 0.0615 | 1.2686
Case4 | 709355 | 406623 | 939 | 9.4e-10 | 2.3e-8 | 9.3e:9
Case5 | 367365 | 237333 | 0.1175 | 0.0456 | 0.0615 | 1.2686

3) Load profile and voltage improvement of BESS: In this
subsection, scenario 4 is selected. Fig. 9 shows the load shifting
effect, as the load at #=16:00-18:00 is shifted to off-peak hours
t=3:00-4:00. The nodal voltage profiles with BESSs are shown
in Fig. 10, and the voltage profiles are well maintained.
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Fig. 10. Nodal voltage profiles with BESSs
4) Comparison with other models: A comparison of our
proposed model with other models is presented in TABLE XI.
In Model 3, the candidate bus set is Qgs = {66, 71, 75, 84, 85,
104, 111-114}. It can be found that Model 2 and the proposed
model have the same optimal BESS sites, but Model 2’s profit
is not the best. In Model 3, the number of optimal BESS sites is
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reduced to just 3. This further shows that the joint optimization
of sites and sizes is the best choice for the profit-oriented BESS
planning problem.

TABLE XI. COMPARISON WITH OTHER MODELS

Models | BERREUS Pt B owriewny /;r;’;‘é?l(g;”
o [T | e | e
[P ||
Model 3 | 66,85, 113 256/1(1’(2)(3;;30003/814’ 460114

VI. CONCLUSION

In this paper, a profit-oriented BESS planning problem that
sites and sizes BESSs, is proposed in a deregulated distribution
system with the integration of the DLMP. This problem is
formulated as a TS-SBP model, in which the first stage
determines the optimal sites and sizes of BESSs, and the second
stage maximizes investors’ operating revenue. Typical
operating scenarios are extracted from a historical dataset by
statistical methods. Two scale-reduction strategies are proposed
to relax the original problem. Numerical studies on two systems
illustrate the following conclusions:

1) The DLMP can act as an effective price signal to
incentivize BESS planning. This is a special attribute of the
deregulated system that is quite different from traditional
systems.

2) The two proposed scale-reduction strategies are verified
to both significantly improve computational efficiency and
maintain result accuracy.

3) Optimal siting and sizing are shown to be beneficial for
both BESS investors and the DSO, such that our proposed
model is aligned with incentive compatibility in market
operation.

Although only the energy market is studied in this paper,
BESSs can also participate in the ancillary service market to
mitigate the uncertainty of renewable generators or regulate

system frequency, topics which we may explore in future works.

Additionally, the proposed model and solution methods can be
easily extended to other DER planning problems. Future work
may also be extended to resilience-oriented BESS planning for
areas where resilience or extreme weather events are a major
concern.

APPENDIX A: COST OF LFP BATTERIES

According to [27], BESS costs mainly consist of capital and
operation costs. The capital cost refers to the BESS installation
cost which includes power-related costs and energy-related
costs. The former consists of power equipment costs (costs of
the converter, protection, breaker, communication, software,
etc.), controls & communication costs (cost of the energy
management system for the BESS), and grid integration costs
(cost of integrating the BESS to the power system, including
transformers and isolation breakers).

The energy-related costs consist of storage block costs (cost
of the storage elements in a BESS), storage balance of system
costs (cost of supporting components like containers, cabling,
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switchgears, flow battery pumps, and HVAC), system
integration costs (costs of integrating subcomponents of a
BESS into a functional system), and project development costs
(costs of permitting, power purchase agreements, etc.).

Operation costs include the fixed and variable costs for
O&M. The fixed O&M cost refers to the costs necessary to keep
the BESS operational, such as planned maintenance. The
variable O&M cost represents the usage impacted cost
necessary to operate the storage system.

BESS costs are summarized in TABLE Al. In this paper, all
BESSs are lithium-ion iron phosphate (LFP) batteries due to
their good safety performance and long lifespan. For more
details, references [36][37] have presented a detailed analysis

and comparison of different types of batteries.
TABLE Al. COST OF LFP BATTERIES

K ($/kW) 156

k< ($/kWh) 408
M ($/kW-yr) 44
M ($/kWh) 0.5125¢-3

APPENDIX B: COMPARISON BETWEEN BESSS AND MESSS

In addition to BESSs, mobile energy storage systems
(MESSs) are another promising storage technology [38].
BESSs and MESSs share many similar functions such as load
shifting, peak shaving, reactive power support, renewable
energy integration, transmission deferral, energy arbitrage, and
voltage profile improvement. The general operational and
economic differences between BESSs and MESSs are
summarized in Table A2. It can be concluded that the main
advantage of a BESS is its lower cost (e.g., investment plus
transportation), while the main advantage of a MESS is its
better location-based services (e.g., voltage regulation and
power loss minimization) due to its locational flexibility. In a
competitive distribution system, it may be difficult to claim that
BESSs will always be more attractive than MESSs, or vice
versa. Thus, the preliminary conclusion regarding the decision
of whether to invest in BESSs or MESSs really depends on the
requirements and preferences of the investors and the features
of the distribution system. A more rigorous study should be
conducted for a given system to make the best decision.

TABLE A2. DIFFERENCES BETWEEN BESSS AND MESSs

Features BESSs MESSs
Investment cost Expensive  Very expensive
Operation style Stationary ~ Transportable

Moving time No Yes
Transportation cost No Yes
Localized services Good Excellent
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