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Abstract

We consider the one-dimensional stochastic heat equation driven by a multiplicative space—time white
noise. We show that the spatial integral of the solution from —R to R converges in total variance distance
to a standard normal distribution as R tends to infinity, after renormalization. We also show a functional
version of this central limit theorem.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

We consider the one-dimensional stochastic heat equation

% _ L v oty (1.1)
at = 2 u ou .
on R, x R, where W is a space—time Gaussian white noise, with initial condition uo(x) = 1.
The coefficient o is a Lipschitz function.

It is well-known (see, for instance, [12]) that this equation has a unique mild solution, which

is adapted to the filtration generated by W, such that E[|u(z, X)|?] < oo and it satisfies the
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evolution equation

u(t, x) = p; * uo(x) +/0 /Rpt—x(x — Yo (u(s, y)W(ds, dy), (1.2)

where in the right hand side the stochastic integral is in the sense of Walsh, x denotes the
spatial convolution and p,(x) = 2mt)~"/ 2=3%/@) s the heat kernel.

In this paper we are interested in the asymptotic behavior as R tends to infinity of the
quantity

1 R R
Fr(t) = - <f u(t, x)dx — IE/ u(t,x)dx) , (1.3)

R R —R

where R > 0, u(t, x) is the solution to (1.1) and 0’1% = Var (f_RR u(t, x)dx).

From Eq. (1.2) and the properties of the heat kernel, it follows that the solution to Eq. (1.1)
satisfies a localization property. This means that, for any fixed ¢+ > 0, the random variable
u(t, x) essentially depends on the noise in a small interval [x — €, x + €]. This property has
been extensively used in the literature, see for example, [4-6].

In particular, for the parabolic Anderson model (o (#) = u), it is shown in [5] that for each
fixed ¢+ > 0, almost surely, the solution u(z, x) develops high peaks along the x-axis. More
precisely, it holds that, almost surely

<k logu(z,
0 < limsup maxysj<k log u(t, x)
R—o00 (IOg R)2/3

The basic idea in [5] to show this result is that one can define a “localized version” of Eq. (1.1)
with solution U(¢, x), such that, whenever x; and x; € R are far apart for i # j, U(t, x;),
i =0,+£1,42,..., are i.i.d. random variables, and also U(t, x) and u(t, x) are close in certain
sense. Since a rare event (high peak in this case) will happen with high probability if there
are enough independent random variables, i.e., U(¢, x;), i = 0, 1,42, ..., one can see that
u(t, x), which is close to U(¢, x), also develops high peaks.

Following this idea, the spatial integral f 15 u(t, x)dx is similar to a sum of i.i.d. random
variables and we expect that certain central limit theorem holds in this case. To be more precise,
our first result is the following quantitative central limit theorem:

Theorem 1.1. Suppose that u(t, x) is the mild solution to Eq. (1.1) and let Fg(t) be given by
(1.3). Suppose that o > 0. Let dry denote the total variation distance and let Z ~ N(0, 1).
Then there exists a constant C, depending only on t, such that

C
dry (Fr(1), Z) < N 1.4)

Remark. Condition o(1) # 0 guarantees that g > 0. Notice that this condition is not
necessary. Taking into account that og = 0 implies
2

t R
/ / E(0(u(s., y))) ( / p,soc—y)dx) dyds = 0,
0 JR —R

a sufficient condition would be that o (u(s, y)) is not identically zero on [0, ] x R with positive
probability.
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We will show (see Proposition 3.1) that the variance 01% satisfies

o2 t
lim & =2/ £(s)ds,
R—oo R 0
where £(s) = E[o(u(s, y))*]. It turns out that E[o(u(s, y))*] does not depend on y € R
and is bounded on compact intervals. Then, we also prove the following functional version

of Theorem 1.1 with a normalization by 1/+/R.

Theorem 1.2. Suppose that u(t, x) is the mild solution to Eq. (1.1). Set £(s) = E[o (u(s, y))z],
s > 0. Then, for any T > 0,

1 R t
— ,x)dx — 2R V2 d By s
(\/E </R u(t X) ! ))tE[O,TI ~ <f0 s(S) >r€[0,T]

as R tends to infinity, where B is a Brownian motion and the convergence is in law on the
space of continuous functions C([0, T]).

Theorem 1.1 is proved using a combination of Stein’s method for normal approximations and
Malliavin calculus, following the ideas introduced by Nourdin and Peccati in [8]. An innovative
aspect of our methodology is to use the representation of Fg(f) as a divergence, taking into
account that the [to—Walsh integral is a particular case of the Skorohod integral.

The rest of the paper is organized as follows. In Section 2 we recall some preliminaries on
Malliavin calculus and Stein’s method. Sections 3 and 4 are devoted to the proofs of our main
theorems. We put one technical lemma into the Appendix.

2. Preliminaries

Let us first introduce the white noise on Ry x R. We denote by B,(R x R) the collection
of Borel sets A C R, x R with finite Lebesgue measure, denoted by |A|. Consider a centered
Gaussian family of random variables W = {W(A), A € B}, defined in a complete probability
space ({2, F, P), with covariance

E[W(A)W(B)] = |AN B|.

For any ¢+ > 0, we denote by F,; the o-field generated by the random variables {W ([0, s] X
A : 0 <= s < t,A € B,(R)}. As proved in [12], for any adapted random field
{X(s,y), (s,y) € Ry x R} that is jointly measurable and

/ / E[X(s, y)*ldyds < oo, .1
0 R

the following stochastic integral

/ h / X(s, y)W(ds. dy)
0 R

is well-defined.
The proof of the main theorems relies on Malliavin calculus and Stein’s method. Next we
will introduce the basic elements of these methodologies.
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2.1. Malliavin calculus

In this subsection we recall some basic facts on the Malliavin calculus associated with W.
We refer to [9] for a detailed account on the Malliavin calculus with respect to a Gaussian
process. Consider the Hilbert space ) = L*(R, x R). The Wiener integral

W(h):/oofh(t,x)W(dt,dx)
0 R

provides an isometry between the Hilbert space $ and L?({2). In this sense {W(h), h € H} is
an isonormal Gaussian process.

Denote by C°(R") the space of smooth functions with all their partial derivatives having
at most polynomial growth at infinity. Let S be the space of simple random variables of the
form

F=f(Wh),..., Why))
for f € CEO(R”) and h; € H, 1 <i < n. Then DF is the $-valued random variable defined
by

DF = i %(W(h ) W (hy))h; 2.2)

o 8)6,‘ | DI n i- .
The derivative operator D is a closable operator from L”({2) into L?({2; $) for any p > 1.
For any p > 1, let D!? be the completion of S with respect to the norm
1

IFl,, = (EIFI” +EIDF|2)"".
We denote by § the adjoint of the derivative operator given by the duality formula

E@)F) = E({u, DF)g) (2.3)

for any F € D"2, and any u € L%(£2; $) in the domain of §, denoted by Dom §. The operator
§ is also called the Skorohod integral because in the case of the Brownian motion, it coincides
with an extension of the Itd integral introduced by Skorohod (see [7,10]). More generally, in
the context of the space—time white noise W, any adapted random field X which is jointly
measurable and satisfies (2.1) belongs to the domain of § and §(X) coincides with the Walsh
integral:

[e.¢]
8(X) :/ /X(s,y)W(ds,dy).
o Jr
As a consequence, the mild Eq. (1.2) can also be written as
u(t,x) =14+68(pi—.(x —0)u(-, %)) . 2.4

It is known that for any (¢, x) the solution u(¢, x) of Eq. (1.1) belongs to D"? for any
p > 2 and the derivative satisfies the following linear stochastic integral differential equation
fort > s,

Ds,yu(tv X) = pi—s(x — y)o(u(s, y))
+ / / Prs(x — 2)5(r, 2)Ds yu(r, HW(dr, d2), 2.3)
s R

where XY(r,z) is an adapted process, bounded by the Lipschitz constant of o. If o is
continuously differentiable, then X (r,z) = o’(u(r, z)). This result is proved in Proposition
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2.4.4 of [9] in the case of Dirichlet boundary conditions on [0, 1] and the proof can be easily
extended to equations on R. We also refer to [2,11] for additional references where this result
is used when o is continuously differentiable.

2.2. Stein’s method

Stein’s method is a probabilistic technique which allows one to measure the distance between
a probability distribution and normal distribution. The total variance distance between two
random variables F' and G is defined by

drv(F,G):= sup |P(F € B)— P(G € B)|, (2.6)
BeB[R)

where B(R) is the collection of all Borel sets in R. We point out that d7y(F, G) only depends
on the laws of F' and G and it defines a metric on the set of probability measures on R.

The following theorem provides an upper bound for the total variation distance between any
random variable and a random variable with standard normal distribution.

Theorem 2.1. For Z ~ N(0, 1) and for any random variable F,

dry(F,Z) < S;P [ELf'(F)] = E[Ff(F)], (2.7)
feFry

where Fry is the class of continuously differentiable functions f such that || f|e < ~/7/2
and || f'lloc < 2.

See [8] for a proof of this theorem. Theorem 2.1 can be combined with Malliavin calculus
to get the following estimate.

Proposition 2.2. Let F = §(v) for some $)-valued random variable v which belongs to Dom 6.
Assume E[F*1 =1 and F € D2 Let Z ~ N(0, 1). Then we have

dry(F,Z) <2/Var(DF, v)g . (2.8)

Proof. By our assumption on F, we have
E[Ff(F)] =E[§() f(F)] =E(v, D[f(F)s
=E(v, f(F)DF)5, = E(f'(F)(v. DF)s) .
Thus, by Theorem 2.1,
dry(F.Z) < sup |E[f'(F)~ Ff(F)]|

feFrv

= sup |E[f'(F)(1—(DF,v)y)]|
feZrv

<2E(|1 — (DF, v)5)
<2\/Var(DF, v)s, ,
where the last step follows from Cauchy—Schwarz inequality, (2.3) and
E((DF,v)5) = E[FS()] =EF>H =1. O

In proving Theorem 1.2 we also need the following proposition, which is a generalization
of Theorem 6.1.2 in [8].
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Proposition 2.3. Let F = (FV, ..., F™) be a random vector such that F = §(v")
for v® € Domd, i = 1,...,m. Assume FO e D2 fori = 1,...,m. Let Z be an
m-dimensional Gaussian centered vector with covariance matrix (C; )i<i j<m. For any C?
function h : R" — R with bounded second partial derivatives, we have

m

1, -
[BA(Fg) = ER(Z)| < SIh" oo | D0 E[(Cij = (DFD,00)5)?],
i,j=1
where
2
I Nle = lsnil,?)s(mxse%% Bx,'ax_]- ) -

Proof. The proof will follow the same ideas as those in the proof of Theorem 6.1.2 in [8].
Without loss of generality, we may assume that Z and F are independent. Let

o) =E[h (VI=1F +iZ)].
Then

E[r(2)] — E[h(F)] = 2(1) — ¢(0) = /1 P'(t)dt,
with O

“ ah 1 . 1 1 .
i)=Y E(Z(JT= —z0_—_— _F0|). 2.
(t) ; (8x,~< tF+\/?Z>[2\/?Z Wil D (2.9

The above expression is a sum of two expectations. For the first expectation, the proof of
Theorem 6.1.2 in [8] already yields that

dh . = 3%h
E (5 («/1 —(F + ﬁz) Z( >> = «/?]Z:; Ci;E (—Maxj (w —{F + ftZ)) .
(2.10)

For the second expectation, let Er be the expectation conditioned on Z, then we have
oh 4
E <a_ (VI=1F +iz) F(’))
Xi
oh Q)
—EE; (-~ («/1 “IF+ ﬂz) 5
Xi
dh (@)
=EE; ((D3— (VI=1F +i1Z) 2
Xi )

8x,~ Xj

m 32}1 ' .
—J1 —IZE( - (\/1 —tF+J?z) (DF(/),v(’))3~3> .
j=1

Finally, combining the above calculation with (2.9) and (2.10) with an application of Cauchy—
Schwarz inequality completes the proof. [
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3. Proof of Theorem 1.1

We begin by computing the asymptotic covariance of Fg(f) as R tends to infinity. This will
be also relevant in the proof of Theorem 1.2.

Proposition 3.1. Denote £(r) = E[o (u(r, x))*] and set
R
Gr(t) = / u(t, x)dx — 2R.
—R
Then, for any s,t > 0,
1 SNt
lim —Cov(Gg(t), Gr(s)) = 2/ E(rydr.
R— R 0
Proof. Thanks to the Itd isometry we have
SAt
Elu(z, x)u(s, x)] =1 +/ / Pi—r(x = ) ps—r(x' — Y)E[o (u(r, ))*1dydr
R
Os/\t
=1+ / / E(r)pr—r(x' — y)ps—r(x — y)dydr
0 R

SAL
14 / E(F)Pras 2y (x — X')dr,
0

where in the last line we have used the semigroup property

f pi(x" = Y)ps(y = 0)dy = pips(x’ = x). (3.1
R
Since
R
E (/ u(t, x)dx) = 2R,
-R
we obtain

R R SNt
Cov(Gr(t), Gr(s)) = / / / E(P)Drss—ar (¥ — x)drdxdx’
—RJ—R JO

SAL 2R
= 2/ 5(7’)/ Di+s—2-(2)2R — z)dzdr.
0 0

As a consequence,
1 SAL 2R z
lim —Cov(Gg(t), Gr(s)) = lim 2/ S(r)/ Pi+s—2(2)2 — —)dzdr
R—oo R -0 Jo 0 R

R
= 2/é E(rydr.
0

This concludes the proof. O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 2.2, we know that for any F € D'? such that
E(F?) =1 and F = §(v),

dry(F,Z) < 2{/Var((DF, v)g),
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where v is such that ' = §(v). Recall that in our case we have, applying Fubini’s theorem,

1 R
Fr(t) = — (/ u(t, x)dx — 2R>
OR —R
1 R t
— (/ / /pz_s(x —y)a(u(s,y))W(ds,dy)dX)
/ / ( / Pi—s(x — y)o (u(s, y))dX> W(ds, dy).
OR

As a consequence, taking into account Eq. (2.4), we have, for any fixed t > 0, Fg(t) = §(vg),
where

1 R
vg(s, y) = 1[0,t](s)_o_R / Pi—s(x — y)o(u(s, y)dx.
—R

Moreover,

1 R
Dy, Fr = Lo (s)— f Dy yut, x)dx.
OR J—R

Therefore,

(DFx(t), vi)s, = / / f / Pry(x — Vo (s, YDy yult, ¥)dxdx'dyds.

From (2.5), we know that

Dy yu(t, x') =p;—s(x" — y)o(u(s, y))
' (3.2)
+ / /pzfr(X’—z)E(r, 2)D; yu(r, 2)W(dr, dz),
s R

where X(r, z) is a bounded and adapted random field. This produces the decomposition

2

(DFR(t), vg)s //(/ p,_s(x—y)dx) o (u(s, y))dyds
R
_2/ [/ [ Pi—s(x — y)o(uls, y))
R YO0 RJ—-RJ—R

x ( / / pi—r (X — 2)2(r, 2) Dy yu(r, ) W(dr, dz)) dxdidyds.
s JR
(3.3)

Therefore, using that for any process @ = {®(s), s € [0, ¢]} such that /Var(®;) is integrable
on [0, t], we have

ar(/ @Sds> 5] v/ Var(9)ds,
0 0

we can write

VVar((DFg(1), vr)s) < Aj + Aa,
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where

1 t R 2 R 2
= [t ([ i)
or Jo R2 —R _R

1

xCov (o2 (u(s, y)), o*(u(s, y))) dydy/> zds

1 t t 5 B
Ay = — ( / / Pi—s(x = Y)pr—s(x" =¥ / / pi—r(& = 2)p—r(F' = 2)
or Jo R2 J[-R,R}* s JR

E (o (uls, y)o (uls, y)E2(r, 2)Ds yu(r, 2) Dy, yu(r, 7))

1

2
X dzdrdxdxﬂidi’dydy’) ds.

and

X

The proof will be done in two steps:

Step 1:  Let us first estimate the term A,. Denote by L the Lipschitz constant of o and let,
for p > 2,

K (1) = sup sup [lo(uls, ) (3.4)

0<s<t yeR

Then,

IE(o (u(s, y)o (u(s, y) E(r, 2) Dy yu(r, ) Ds yu(r, 2))|
< Ki(t)L*|| Dy, yu(r, 2)ll4]| Dy, yyu(r, 2)|la.

We need to estimate || D; yu(r, z)||, for any p > 2. According to (3.2), for any s € [0, r],
applying Burkholder’s inequality yields

”Ds,yu("a Z)”p < pr—s(z — y)Kp(t)

1
by L
r 5 P
+cp <E (/ /pffrl(z_21)22(’"19Z1)|Ds,yu(r1121)|2drldzl ))
K R

< pr—s(z — y)Kp(t)

1
r 2
+Ley (f fR pf_,]<z—zl)||Dx,yu(r1,zl)nf,dndzl) :
N

which implies
1Dy yu(r, 25 < 2p7_(z — YK (1)
2076 [ [ 2@ = 201 Duutn iz
By Lemma A.l, we have the estimate

| Ds yu(r, Dl < Cpr—s(z— ), (3.5

where the constant C depends on ¢ and p.
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From (3.5) and Proposition 3.1, we derive the following estimate for the term Aj;:

Cc [ t )
Az = _/ </ / / / Pr—s(x = Mpi—s(x" = y)pr—(¥ = 2)
R Jo R2J-r,R1*Js JR
1

2
X P (X = 2)pr—s(z = y)pr_s(z — y/)dzdrdde’dfdf’dydy’> ds .

Integrating X, X’ over R, then integrating y’, y over R and using the semigroup property, we
obtain
1

C t t 2
A< / ( / / f P —z)pmzs<x/—z>dzdrdxdx/) ds
R Jo \Ji—rr2Js Jr
C t t %
< —/ </ / Part2ar—as(X —X/)dVdXdX) ds.
R Jo [-R.R1? Js

Finally, integrating x over R and x” over [—R, R], we get
C
Ay < —.
VR

Step 2:  To estimate the term A; we need a bound for the covariance

Cov (az(u(s, y)), o (us, y/))) .

Here, the main idea is to use a version of Clark—Ocone formula for two-parameter processes
to write

o2(u(s, y)) = Elo*(u(s, y)] + /0 S /R ELD, (o> (u(s, yWIFIW(dr, dz).
Then,
Cov(a>(u(s, y)), o> (u(s, y)))
- /0 S /}R E [ELD, (0 (u(s, yWIFELD, <(0X(uts, y)IF1] dzdr.
Applying the chain rule for Lipschitz functions (see [9, Proposition 1.2.4]), we have

D, (% (u(s, y))) = 20 (u(s, ) X(s, y) Dy cu(s, y).

and
|ELD; (o (uls, y)IF1|, < 2Ks()L | Dy cus, y)|, -

Then, using (3.5), we can write
|Cov (a2 (u(s, y)), o> (u(s, y)))|
< 4L2Kf(t)/0 A || D, ,u(s, y)”4 || D, ;u(s, y/)||4dzdr

s
= C/ / Ps—r(Z — Y)ps—r(z — y/)dzdr
0 R

—c / payar (v — y))dr.
0
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Therefore,

Cc [ R 2 R 2
A < E/ </ (/ Pi—s(x — y)dx> (/ Pr—s(x' — y’)dx’>
0 R2 —R —R

1

: 2
X / pzszr(y—y’)drdydy’) ds
0

C ! § ~ / ’ ~/ !
=< E (/ f / DPi—s(X = Y)pi—s(X — VI)pi—s(x" — y)pi—s (X" — ")
0 0 JR2 J[-R,R}*

1
2

X pas—ar(y — y’)dxdidx'di'dydy’dr) ds.

Again, integrate x and X’ over R, then integrate y and y’ over R using the semigroup property,
to obtain

c ([ 2
A = —/ </ / DPar—a2r(x — x/)dxdx/dr> ds.
R Jo \Jo Ji—r.rp

Finally, integrating x over R and x’ from —R to R, we obtain

Cc
A < —.
vR
This completes the proof of Theorem [.1. [

With a slight modification of the above proof, we can extend Theorem 1.1 to more general
initial conditions.

Corollary 3.2. Assume that there are two positive constants ¢, and c¢; such that 0 < ¢ <
uo(x) < ¢ < oo for all x, and also assume that o is nondecreasing. Then (1.4) still holds.

Proof. The idea of the proof is as follows. Let u; be the solution of Eq. (1.2) with the constant

initial condition c;. According to the comparison principle [3], we have u(f, x) > u;(¢, x) a.s.
for all ¢ and x. Thus,

o =Var(Fg(1))

t R R
:[ f / f Prs(x = ))pi—s(F = Y)Ea (uls, y)y’dxdidyds
0 JRJ—-RJ—-R

t R R
z/ / / / Pi—s(x = Y)pi—s(F = MEo (ui(s, y)*dxdxdyds
0 JRJ-RJ—-R
t R R
Z/ Eo (u;(s, 0))2/ / DPai—s)(x — X)dxdXxds
0 r)or

t
~2R / Eo (u;(s, 0))*ds .
0

Moreover, (3.5) still holds and the proof follows from the same argument. The reason we
assume that up(x) < ¢, is because we still need the finiteness of (3.4). The rest of the proof
follows the same lines as the proof of Theorem 1.1. O

Remark 1. The assumption that u( is uniformly bounded away from O is important. For
example, consider Eq. (1.1) and assume that uy € L'(R) is bounded and o (1) = u. Then,
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by [4], we know that the solution u(t, -) € L'(R) a.s. According to the mild formulation (1.2)
we have

/u(t,x)dx =/u0(x)dx+f /u(s,y)W(ds,dy).
R R 0o JR

‘We conclude that fR u(t, x)dx is not Gaussian since on the right-hand side u(s, y) has an infinite
chaos expansion, thus the integral for fR u(s, y)W(ds, dy) also has an infinite chaos expansion.

4. Proof of Theorem 1.2

We begin with the following result that ensures tightness.

Proposition 4.1. Let u(t, x) be the solution to Eq. (1.1). Then for any 0 <s <t < T and
any p > 1 there exists a constant C = C(p, T) such that

R R
E (‘/ u(t, x)dx — / u(s, x)dx
—R —R

Proof. Let us assume that s < 7. Recall that

P
>§CR5(z—s)’z’.

u(t,x) =1 +/0 /l;pw(x — y)o(u(r, y)W(dr, dy),

and thus

R R
/ u(t, x)dx — f u(s, x)dx
-R -R

T R
= /0 /ﬂ‘%/ dx (pi—r(x = Y=y — py—r(x — Vp=g)) o (u(r, )W(dr, dy).
-R

Moreover, recall that E(Ju(s, y)|”) is bounded on s < T and y € R for any p > 1. Using
Burkholder-Davis—Gundy inequality, we can write

R R p
E (‘/ u(t, x)dx —/ u(s, x)dx )
—R —R
T R 2 2
<c,E ( /0 /R ( [ ) (Pr=r(x = My = Ps—r(x = Vi <y) dx) o (u(r, y))zdydr)
T R 2
SCP (/0 /]R (/R (ptfr(x - y)l{rft} - Ps—r(x - y)l{rSs}) dx)
T R 2 5
SCp,T (/(; \/]1; </ % (szr(x - y)l{rft} - psfr(x - y)l{rfx}) dx) dydr) .

Thus it suffices to prove that

14

2
llor ucr, y>>||§,dydr>

T R 2
/ fR </ (Pr—r(x = <ty = po—r(x = Pjr<y) dx) dydr < CR(t —s). (4.1)
0 —R
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Using Fourier transform we have
2

T R
f f ( f (pz_,(x—yn{m]—ps_r(x—yn{m})dx) dydr
0 R —R
r R . 2 —r s—r 2
:C/ / (/ ezéxdx) (e—tTlﬁlzl{rSt} _e—TlElzl{rSS}> dedr

s1n2(R|§|) Hmz _7|§|z
_C// Tp \ 7 e =) dedr

_ _ﬂ|§|2 . _u|§|2 2 SIHZ(R|.‘;:|)
—C/ / e 2 e 2 ) —|§|2 d&édr
n C/ / ~(—r)lg 2SI (R|§|)d§dr

&7
=C(1+ 1).

For I; we can write

/ / r|s|2 e ~5IEr _ \s\Z)ZSIHZ(RIEI)dst

11
e . 2
_ / Ime (28 —1) wdg,
R & €]
Using the bound |1 — e™%| < \/a for all a > 0 in the above parenthesis, we obtain that
)

R

I < / Ltepir - s 2 RED e < cRic - 51,
R |§] (3

For I, using the bound 1 — e~ < a for any a > 0,

=9 G2 n’
12:/1 IR S RIED ) )/ (R"?')dg_cm ).
R 1&] t3

The proof is finished by combining /; and I,. U

Proof of Theorem 1.2. It suffices to prove the convergence of the finite-dimensional
distributions and tightness. However, the latter follows directly from Proposition 4.1.
In order to show the convergence of the finite-dimensional distributions, fix points 0 < f; <
- < t, < T and consider the random variables

) 1 R
FO = (/ u(t;, x)dx — 2R> ,
B VR Uk

fori =1,...,m. We can write F,(;) = 8(1)(")) where

V9 (s, y) = 1jo.1(5) —= / Pii—s(x — Y)o(u(s, y)dx.

Set Fp = (F (1), ..., F ,(e'")) and let Z be an m-dimensional Gaussian centered vector with
covariance

o lintj
C., =E[Z'Z)] = f E(rydr,
0
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where we recall that £(r) = E[o (u(r, x))?]. Then, applying Proposition 2.3, for any C 2 function
h : R™ — R with bounded second partial derivatives, we have

m

1 2
[E(h(Fr)) — EGR(Z))] < 1"l Z [( — (DR o)) }

Then, it suffices to show that for each i, j, (D Fy (') ;” )& converges in L2, as R tends to infinity

to C; ;. To be more precisely, similarly with (3. 3) we have

(DFY vy
1i AL R

:E/ // / Pi—s(x = Y)pi,—s(F — y)o*(u(s, y)dxdidyds
0 RJ—RJ—R

1 LNt R R
+ / / / f Piys(F = Vo (u(s, y) “2)
R Jy RJ-RJ-R

ti
X </ / Pu—r(x —2)X(r, 2) Dy yu(r, 2)W(dr, dz)) dxdxdyds
s R
=I;;(R)+ L;;(R).
Then we obtain that
i 2 2
E[(C —(DFY, %;,) ] <2E(Cyj — I j(R)) + 2E (L j(R)?) .
By noting that
Cij = lim E(/; ;(R)),
R—o0
and using arguments similar as those in the proof of Theorem 1.1, we can show that

2
E |:(C (DF(Z) (j))5:)> i| — 0 as R — o0. The proof is finished. O
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Appendix

Here we prove a technical lemma which is used in the proof of Theorem 1.1.
Lemma A.1.  Let || Dy yu(r, 2)|I% satisfy

1Dy yu(r, 25 < Cp7_(z—y)+C / / P @ = 2 Dsyulry, z)l5dzidry . (Al
K R

forany0 <s <r <tandy,z€R, for some constant C which depends on t and p. Then we
have
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”Ds,yu(ra Z)”p < Ct,ppr—s(z -y). (A2)

for some constant C, , which depends on t and p.

Proof. Consider the stochastic heat equation

0 1 .
i =-Av+CoW, >3,
ot 2

with initial condition v(s, z) = x/ESy(z). The mild formulation of this equation is

v(r,2) = VCpr_s(z — y) + */E/ / Pr—r(z — z)v(r1, 2)W(dry, dzy)
K R
for r > s and z € R. Therefore, the moment of order 2 satisfies

B[, 2)] = Cp?_y(z — )+ C f / PP (@ — 2B, 2)dzdry.
K R

which is exactly Eq. (A.1) with equality. Using the iteration method and the moment bounds
in [1] (Theorem 2.4, Proposition 2.2 and Example 2.10) we conclude that (A.2) holds true. [J
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