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Abstract

False theta functions form a family of functions with intriguing modular properties and
connections to mock modular forms. In this paper, we take the first step towards
investigating modular transformations of higher rank false theta functions, following
the example of higher depth mock modular forms. In particular, we prove that under
quite general conditions, a rank two false theta function is determined in terms of
iterated, holomorphic, Eichler-type integrals. This provides a new method for
examining their modular properties and we apply it in a variety of situations where rank
two false theta functions arise. We first consider generic parafermion characters of
vertex algebras of type A2 and B2. This requires a fairly non-trivial analysis of Fourier
coefficients of meromorphic Jacobi forms of negative index, which is of independent
interest. Then we discuss modularity of rank two false theta functions coming from
superconformal Schur indices. Lastly, we analyze Ẑ-invariants of Gukov, Pei, Putrov, and
Vafa for certain plumbing H-graphs. Along the way, our method clarifies previous
results on depth two quantummodularity.

1 Introduction and statement of results
Modular forms and their variations provide a rich source of interaction between physics
and mathematics. More recently, functions with more general forms of modular proper-
ties, such as mock modular forms, have gathered attention in both areas. In this paper,
we focus on such a family of functions with generalized modularity properties called false
theta functions. These are functions that are similar to ordinary theta functions on lattices
with positive definite signature, except for certain extra sign functions, which prevent
them from having the same simple modular properties as ordinary theta functions. For
false theta functions over rank one lattices, one approach to understand them is by noting
that they can be realized as holomorphic Eichler integrals of unary theta functions. This
representation can be used to study the modular transformations of such functions and
helps one understand why their limit to rational numbers yield quantum modular forms
[35]. An alternative approach to modularity of false theta functions in [17,18] is moti-
vated by the concept of the S-matrix in conformal field theory. In this setup, false theta
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functions are “regularized” (defined on C × H, where H is the complex upper half-plane)
and transform with integral kernels under the modular group. The S-kernel can be used
to formulate a continuous version of the Verlinde formula [17]. Yet another approach is
to follow the example of mock modular forms and form a modular completion as done in
[11], where elliptic variables can also be naturally understood. The modular completion
now depends on two complex variables in the upper half-plane (τ , w) ∈ H × H, which
transform in the sameway undermodular transformations,1 and similar tomockmodular
forms, differentiating in w yields a modular form in w.
One of the main goals in this paper is to generalize the considerations from [11] to rank

two false theta functions. As for rank one false theta functions, to study themodular trans-
formations we follow the lead of higher depthmockmodular forms, whichwere defined in
unpublished work of Zagier and Zwegers and were recently developed through signature
(n, 2) indefinite theta functions by [2].2 In particular, the double error functions intro-
duced by [2] show how double products of sign functions can be replaced to give modular
completions. In Lemma 3.1 we give a particularly useful form to understand this fact in a
shape suitable for our context. This result then suggests a notion of false theta functions at
“depth two”, where we find a modular completion again depending on two complex vari-
ables (τ , w) ∈ H×H\{τ = w} andwhere the derivative inw leads tomodular completions
of the kind studied in [11], which are at “depth one”. More specifically, our result leads
us to modular completionŝf (τ , w) which transform like modular forms under simultane-
ous modular transformations (τ , w) �→ ( aτ+b

cτ+d ,
aw+b
cw+d ) for

( a b
c d
) ∈ SL2(Z) and reproduce

the rank two false theta functions we are studying through the limit limw→τ+i∞̂f (τ , w).
Moreover, their derivatives with respect to w appear in the form

∂̂f (τ , w)
∂w

=
∑

j
(i(w − τ ))rj ĝj(τ , w) hj(w),

where rj ∈ Z

2 , hj is a weight 2 + rj modular form (with an appropriate multiplier system),
and ĝj(τ , w) is a modular completion of the sort studied in [11]. This is a structure that
closely resembles those of depth two mock modular forms. It would be interesting to
elaborate on the details here and form an appropriate notion of “higher depth false mod-
ular forms” by mirroring the structure of higher depth mock modular forms. We leave
this problem as future work and restrict our attention to answering concrete modularity
questions about rank two false theta functions arising in a variety of mathematical fields.
A rich source of false theta functions that is studied in this paper is through the Fourier

coefficients ofmeromorphic Jacobi formswith negative index or theirmultivariable gener-
alizations [7,12].3 Suchmeromorphic Jacobi formsnaturally arise in representation theory
of affine Lie algebras and in conformal field theory. In vertex algebra theory, important
examples of meromorphic Jacobi forms come from characters of irreducible modules for
the simple affine vertex operator algebra Vk (g) at an admissible level k . At a boundary
admissible level [26], these characters admit particularly elegant infinite product form.

1A similar picture is obtained for mockmodular forms by complexifying the complex conjugate of themodular variable
τ so that we have a pair of complex variables (τ , w) one living in the upper half-plane and one in the lower half-plane
with both transforming in the same way under modular transformations.
2A notion that is similar to higher depth mock modular forms is that of polyharmonic Maass forms [5,29].
3 Here and in the rest of this paper, whenever we say Fourier coefficients of (meromorphic) Jacobi forms, we mean
Fourier coefficients with respect to the elliptic variables.
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Modular properties of their Fourier coefficients are understood only for g = sl2 and
V− 3

2
(sl3). For the latter, the Fourier coefficients are essentially rank two false theta func-

tions (see [7] for more details). On the very extreme, if the level is generic, the character
of Vk (g) is given by

ch[Vk (g)](ζ; q)] = q− dim(g)k
24(k+h∨)

(q; q)n∞
∏

α∈�+ (ζ
αq; q)∞

∏

α∈�+ (ζ
−αq; q)∞

, (1.1)

where n is the rank of g, h∨ the dual Coxeter number, and as usual, (a; q)r := ∏r−1
j=0 (1−aqj)

for r ∈ N0 ∪ {∞}. Moreover ζ are variables parametrizing the set of positive roots �+ of
g and throughout this paper we use bold letters to denote vectors. Although (1.1) is not a
Jacobi form, a slight modification in theWeyl denominator gives a genuine Jacobi form of
negative index. The Fourier coefficients of (1.1) are important because they are essentially
characters for the parafermion vertex algebra Nk (g) [19,20,25] (see also Sect. 5), whose
character is given by

(q; q)n∞CT[ζ] (ch[Vk (g)](ζ; q)) , (1.2)

where CT[ζ] denotes the constant term in the expansion in ζj . The character can be
expressed as linear combinations of coefficients of Jacobi forms. One of the goals of this
paper is to investigate modular properties of (1.2) for types A2 and B2, which leads us to
the following result.

Theorem 1.1 Characters of the parafermion vertex algebras of type A2 and B2 can be
written as linear combinations of (quasi-)modular forms and false theta functions of rank
one and two. The rank two pieces in these decompositions can be written as iterated holo-
morphic Eichler-type integrals, which yields themodular transformation properties of these
functions.

Note thatmoreprecise versionsof this result are given inPropositions5.1, 5.5, 5.6, 6.1, 6.6,
and 6.7 . Independent of modular properties, we expect that the analysis we make on
the characters ch[Vk (g)] in these two cases will also shed some light on the nature of
coefficients of meromorphic, multivariable Jacobi forms of negative definite index. We
furthermore hope that our techniques can be extended to study parafermionic characters
at boundary admissible levels.
Meromorphic Jacobi forms closely related to characters of affine Lie algebras at bound-

ary admissible levels also show up in the computation of the Schur index I(q) of 4dN = 2
superconformal field theories (SCFTs) [4,13]. If refined by flavor symmetries, the Schur
index is denoted by I(q, z1, .., zn). In this paper, we are only interested in the Schur index
of some specific SCFTs, called Argyres–Douglas theories of type (A1, D2k+2), whose index
with two flavors was first computed in [13] (see also [15]) and later identified with certain
vertex algebra characters in [16]. In particular, for k = 1 the index coincides with the
character of the aforementioned vertex algebra V− 3

2
(sl3). Our second main result deals

with modularity of Fourier coefficients of these indices; for a more precise statement see
Sect. 7.
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Theorem 1.2 The Fourier coefficients of the Schur indices of Argyres–Douglas theories of
type (A1, D2k+2) are essentially rank two false theta functions.Moreover, the constant terms
in these Fourier expansions can be expressed as double Eichler-type integrals.

The third main result concerns the Ẑ-invariants, called homological blocks, of plumbed
3-invariants introduced recently by Gukov, Pei, Putrov, and Vafa [24] and further studied
from several viewpoints in [9,14,21,23,24,27,32]. For Seifert homology spheres, it is well-
known that they can be expressed as linear combinations of derivatives of unary false theta
functions, whose modular properties are known. Further computations of Ẑ-invariants
for certain non-Seifert integral homology spheres were given in [9]. Our next result is an
integral representation of these invariants. Compared to [9], Theorem 1.3 gives a more
direct relationship between iterated Eichler integrals and Ẑ-invariants.

Theorem 1.3 Let M be a plumbed 3-manifold obtained from a unimodular H graph as
in [9]. Then the Ẑ-invariant of M has a representation of the shape

Ẑ(τ ) =
∫ τ+i∞

τ

∫ w1

τ

�1(w1, w2)
√

i(w1 − τ )
√

i(w2 − τ )
dw2dw1 + �2(τ ),

where�1(w1, w2) is a linear combination of products of derivatives of unary theta functions
in w1 and w2 and �2(τ ) is a rank two theta function. Moreover, there is a completion of Ẑ
which transforms like a weight one modular form.4

Importantly, Theorems 1.1, 1.2, and 1.3 completely determine the modular properties
of the functions under investigation. These results in turn pave the way for studying
“precision asymptotics” for the relevant functions within all the contexts stated above,
i.e., characters of parafermionic algebras, supersymmetric Schur indices, and homologi-
cal invariants of 3-manifolds. In the case of classical modular forms, this is accomplished
by studying Poincaré series and by using the CircleMethod. Themost classical example is
the exact formula for the integer partition function found byRademacher [33], whose con-
vergent formula extended the asymptotic results of Hardy and Ramanujan significantly.
In fact, such results are intimately related to the finite-dimensionality of the associated
vector spaces ofmodular objects and this property forms the basis formany of the remark-
able applications of modularity to different fields of mathematics. The Circle Method has
already been applied to a case involving rank one false theta functions in [11] and to one
involving depth two mock modular forms in [10]. It would be interesting to extend these
results to the class of functions studied in this paper and explore the implications to the
different fields considered here.
Finally, the outline of the paper is as follows: In Sect. 2, we gather several facts on certain

classical modular forms, Jacobi theta functions, and a number of meromorphic Jacobi
forms of two complex variables used in the paper. In Sect. 3, we prove Lemma 3.1, which
is themain technical tool used to study rank two false theta functions aswe demonstrate in
the rest of the section. Then in Sect. 4, we collect several technical results used in studying
Fourier coefficients of meromorphic Jacobi forms. In Sect. 5, we turn our attention to
parafermionic characters of typeA2 and show that one canwrite them in terms ofmodular

4 In this paper, we employ “hats” to denote modular completions as is common in the literature for mock modular
forms. This should not be confused with the hat that appears in Ẑ for homological blocks, which is also a standard
notation in literature.
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forms and a rank two false theta function. We then find the modular transformations of
the rank two piece using tools from Sect. 3. In Sect. 6, we apply the same type of analysis on
generic parafermionic characters of typeB2. In Sect. 7, we demonstrate how the tools used
in this paper also applies to rank two false theta functions coming from superconformal
Schur indices and Ẑ-invariants of 3-manifolds. We conclude in Sect. 8 with final remarks
and comments on future prospects.

2 Preliminaries
We start by recalling several functions which we require in this paper. Firstly, let

η(τ ) := q
1
24

∞
∏

n=1
(1 − qn)

be Dedekind’s η-function, where q := e2π iτ . It satisfies the modular transformations

η(τ + 1) = e
π i
12 η(τ ), η

(

−1
τ

)

= √−iτη(τ ).

Note that these two transformations imply that forM = ( a b
c d
) ∈ SL2(Z) we have

η

(

aτ + b
cτ + d

)

= νη(M)(cτ + d)
1
2 η(τ ),

where νη denotes themultiplier system for theη-function.We furthermoreuse the identity

η(τ )3 =
∑

n∈Z
(−1)n

(

n + 1
2

)

q
1
2

(

n+ 1
2

)2

.

We also require the Jacobi theta function defined by (ζ := e2π iz)

ϑ(z; τ ) :=
∑

n∈Z+ 1
2

eπ inqn
2
ζ n.

By the Jacobi triple product formula, we have the product expansion

ϑ(z; τ ) = −iq
1
8 ζ− 1

2 (q; q)∞(ζ ; q)∞
(

ζ−1q; q
)

∞ . (2.1)

The Jacobi theta function transforms like a Jacobi form of weight and index 1
2 :

ϑ(z; τ + 1) = e
π i
4 ϑ(z; τ ), ϑ

(

z
τ
;−1

τ

)

= −i
√−iτe

π iz2
τ ϑ(z; τ ), (2.2)

ϑ(z + 1; τ ) = −ϑ(z; τ ), ϑ(z + τ ; τ ) = −q− 1
2 ζ−1ϑ(z; τ ). (2.3)

Moreover, we have

[

∂

∂z
ϑ(z; τ )

]

z=0
= −2πη(τ )3. (2.4)
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We also need the unary theta functions

ϑm,r(z; τ ) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

n∈Z+ r
2m

qmn2ζ 2mn ifm ∈ Z,

∑

n∈Z+ r
2m+ 1

2

(−1)n− r+m
2m qmn2ζ 2mn ifm ∈ Z + 1

2 .

They satisfy the following elliptic and modular transformations.

Lemma 2.1 (1) For m ∈ Z and r ∈ Z/2mZ, we have:

ϑm,r(z; τ + 1) = e
π ir2
2m ϑm,r(z; τ ),

ϑm,r

(

z
τ
;−1

τ

)

= e
2π imz2

τ

√−iτ√
2m

∑

� (mod 2m)
e−

π ir�
m ϑm,�(z; τ ).

(2) For m ∈ Z + 1
2 and r ∈ Z/2mZ, we have:

ϑm,r(z; τ + 1) = e
π i(r+m)2

2m ϑm,r(z; τ ),

ϑm,r

(

z
τ
;−1

τ

)

= e
2π imz2

τ
e−π im√−iτ√

2m

∑

� (mod 2m)
(−1)r+�e−

π ir�
m ϑm,�(z; τ ).

We denote the derivatives of ϑm,r(z; τ ) with respect to z as:

ϑ [k]
m,r(τ ) :=

[

(

1
4π im

∂

∂z

)k
ϑm,r(z; τ )

]

z=0
.

Note that we drop the superscript if k = 0.
Another function we use is the quasimodular Eisenstein series

E2(τ ) := 1 − 24
∞
∑

n=1

∑

d|n
dqn,

which satisfies the (quasi)modular transformations

E2(τ + 1) = E2(τ ), E2
(

−1
τ

)

= τ 2E2(τ ) + 6τ
π i

.

This function is used in the definition of the Ramanujan–Serre derivative,

Dk := 1
2π i

∂

∂τ
− k

12
E2(τ ),

which maps modular forms of weight k to modular forms of weight k + 2.
Finally, in Sects. 5 and 6 , we analyze Fourier coefficients of two multivariable mero-

morphic Jacobi forms defined as follows:

TA(z; τ ) := 1
ϑ(z1; τ )ϑ(z2; τ )ϑ(z1 + z2; τ )

, TB(z; τ ) := TA(z; τ )
ϑ(2z1 + z2; τ )

. (2.5)

Here we recall that a Jacobi form f : CN × H → C of weight k ∈ 1
2Z and matrix index

M ∈ 1
4Z

N×N satisfies the following transformation laws (with multipliers ν1, ν2):
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(1) For
( a b
c d
) ∈ SL2(Z) we have

f
( z
cτ + d

;
aτ + b
cτ + d

)

= ν1
( a b
c d
)

(cτ + d)k e
2π ic
cτ+d zTMz f (z; τ ).

(2) For (m, �) ∈ Z
N × Z

N we have

f (z + mτ + �; τ ) = ν2(m, �)q−mTMme−4π imTMz f (z; τ ).

From (2.2) and (2.3) we easily see that TA and TB transform like Jacobi forms with weights
− 3

2 and −2, and matrix indices − 1
2
( 2 1
1 2
)

and − 1
2
( 6 3
3 3
)

, respectively (with some multipli-
ers). We also consider in Sect. 7 for k ∈ N,

Tk (z; τ ) := ϑ(z1; (k + 1)τ )ϑ(z2; (k + 1)τ )ϑ(z1 + z2; (k + 1)τ )

ϑ (z1; τ )ϑ
(

z2; k+1
2 τ

)

ϑ
(

z1 + z2; k+1
2 τ

) .

The function Tk ((k +1)z; τ ) with rescaled elliptic variables is a Jacobi form of weight zero
and matrix index − k+1

2
( k+1 1

1 2
)

.

3 Products of sign functions and iterated integrals
A key technical result in this paper is the following lemma which allows one to write
products of sign functions in terms of iterated integrals. This lemma essentially follows
from Proposition 3.8 of [2], which gives an expression that allows efficient numeric eval-
uation of double error functions developed there. These double error functions play a
fundamental role in understanding modular properties of indefinite theta functions for
lattices of signature (n, 2). The double error functions become signs towards infinity and
this is what we express in the next lemma. It is further processed and cast into a form
from which the modular properties of false theta functions are manifest.

Lemma 3.1 For �1, �2 ∈ R, κ ∈ R, with (�1, �2 + κ�1) 	= (0, 0), we have

sgn(�1)sgn(�2 + κ�1)q
�21
2 + �22

2

=
∫ τ+i∞

τ

�1eπ i�
2
1w1

√

i(w1 − τ )

∫ w1

τ

�2eπ i�
2
2w2

√

i(w2 − τ )
dw2dw1

+
∫ τ+i∞

τ

m1eπ im
2
1w1

√

i(w1 − τ )

∫ w1

τ

m2eπ im
2
2w2

√

i(w2 − τ )
dw2dw1 + 2

π
arctan(κ)q

�21
2 + �22

2 ,

where sgn(x) := x
|x| for x 	= 0, sgn(0) := 0, m1 := �2+κ�1√

1+κ2
, and m2 := �1−κ�2√

1+κ2
.

Remark 3.2 We use τ + i∞ in the upper limits of these integrals to indicate that all such
integrals are taken along the vertical path from τ to i∞ and we use the principal value of
the square root.

Proof of Lemma 3.1 We first assume that both �1, �2 + κ�1 	= 0. Shifting wj �→ iwj + τ

the first term on the right-hand side of the lemma equals

−�1�2q
�21
2 + �22

2

∫ ∞

0

e−π�21w1
√−w1

∫ w1

0

e−π�22w2
√−w2

dw2dw1. (3.1)
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On the path of integration, we have
√−wj = i√wj . Changing wj �→ w2

j , Eq. (3.1) thus
equals

4�1�2q
�21
2 + �22

2

∫ ∞

0
e−π�21w

2
1

∫ w1

0
e−π�22w

2
2dw2dw1.

We then employ the following integral identity, which is straightforward to verify

4�1�2
∫ ∞

0
e−π�21w

2
1

∫ w1

0
e−π�22w

2
2dw2dw1 = 2

π
arctan

(

�2
�1

)

.

Using thatm2
1 + m2

2 = �21 + �22, the statement of the lemma is equivalent to

2
π

(

arctan
(

�2
�1

)

+ arctan
(

m2
m1

)

+ arctan(κ)
)

= sgn(�1)sgn(�2 + κ�1).

This identity may be deduced using general properties of arctangent. The cases in which
one of �1, �2 + κ�1 vanishes can be shown similarly.

Now, consider a general rank two false theta function
∑

n∈Z2+α

sgn(n1)sgn(n2)q
1
2 (an21+2bn1n2+cn22),

where a, b, and c are integers such that the quadratic form in the exponent is positive
definite, and α = (α1,α2) ∈ Q

2. Moreover define the theta functions

�1(w) :=
∑

n∈Z2+α

n1
(

n2 + b
c
n1
)

eπ i
�
c n

2
1w1+π ic

(

n2+ b
c n1

)2
w2 ,

�2(w) :=
∑

n∈Z2+α

n2
(

n1 + b
a
n2
)

eπ i
�
a n

2
2w1+π ia

(

n1+ b
a n2

)2
w2 ,

where � := ac − b2 > 0, and the modular theta function

�(τ ) :=
∑

n∈Z2+α

q
1
2 (an21+2bn1n2+cn22).

Then we have the following:

Proposition 3.3 We have

∑

n∈Z2+α

sgn(n1)sgn(n2)q
1
2 (an21+2bn1n2+cn22) − 2

π
δα∈Z2 arctan

(

b√
�

)

= √
�

∫ τ+i∞

τ

∫ w1

τ

�1(w) + �2(w)
√

i(w1 − τ )
√

i(w2 − τ )
dw2dw1 − 2

π
arctan

(

b√
�

)

�(τ ),

where δC = 1 if a condition C holds and zero otherwise.

Proof Letting �1 =
√

�
c n1, �2 = √

cn2 + b√
c n1, and κ = − b√

�
, we get

sgn(�1)sgn(�2 + κ�1)q
�21
2 + �22

2 = sgn(n1)sgn(n2)q
1
2 (an21+2bn1n2+cn22).

Summing overZ2+α using Lemma 3.1, noting thatm1 =
√

�
a n2 andm2 = 1√

a (an1+bn2)
and including a correction for the case (�1, �2 +κ�1) = (0, 0) which occurs if α ∈ Z

2 yields
the claim.
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Remark 3.4 Wemaymodify the above construction to get a family of functions for which
both themodular part including�(τ ) and the correction term including δα∈Z2 vanish. For
this purpose, consider false theta functions of the form

∑

n∈Z2+(0,α2)

(−1)n1sgn(n1)sgn(n2)q
1
2 (an21+2bn1n2+cn22),

such that a | b and b
aα2 ≡ 1

2 (mod 1). In particular, we have α2 /∈ Z and hence the
correction term, with δα∈Z2 , vanishes. Note that this condition is satisfied if α2 = 1

2r ,
where r = b

a . Some series of this form are discussed in Chapter 5. As in Proposition 3.3,
we can represent these q-series as iterated Eichler-type integrals with �1, �2, and � now
picking up an additional (−1)n1 factor. Because b

aα2 ≡ 1
2 (mod 1), the corresponding

�-part is vanishing as

∑

n∈Z2+(0,α2)

(−1)n1q
1
2 (an21+2bn1n2+cn22) =

∑

n2∈Z+α2

q
�
2a n

2
2
∑

n1∈Z
(−1)n1q

a
2

(

n1+ bn2
a

)2

= 0.

4 Decomposition formulas for meromorphic Jacobi forms
Before moving to examples, we collect a few auxiliary results used in decomposing mul-
tivariable meromorphic Jacobi forms and extracting their Fourier coefficients. We start
with a basic result involving two Jacobi theta functions. Besides its use in Sect. 5, the
methods employed in its proof are employed as a blueprint for more complex variations
that we need in sections below. Here and throughout we sometimes drop dependencies
on τ if they are clear from the context; e.g. we often write η instead of η(τ ). The next result
was suggested to us by S. Zwegers.

Lemma 4.1 For r ∈ Z and w /∈ Zτ + Z we have

ζ r

ϑ(z)ϑ(z + w)
= i

η3ϑ(w)
∑

n∈Z

qn2−rne−2π inw

1 − ζqn
− ie−2π irw

η3ϑ(w)
∑

n∈Z

qn2−rne2π inw

1 − ζ e2π iwqn
.

Proof Define

h(z) := e2π irz

ϑ(z)ϑ(z + w)
, g(z, z) :=

∑

n∈Z

qn2−rne−2π in(2z+w)

1 − ζ e−2π izqn
.

Using (2.3) gives that z �→ h(z)g(z, z) is elliptic. LetPδ := δ+[0, 1]+[0, 1]τ be a fundamental
parallelogram with δ in a small neighborhood of 0 such that z �→ h(z)g(z, z) has no poles
on the boundary. Moreover, we assume that z and−w are in Pδ and prove the proposition
statement for such values; the result generalizes to the whole complex plane by analytic
continuation. If we integrate h(z)g(z, z) around Pδ counterclockwise, then the integral
vanishes by ellipticity of the function and we have, by the Residue Theorem

0 =
∫

∂Pδ

h(z)g(z, z)dz = 2π i
∑

w∈Pδ

Resz=w(h(z)g(z, z)).

Using that Resz=z(g(z, z)) = 1
2π i , we get

h(z) = −2π ig(z, 0) Resz=0(h(z)) − 2π ig(z,−w) Resz=−w(h(z)).
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We compute, using (2.4)

Resz=0(h(z)) = − 1
2πη3ϑ(w)

, Resz=−w(h(z)) = e−2π irw

2πη3ϑ(w)
,

which then gives the claim.

We next state two variations of this result involving three Jacobi theta functions, which
we need in Sect. 6 andwhose proofs follow the samemethod as the one used in Lemma 4.1.

Lemma 4.2 For w1, w2, w1 − w2 /∈ Zτ + Z, and r ∈ Z + 1
2 , we have

ζ r

ϑ(z)ϑ(z + w1)ϑ(z + w2)
= i

η3ϑ(w1)ϑ(w2)
∑

n∈Z

(−1)nq
3n2
2 −rne−2π in(w1+w2)

1 − ζqn

+ ie−2π irw1

η3ϑ(w1)ϑ(w1 − w2)
∑

n∈Z

(−1)nq
3n2
2 −rne−2π in(w2−2w1)

1 − ζ e2π iw1qn

+ ie−2π irw2

η3ϑ(w2)ϑ(w2 − w1)
∑

n∈Z

(−1)nq
3n2
2 −rne−2π in(w1−2w2)

1 − ζ e2π iw2qn
.

Lemma 4.3 For w1, w2 /∈ Z
τ
2 + Z

1
2 , w1 − w2 /∈ Zτ + Z, and r ∈ Z, we have

ζ r

ϑ(2z)ϑ(z + w1)ϑ(z + w2)

= ie−2π irw1

η3ϑ(2w1)ϑ(w1 − w2)
∑

n∈Z

q3n2−rne2π in(5w1−w2)

1 − ζ e2π iw1qn

+ ie−2π irw2

η3ϑ(2w2)ϑ(w2 − w1)
∑

n∈Z

q3n2−rne2π in(5w2−w1)

1 − ζ e2π iw2qn

+ i
2η3

∑

�1 ,�2∈{0,1}

(−1)�1+�2+r�2q
�1(�1+r)

2

ϑ
(

w1 + �1τ+�2
2

)

ϑ
(

w2 + �1τ+�2
2

)

∑

n∈Z

q3n2−(3�1+r)ne−2π in(w1+w2)

1 − (−1)�2ζqn− �1
2

.

5 Generic parafermionic characters of type A2

5.1 Parafermions and parfermion algebras

The parafermionic conformal field theories first appeared in the famous article of Fateev
and Zamolodchikov on Zk-parafermions [36]. The fields in such theories have fractional
conformal weight and are not necessarily local to each other, which thereby generalizes
the familiar bosonic and fermionic free fields.
In mathematics literature, parafermions and parafermionic spaces originally appeared

in the ground-breaking work of Lepowsky and Wilson on Z-algebras and Rogers–
Ramanujan identities [30]. This concept was later formalized by Dong and Lepowsky
in [19], where parafermionic spaces [36] were viewed as examples of generalized vertex
algebras. Although [30,36] dealt only with sl2 parafermions at positive integral levels,
parafermions can be defined for any affine Lie algebra g and any level k . In this general-
ity, the parafermionic space �k (g) consists of highest weight vectors for the Heisenberg
vertex subalgebra inside the affine vertex algebraVk (g). The parafermion (vertex) algebra,
denoted by Nk (g) ⊂ �k (g), is defined as the charge zero subspace of the parafermionic
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space. It has a natural vertex operator algebra structure of central charge c = kdim(g)
k+h∨ − n.

Then the parafermionic character is defined by

ch[Nk (g)](q) := tr|Nk (g)q
L(0)− c

24 ,

where L(0) is the degree operator. This can in turn be expressed as the constant term
(1.2) discussed in the introduction. To illustrate this concept, let us consider the simplest
non-trivial case of V2(sl2). The parafermionic space �2(sl2) is simply the free fermion
vertex superalgebra and N2(sl2) is the even part thereof, also known as the c = 1

2 Ising
model. Therefore,

ch[N2(sl2)](q) = q− 1
48

⎛

⎜

⎝

(

−q
1
2 ; q

)

∞
2

+
(

q
1
2 ; q

)

∞
2

⎞

⎟

⎠ .

For other levels, k ∈ N, k ≥ 3, the algebraic structure of Nk (sl2) is more complicated
and involves non-linearW -algebras. Parafermionic characters of sl2 for positive integral
levels are well-understood [3,25] and they transform as vector-valued modular forms of
weight zero. Similar results persist for higher rank algebras.
For generic k , that is ifVk (g) is the universal affine vertex algebra (e.g. k /∈ Q), properties

of Nk (g) are quite different. The structure of the parafermion algebra is known explicitly
only in a handful of examples and their parafermionic characters are not modular.

5.2 Parafermionic character of A2
We are finally at a point where we can work out our first example involving generic
parafermionic characters of type A2. As a warm up to this discussion, we first consider
the simplest example, which is the generic parafermionic characters of type A1.
Example. For g = sl2, the parafermionic character is known to be (see for instance [1,3])

CT[ζ ]

(

1
(ζq; q)∞(ζ−1q; q)∞

)

= 1
(q; q)2∞

(

−1 + 2
∞
∑

n=0
(−1)nq

n(n+1)
2

)

= − q
1
12

η(τ )2
+ 2

q− 1
24 ψ(τ )
η(τ )2

,

where ψ(τ ) := ∑

n∈Z sgn(n + 1
4 )q

2(n+ 1
4 )

2 is Rogers’ false theta function. The modular
properties of ψ(τ )

η(τ )2 were studied and used in [11] to give a Rademacher type exact formula
for its coefficients in the q-expansion. The constant term in the above example splits into
two q-series with different modular behaviors (note the different q-powers). Our goal is
to obtain a similar decomposition for the A2 vacuum character.

5.3 Expression in terms of false theta functions

Specializing Eqs. (1.1) and (1.2) to the case of A2 with positive roots

�+ :=
{

α1 =
(

1
0

)

, α2 =
(

0
1

)

, α1 + α2

}

,
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the goal in this section is to study the constant term of

G(ζ) := q
8k

24(k+3) (q; q)2∞ch[Vk (sl3)](ζ; q) = 1
(

ζ1q, ζ−1
1 q, ζ2q, ζ−1

2 q, ζ1ζ2q, ζ−1
1 ζ−1

2 q; q
)

∞
,

where (a1, . . . , a�; q)n := ∏�
j=1(aj ; q)n. Using (2.1) we rewrite it as (ζj := e2π izj )

G(ζ) = iq
1
4 η3

ζ−1
1 ζ−1

2 (1 − ζ1)(1 − ζ2)(1 − ζ1ζ2)
ϑ(z1)ϑ(z2)ϑ(z1 + z2)

. (5.1)

Then, to state our result on the constant term of G(ζ), we introduce the following
functions:

G0(τ ) := 1 + 3
∑

n∈Z
|n|qn2 − 6q− 1

4
∑

n∈Z+ 1
2

|n|qn2 ,

�(τ ) :=
∑

n∈Z2+
(

1
3 ,

1
3

)

sgn(n1)sgn(n2)n1qQA(n), where QA(n) := n21 + n1n2 + n22.

Proposition 5.1 For |q| < |ζ1|, |ζ2|, |ζ1ζ2| < 1 we have

CT[ζ] (G (ζ)) = q
1
4

η(τ )6
G0(τ ) + 9q− 1

12

η(τ )6
�(τ )

= 1+3q2+8q3+21q4+48q5+116q6+252q7+555q8+1156q9+O
(

q10
)

.

To prove Proposition 5.1, we employ Lemma 4.1 and another auxiliary result stated
below, which itself is a corollary of Lemma 4.1.

Lemma 5.2 For r ∈ Z we have

ζ r

ϑ(z)2
= − 1

η6

∑

n∈Z
qn

2−rn
(

2n − r − 1
1 − ζqn

+ 1
(1 − ζqn)2

)

.

Proof Using (2.4) and the fact that ϑ is odd, we find that for a function F that is holomor-
phic in a neighborhood of w = 0, we have

F (w)
ϑ(w)

= − 1
2πη3

(

F (0)
w

+ F ′(0)
)

+ O(w) as w → 0.

Thus taking the limit w → 0 in Lemma 4.1 yields (noting that F (0) = 0 in this case)

ζ r

ϑ(z)2
= − i

2πη6

∑

n∈Z
qn

2−rn
[

∂

∂w

(

e−2π inw

1 − ζ rqn
− e2π i(n−r)w

1 − ζ re2π iwqn

)]

w=0
.

The result follows, using that

i
2π

[

∂

∂w

(

e−2π inw

1 − ζqn
− e2π i(n−r)w

1 − ζ e2π iwqn

)]

w=0
= 2n − r − 1

1 − ζqn
+ 1

(1 − ζqn)2
.
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We are now ready to compute Fourier coefficients of the meromorphic Jacobi form
appearing in Eq. (5.1). To state our result, we define

D(r) := CT[ζ]

(

iη9ζ r1
1 ζ

r2
2

ϑ(z1)ϑ(z2)ϑ(z1 + z2)

)

,

D1(r) :=
∑

n∈N2
0

(n1 + 2n2 − r1)qn
2
1+n1n2+n22−r2n1−r1n2 ,

D2(r) :=
∑

n∈N2
0

(n1 − 2n2 + r1 − r2)qn
2
1−n1n2+n22−r2n1+(r2−r1)n2 .

Corollary 5.3 For |q| < |ζ1|, |ζ2|, |ζ1ζ2| < 1 and for r ∈ Z
2 we have

D(r) = D1(r) + D2(r).

Proof Using Lemma 4.1 with (r, z, w) �→ (r2, z2, z1) we find that with TA defined in (2.5),

TA(z)ζ r2
2 = i

η3ϑ(z1)2

⎛

⎝

∑

n1∈Z

qn21−r2n1ζ−n1
1

1 − ζ2qn1
−
∑

n1∈Z

qn21−r2n1ζ n1−r2
1

1 − ζ1ζ2qn1

⎞

⎠ .

Next, we use Lemma 5.2 with (r, z) �→ (r1 − n1, z1) and (r, z) �→ (r1 − r2 + n1, z1) to write

iη9TA(z)ζ r1
1 ζ

r2
2

=
∑

n∈Z2

qn21+n1n2+n22−r2n1−r1n2

1 − ζ2qn1

(

2n2 + n1 − r1 − 1
1 − ζ1qn2

+ 1
(1 − ζ1qn2 )2

)

−
∑

n∈Z2

qn21−n1n2+n22−r2n1+(r2−r1)n2

1 − ζ1ζ2qn1

(

2n2 − n1 + r2 − r1 − 1
1 − ζ1qn2

+ 1
(1 − ζ1qn2 )2

)

.

The claim now follows using the identity

CT[ζ ]

(

1
(1 − ζqn)k

)

=
⎧

⎨

⎩

1 if n ≥ 0,

0 if n < 0,
(5.2)

which holds for z sufficiently close to 0 with |ζ | < 1 and k ∈ N.

We are now ready to prove Proposition 5.1.

Proof of Proposition 5.1 Using (5.1) and Corollary 5.3, for |q| < |ζ1|, |ζ2|, |ζ1ζ2| < 1 we
have

CT[ζ] (G (ζ)) = q
1
4

η6

∑

r∈SA

εA(r)D(r),

where

SA := {

(1, 0), (0, 1), (−1,−1), (−1, 0), (0,−1), (1, 1)
}

,

εA(r) :=
⎧

⎨

⎩

1 if r ∈ {(1, 0), (0, 1), (−1,−1)},
−1 if r ∈ {(−1, 0), (0,−1), (1, 1)}.
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Defining Q∗
A(n) := QA(−n1, n2), we rewrite D1(r) and D2(r) as

D1(r) = q−Q∗
A(r)
3

∑

n∈N2
0

(n1 + 2n2 − r1)q
QA
(

n1+ r1−2r2
3 ,n2+ r2−2r1

3

)

,

D2(r) = q−Q∗
A(r)
3

∑

n∈N2
0

(n1 − 2n2 + r1 − r2)q
Q∗
A

(

n1− r1+r2
3 ,n2+ r2−2r1

3

)

.

Then,

q
1
3
∑

r∈SA

εA(r)D1(r) =
∑

n∈N2
0

⎛

⎝(n1 + 2n2 − 1)qQA
(

n1+ 1
3 ,n2− 2

3

)

+ (n1 + 2n2)q
QA
(

n1− 2
3 ,n2+ 1

3

)

+ (n1 + 2n2 + 1)qQA
(

n1+ 1
3 ,n2+ 1

3

)

− (n1 + 2n2 + 1)qQA
(

n1− 1
3 ,n2+ 2

3

)

− (n1 + 2n2)q
QA
(

n1+ 2
3 ,n2− 1

3

)

− (n1 + 2n2 − 1)qQA
(

n1− 1
3 ,n2− 1

3

)

⎞

⎠.

Shifting either n1 or n2 by onewhile collecting the one-dimensional boundary terms yields

∑

r∈SA

εA(r)D1(r)

= 3q− 1
3
∑

n∈N2
0

(

(n1 + 2n2 + 1)qQA
(

n1+ 1
3 ,n2+ 1

3

)

− (n1 + 2n2 + 2)qQA
(

n1+ 2
3 ,n2+ 2

3

))

+
∞
∑

n=0

(

(n − 1)qn
2 + 2nqn

2 − (2n + 1)qn(n+1) − nqn(n+1) − (2n − 1)qn(n−1) − nqn(n+1)
)

.

Changing n �→ −(1, 1) − n for the second two-dimensional term and shifting n �→ n + 1
in the one-dimensional contribution with the factor qn(n−1) we find that

∑

r∈SA

εA(r)D1(r) = 3
2
q− 1

3
∑

n∈Z2+
(

1
3 ,

1
3

)

(1 + sgn(n1)sgn(n2))(n1 + 2n2)qQA(n)

+ 1 +
∞
∑

n=0

(

(3n − 1)qn
2 − 2(3n + 1)qn(n+1)

)

.

A similar computation gives

∑

r∈SA

εA(r)D2(r) = 3
2
q− 1

3
∑

n∈Z2+
(

1
3 ,

1
3

)

(−1 + sgn(n1)sgn(n2))(n1 + 2n2)qQA(n)

+
∞
∑

n=0

(

(3n + 1)qn
2 − 2(3n + 2)qn(n+1)

)

.
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Then, combining the two terms we find

∑

r∈SA

εA(r)D(r) = 3q− 1
3

∑

n∈Z2+
(

1
3 ,

1
3

)

sgn(n1)sgn(n2)(n1 + 2n2)qQA(n)

+ 1 +
∞
∑

n=0

(

6nqn
2 − 6 (2n + 1) q

(

n+ 1
2

)2− 1
4

)

.

Noting the symmetry between n1 and n2 of the two-dimensional sum and antisymmetry
of the two one-dimensional sums under n �→ −n and n �→ −n − 1, respectively, (as well
as the vanishing of the first one-dimensional summand for n = 0) yields the result.

Remark 5.4 Note that for r = (r1, r2), such that r1 + r2 ≡ 0 (mod 3), the coefficient D(r)
is a finite sum of one-dimensional false theta functions. Specifically for k ∈ N0, we have

D(3k, 3k) =
⎛

⎝

k−1
∑

j=0
−

3k
∑

j=k+1

⎞

⎠ qj
2−3kj

∞
∑

n=0
(2n + j − 3k)qn

2+(j−3k)n

+
k
∑

j=−k
qj

2−3k2
∞
∑

n=0
qn

2
(

n
qjn + q−jn

2
+ j

(

qjn − q−jn
)

)

.

In particular, D(0, 0) = ∑∞
n=1 nqn

2 . This leads to the new q-hypergeometric representa-
tion

D(0, 0)
(q)6∞

=
∑

n∈N4
0

qn1+n2+n4

(q)n1+n4−n3−1(q)n2+n4−n3−1(q)n1 (q)n2 (q)n3 (q)n4
,

which easily follows from applying Euler’s identity 1
(a)∞ = ∑∞

n=0
an
(q)n to TA(z; τ ) six times.

Another consequence of the formula for D(0, 0) is the following q-series identity

∞
∑

n=1
nqn

2

=
∑

n∈N4
0

(−1)n1+n2+n3q
1
2 (n21+n22+n23+n1+n2+n3)+(n1+n2+n3+2)(n4+1)−n1 (1+qn1−n2−n3−n4−1) ,

which follows after three applications of another well-known identity [3]

(q)2∞
(ζ )∞(ζ−1q)∞

=
∑

�∈Z
ζ �
∑

n≥0
(−1)nq

n2+n
2 +n|�|+ 1

2 (|�|−�).

5.4 Modular properties of the parafermion character

We now study the modular transformations of � appearing in the A2 parafermion
character. This contains a two-dimensional false theta function and is themore interesting
part of the character. The first step is to apply Lemma 3.1 and rewrite � in a more
appropriate form to analyze modular properties. To give this statement, we consider the
function

h(w) := ϑ
[1]
3,1(w1)ϑ1,1(w2) − ϑ

[1]
3,2(w1)ϑ1,0(w2)
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and also define the following regularized integral for w1 ∈ H \ {τ }:
∫ w1

∗ τ

f (w2)
(i(w2 − τ ))

3
2
dw2 := lim

z→τ

(

∫ w1

z

f (w2)
(i(w2 − τ ))

3
2
dw2 + 2i

f (τ )
√

i(z − τ )

)

,

where both the integral and the one-sided limit are taken along the hyperbolic geodesic
from τ to w. Now, one could deform the path of integration away from the hyperbolic
geodesic andprovided that the contourdoesnot cross thebranchpoint atw2 = τ , the value
of the regularized integral is maintained thanks to the holomorphy of the integrand. The
choice for the path here gives a concrete way to compute the integral while working with
the principal value of the square root and moreover is quite convenient for studying the
modular transformationpropertieswe encounter in this paper. In fact, for the remainder of
this paper we assume that all similar (iterated) integrals in the upper half-plane, including
the one-sided limits involved in the regularization, are taken along hyperbolic geodesics.

Proposition 5.5 We have

�(τ ) =
√
3

2π

∫ τ+i∞

τ

∫ w1

∗ τ

h(w)
√

i(w1 − τ )(i(w2 − τ ))
3
2
dw2dw1.

Proof The claim follows directly from Lemma 3.1 and integration by parts noting that
h(w1, w1) = 0.

We now define the completion of � as a function on H × H by

̂�(τ , w) :=
√
3

2π

∫ w

τ

∫ w1

∗ τ

h(w)
√

i(w1 − τ )(i(w2 − τ ))
3
2
dw2dw1,

so that, with the limit taken to be vertical

�(τ ) = lim
w→τ+i∞

̂�(τ , w).

Note that, unlike the one-dimensional false theta functions studied in [11] (where a cut-
plane is used for the domain ofw), the integral to i∞ can be taken in any direction as long
as the same branch of square-root is used for both half-integral powers in the integrand.

Proposition 5.6 For M = ( a b
c d
) ∈ SL2(Z) we have

̂�

(

aτ + b
cτ + d

,
aw + b
cw + d

)

= νη(M)8(cτ + d)2 ̂�(τ , w).

Proof It suffices to prove the statement for translation and inversion, in which case the
claim is

̂�(τ + 1, w + 1) = e
2π i
3 ̂�(τ , w) and ̂�

(

−1
τ
,− 1

w

)

= τ 2̂� (τ , w) . (5.3)

We first recall that the integrals in w1 and w2 (as well as the one-sided limit used in
regularizing the integral) are taken along the hyperbolic geodesic from τ to w, i.e., along
the unique circle with a real center containing τ and w or along the straight vertical line
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from τ to w if Im(τ ) = Im(w). Then, we modify ̂�(τ , w) in the following way without
changing its value

̂�(τ , w) =
√
3

2π

∫ w

τ

1
√

i(w1 − τ )
lim
z→τ

(

∫ w1

z

h(w)
(i(w2 − τ ))

3
2
dw2 + 2i

h(w1, z)
√

i(z − τ )
z − w1
τ − w1

)

dw1. (5.4)

In this form, the modular transformation properties may be concluded by the following
modular transformations for h(w), which can be deduced from Lemma 2.1:

h(w + (1, 1)) = e
2π i
3 h(w) and h

(

− 1
w1

,− 1
w2

)

= w
3
2
1 w

1
2
2 h(w).

In fact, to work with ̂�(− 1
τ
,− 1

w ), we change variables as w1 �→ − 1
w1
, w2 �→ − 1

w2
,

z �→ − 1
z , z �→ − 1

z in Eq. (5.4). Note that integration and limit are originally taken along
the geodesic from − 1

τ
to − 1

w , and the transformations map them to be on the geodesic
from τ to w. We then find

̂�

(

−1
τ
,− 1

w

)

=
√
3

2π

∫ w

τ

χw1 ,τ
√w1

√
τ

√

i(w1 − τ )

× lim
z→τ

(

∫ w1

z
χw2 ,τ

w
3
2
2 τ

3
2 h
(

− 1
w1
,− 1

w2

)

(i(w2 − τ ))
3
2

dw2

w2
2

+ 2iχz,τ
z
1
2 τ

1
2 h
(

− 1
w1
,− 1

z

)

√

i(z − τ )
z − w1
τ − w1

τ

z

)

dw1

w2
1
,

where

χτ1 ,τ2 :=
√

i(τ1 − τ2)
τ1τ2

√
τ1

√
τ2

√

i(τ1 − τ2)
∈ {−1,+1} for τ1, τ2 ∈ H

keeps track of signs required to workwith the principal value of the square-root. Crucially,
along the geodesic from τ to w we have χw1 ,τ = χw2 ,τ = χz,τ = χw,τ . Using this fact as
well as the inversion properties of h we obtain the second identity in (5.3).
A similar and easier computation yields the translation property.

The one-dimensional false theta functions appearing in G0 can be treated as in [11] by
following a similar strategy to Propositions 5.5 and 5.6 and using the regularized inte-
gral defined there. Its quantum modularity can be studied by a slight adjustment of the
argument in [11, Theorem 1.5].

6 Generic parafermionic characters of type B2
6.1 Expression in terms of false functions

Our next goal is to study parafermionic characters associated to the affine Lie algebra of
type B2, which has the positive roots

{

α1 =
(

1
0

)

, α2 =
(

0
1

)

, α1 + α2, 2α1 + α2

}

.
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In particular, specializing Eqs. (1.1) and (1.2) to the case of B2, so that g = so5, we study
the constant term of

F (ζ) := q
10k

24(k+3) (q; q)2∞ch[Vk (so5)](ζ; q)

= 1
(

ζ1q, ζ−1
1 q, ζ2q, ζ−1

2 q, ζ1ζ2q, ζ−1
1 ζ−1

2 q, ζ 2
1 ζ2q, ζ−2

1 ζ−1
2 q; q

)

∞
.

Using Eq. (2.1) we obtain

F (ζ) = q
1
3 η4

ζ−2
1 ζ

− 3
2

2 (1 − ζ1)(1 − ζ2)(1 − ζ1ζ2)
(

1 − ζ 2
1 ζ2

)

ϑ(z1)ϑ(z2)ϑ(z1 + z2)ϑ(2z1 + z2)
.

Now, to state our main result for the associated character, we first require some notation.
Using the quadratic form QB(n) := 3

2n
2
1 + 3n1n2 + 3n22, we define

�(τ ) := �1(τ ) + �2(τ ),

where

�1(τ ) :=
∑

n∈Z2+
(

1
3 ,

1
6

)

(−1)n1−
1
3 (sgn(n2) + sgn(n1 + n2)) sgn(n1)

(

(n1 + 2n2)2 − E2(τ )
18

)

qQB(n),

�2(τ ) :=
∑

n∈Z2+
(

1
3 ,

1
6

)

(−1)n1−
1
3 sgn(n1 + n2)sgn(n2)n1(n1 + 2n2)qQB(n).

Then for a ∈ Z
2, we let

�a(τ ) :=
∑

n∈Z2+
(

1
3 ,

a1
2 + 1

6

)

(−1)(a2+1)
(

n1− 1
3

)

sgn(n1)sgn(n1 + 2n2)qQB(n).

We also need the following one-dimensional false theta functions:

φr(τ ) :=
∑

n∈Z+ r
6

sgn(n)q3n
2

and ωr(τ ) :=
∑

n∈Z+ r
3+ 1

2

(−1)n− r
3− 1

2 sgn(n)q
3n2
2

to define

F0(τ ) := E2(τ ) + 2
4

+ η(τ )6

ϑ
( 1
2 ; τ

)2 + 6q− 1
24D 1

2
(ω1(τ )) − 6q− 3

8D 1
2
(ω0(τ ))

+ q− 1
12

(

6D 1
2

− η(τ )6

ϑ
( 1
2 ; τ

)2 + q− 1
2

η(τ )6

ϑ
(

τ
2 ; τ

)2 − q− 1
2

η(τ )6

ϑ
(

τ+1
2 ; τ

)2

)

(φ1(τ ))

− q− 1
3

(

6D 1
2

+ η(τ )6

ϑ
( 1
2 ; τ

)2 + η(τ )6

ϑ
(

τ
2 ; τ

)2 + η(τ )6

ϑ
(

τ+1
2 ; τ

)2

)

(φ2(τ )).

With these definitions at hand, we can give our result.
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Proposition 6.1 In the range |q| < |ζ 2
1 |, |ζ2|, |ζ1ζ2|, |ζ 2

1 ζ2| < 1, we have

CT[ζ](F (ζ))= q
1
3

η(τ )8
F0(τ )+ 9q− 1

12

2η(τ )8
�(τ )+ q− 1

12

η(τ )2

(

�0,1(τ )

ϑ
( 1
2 ; τ

)2 + q− 1
4 �1,0(τ )

ϑ
(

τ
2 ; τ

)2 − q− 1
4 �1,1(τ )

ϑ
(

τ+1
2 ; τ

)2

)

= 1+4q2+12q3+38q4+100q5+276q6+688q7 + 1709q8 + 4020q9 + O
(

q10
)

.

To prove Proposition 6.1, we require several preliminary results based on Lemmas 4.2
and 4.3 . The first of these is an auxiliary statement that helps us study various limits of
the two lemmas and it follows from Eq. (2.4) and the identity ϑ (3)(0) = 2π3η3E2.

Lemma 6.2 For a function F that is holomorphic in a neighborhood of w = 0 and for
a, b ∈ R we have, as w → 0

F (w)
ϑ(aw)ϑ(bw)

= 1
4π2abη6

(

F (0)
w2 + F ′(0)

w

)

+
(

a2 + b2

ab
E2
24η6

F (0) + F ′′(0)
8π2abη6

)

+O(w).

The next two results are then two particular limits of Lemmas 4.2 and 4.3 , respectively,
that appear in the proof of Proposition 6.1. Taking w = (w,−w) in Lemma 4.2 and then
letting w → 0 using Lemma 6.2, yields the following statement.

Lemma 6.3 For r ∈ Z + 1
2 we have

ζ r

ϑ(z)3
= − i

η9

∑

n∈Z
(−1)nq

3n2
2 −rn

(

4(3n − r − 1)2 − E2
8(1 − ζqn)

+ 6n − 2r − 3
2(1 − ζqn)2

+ 1
(1 − ζqn)3

)

.

Plugging in w = (w,−w) in Lemma 4.3 and taking w → 0 using Lemma 6.2, we obtain
the following result.

Lemma 6.4 For r ∈ Z we have

ζ r

ϑ(z)2ϑ(2z)
= − i

η9

∑

n∈Z
q3n

2−rn
(

2 (6n − r − 1)2 − E2
8 (1 − ζqn)

+ 12n − 2r − 3
4(1 − ζqn)2

+ 1
2(1 − ζqn)3

−η6

2
∑

�1 ,�2∈{0,1}
� 	=(0,0)

1

ϑ
(

�1τ+�2
2

)2
(−1)�1+�2+r�2q

�1(�1−r)
2 +3�1n

1 − (−1)�2ζqn+ �1
2

⎞

⎟

⎟

⎠

.

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1 Let for r1 ∈ Z, r2 ∈ Z + 1
2 and TB defined in (2.5)

C(r) := CT[ζ]
(

TB(z)η12ζ r1
1 ζ

r2
2
)

.

UsingLemma4.2with (r, z, w1, w2) �→ (r2, z2, z1, 2z1), Lemma6.4with (z, r) �→ (z1, r1−3k)
and (z, r) �→ (z1, r1 − 2r2 + 3k), and Lemma 6.3 with (z, r) �→ (z1, r1 − r2) we obtain

TB(z)η12ζ r1
1 ζ

r2
2

=
∑

n∈Z2

(−1)n1q
3n21
2 +3n1n2+3n22−r2n1−r1n2

1 − ζ2qn1

⎛

⎜

⎜

⎝

2 (3n1−r1+6n2−1)2−E2
8 (1 − ζ1qn2 )

+ 6n1+12n2 − 2r1 − 3
4 (1 − ζ1qn2 )2
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+ 1
2 (1−ζ1qn2 )3

−
∑

�1 ,�2∈{0,1}
� 	=(0,0)

η6

2ϑ
(

�1τ+�2
2

)2
(−1)�1+�2+(1+r1+n1)�2q

�1(�1+3n1−r1)
2 +3�1n2

1 − (−1)�2ζ1qn2+
�1
2

⎞

⎟

⎟

⎠

+
∑

n∈Z2

(−1)n1q
3n21
2 −3n1n2+3n22−r2n1+(2r2−r1)n2

1 − ζ 2
1 ζ2qn1

⎛

⎜

⎜

⎝

2 (3n1 − 6n2 + r1 − 2r2 + 1)2 − E2
8 (1 − ζ1qn2 )

−6n1 − 12n2 + 2r1 − 4r2 + 3
4 (1 − ζ1qn2 )2

+ 1
2(1 − ζ1qn2 )3

−
∑

�1 ,�2∈{0,1}
� 	=(0,0)

η6

2ϑ
(

�1τ+�2
2

)2
(−1)�1+�2+(1+r1+2r2+n1)�2q

�1(�1−3n1−r1+2r2)
2 +3�1n2

1 − (−1)�2ζ1qn2+
�1
2

⎞

⎟

⎟

⎠

−
∑

n∈Z2

(−1)n1+n2q
3n21
2 + 3n22

2 −r2n1+(r2−r1)n2

1 − ζ1ζ2qn1

×
(

4(3n2 − r1 + r2 − 1)2 − E2
8(1 − ζ1qn2 )

+ 6n2 − 2r1 + 2r2 − 3
2(1 − ζ1qn2 )2

+ 1
(1 − ζ1qn2 )3

)

.

In the range |q| 12 < |ζ1| < 1, |q| < |ζ2|, |ζ1ζ2|, |ζ 2
1 ζ2| < 1, we use (5.2) to find the

constant term as

C(r) =
6
∑

�=1
C�(r) +

∑

�1 ,�2∈{0,1}
�	=(0,0)

(C7,�(r) + C8,�(r)) ,

where

C1(r) := 1
4
∑

n∈N2
0

(−1)n1 (6n2 + 3n1 − r1)2q
3n21
2 +3n1n2+3n22−r2n1−r1n2 ,

C2(r) := 1
4
∑

n∈N2
0

(−1)n1 (6n2 − 3n1 + 2r2 − r1)2q
3n21
2 −3n1n2+3n22−r2n1+(2r2−r1)n2 ,

C3(r) := −1
2
∑

n∈N2
0

(−1)n1+n2 (3n2 + r2 − r1)2q
3n21
2 + 3n22

2 −r2n1+(r2−r1)n2 ,

C4(r) := −E2
8
∑

n∈N2
0

(−1)n1q
3n21
2 +3n1n2+3n22−r2n1−r1n2 ,

C5(r) := −E2
8
∑

n∈N2
0

(−1)n1q
3n21
2 −3n1n2+3n22−r2n1+(2r2−r1)n2 ,

C6(r) := E2
8
∑

n∈N2
0

(−1)n1+n2q
3n21
2 + 3n22

2 −r2n1+(r2−r1)n2 ,

C7,�(r) := −η6(−1)�1+(r1+1)�2

2ϑ
(

�1τ+�2
2

)2 q
�1(�1−r1)

2
∑

n∈N2
0

(−1)(�2+1)n1q
3n21
2 +3n1n2+3n22+

(

3�1
2 −r2

)

n1+(3�1−r1)n2 ,

C8,�(r) := −η6(−1)�1+r1�2

2ϑ
(

�1τ+�2
2

)2 q
�1(�1−r1)

2 +�1r2
∑

n∈N2
0

(−1)(1+�2)n1q
3n21
2 −3n1n2+3n22−

(

3�1
2 +r2

)

n1+(3�1+2r2−r1)n2 .
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Then we may write

CT[ζ](F (ζ)) = q
1
3

η8

∑

r∈SB

εB(r)C(r),

where

SB :=
{(

−2,−3
2

)

,
(

−1,
1
2

)

,
(

1,−1
2

)

,
(

2,
3
2

)

,
(

−1,−3
2

)

,
(

−2,−1
2

)

,
(

1,
3
2

)

,
(

2,
1
2

)}

,

εB(r) :=
{

1 if r ∈ {(−2,− 3
2
)

,
(−1, 12

)

,
(

1,− 1
2
)

,
(

2, 32
)}

,
−1 if r ∈ {(−1,− 3

2
)

,
(−2,− 1

2
)

,
(

1, 32
)

,
(

2, 12
)}

.

Next, we simplify the individual terms in the decomposition of C(r). We start with

C6(r) = E2
8
q− 1

6 (r21−2r1r2+2r22 )
∑

n∈N2
0

(−1)n1+n2q
3
2 (n1− r2

3 )
2+ 3

2

(

n2− r1−r2
3

)2

.

Note that the sum in C6(r) is invariant if n1 and n2 are interchanged together with their
respective shifts. The terms C6(r) cancel in pairs and we have

∑

r∈SB

εB(r)C6(r) = 0.

For the remaining pieces, the details are quite lengthy. Therefore, we carry them out
only for one of the terms and leave the remaining ones to the reader. We focus on

C3(r) = −9
2
q− 1

6 (r21−2r1r2+2r22 )
∑

n∈N2
0

(−1)n1+n2
(

n2 + r2 − r1
3

)2
q

3
2 (n1− r2

3 )
2+ 3

2

(

n2+ r2−r1
3

)2

.

We have

C3

(

1,−1
2

)

− C3

(

−2,−1
2

)

= −9
2
q− 5

12
∑

n∈N2
0

(−1)n1+n2q
3
2

(

n1+ 1
6

)2
(

(

n2 − 1
2

)2
q

3
2

(

n2− 1
2

)2

−
(

n2 + 1
2

)2
q

3
2

(

n2+ 1
2

)2
)

= −9
8
q− 1

24

∞
∑

n1=0
(−1)n1q

3
2

(

n1+ 1
6

)2

+ 9q− 5
12
∑

n∈N2
0

(−1)n1+n2
(

n2 + 1
2

)2
q

3
2

(

n1+ 1
6

)2+ 3
2

(

n2+ 1
2

)2

,

where for the last equality we split off the n2 = 0 contribution from the first term and
then shift n2 �→ n2 + 1 there.
Next, we have

C3

(

−1,
1
2

)

− C3

(

2,
1
2

)

= −9
2
q− 5

12
∑

n∈N2
0

(−1)n1+n2q
3
2

(

n1− 1
6

)2
(

(

n2 + 1
2

)2
q

3
2

(

n2+ 1
2

)2

−
(

n2 − 1
2

)2
q

3
2

(

n2− 1
2

)2
)

= 9
8
q− 1

24

∞
∑

n1=0
(−1)n1q

3
2

(

n1− 1
6

)2

− 9q− 5
12
∑

n∈N2
0

(−1)n1+n2
(

n2 + 1
2

)2
q

3
2

(

n1− 1
6

)2+ 3
2

(

n2+ 1
2

)2

,
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where for the last equality we split off the n2 = 0 part from the second term and then shift
n2 �→ n2 + 1 there. Splitting off the terms with n1 = 0 from the second sum and then
changing n1 �→ −n1 and n2 �→ −n2 − 1 we get

C3

(

−1,
1
2

)

− C3

(

2,
1
2

)

= 9
8
q− 1

24

∞
∑

n1=0
(−1)n1q

3
2

(

n1− 1
6

)2

− 9q− 3
8

∞
∑

n2=0
(−1)n2

(

n2 + 1
2

)2
q

3
2

(

n2+ 1
2

)2

+ 9q− 5
12

∑

n∈−N2

(−1)n1+n2
(

n2 + 1
2

)2
q

3
2

(

n1+ 1
6

)2+ 3
2

(

n2+ 1
2

)2

.

Next, we study

C3

(

−2,−3
2

)

− C3

(

1,
3
2

)

= −9
2
q− 5

12
∑

n∈N2
0

(−1)n1+n2
(

n2 + 1
6

)2
q

3
2

(

n2+ 1
6

)2
(

q
3
2

(

n1+ 1
2

)2

− q
3
2

(

n1− 1
2

)2
)

= 9
2
q− 1

24

∞
∑

n2=0
(−1)n2

(

n2 + 1
6

)2
q

3
2

(

n2+ 1
6

)2

− 9q− 5
12
∑

n∈N2
0

(−1)n1+n2
(

n2 + 1
6

)2
q

3
2

(

n1+ 1
2

)2+ 3
2

(

n2+ 1
6

)2

,

where for the last equality we split off the n1 = 0 contribution from the second term and
then shift n1 �→ n1 + 1 there. Finally, we study

C3

(

2,
3
2

)

− C3

(

−1,−3
2

)

= −9
2
q− 5

12
∑

n∈N2
0

(−1)n1+n2
(

n2 − 1
6

)2
q

3
2

(

n2− 1
6

)2
(

q
3
2

(

n1− 1
2

)2

− q
3
2

(

n1+ 1
2

)2
)

= −9
2
q− 1

24

∞
∑

n2=0
(−1)n2

(

n2 − 1
6

)2
q

3
2

(

n2− 1
6

)2

+ 9q− 5
12
∑

n∈N2
0

(−1)n1+n2
(

n2 − 1
6

)2
q

3
2

(

n1+ 1
2

)2+ 3
2

(

n2− 1
6

)2

,

where for the last equality we split off the n1 = 0 part from the first term and then shift
n1 �→ n1 + 1 there. Splitting off the n2 = 0 contribution from the double sum and then
changing n2 �→ −n2 and n1 �→ −n1 − 1 we get

C3

(

2,
3
2

)

− C3

(

−1,−3
2

)

= −9
2
q− 1

24

∞
∑

n2=0
(−1)n2

(

n2 − 1
6

)2
q

3
2

(

n2− 1
6

)2

+ 1
4
q− 3

8

∞
∑

n1=0
(−1)n1q

3
2

(

n1+ 1
2

)2

−9q− 5
12

∑

n∈−N2

(−1)n1+n2
(

n2 + 1
6

)2
q

3
2

(

n1+ 1
2

)2+ 3
2

(

n2+ 1
6

)2

.
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Therefore, the two-dimensional contribution in
∑

r∈SB
εB(r)C3(r) is

9q− 5
12

2
∑

n∈Z2+
(

1
2 ,

1
6

)

(−1)n1−
1
2+n2− 1

6 (1 + sgn(n1)sgn(n2))
(

n21 − n22
)

q
3n21
2 + 3n22

2 .

Under n1 �→ −n1 the contribution of the “1” in parentheses picks a minus sign (note that
(−1)2n1 = −1) and hence vanishes. Then we can rewrite the two-dimensional part as

9q− 5
12

2
∑

n∈Z2+
(

1
2 ,

1
6

)

(−1)n1−
1
2+n2− 1

6 sgn(n1)sgn(n2)
(

n21 − n22
)

q
3n21
2 + 3n22

2 .

Mapping n �→ (−n1 − n2, n2) we get

9q− 5
12

2
∑

n∈Z2+
(

1
3 ,

1
6

)

(−1)n1−
1
3 sgn(n1 + n2)sgn(n2)n1(n1 + 2n2)qQB(n).

The one-dimensional pieces are

−9
8
q− 1

24
∑

n1∈Z
(−1)n1sgn(n1)q

3
2

(

n1+ 1
6

)2

+ 1
8
q− 3

8
∑

n1∈Z
(−1)n1sgn

(

n1 + 1
2

)

q
3
2

(

n1+ 1
2

)2

+9
2
q− 1

24
∑

n2∈Z
(−1)n2sgn(n2)

(

n2 + 1
6

)2
q

3
2

(

n2+ 1
6

)2

−9
2
q− 3

8
∑

n2∈Z
(−1)n2sgn

(

n2 + 1
2

)(

n2 + 1
2

)2
q

3
2

(

n2+ 1
2

)2

.

We next consider the remaining pieces following similar computations.

• Firstly, we have
∑

r∈SB

εB(r)C1(r)

= 9
4
q− 5

12

⎛

⎜

⎜

⎝

∑

n∈Z2+
(

1
3 ,

1
6

)

−
∑

n∈Z2+
(

1
3 ,

1
2

)

⎞

⎟

⎟

⎠

(−1)n1−
1
3 (1 + sgn(n1)sgn(n2))(n1 + 2n2)2qQB(n)

−9
4
∑

n2∈Z
sgn(n2)

(

2n2 + 2
3

)2
q3n

2
2+2n2 + 9

4
∑

n2∈Z
sgn(n2)

(

2n2 + 1
3

)2
q3n

2
2+n2

−9
2

∞
∑

n1=0
(−1)n1

(

n1 + 1
3

)2
q

3n21
2 + 3n1

2 − 9
4

∞
∑

n1=0
(−1)n1

(

n1 − 2
3

)2
q

3n21
2 − n1

2

+9
4

∞
∑

n1=0
(−1)n1

(

n1 − 1
3

)2
q

3n21
2 + n1

2 ,

∑

r∈SB

εB(r)C2(r)

= 9
4
q− 5

12

⎛

⎜

⎜

⎝

∑

n∈Z2+
(

1
3 ,

1
2

)

−
∑

n∈Z2+
(

1
3 ,

1
6

)

⎞

⎟

⎟

⎠

(−1)n1−
1
3 (1 − sgn(n1)sgn(n2))(n1 + 2n2)2qQB(n)
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+ 9
4
∑

n2∈Z
sgn(n2)

(

2n2 + 1
3

)2
q3n

2
2+n2 − 9

4
∑

n2∈Z
sgn(n2)

(

2n2 + 2
3

)2
q3n

2
2+2n2

− 9
4

∞
∑

n1=1
(−1)n1

(

n1 + 1
3

)2
q

3n21
2 − n1

2 + 9
4

∞
∑

n1=1
(−1)n1

(

n1 + 2
3

)2
q

3n21
2 + n1

2

− 9
2

∞
∑

n1=0
(−1)n1

(

n1 + 2
3

)2
q

3n21
2 + 3n1

2 .

Combining the contributions from C1, C2, and C3, we then find that
∑

r∈SB

εB(r) (C1(r) + C2(r) + C3(r))

= 9
2
q− 5

12
∑

n∈Z2+
(

1
3 ,

1
6

)

(−1)n1−
1
3 sgn(n1) (sgn(n2) + sgn(n1 + n2)) (n1 + 2n2)2qQB(n)

+9
2
q− 5

12
∑

n∈Z2+
(

1
3 ,

1
6

)

(−1)n1−
1
3 sgn(n1 + n2)sgn(n2)n1(n1 + 2n2)qQB(n)

+1
2

+ 18q− 1
12

∑

n∈Z+ 1
6

sgn(n)n2q3n
2 − 18q− 1

3
∑

n∈Z+ 1
3

sgn(n)n2q3n
2

+9q− 1
24

∑

n∈Z+ 1
6

(−1)n− 1
6 sgn(n)n2q

3n2
2 − 9q− 3

8
∑

n∈Z+ 1
2

(−1)n− 1
2 sgn(n)n2q

3n2
2 .

• Next, we have
∑

r∈SB

εB(r)C4(r) =
∑

r∈SB

εB(r)C5(r)

= −E2
8
q− 5

12
∑

n∈Z2+
(

1
3 ,

1
6

)

(−1)n1−
1
3 sgn(n1) (sgn(n2) + sgn(n1 + n2)) qQB(n)

+E2
8

− E2
8
q− 1

12
∑

n∈Z+ 1
6

sgn(n)q3n
2 + E2

8
q− 1

3
∑

n∈Z+ 1
3

sgn(n)q3n
2

−E2
8
q− 1

24
∑

n∈Z+ 1
6

(−1)n− 1
6 sgn(n)q

3n2
2 + E2

8
q− 3

8
∑

n∈Z+ 1
2

(−1)n− 1
2 sgn(n)q

3n2
2

so that we get
∑

r∈SB

εB(r) (C4(r) + C5(r) + C6(r)) = 2
∑

r∈SB

εB(r)C4(r).

• We next consider the contributions from C7,(0,1) and C8,(0,1) to find that

− 2ϑ
( 1
2
)2

η6

∑

r∈SB

εB(r)C7,(0,1)(r)

= −q− 5
12

∑

n∈Z2+
(

1
3 ,

1
6

)

sgn(n1) (sgn(n2) + sgn(n1 + n2)) qQB(n)

− 1 + q− 1
12

∑

n∈Z+ 1
6

sgn(n)q3n
2 + q− 1

3
∑

n∈Z+ 1
3

sgn(n)q3n
2
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+ q− 1
24

∑

n∈Z+ 1
6

q
3n2
2 − q− 3

8
∑

n∈Z+ 1
2

q
3n2
2 ,

− 2ϑ
( 1
2
)2

η6

∑

r∈SB

εB(r)C8,(0,1)(r)

= −q− 5
12

∑

n∈Z2+
(

1
3 ,

1
6

)

sgn(n1) (sgn(n2) + sgn(n1 + n2)) qQB(n)

− 1 + q− 1
12

∑

n∈Z+ 1
6

sgn(n)q3n
2 + q− 1

3
∑

n∈Z+ 1
3

sgn(n)q3n
2

+ q− 3
8
∑

n∈Z+ 1
2

q
3n2
2 − q− 1

24
∑

n∈Z+ 1
6

q
3n2
2 .

They combine as

ϑ
( 1
2
)2

η6

∑

r∈SB

εB(r)
(

C7,(0,1)(r) + C8,(0,1)(r)
)

= q− 5
12

∑

n∈Z2+
(

1
3 ,

1
6

)

sgn(n1) (sgn(n2) + sgn(n1 + n2)) qQB(n)

+1 − q− 1
12

∑

n∈Z+ 1
6

sgn(n)q3n
2 − q− 1

3
∑

n∈Z+ 1
3

sgn(n)q3n
2
.

• Finally, we consider the case � = (1, �2) (�2 ∈ {0, 1}) and determine

2ϑ
(

τ+�2
2

)2

η6

∑

r∈SB

εB(r)C7,(1,�2)(r) =
2ϑ
(

τ+�2
2

)2

η6

∑

r∈SB

εB(r)C8,(1,�2)(r)

= (−1)�2q− 2
3

∑

n∈Z2+
(

1
3 ,

2
3

)

(−1)(�2+1)
(

n1− 1
3

)

sgn(n1) (sgn(n2) + sgn(n1 + n2)) qQB(n)

− q− 1
3
∑

n∈Z+ 1
3

sgn(n)q3n
2 + (−1)�2q− 7

12
∑

n∈Z+ 1
6

sgn(n)q3n
2
.

The claim of the theorem now follows by a direct calculation using the following sign-
identity on the two-dimensional contributions from C7 and C8 together with the change
of variables n �→ (−n1 − 2n2, n2) which leaves both QB and the respective lattice shifts
invariant:

sgn(n1)(sgn(n2) + sgn(n1 + n2)) − sgn(n1 + 2n2)(sgn(n2) − sgn(n1 + n2))

= 2sgn(n1 + 2n2)sgn(n1).

6.2 Modular properties of the vacuum character

As in the case of parafermionic characters of type A2, we focus on the rank two con-
tributions �(τ ) and �a(τ ). For �a(τ ), the two vectors determining the factors inside the
sign functions are orthogonal with respect to the quadratic form QB. Therefore, �a(τ )
can be written in terms of products of two rank one false theta functions. This leaves us



54 Page 26 of 31 K. Bringmann et al. ResMath Sci (2021) 8:54

with �(τ ) as the only nontrivially rank two piece in the decomposition, which we study
next. We start by defining

f0(w) := ϑ
[1]
3,1(w1)ϑ [1]

3,2(w2) − ϑ
[1]
3,2(w1)ϑ [1]

3,1(w2),

f1(w) := ϑ
[1]
3,1(w1)ϑ [3]

3,2(w2) − ϑ
[1]
3,2(w1)ϑ [3]

3,1(w2),

g0(w) := ϑ
[1]
3
2 ,1

(w1)ϑ [1]
3
2 ,0

(w2) − ϑ
[1]
3
2 ,0

(w1)ϑ [1]
3
2 ,1

(w2),

g1(w) := ϑ
[1]
3
2 ,1

(w1)ϑ [3]
3
2 ,0

(w2) − ϑ
[1]
3
2 ,0

(w1)ϑ [3]
3
2 ,1

(w2).

A direct calculation, using Lemma 3.1 then gives:

Lemma 6.5 We have

�(τ ) = 2
3

∫ τ+i∞

τ

∫ w1

τ

72f1(w) − E2(τ )f0(w)
√

i(w1 − τ )
√

i(w2 − τ )
dw2dw1

+1
6

∫ τ+i∞

τ

∫ w1

τ

36g1(w) − E2(τ )g0(w)
√

i(w1 − τ )
√

i(w2 − τ )
dw2dw1.

Using integration by parts, while noting that we have ϑ
[3]
m,r(τ ) = 1

2π im
∂
∂τ

ϑ
[1]
m,r(τ ) and

f0(w1, w1) = g0(w1, w1) = 0, we obtain the following:

Proposition 6.6 We have

�(τ ) = 1
π

∫ τ+i∞

τ

∫ w1

∗ τ

(4f0(w) + g0(w))
(

1 − π i
6 (w2 − τ )E2(τ )

)

√

i(w1 − τ )(i(w2 − τ ))
3
2

dw2dw1.

In parallel with Sect. 5.2, we define the completion of � as

̂�(τ , w) := 1
π

∫ w

τ

∫ w1

∗ τ

(4f0(w) + g0(w))
(

1 − π i
6 (w2 − τ )E2(τ )

)

√

i(w1 − τ )(i(w2 − τ ))
3
2

dw2dw1.

The following proposition shows the transformation law of ̂�.

Proposition 6.7 For M = ( a b
c d
) ∈ SL2(Z), we have

̂�

(

aτ + b
cτ + d

,
aw + b
cw + d

)

= νη(M)10(cτ + d)3 ̂�(τ , w).

Proof It is enough to verify the claim for translation and inversion, in which case it reads

̂�(τ + 1, w + 1) = e
5π i
6 ̂�(τ , w), ̂�

(

−1
τ
,− 1

w

)

= −iτ 3̂�(τ , w).

As in Proposition 5.6, these transformations follow from the following modular transfor-
mations for f0 and g0:

f0(w + (1, 1)) = e
5π i
6 f0(w), f0

(

− 1
w1

,− 1
w2

)

= −iw
3
2
1 w

3
2
2 f0(w),

g0(w + (1, 1)) = e
5π i
6 g0(w), g0

(

− 1
w1

,− 1
w2

)

= −iw
3
2
1 w

3
2
2 g0(w).
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7 Higher rank false theta functions from Schur indices and Ẑ-invariants
In this section, we study further examples of rank two false theta functions coming from
Schur’s indices [13,16] and Ẑ-invariants [24].

7.1 False theta functions from Schur indices

Aremarkable correspondence (or duality) between four-dimensionalN = 2 superconfor-
mal field theories (SCFTs) and vertex operator algebras was recently found in [4]. Accord-
ing to [4], the Schur index of aN = 2 SCFT agrees with the character of a vertex operator
algebra. As mentioned above, the Schur index of the (A1, D2k+2) Argyres–Douglas the-
ory is a meromorphic Jacobi form of negative index in two variables z = (z1, z2). It was
demonstrated in [13,16] that the index agrees with the character of a certain affine W -
algebra. Up to some Euler factors and change of variables, this character is given by the
Jacobi form Tk (z; τ ) defined in Sect. 2 (see [16]). Here we analyze its Fourier coefficients.
For k ∈ N, letting

Fk (τ ) := 1
2

∑

n∈Z2+
(

0, 12
)

(−1)n1sgn(n1)sgn (n2) q
n21
2 +n1n2+(k+1)n22 ,

it is not hard to prove the following result using slight adjustments of [7, Lemma 3.5].

Proposition 7.1 For |q| < |ζ1|, |ζ2|, |ζ1ζ2| < 1 and r ∈ Z
2, the r-th Fourier coefficient of

η(τ )3η( k+1
2 τ )2

η((k+1)τ ) Tk (z; τ ) equals

q
k+1
4 (2r2+1)

∑

n∈Z2

(−1)n1�n1 ,n2+r1�n2+r2 ,n2q
n1(n1+1)

2 +n1(n2+r1)+(k+1)n22+(k+1)(r2+1)n2 ,

where �m,n := 1
2 (sgn(m + 1

2 ) + sgn(n + 1
2 )). In particular,

Fk (τ ) =
η(τ )3η

(

k+1
2 τ

)2

η((k + 1)τ )
CT[ζ](Tk (z; τ )).

Proof We first let

h(z; τ ) := − iη((k + 1)τ )3ζ−1
2 q− k+1

2 ϑ(z1; (k + 1)τ )

ϑ
(

z2 + k+1
2 τ ; (k + 1)τ

)

ϑ
(

z1 + z2 + k+1
2 τ ; (k + 1)τ

) .

As in the proof of [7, Lemma 3.5], we obtain an expansion

h(z; τ ) =
∑

(n3 ,n4)∈Z2

�n3 ,n4q(k+1)n3n4+ k+1
2 n3+ k+1

2 n4ζ−n4
1 ζ

n3−n4
2 .

This combined with the well-known formula (see [3, formula (2.1)])

− iζ− 1
2

1 η(τ )3

ϑ(z1; τ )
=
∑

n∈Z2

�n1 ,n2 (−1)n1q
n1(n1+1)

2 +n1n2ζ n1
1 ,

easily implies the statement.

A direct calculation using Lemma 3.1 then shows the following.
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Proposition 7.2 We have

2Fk (τ )√
2k + 1

=
∫ τ+i∞

τ

η((2k + 1)w1)3
√

i(w1 − τ )

∫ w1

τ

η(w2)3
√

i(w2 − τ )
dw2dw1

+ 2(k + 1)
2k+1
∑

j=0
(−1)j

∫ τ+i∞

τ

ϑ
[1]
k+1,j((2k + 1)w1)
√

i(w1 − τ )

∫ w1

τ

ϑ
[1]
k+1,j+k+1(w2)
√

i(w2 − τ )
dw2dw1.

We now specialize to k = 1. This recovers the A2 false theta function entering the
character formula of theW 0(2)A2 vertex algebra studied in [1,6,7]. In this case, the right-
hand side in Proposition 7.2 simplifies and we obtain an elegant integral representation

F1(τ ) = 3
√
3

4

∫ τ+i∞

τ

η(3w1)3
√

i(w1 − τ )

∫ w1

τ

η(w2)3
√

i(w2 − τ )
dw2dw1,

as a consequence of the identity
3
∑

j=0
(−1)jϑ [1]

2,j (3w1)ϑ [1]
2,j+2(w2) = 1

8
η(3w1)3η(w2)3.

This integral admits a modular completion̂F1(τ , w) (see Sect. 5) whose modular transfor-
mation properties under SL2(Z) can be easily analyzed.

7.2 Ẑ-invariants of 3-manifolds from unimodular H-graphs

The methods of this paper can also be used in analyzing the modular properties of Ẑ-
invariants or homological blocks of 3-manifolds. These are certain q-series with integer
coefficients proposed by [24] as a new class of 3-manifold invariants. Remarkably, these
q-series, which are convergent on the unit disk, are designed and expected to produce
theWRT (Witten–Reshetikhin–Turaev) invariants of the relevant manifolds through the
radial limits of the parameter q to the roots of unity.
More concretely, we restrict our attention to plumbed 3-manifolds whose plumbing

graphs are trees. The vertices of the plumbing graph, which we label by {vj}1≤j≤N , are
decorated with a set of integersmjj for 1 ≤ j ≤ N . This data then determines the linking
matrix M = (mjk )1≤j,k≤N by setting the off-diagonal entries mjk to −1 if the associated
vertices vj and vk are connected by an edge in the graph and by setting it to 0 otherwise.5
We further restrict to cases inwhich thematrixM is positive definite. Finally, we define the
shift vector δ := (δj)1≤j≤N where δj ≡ deg(vj) (mod 2) and deg(vj) denotes the degree of
the vertex vj . Then the Ẑ-invariant is defined for each equivalence class a ∈ 2coker(M)+δ
by

Ẑa(q) := q
−3N+tr(M)

4

(2π i)N
P.V.

∫

|w1|=1
. . .

∫

|wN |=1

N
∏

j=1

(

wj − w−1
j

)2−deg(vj )

�−M,a(q;w)
dwN
wN

. . .
dw1
w1

,

where

�−M,a(q;w) :=
∑

�∈2MZN+a
q

1
4 �TM−1�w�

5 Here we follow the conventions of [9] and switch the sign of the linking matrixM compared to [24].
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Fig. 1 The H-graph

and the integrals are defined using the Cauchy principal value (as indicated by the nota-
tion P.V.) and performed in counterclockwise direction. If more specifically the linking
matrix is invertible (unimodular), in which casewe also call the associated plumbing graph
unimodular, then coker(M) = 0 and there is only one Ẑ-invariant.
The Ẑ-invariants are conjectured to yield quantum modular forms, which for example
can be verified in the case of unimodular, 3-star plumbing graphs for which the relevant
invariants can be written in terms of unary false theta functions [23, Proposition 4.8]
(see also [9,14]) The simplest plumbing graph for which the corresponding homological
block can not be written in terms of one-dimensional false theta functions is the H-
graph (see Fig. 1). For unimodular H-graph, two of the authors and Mahlburg computed
the Ẑ-invariants and studied their higher depth quantum modular properties in [9]. We
explain how the method of Sect. 3 can be used to analyze their modular properties. As
demonstrated in [9], the relevant Ẑ-invariants can be expressed as a difference of two
series of the form

FS ,Q,ε(τ ) :=
∑

α∈S
ε(α)

∑

n∈N2
0

qKQ(n+α).

HereQ(n) =: σ1n21+2σ2n1n2+σ3n22 withσ1, σ2, σ3 ∈ Zdefines apositivedefinitequadratic
form andS ⊂ Q

2
>0 is a finite set with the property that (1, 1)−α, (1−α1,α2) ∈ S forα ∈ S ,

ε(α) = ε((1, 1) − α) = ε((1 − α1,α2)), and K ∈ N is minimal such that A := KS ⊂ N
2.

For explicit formulas for Q and S see [9]. We can use the symmetry in the sum over α to
obtain that

FS ,Q,ε(τ ) = 1
4
∑

α∈S
ε(α)

∑

n∈Z2+α

sgn(n1) (sgn(n1) + sgn(n2)) qKQ(n).

The contribution from sgn(n1)sgn(n1) = 1 yields a theta function which is a modular
form. For the contribution from sgn(n1)sgn(n2) we proceed as in Sect. 3 to obtain a
representation of Ẑ in terms of double integrals and ordinary theta functions.

Proposition 7.3 We have

FS ,Q,ε(τ )

= Kσ3
√
D

2
∑

α∈S ,
r (mod σ3)

ε(α)
∫ τ+i∞

τ

ϑ
[1]
KDσ3 ,2KD(α1+r)(w1)
√

i(w1 − τ )

∫ w1

τ

ϑ
[1]
Kσ3 ,2K (σ2(α1+r)+σ3α2)(w2)

√

i(w2 − τ )
dw2dw1

+ Kσ1
√
D

2
∑

α∈S ,
r (mod σ1)

ε(α)
∫ τ+i∞

τ

ϑ
[1]
KDσ1 ,2KD(α2+r)(w1)
√

i(w1 − τ )

∫ w1

τ

ϑ
[1]
Kσ1 ,2K (σ2(α2+r)+σ1α1)(w2)

√

i(w2 − τ )
dw2dw1
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+ 1
4

(

1 − 2
π

arctan
(

σ2√
D

))

∑

α∈S ,
r (mod σ3)

ε(α)ϑKDσ3 ,2KD(α1+r)(τ )ϑKσ3 ,2K (σ2(α1+r)+σ3α2)(τ ),

where D := σ1σ3 − σ 2
2 .

8 Conclusion and future work
In this paper, modular properties of rank two false theta functions are studied following
the recent developments in depth twomockmodular forms. These results are then used to
study characters of parafermionic vertex algebras of type A2 and B2. A natural question is
then how our results extend to parafermions associated to other simple Lie algebras. The
only remaining rank two simple Lie algebra G2 is a natural setting where our approach
would directly apply. A more interesting problem is the extension to higher rank Lie alge-
bras such as A3. The approach we use in Sects. 5 and 6 to compute the constant term
of meromorphic Jacobi forms would still be applicable, albeit becoming computation-
ally more expensive as the number of roots increases. Although being straightforward,
computations of the linear combinations that give the characters of parafermionic vertex
algebras were a particularly strenuous part of the calculations. Therefore, it would be
desirable to streamline this part of the computation ahead of the generalizations.
The modular properties for these higher rank cases, on the other hand, can in principle

be studied again following the corresponding structure for mock modular forms. The
details on higher depth mock modular forms are developed in [2,22,28,31,34] and we
leave it as future work to form this connection. Another interesting prospect would be
to understand and make predictions on these modular behaviors (weights, multiplier
systems, etc.) through either physical or algebraic methods.
A slightly different direction would be studying the modular properties of Fourier coef-

ficients of the character of Vk (sl3) at the boundary admissible levels k = −3 + 3
j , where

j ≥ 2 and gcd(j, 3) = 1, generalizing the results for j = 2 obtained in [7] (see also Sect. 7).
This problem essentially requires analyzing the Fourier coefficients of the Jacobi form (see
[26])

ϑ(z1; jτ )ϑ(z2; jτ )ϑ(z1 + z2; jτ )
ϑ(z1; τ )ϑ(z2; τ )ϑ(z1 + z2; τ )

,

which can be handled using the methods of this paper.
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