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1. Introduction

In this article, we fix d ∈ {1, 2} and consider the stochastic wave equation

∂2u

∂t2
= ∆u+ σ(u)Ẇ , (1.1) {2dSWE}

on R+ × Rd with initial conditions u(0, x) = 1 and ∂u
∂t (0, x) = 0, where ∆ is Laplacian in space

variables and Ẇ is a centered Gaussian noise with covariance

E[Ẇ (t, x)Ẇ (s, y)] = δ0(t− s)γ(x− y). (1.2) {cov}

Here Ẇ is a distribution-valued field and will be formally introduced in Section 2.1.

Throughout this article, we fix the following conditions:
(C1) σ : R → R is Lipschitz continuous with Lipschitz constant L ∈ (0,∞).
(C2) γ is a tempered nonnegative and nonnegative definite function, whose Fourier transform

µ satisfies Dalang’s condition: ∫

Rd

µ(dz)

1 + |z|2
< ∞, (1.3) {DalangC}

where | · | denotes the Euclidean norm on Rd.
(C3) σ(1) �= 0.

Conditions (C1) and (C2) ensure that equation (1.1) has a unique random field solution, which
is adapted to the filtration generated by W , such that sup

{
E
[
|u(t, x)|k

]
: (t, x) ∈ [0, T ]×Rd

}
is

finite for all T ∈ (0,∞) and k ≥ 2, and

u(t, x) = 1 +

∫ t

0

∫

Rd

Gt−s(x− y)σ(u(s, y))W (ds, dy), (1.4) {mild}
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where the above stochastic integral is defined in the sense of Dalang-Walsh and Gt−s(x − y)
denotes the fundamental solution to the corresponding deterministic wave equation, i.e.

Gt(x) :=




1

2
1{|x|<t}, if d = 1

1

2π
√

t2 − |x|2
1{|x|<t}, if d = 2;

(1.5) {fundamentalS}

see [6, 7]. Condition (C3) excludes the trivial case where u(t, x) = 1, see Section 5.1.

We are interested in the behavior of the solution to (1.1) in the space variable, and the next
result provides relevant stationarity and ergodicity properties.

{prop1}
Proposition 1.1. Suppose that γ satisfies γ ∈ L1(R) if d = 1 and γ ∈ L1(R2) ∩ L���(R2) for
some 


 > 1 if d = 2. Fix t > 0. Then, the random field {u(t, x) : x ∈ Rd} have the following
properties:

(i) it is strictly stationary: The finite-dimensional distributions of {u(t, x+y) : x ∈ Rd} does
not depend on y ∈ Rd;

(ii) it is ergodic.
We postpone the proof to Section 3.

We define for each t ∈ [0,∞),

FR(t) =

∫

BR

(u(t, x)− 1) dx, where BR = {x ∈ Rd : |x| ≤ R}. (1.6){F_R}

It follows from Proposition 1.1 and the ergodic theorem that

FR(t)/R
d R→∞−−−−→ 0 almost surely and in Lp(Ω) for any p ≥ 1. (1.7){conseq:Erg}

In this framework, it is natural to investigate second-order fluctuations. Indeed, when con-
sidering equation (1.1) driven by a space-time white noise on R+ × R, it is easy to see that
u(t, x) is independent from u(t, y) for |x − y| > 2t, see for instance [8, Page 3021]; in this case,
the random variable FR(t) can be roughly understood as a sum of weakly dependent random
variables. If the spatial correlation kernel γ is integrable, one deduce from Lemma 4.1 that the
process {u(t, x) : x ∈ Rd} has short-range dependence so that it is natural to expect Gaussian
fluctuations of FR(t), as R → ∞.

Notation. We denote the standard Gaussian distribution by N (0, 1) and the Lp(Ω)-norm by
‖ · ‖p for any p ≥ 1. Also, ωd denotes the volume of the unit ball, that is, ωd = 2 for d = 1 and
ωd = π for d = 2. We put a � b if a ≤ Cb for some positive constant C that does not depend on
a, b.

In what follows, we present the main result of this article.
{MAIN}

Theorem 1.2. Suppose that γ satisfies γ ∈ L1(R) if d = 1 and γ ∈ L1(R2) ∩ L���(R2) for some



 > 1 if d = 2. Then the following statements hold:

(i) The process
{
R−d/2FR(t) : t ≥ 0

}
converges in law to a centered continuous Gaussian

process
{
Gt : t ≥ 0

}
, where

E
[
Gt1Gt2

]
= ωd

∫

Rd

Cov(u(t1, ξ), u(t2, 0))dξ.

(ii) For any fixed t > 0,

dTV

(
FR(t)/σR,N (0, 1)

)
� R−d/2, (1.8){QCLT}
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where σ2
R := Var(FR(t)) > 0 for every1 R > 0 is part of the conclusion and dTV stands

for the total variation distance.

Remark 1. (1) Here are two examples of integrable kernels:

γ(x) =

{
(4π)α/2Γ(α/2)

∫∞
0 w

α−d
2

−1e−w exp
(
− |x|2

4w

)
dw (Bessel kernel of order α > 0)

(4πβ)−d/2 exp
(
− |x|2/(4β)

)
(heat kernel with parameter β > 0)

and the corresponding spectral measures are given as µ(dξ) = (1 + |ξ|2)−α/2dξ and µ(dξ) =

e−4π2β|ξ|2 . Note that Dalang’s condition (1.3) is satisfied for the Bessel kernel of order α ≥ 2.
(2) When d = 1, Theorem 1.2 and Theorem 1.3 below are still true under the assumption that

γ is a finite measure. We leave the details to interested readers.
(3) Our rate of convergence and the limiting variance order depend on the correlation kernel

γ. In [8], it was proved that for d = 1:
• when γ = δ0 (which is a finite measure on R), the limiting variance is of order R and the
rate of convergence is of order R−1/2;

• when γ(z) = |z|2H−2 for some H ∈ (1/2, 1) (Riesz kernel), the limiting variance is of
order R2H and the rate of convergence is of order RH−1.

In [2] it is proved that for d = 2, when γ(z) = |z|−β for some β ∈ (0, 2), the limiting variance is
of order R4−β and the rate of convergence is of order R−β/2.

In the sequel, we sketch the “usual proof strategy” and highlight the key ingredients. The proof
of the functional CLT consists in proving the f.d.d. convergence and tightness. We appeal to
the tightness criterion of Komogorov-Chentsov (see e.g. [13]) and prove tightness by obtaining
moment estimate of the increments FR(t) − FR(s). For the f.d.d. convergence, we first derive
the asymptotic variance and then apply the so-called Malliavin-Stein approach to show the f.d.d.
convergence. More precisely, we need a multivariate Malliavin-Stein bound for this purpose,
while the univariate Malliavin-Stein bound provides the rate for the marginal convergence that is
described by the total-variation distance. It is worth remarking that as a tailor-made combination
of Malliavin calculus and Stein’s method initiated by Nourdin and Peccati, the Malliavin-Stein
approach has proved to be a very useful toolkit in establishing Gaussian fluctuations in various
frameworks, notably for the functionals over a Gaussian field, see the recent monograph [15] for
a comprehensive treatment.

That being said, we will use the Malliavin calculus intensively for our computations and
inevitably, we will encounter random variables of the formDs,yu(t, x). Note thatDu(t, x) denotes
the Malliavin derivative of u(t, x), which lives in the Hilbert space H associated to the noise W ;
see section 2 for precise definitions. The space Hmay contain generalized functions, so to estimate
Lp-norm of Ds,yu(t, x), we shall first clarify that Ds,yu(t, x) is indeed a real function in (s, y).
Moreover, we need to prove an estimate of the form

‖Ds,yu(t, x)‖p � Gt−s(x− y)

in order to proceed with our computations for asymptotic variance and f.d.d. convergence. This
is the content of the following theorem.

{THM}
Theorem 1.3. Let the assumptions in Theorem 1.2 prevail. For any p ∈ [2,∞) and any t > 0,
the following estimates hold for almost all (s, y) ∈ [0, t]× Rd :

Gt−s(x− y)‖σ(u(s, y))‖p ≤
∥∥Ds,yu(t, x)

∥∥
p
≤ Cp,t,L,γκp,t,LGt−s(x− y), (1.9) {IMP}

1Note that σR depends on the parameter t and the conclusion “σR > 0 for each R > 0” is ensured by condition
(C3). The proof of this part is omitted here and can be done by following the same arguments as in [8, Lemma
3.4].
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where the constant κp,t,L is defined in (5.3) and the constant Cp,t,L,γ is given by (5.16) in the 1D
case and by (5.30) in the 2D case.

Remark 2. As one can read from the proof of the above theorem, the lower bound holds whenever
the spatial correlation kernel γ satisfies Dalang’s condition (1.3). Concerning the upper bound
in the case d = 2, the assumption γ ∈ L1(R2) is not needed.

Let us compare our result with similar results in the literature. There have been several recent
works on the application of the Malliavin-Stein approach to establish central limit theorems for
spatial averages of stochastic partial differential equations and to derive quantitative error bound
in the total variation distance. A fundamental ingredient in all these papers is an upper bound
similar to (1.9). The works [10] and [11] deal with the stochastic heat equation with d = 1 and
γ = δ0 and d ≥ 1 and γ(x) = |x|−β , 0 < β < min(2, d) (Riesz kernel covariance), respectively.
The case of an integrable kernel γ has been considered in [4, 5]. For the stochastic heat equation,
an upper bound of the form (1.9), holds with G being the heat kernel. In this case, the proof
relies heavily on the semigroup property of the heat kernel.

For the wave equation, the works [8, 2] establish the Gaussian fluctuation of spatial averages
of stochastic wave equations in the following cases: d = 1 and γ(x) = |x|2H−2, H ∈ [1/2, 1), and
d = 2 and γ(x) = |x|−β , 0 < β < 2, respectively. In the case d = 1, the proof of (1.9) is not
very difficult because Gt−s(x− y) is uniformly bounded. The case d = 2 is much more difficult
due to the singularity within the fundamental solution (1.5). In the present article, we consider
the integrable covariance kernel that requires novel technical estimates and as we can read from
Theorem 1.2, the order of fluctuation in this case is Rd/2, which is the same as in the case of
parabolic Anderson model driven by integrable covariance kernel [19]. Our paper can be viewed
as another pixel, along with [2, 4, 8, 10, 11, 19], for completing the picture of averaging SPDEs.
It is worth pointing out that the authors of [1] considered the 1D linear stochastic wave equation
driven by space-time homogeneous Gaussian noise and they obtained a weaker result than (1.9).
Their methodology is totally different than ours: Due to the linearity, one has the explicit chaos
expansion of the solution, then obtaining the upper bound for ‖Ds,yu(t, x)‖p reduces to explicit
(but very complicated) computations. And in view of this reference, we believe our bounds
in (1.9) could be very useful in establishing absolute continuity result for the solution to 2D
stochastic wave equation.

The rest of this article is organized as follows: In Section 2 we present preliminary results for
our proofs, and Sections 3 4, 5 are devoted to the proofs of Proposition 1.1, Theorem 1.2 and
Theorem 1.3 respectively.

2. Preliminaries
{SEC2}

In this section we present some preliminaries on stochastic analysis, Malliavin calculus and
the Stein-Malliavin approach to normal approximations.

{sub22}
2.1. Basic stochastic analysis. Let H be defined as the completion of Cc(R+ ×Rd) under the
inner product

〈f, g〉H =

∫

R+×R2d

f(s, y)g(s, z)γ(y − z)dydzds =

∫

R+

(∫

Rd

Ff(s, ξ)Fg(s,−ξ)µ(dξ)

)
ds,

where Ff(s, ξ) =
∫
Rd e

−ix·ξf(s, x)dx.
Consider an isonormal Gaussian process associated to the Hilbert space H, denoted by W ={

W (φ) : φ ∈ H
}
. That is, W is a centered Gaussian family of random variables such that

E
[
W (φ)W (ψ)

]
= 〈φ, ψ〉H for any φ, ψ ∈ H. As the noise W is white in time, a martingale

structure naturally appears. First we define Ft to be the σ-algebra generated by P-negligible
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sets and
{
W (φ) : φ ∈ C(R+ × Rd) has compact support contained in [0, t] × Rd

}
, so we have a

filtration F = {Ft : t ∈ R+}. If
{
Φ(s, y) : (s, y) ∈ R+ × Rd

}
is an F-adapted random field such

that E
[
‖Φ‖2H

]
< +∞, then

Mt =

∫

[0,t]×Rd

Φ(s, y)W (ds, dy),

interpreted as the Dalang-Walsh integral ([6, 20]), is a square-integrable F-martingale with qua-
dratic variation

〈M〉t =
∫

[0,t]×R2d

Φ(s, y)Φ(s, z)γ(y − z)dydzds.

Let us record a useful version of Burkholder-Davis-Gundy inequality (BDG for short); see e.g.
[12, Theorem B.1].

{BDG}
Lemma 2.1. If

{
Φ(s, y) : (s, y) ∈ R+ × Rd

}
is an adapted random field with respect to F such

that ‖Φ‖H ∈ Lp(Ω) for some p ≥ 2, then
∥∥∥∥∥
∫

[0,t]×Rd

Φ(s, y)W (ds, dy)

∥∥∥∥∥
2

p

≤ 4p

∥∥∥∥∥
∫

[0,t]×R2d

Φ(s, y)Φ(s, z)γ(y − z)dydzds

∥∥∥∥∥
p/2

.

Now let us recall some basic facts on Malliavin calculus associated with W . For any unex-
plained notation and result, we refer to the book [16]. We denote by C∞

p (Rn) the space of smooth
functions with all their partial derivatives having at most polynomial growth at infinity. Let S
be the space of simple functionals of the form F = f(W (h1), . . . ,W (hn)) for f ∈ C∞

p (Rn) and
hi ∈ H, 1 ≤ i ≤ n. Then, the Malliavin derivative DF is the H-valued random variable given by

DF =

n∑
i=1

∂f

∂xi
(W (h1), . . . ,W (hn))hi .

The derivative operator D is closable from Lp(Ω) into Lp(Ω;H) for any p ≥ 1 and we define D1,p

to be the completion of S under the norm

‖F‖1,p =
(
E
[
|F |p

]
+ E

[
‖DF‖pH

])1/p
.

The chain rule for D asserts that if F ∈ D1,2 and h : R → R is Lipschitz, then h(F ) ∈ D1,2 with

D[h(F )] = Y DF, (2.1) {cr}

where Y is some σ{F}-measurable random variable bounded by the Lipschitz constant of h;
when h is additionally differentiable, we have Y = h′(F ).

We denote by δ the adjoint of D given by the duality formula

E[δ(u)F ] = E[〈u,DF 〉H] (2.2) {D:delta}

for any F ∈ D1,2 and u ∈ Dom δ ⊂ L2(Ω;H), the domain of δ. The operator δ is also called the
Skorohod integral and in the case of the Brownian motion, it coincides with an extension of the
Itô integral introduced by Skorohod (see e.g. [9, 18]).

In our context, the Dalang-Walsh integral coincides with the Skorohod integral: Any adapted
random field Φ that satisfies E

[
‖Φ‖2H

]
< ∞ belongs to the domain of δ and

δ(Φ) =

∫ ∞

0

∫

Rd

Φ(s, y)W (ds, dy).

As a consequence, the mild formulation equation (1.4) can be written as

u(t, x) = 1 + δ
(
Gt−•(x− ∗)σ(u(•, ∗))

)
.
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Using the two-parameter Clark-Ocone formula, we can represent F ∈ D1,2 as a stochastic
integral; see e.g. [3, Proposition 6.3] for a proof.

{CO}
Lemma 2.2 (Clark-Ocone formula). Given F ∈ D1,2, we have almost surely

F = E[F ] +

∫

R+×Rd

E
[
Ds,yF |Fs

]
W (ds, dy).

As a consequence of Lemma 2.2, we can derive the following Poincaré inequality : For any two
random variables F,G ∈ D1,2, we have

|Cov(F,G)| ≤
∫ ∞

0

∫

R2d

‖Ds,yF‖2‖Ds,zG‖2γ(y − z)dydzds. (2.3){Poincare}

Recall that the total variation distance between two probability measures µ and ν on R is
defined by

dTV(µ, ν) = sup
B∈B(R)

|µ(B)− ν(B)|,

where B(R) denotes the family of all Borel subsets on R. As usual, dTV(F ,G) will denote the
total variation distance between the distribution measures of F and G; and dTV(F ,N (0 , 1)) is
is the total variation distance between F and a standard Gaussian random variable.

The combination of Stein’s method for normal approximations with Malliavin calculus leads
to the following bound on the total variation distance, see [17, Theorem 8.2.1] for more details.

{pr:TV}
Proposition 2.3. Suppose that F = δ(v) ∈ D1,2 has unit variance for some v ∈ Dom(δ). Then

dTV(F ,N (0, 1)) ≤ 2
√
Var〈DF, v〉H. (2.4){SM1}

2.2. Basic formulas. We close this section with some basic relations for the fundamental solu-
tion Gt(x). For t > 0 and m > 0, we have

∫

R2d

Gt(y)Gt(z)γ(y − z)dydz =

∫

Rd

sin2
(
t|ξ|

)
|ξ|2

µ(dξ)

= t2
∫

|ξ|≤m

sin2
(
t|ξ|

)
t2|ξ|2

µ(dξ) +

∫

|ξ|>m

sin2
(
t|ξ|

)
|ξ|2

µ(dξ)

≤ t2µ(|ξ| ≤ m) +

∫

|ξ|>m

µ(dξ)

|ξ|2
.

As a consequence,
∫

R2d

Gt(y)Gt(z)γ(y − z)dydz ≤ inf
m>0

(
t2µ(|ξ| ≤ m) +

∫

|ξ|>m
|ξ|−2µ(dξ)

)
=: mt. (2.5){FA1}

It is clear that mt is nondecreasing in t.
For any s < r < t and d = 1, we have∫

R
Gt−r(x− z)Gr−s(z − y)dz ≤ 1

2
(t− s)Gt−s(x− y). (2.6){G1}

For any t ∈ (0,∞), we define

ϕt,R(s, y) =

∫

BR

Gt−s(x− y)dx (2.7){varphi}

where we recall that BR = {x ∈ Rd : |x| ≤ R}. In the following lemma, we provide a useful
estimate about y ∈ Rd �−→ ϕt,R(s, y).
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{lemfact}
Lemma 2.4. For t1, t2 ∈ (0,∞), the quantity

R−d

∫

R2d

ϕt1,R(s, y)ϕt2,R(s, z)γ(y − z)dydz

is uniformly bounded over s ∈ [0, t2 ∧ t1] and R > 0, provided γ ∈ L1(Rd).

Proof. It is clear that for any d ∈ {1, 2} and s < t,

ϕt,R(s, y) ≤
∫

Rd

Gt−s(x− y)dx = t− s, (2.8) {ineq:241}
∫

Rd

ϕt,R(s, y)dy =

∫

BR

dx

∫

Rd

dyGt−s(x− y) ≤ ωd(t− s)Rd. (2.9) {ineq:242}

Then, we can write

R−d

∫

R2d

ϕt1,R(s, y)ϕt2,R(s, z)γ(y − z)dydz ≤ (t1 − s)R−d

∫

R2d

ϕt2,R(s, z)γ(y − z)dydz by (2.8)

≤ (t1 − s)
∥∥γ∥∥

L1(Rd)
R−d

∫

Rd

ϕt2,R(s, z)dz

≤ ωd(t1 − s)(t2 − s)
∥∥γ∥∥

L1(Rd)
.

This gives us the desired uniform boundedness. �

In the end of this section, we state two useful estimates from the paper [2].
{LEM51}

Lemma 2.5. When d = 2, Gt(x) =
1
2π

[
t2 − |x|2

]−1/2
1{|x|<t}. The following estimates hold:

(1) For q ∈ (1/2, 1) and s < t, then
∫ t

s
dr
(
G2q

t−r ∗G
2q
r−s

)1/q
(z) � (t− s)

1
q
−1

G
2− 1

q

t−s (z),

where the implicit constant only depends on q; see Lemma 3.3 in [2].
(2) For any p ∈ (0, 1) and q ∈ (1/2, 1) such that p+ 2q ≤ 3, we have for s < t,

∫ t

s
G2q

t−r ∗G
p
r−s(z)dr � (t− s)3−p−2q1{|z|<t−s},

where the implicit constant only depends on p and q; see Lemma 3.4 in [2].

3. Proof of Proposition 1.1
{SEC3}

The strict stationarity follows from two facts:
(1) For each y ∈ Rd, the random field {u(t, x+ y) : x ∈ Rd} coincides almost surely with the

random field u driven by the shifted noise Wy given by

Wy(φ) =

∫

R+

∫

Rd

φ(s, x− y)W (ds, dx), φ ∈ H.

(2) The noise Wy has the same distribution as W , which allows to conclude the proof of the
stationarity property.

We refer readers to Lemma 7.1 in [3] and footnote 1 in [8] for similar arguments. Now let us
prove the ergodicity and in view of [3, Lemma 7.2], it suffices to prove

VR(t) := Var


R−d

∫

BR

k∏
j=1

gj
(
u(t, x+ ζj)

)
dx


 R→∞−−−−→ 0,
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for any fixed ζ1, . . . , ζk ∈ Rd and g1, . . . , gk ∈ Cb(R) such that each gj vanishes at zero and has
Lipschitz constant bounded by 1.

Using the Poincaré inequality (2.3), we obtain

VR(t) ≤ R−2d

∫

B2
R

dxdy
∣∣Cov(R(x),R(y))

∣∣ with R(x) :=
k∏

j=1

gj
(
u(t, x+ ζj)

)

≤ R−2d

∫

B2
R

∫ t

0

∫

R2d

‖Ds,zR(x)‖2‖Ds,z′R(y)‖2 γ(z − z′)dzdz′dsdxdy. (3.1){EQ2}

By the chain rule (2.1),

∣∣Ds,zR(x)
∣∣ ≤ 1(0,t)(s)

k∑
j0=1

∣∣∣∣∣∣
k∏

j=1,j �=j0

gj(u(t, x+ ζj))

∣∣∣∣∣∣
∣∣Ds,yu(t, x+ ζj0)

∣∣,

which implies, for any s ∈ [0, t],

‖Ds,zR(x)‖2 ≤ max
1≤j≤k

sup
a∈R

|gj(a)|k−1
k∑

j0=1

∥∥Ds,yu(t, x+ ζj0)
∥∥
2
�

k∑
j0=1

Gt−s(x− y + ζj0), (3.2){EQ1}

where in the second inequality we used Theorem 1.3. Plugging (3.2) into (3.1), yields

VR(t) � R−2d
k∑

j,�=1

∫

B2
R

∫ t

0

∫

R2d

Gt−s(x− z + ζj)Gt−s(y − z′ + ζ�)γ(z − z′)dzdz′dsdxdy.

Using ∫

BR

dyGt−s(y − z′ + ζ�) ≤
∫

Rd

dyGt−s(y) � t− s and
∫

Rd

dz′γ(z − z′) < ∞,

we deduce that VR(t) � R−d. This finish the proof of Proposition 1.1. �

4. Proof of Theorem 1.2
{SEC:Proof11}

The proof will be decomposed in several steps.
{sub41}

4.1. Asymptotic behavior of the covariance. For any t1, t2 ≥ 0, in view of the stationarity
of the random field {(u(t1, x), u(t2, x)) : x ∈ Rd}, we have

E
[
FR(t1)FR(t2)

]
=

∫

B2
R

E[(u(t1, x− y)− 1)(u(t2, 0)− 1)]dxdy.

By the dominated convergence theorem (see e.g. [19, page 27]), we obtain

lim
R→∞

R−dE
[
FR(t1)FR(t2)

]
= ωd

∫

Rd

Cov(u(t1, x), u(t2, 0))dx, (4.1){R1}

provided x ∈ Rd �−→
∣∣Cov(u(t1, x), u(t2, 0))

∣∣ is integrable. In the next lemma we show this
integrability property.

{lem_41}
Lemma 4.1. For any t1, t2 ≥ 0,∫

Rd

∣∣Cov(u(t1, x), u(t2, 0))
∣∣dx < ∞.
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Proof. Fix t1, t2 ∈ [0, T ]. Using Poincaré inequality (2.3) and the estimate (1.9) yields∫

Rd

dx|Cov(u(t1, x), u(t2, 0))|

≤
∫

Rd

dx

∫ t1∧t2

0

∫

R2d

dydzds‖Ds,yu(t1, x)‖2‖Ds,zu(t2, 0)‖2γ(y − z)dydzds

≤ (C2,t,L,γκ2,t,L)
2

∫

Rd

dx

∫ t1∧t2

0

∫

R2d

dsGt1−s(x− y)Gt2−s(z)γ(y − z)dydz,

which is finite, by integrating successively in the variables x, y, z and using the integrability of
γ. This completes the proof. �

{sec42}
4.2. Convergence of the finite-dimensional distributions. From the mild equation (1.4)
satisfied by u(t, x) and using the fact that the Dalang-Walsh integral coincides with the divergence
operator, we can write

FR(t) =

∫

BR

(u(t, x)− 1)dx = δ(Vt,R), (4.2) {EQ4}

with
Vt,R(s, y) = ϕt,R(s, y)σ(u(s, y)), (4.3)

where ϕt,R(s, y) has been defined in (2.7).
The next proposition is the basic ingredient for the convergence of the finite-dimensional

distributions and also for the total variation bound in (1.8).
{prop42}

Proposition 4.2. For any t1, t2 ∈ [0, T ],

Var
(
〈DFR(t1), Vt2,R〉H

)
� Rd. (4.4) {finalbdd}

Together with Proposition 2.3, the above estimate (4.4) leads us to the total variation bound
in (1.8).

Proof of Proposition 4.2. Note that

Ds,yFR(t) = ϕt,R(s, y)σ(u(s, y)) +

∫ t

s

∫

Rd

ϕt,R(r, z)Σr,zDs,yu(r, z)W (dr, dz),

where {Σr,z : (r, z) ∈ R+ × Rd} is an adapted random field that is uniformly bounded by
L, the Lipschitz constant of σ; see condition (C1). Then, for t1, t2 ∈ [0, T ], we can write〈
DFR(t1), Vt2,R

〉
H
= A1 +A2, with

A1 =
〈
Vt1,R, Vt2,R

〉
H
=

∫ t1∧t2

0
ds

∫

R2d

dydzγ(y − z)ϕt1,R(s, y)ϕt2,R(s, z)σ
(
u(s, y)

)
σ
(
u(s, z)

)

and

A2 =

∫ t1∧t2

0
ds

∫

R2d

dydy′γ(y − y′)Vt2,R(s, y
′)

(∫ t1

s

∫

R2

ϕt1,R(r, z)Σr,zDs,yu(r, z)W (dr, dz)

)
.

It is clear that Var
(
〈DFR(t1), Vt2,R〉H

)
� Var(A1) +Var(A2). So in the sequel, we need to prove

Var(Aj) � Rd for j = 1, 2.

Following the same strategy as in [2, Section 4.2], we only need to prove

sup
s≤t1∧t2

(
Ts + Us

)
� Rd, (4.5) {TU:suf}
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where for s ∈ (0, t1 ∧ t2],

Ts =
∫ s

0
dr

∫

R6d

ϕt1,R(s, y)ϕt1,R(s, y
′)ϕt2,R(s, z)ϕt2,R(s, z

′)Gs−r(z − ξ)Gs−r(z
′ − ξ′)

× γ(ξ − ξ′)γ(y − z)γ(y′ − z′)dξdξ′dydzdy′dz′

and

Us =

∫ t1

s
dr

∫

R6d

dzdz̃dydy′dỹdỹ′γ(y − y′)γ(ỹ − ỹ′)γ(z − z̃)

× ϕt2,R(s, y
′)ϕt2,R(s, ỹ

′)ϕt1,R(r, z)ϕt1,R(r, z̃)Gr−s(y − z)Gr−s(ỹ − z̃).

In what follows, we only prove sup
{
Ts : s ≤ t1 ∧ t2

}
� Rd and we omit the other part because

Us has the similar-type expression as Ts.
Using (2.8), we can write

Ts ≤ (t1 − s)(t2 − s)

∫ s

0
dr

∫

R6d

ϕt1,R(s, y)ϕt2,R(s, z)γ(y − z)Gs−r(z − ξ)

×Gs−r(z
′ − ξ′)γ(ξ − ξ′)γ(y′ − z′)dξdξ′dydzdy′dz′,

then we perform integration with respect to dy′, dz′, dξ′, dξ successively to write

Ts �
∫ s

0
dr

∫

R2d

ϕt1,R(s, y)ϕt2,R(s, z)γ(y − z)dydz � Rd,

where the last estimate follows from Lemma 2.4. This leads to the bound (4.4). �

We are ready to show the convergence of the finite-dimensional distributions. Let us choose
m ≥ 1 points t1, . . . , tm ∈ (0 ,∞). Consider the random vector ΦR =

(
FR(t1), . . . , FR(tm)

)
and let G = (G1 , . . . ,Gm) denote a centered Gaussian random vector with covariance matrix
(Ci,j))1≤i,j≤m, where

Ci,j := ωd

∫

Rd

Cov(u(ti, ξ), u(tj , 0))dξ.

Recall from (4.2) that FR(ti) = δ(Vti,R) for all i = 1, . . . ,m. Then, by a generalization of a result
of Nourdin and Peccati (see e.g. [15, Theorem 6.1.2]), we can write

∣∣E(h(R−d/2ΦR))− E(h(G))
∣∣ ≤ m

2
‖h′′‖∞

√√√√
m∑

i,j=1

E
(∣∣Ci,j −R−d〈DFR(ti) , Vtj ,R〉H

∣∣2) (4.6){equa7}

for every h ∈ C2(Rm) with bounded second partial derivatives, where

‖h′′‖∞ = max
1≤i,j≤m

sup
x∈Rm

∣∣∣∣
∂2h(x)

∂xi∂xj

∣∣∣∣ ;

see also Proposition 2.3 in [10]. Thus, in view of (4.6), in order to show the convergence in law
of R−d/2ΦR to G, it suffices to show that for any i, j = 1, . . . ,m,

lim
R→∞

E
(∣∣∣Ci,j −R−d〈DFR(ti) , Vtj ,R〉H

∣∣∣
2
)

= 0. (4.7){h6}

Notice that, by the duality relation (2.2) and the convergence (4.1), we have

R−dE
(
〈DFR(ti) , Vtj ,R〉H

)
= R−dE

(
FR(ti)δ(Vtj ,R)

)
= R−dE

(
FR(ti)FR(tj)

)
R→+∞−−−−−→ Ci,j . (4.8){h7}

Therefore, the convergence (4.7) follows immediately from (4.8) and (4.4). Hence the finite-
dimensional distributions of

{
R−d/2FR(t) : t ∈ R+

}
converge to those of G as R → ∞. �
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{sec43}
4.3. Tightness via the criterion of Chentsov-Kolmogorov. In what follow, we appeal to
the tightness criterion of Chentsov-Kolmogorov (see e.g. [13]) and we only need to obtain the
following moment estimate

{lem_tight}
Lemma 4.3. Let the conditions (C1)-(C3) hold. If additionally γ ∈ L1(Rd), then for any p ≥ 2
and 0 ≤ s < t ≤ T ≤ R, we have

R−d/2
∥∥FR(t)− FR(s)

∥∥
p
� (t− s)1/d, (4.9) {tight}

where the implicit constant does not depend on (R, s, t).

Proof. Recall that

FR(t) =

∫

R+×Rd

ϕt,R(r, y)σ
(
u(r, y)

)
W (dr, dy).

Then by BDG inequality (see Lemma 2.1) and Minkowski’s inequality,

∥∥FR(t)− FR(s)
∥∥2
p
�

∥∥∥∥∥
∫

R+×R2d

(
ϕt,R(r, y)− ϕs,R(r, y)

)(
ϕt,R(r, y

′)− ϕs,R(r, y
′)
)

× σ(u(r, y))σ(u(r, y′))γ(y − y′)dydy′dr

∥∥∥∥∥
p/2

�
∫

R+×R2d

∣∣ϕt,R(r, y)− ϕs,R(r, y)
∣∣∣∣ϕt,R(r, y

′)− ϕs,R(r, y
′)
∣∣

×
∥∥σ(u(r, y))σ(u(r, y′))∥∥

p/2
γ(y − y′)dydy′dr

�
∫

R+×R2d

(∣∣ϕt,R(r, y)− ϕs,R(r, y)
∣∣2 + ∣∣ϕt,R(r, y

′)− ϕs,R(r, y
′)
∣∣2) γ(y − y′)dydy′dr (4.10) {s:app}

=

∫

R+×R2d

∣∣ϕt,R(r, y)− ϕs,R(r, y)
∣∣2γ(y − y′)dydy′dr,

where we have used the following two facts to obtain (4.10):
(i) ‖u(r, y)‖p is uniformly bounded on [0, T ]× Rd, (ii) |ab| ≤ 1

2(a
2 + b2) for any a, b ∈ R.

Integrating first with respect to dy′ yields,
∥∥FR(t)− FR(s)

∥∥2
p
�

∫

R+×Rd

∣∣ϕt,R(r, y)− ϕs,R(r, y)
∣∣2dydr.

By direct computation (see also [2, Section 4.3] for the 2D case and [8, Equation (4.2)] for the
1D case), ∣∣ϕt,R(r, y)− ϕs,R(r, y)

∣∣2 � (t− s)2/d1{|y|≤R+t} ≤ (t− s)2/d1{|y|≤2R}

from which we have
∥∥FR(t)− FR(s)

∥∥2
p
�

∫ t

0

∫

Rd

(t− s)2/d1{|y|≤2R}dydr � Rd(t− s)2/d.

This gives us the desired tightness. �

Combing the results from Sections 4.1, 4.2 and 4.3, we can complete the proof of Theorem
1.2.
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5. Proof of Theorem 1.3
{SEC:Proof12}{Picard}

5.1. Moment estimates for Picard approximations. We define u0(t, x) = 1 and for n ≥ 0,

un+1(t, x) = 1 +

∫ t

0

∫

R2

Gt−s(x− y)σ
(
un(s, y)

)
W (ds, dy).

It is a classic result that un(t, x) converges in Lp(Ω) to u(t, x) uniformly in x ∈ Rd for any p ≥ 2;
see e.g. [7, Theorem 4.3]. If σ(1) = 0, we will end up in the trivial case where u(t, x) ≡ 1, in
view of the above iteration, which explains the imposed condition (C3).

We will first derive moment estimates for un(t, x). By BDG and Minkowski’s inequalities, we
can write with n ≥ 1,

‖un(t, x)‖2p

≤ 2 + 8p

∫ t

0
ds

∫

R2d

dydy′Gt−s(x− y)Gt−s(x− y′)γ(y − y′)
∥∥σ(un−1(s, y))σ(un−1(s, y

′))
∥∥
p/2

≤ 2 + 8p

∫ t

0
ds

∫

R2d

dydy′Gt−s(x− y)Gt−s(x− y′)γ(y − y′)
∥∥σ(un−1(s, y))

∥∥2
p

since ‖σ(un−1(s, y))σ(un−1(s, y
′))‖p/2 ≤ 1

2

(
‖σ(un−1(s, y))‖2p + ‖σ(un−1(s, y

′))‖2p
)
;

≤ 2 + 8p

∫ t

0
ds

∫

R2d

dydy′Gt−s(x− y)Gt−s(x− y′)γ(y − y′)
(
2σ(0)2 + 2L2

∥∥un−1(s, y)
∥∥2
p

)
.

Then, it follows from the estimate (2.5) that

Hn(t) ≤ c1(t) + c2(t)

∫ t

0
dsHn−1(s), (5.1){eq11}

where Hn(t) = supx∈Rd ‖un(t, x)‖2p,

c1(t) := 2 + 16pσ(0)2tmt and c2(t) := 16pL2mt.

Note that the functions c1(t), c2(t) are nondecreasing in t ∈ R+. Therefore, by iterating the
inequality (5.1) for s ∈ [0, t] and taking into account that H0 ≡ 1, yields

Hn(s) ≤ c1(t) exp(c2(t)s), for all s ∈ [0, t]. (5.2){Gronwall0}

Essentially we applied Gronwall’s lemma here.
Now we deduce from (5.2) that

‖un(t, x)‖2p ≤
(
2 + 16pσ(0)2tmt

)
exp

(
16pL2tmt

)
.

As a consequence,

‖σ(un(t, x))‖p ≤ |σ(0)|+ L
(√

2 + 4
√
p|σ(0)|

√
tmt

)
exp

(
8pL2tmt

)
=: κp,t,L. (5.3){sigmap}

5.2. Moment estimates for the derivative of Picard approximations. Now, let us derive
moment estimates for the derivative of the Picard approximations. Our goal in this section is to
establish that for n ≥ 4,

‖Ds,yun+1(t, x)‖p ≤ Cp,t,L,γκp,t,LGt−s(x− y), (5.4){Goalsec}

where the constant κp,t,L is defined in (5.3) and the constant Cp,t,L,γ is given by (5.16) in 1D
case and by (5.30) in 2D case.
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Proof of (5.4). It is known that for each n ≥ 0, un(t, x) ∈ D1,p with

Ds,yun+1(t, x) = Gt−s(x− y)σ
(
un(s, y)

)
+

∫ t

s

∫

Rd

Gt−r(x− z)Σ(n)
r,zDs,yun(r, z)W (dr, dz),

where
{
Σ
(n)
s,y : (s, y) ∈ R+ ×Rd

}
is an adapted random field that is uniformly bounded by L, for

each n. Now finite iterations yield (with r0 = t, z0 = x)

Ds,yun+1(t, x) = Gt−s(x− y)σ
(
un(s, y)

)

+

∫ t

s

∫

Rd

Gt−r1(x− z1)Σ
(n)
r1,z1Gr1−s(z1 − y)σ(un−1(s, y))W (dr1, dz1)

+

n∑
k=2

∫ t

s
· · ·

∫ rk−1

s

∫

R2k

Grk−s(zk − y)σ
(
un−k(s, y)

)

×
k∏

j=1

Grj−1−rj (zj−1 − zj)Σ
(n+1−j)
rj ,zj W (drj , dzj) =:

n∑
k=0

T
(n)
k , (5.5) {finiteit}

where T
(n)
k denotes the kth item. For example, T (n)

0 = Gt−s(x− y)σ
(
un(s, y)

)
and

T
(n)
1 =

∫ t

s

∫

Rd

Gt−r1(x− z1)Σ
(n)
r1,z1Gr1−s(z1 − y)σ(un−1(s, y))W (dr1, dz1).

We are going to estimate ‖T (n)
k ‖p for each k = 0, . . . , n.

Case k = 0: It is clear that
‖T (n)

0 ‖p ≤ κp,t,LGt−s(x− y), (5.6) {k=0}

where κp,t,L is the constant defined in (5.3).

Case k = 1: Applying BDG and Minkowski’s inequalities, we can write

‖T (n)
1 ‖2p ≤ 4p

∥∥∥∥∥
∫ t

s
dr1

∫

R2d

dz1dz
′
1Gt−r1(x− z1)Gt−r1(x− z′1)Gr1−s(z1 − y)Gr1−s(z

′
1 − y)

× γ(z1 − z′1)Σ
(n)
r1,z1Σ

(n)
r′1,z

′
1
σ2(un−1(s, y))

∥∥∥∥∥
p/2

≤ 4pL2κ2p,t,LKs,t(x, y), (5.7) {k=1}

where

Ks,t(x, y) =

∫ t

s
dr

∫

Rd

gr(z)(gr ∗ γ)(z)dz (5.8) {eq:1w}

with the notation gr(z) = Gt−r(x− z)Gr−s(z − y).

Case 2 ≤ k ≤ n: We can write

T
(n)
k =

∫ t

s

∫

Rd

Gt−r1(x− z1)Σ
(n)
r1,z1Nr1,z1W (dr1, dz1)

with

Nr1,z1 =

∫

s<rk<···<r2<r1

∫

Rkd−d

Grk−s(zk − y)σ
(
un−k(s, y)

)

×
k∏

j=2

Grj−1−rj (zj−1 − zj)Σ
(n+1−j)
rj ,zj W (drj , dzj),
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which is clearly Fr1-measurable. Then, by BDG inequality, we obtain

∥∥T (n)
k

∥∥2
p
≤ 4p

∥∥∥∥∥
∫ t

s
dr1

∫

R2d

Gt−r1(x− z1)Σ
(n)
r1,z1Nr1,z1Gt−r1(x− z′1)Σ

(n)
r1,z′1

Nr1,z′1

× γ(z′1 − z1)dz1dz
′
1

∥∥∥∥∥
p/2

≤ 4pL2

∥∥∥∥∥
∫ t

s
dr1

∫

R2d

Gt−r1(x− z1)N
2
r1,z1Gt−r1(x− z′1)γ(z

′
1 − z1)dz1dz

′
1

∥∥∥∥∥
p/2

(5.9) {ineq:ab}

≤ 4pL2

∫ t

s
dr1

∫

R2d

Gt−r1(x− z1)Gt−r1(x− z′1)‖Nr1,z1‖2pγ(z′1 − z1)dz1dz
′
1,

where we used |ab| ≤ a2+b2

2 in the second inequality and we applied Minkowski’s inequality in
the last step.

Now we can iterate the above process to obtain
∥∥T (n)

k

∥∥2
p
≤ (4pL2)k−1

∫ t

s
dr1

∫ r1

s
· · ·

∫ rk−2

s
drk−1

∫

R2dk−2d

dz1 · · · dzk−1dz
′
1...dz

′
k−1

×




k−2∏
j=0

Grj−rj+1(zj − zj+1)Grj−rj+1(zj − z′j+1)γ(zj+1 − z′j+1)


∥∥N̂rk−1,zk−1

∥∥2
p
,

where z0 = x, r0 = t and N̂rk−1,zk−1
is given by

N̂rk−1,zk−1
:=

∫

[s,rk−1]×Rd

W (drk, dzk)σ
(
un−k(s, y)

)
Grk−1−rk(zk−1 − zk)Σ

(n+1−k)
rk,zk

Grk−s(zk − y).

By the same arguments that led to (5.7), we have
∥∥N̂rk−1,zk−1

∥∥2
p
≤ 4pL2κ2p,t,LKs,rk−1

(zk−1, y),

which implies
∥∥T (n)

k

∥∥2
p
≤ (4pL2)kκ2p,t,L

∫ t

s
dr1

∫ r1

s
· · ·

∫ rk−2

s
drk−1

∫

R2dk−2d

dz1 · · · dzk−1dz
′
1...dz

′
k−1

×




k−2∏
j=0

Grj−rj+1(zj − zj+1)Grj−rj+1(zj − z′j+1)γ(zj+1 − z′j+1)


Ks,rk−1

(x, y). (5.10){EQ15}

To complete the estimation of the quantities ‖T (n)
k ‖p for k = 1, . . . , n, we consider separately

the cases d = 1 and d = 2.

Case d = 1: In this case, Gt−r(x− z) = 1
21{|x−z|<t−r}, so that, using the integrability of γ and

(2.6) yields

Ks,t(x, y) ≤
1

4
1{|x−y|<t−s}‖γ‖L1(R)

∫ t

s
dr

∫

R
dzGt−r(x− z)Gr−s(z − y)

≤ 1

8
1{|x−y|<t−s}‖γ‖L1(R)(t− s)2Gt−s(x− y)

≤
t2‖γ‖L1(R)

8
Gt−s(x− y). (5.11){ineq:d=1}
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Plugging this bound into (5.7) yields

‖T (n)
1 ‖p ≤ tLκp,t,L

√
p‖γ‖L1(R)Gt−s(x− y). (5.12){ineq:k=d=1}

For k = 2, . . . , n, from (5.10) and (5.11), we obtain

∥∥T (n)
k

∥∥2
p
≤

‖γ‖L1(R)

8
(4pL2)kt2κ2p,t,L

∫ t

s
dr1 · · ·

∫ rk−2

s
drk−1

×
∫

R2k−2

dz1...dzk−1dz
′
1...dz

′
k−1Grk−1−s(zk−1 − y)

×




k−2∏
j=0

Grj−rj+1(zj − zj+1)Grj−rj+1(zj − z′j+1)γ(zj+1 − z′j+1)


 . (5.13) {ineq:bdd=1}

In the particular case k = 2, we obtain
∫ t

s
dr

∫

R2

dzdz′Gt−r(x− z)Gt−r(x− z′)γ(z − z′)Gr−s(z − y)

≤ 1

4
1{|x−y|<t−s}

∫ t

s
dr

∫

R2

dzdz′Gt−r(x− z′)γ(z − z′) ≤
‖γ‖L1(R)

4
Gt−s(x− y)(t− s)2,

which yields
∥∥T (n)

2

∥∥
p
≤

(
t2‖γ‖L1(R)pL

2κp,t,L

)
Gt−s(x− y). (5.14) {bdd:k=2,d=1}

For 3 ≤ k ≤ n, we rewrite the spatial integral in (5.13) as

∫

R2k−2

dz1...dzk−1dz
′
1 · · · dz′k−1




k−2∏
j=0

1{|zj−zj+1|<rj−rj+1

|zj−z′j+1|<rj−rj+1

}γ(zj+1 − z′j+1)


 1{|zk−1−y|<rk−1−s}

22k−1

≤
1{|x−y|<t−s}

22k−1

∫

R2k−4

dz2dz
′
2 · · · dzk−1dz

′
k−11{|x−z2|<t−r2

|x−z′2|<t−r2

}
(

k−2∏
j=2

1{|zj−zj+1|<rj−rj+1

|zj−z′j+1|<rj−rj+1

}

× γ(zj+1 − z′j+1)

)
γ(z2 − z′2)

∫

R2

dz1dz
′
1γ(z1 − z′1)1{|x−z1|<t−r1}

Note that
∫

R2

dz1dz
′
1γ(z1 − z′1)1{|x−z1|<t−r1} ≤ 2t‖γ‖L1(R) and then we can iterate the above

process to deduce that the spatial integral in (5.13) can be bounded by

1{|x−y|<t−s}

22k−1

(
2t‖γ‖L1(R)

)k−1
=

1{|x−y|<t−s}

2k
(
t‖γ‖L1(R)

)k−1
.

Thus, from (5.13),

∥∥T (n)
k

∥∥2
p
≤ 1

8
κ2p,t,L

(
2pL2t2‖γ‖L1(R)

)k
(k − 1)!

1{|x−y|<t−s}.

That is,

∥∥T (n)
k

∥∥
p
≤ κp,t,L

(
2pL2t2‖γ‖L1(R)

)k/2
√
(k − 1)!

Gt−s(x− y). (5.15) {bdd:d=1k>2}
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Now combining the estimates in (5.6), (5.12), (5.14) and (5.15) yields

∥∥Ds,yun+1(t, x)
∥∥
p
≤

n∑
k=0

∥∥T (n)
k

∥∥
p
≤ κp,t,LCp,t,L,γGt−s(x− y),

with

Cp,t,L,γ := 1 +
∞∑
k=1

(
2pL2t2‖γ‖L1(R)

)k/2
√
(k − 1)!

. (5.16){def:CPTL}

Remark 3. In the case d = 1, one can give a simplified proof of the upper bound in (1.9). Indeed,
note that G2

t (x) =
1
2Gt(x) and one can use the relation (2.6) as a replacement for the semigroup

property of the heat kernel so that the upper bound in (1.9) can be proved by using the same
method as in the proof of [10, equation (5.1)].

Case d = 2: Recall Gt−r(x− z) = 1
2π

[
(t− r)2 − |x− z|2

]−1/21{|x−z|<t−r} and

Ks,t(x, y) =

∫ t

s
dr

∫

Rd

gr(z)(gr ∗ γ)(z)dz (5.17)

with gr(z) = Gt−r(x− z)Gr−s(z − y), see (5.8). By Hölder’s inequality and Young’s inequality,
we obtain∫

Rd

gr(z)(gr ∗ γ)(z)dz ≤ ‖gr‖L2q(R2)

∥∥gr ∗ γ
∥∥
L

2q
2q−1 (R2)

≤ ‖gr‖2L2q(R2)‖γ‖L���(R2),

where q := ���
2���−1 ∈ (1/2, 1). Therefore,

Ks,t(x, y) ≤ ‖γ‖L���(R2)

∫ t

s
dr
(
G2q

t−r ∗G
2q
r−s

)1/q
(x− y)

≤ C���(t− s)(���−1)/���‖γ‖L���(R2)G
1/���
t−s(x− y), (5.18){EQ16}

where the last inequality follows from Lemma 2.5. Note that here and in the rest of the paper,
C��� will denote a generic constant that only depends on 


 and may vary from line to line.

Then we deduce from (5.7) that

‖T (n)
1 ‖p ≤ C���Lκp,t,L

√
p‖γ‖L���(R2)(t− s)

���−1
2��� G

1
2���
t−s(x− y). (5.19){ineq:k=1d=2}

Note that G
1
2���
t−s(x− y) ≤ (2π)1−

1
2��� (t− s)1−

1
2���Gt−s(x− y). Therefore, from (5.19) we can write

‖T (n)
1 ‖p ≤ C���Lκp,t,L

√
p‖γ‖L���(R2)t

3���−2
2��� Gt−s(x− y). (5.20){casek=1}

Consider now the case k ∈ {2, . . . , n}. We have, from (5.10) and (5.18)
∥∥T (n)

k

∥∥2
p
≤ (4pL2)kκ2p,t,L(t− s)

���−1
��� ‖γ‖L���(R2)

∫ t

s
dr1 · · ·

∫ rk−2

s
drk−1

×
∫

R4k−4

dz1...dzk−1dz
′
1...dz

′
k−1G

1/���
rk−1−s(zk−1 − y)

×




k−2∏
j=0

Grj−rj+1(zj − zj+1)Grj−rj+1(zj − z′j+1)γ(zj+1 − z′j+1)


 . (5.21){ineq:bdd=2}

For k = 2, we deduce from (5.21)
∥∥T (n)

2

∥∥2
p
≤ (4pL2)2κ2p,t,L(t− s)

���−1
��� ‖γ‖L���(R2)K̂s,t(x− y), (5.22){ineq:k=d=2}
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with

K̂s,t(x− y) :=

∫ t

s
dr

∫

R4

dzdz′G
1/���
r−s(z − y)Gt−r(x− z)Gt−r(x− z′)γ(z − z′). (5.23){def:Khat}

We can write, with hr(z) := Gt−r(x− z)G
1/���
r−s(z − y) and q = ���

2���−1 ,

K̂s,t(x− y) =

∫ t

s
dr

∫

R2

dz′Gt−r(x− z′)(γ ∗ hr)(z′)

≤
∫ t

s
dr
∥∥Gt−r

∥∥
L2q(R2)

∥∥γ∥∥
L���(R2)

∥∥hr
∥∥
L2q(R2)

,

where the last inequality follows from Hölder’s inequality and Young’s convolution inequality.

By direct computation,
∥∥Gt−r

∥∥
L2q(R2)

=
(
(2π)1−2q

2−2q

) 1
2q
(t− r)

1−q
q . Then,

K̂s,t(x− y) ≤
(
(2π)1−2q

2− 2q

) 1
2q ∥∥γ∥∥

L���(R2)
t
1−q
q

∫ t

s
dr

√(
G2q

t−r ∗G
2q/���
r−s

)1/q
(x− y)

≤
(
(2π)1−2q

2− 2q

) 1
2q ∥∥γ∥∥

L���(R2)
t
2−q
2q

(∫ t

s
dr
(
G2q

t−r ∗G
2q/���
r−s

)1/q
(x− y)

) 1
2

,

where we used the Jensen’s inequality for finite measure in the last estimate. Using G2q/���
r−s (z−y) ≤

(2π)
2���−2
2���−1 r

2���−2
2���−1G2q

r−s(z − y) and applying Lemma 2.5, we obtain
∫ t

s
dr
(
G2q

t−r ∗G
2q/���
r−s

)1/q
(x− y) ≤ (2π)

2���−2
��� t

2���−2
���

∫ t

s
dr
(
G2q

t−r ∗G
2q
r−s

)1/q
(x− y)

≤ C���t
3���−3

��� G
1/���
t−s(x− y).

Therefore,

K̂s,t(x− y) ≤ C���

∥∥γ∥∥
L���(R2)

t
2−q
2q

(
t
3���−3

��� G
1/���
t−s(x− y)

) 1
2
= C���

∥∥γ∥∥
L���(R2)

t
6���−5
2��� G

1
2���
t−s(x− y) (5.24) {EST:Khat}

from which, together with (5.22), we obtain

∥∥T (n)
2

∥∥
p
≤ C���

(
t
8���−7
2���

(
4pL2κp,t,L‖γ‖L���(R2)

)2
G

1
2���
t−s(x− y)

)1/2

≤ C���t
3���−2

��� 4pL2κp,t,L‖γ‖L���(R2)Gt−s(x− y), (5.25) {QQ1}

where we used G
1
4���
t−s(x− y) ≤ 2πt1−

1
4���Gt−s(x− y) to obtain the last estimate.

For k ∈ {3, . . . , n}, we first point out that the following integral
∫ rk−2

s
drk−1

∫

R4

dzk−1dz
′
k−1G

1/���
rk−1−s(zk−1 − y)Grk−2−rk−1

(zk−2 − zk−1)

×Grk−2−rk−1
(zk−2 − z′k−1)γ(zk−1 − z′k−1)

is exactly K̂s,rk−2
(zk−2 − y), see (5.23). This is bounded by C���

∥∥γ∥∥
L���(R2)

t
6���−5
2��� G

1
2���
rk−2−s(zk−2 − y),

in view of rk−2 ≤ t and (5.24).
Then, we have

∥∥T (n)
k

∥∥2
p
≤ C���(4pL

2)kκ2p,t,Lt
8���−7
2��� ‖γ‖2L���(R2)

∫ t

s
dr1 · · ·

∫ rk−3

s
drk−2

∫

R4k−8

dz1...dzk−2dz
′
1...dz

′
k−2
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×




k−3∏
j=0

Grj−rj+1(zj − zj+1)Grj−rj+1(zj − z′j+1)γ(zj+1 − z′j+1)


G

1
2���
rk−2−s(zk−2 − y).

Similar to the estimation of K̂s,t, we write with h̃r(z) := Gt−r(x− z)G
1
2���
r−s(z − y) and q = ���

2���−1 ,

K̃s,t(x− y) : =

∫ t

s
dr

∫

R2

Gt−r(x− z′)
(
γ ∗ h̃r

)
(z′) ≤

∫ t

s
dr
∥∥Gt−r

∥∥
L2q(R2)

∥∥γ∥∥
L���(R2)

∥∥h̃r
∥∥
L2q(R2)

≤ C���t
1−q
q ‖γ‖L���(R2)

∫ t

s
dr

(∫

R2

G2q
t−r(x− z)G

q/���
r−s(z − y)dz

) 1
2q

.

Since 2q + q
��� = 2���+1

2���−1 < 3, we can apply Lemma 2.5 to write
(∫ t

s
dr

∫

R2

G2q
t−r(x− z)G

q/���
r−s(z − y)dz

) 1
2q

≤ C���t
2���−2

��� 1{|x−y|<t−s}.

Thus,

K̃s,t(x− y) ≤ C���t
6���−5
2��� ‖γ‖L���(R2)1{|x−y|<t−s}. (5.26){EST:Ktilde}

From this estimate, we deduce
∥∥T (n)

3

∥∥
p
≤ C���

√
(4pL2)3κ2p,t,Lt

8���−7
2��� ‖γ‖2

L���(R2)
K̃s,t(x− y)

≤ C���

(
4pL2‖γ‖L���(R2)

)3/2
κp,t,Lt

7���−6
2��� 1{|x−y|<t−s}

≤ C���

(
4pL2‖γ‖L���(R2)

)3/2
κp,t,Lt

9���−6
2��� Gt−s(x− y), (5.27){QQ2}

where we also used the fact 1{|x−y|<t−s} ≤ 2πtGt−s(x− y).
For 4 ≤ k ≤ n, we write

∥∥T (n)
k

∥∥2
p
≤ C���(4pL

2)kκ2p,t,Lt
8���−7
2��� ‖γ‖2L���(R2)

∫ t

s
dr1 · · ·

∫ rk−4

s
drk−3

∫

R4k−12

dz1...dzk−3dz
′
1...dz

′
k−3

×




k−4∏
j=0

Grj−rj+1(zj − zj+1)Grj−rj+1(zj − z′j+1)γ(zj+1 − z′j+1)


 K̃s,rk−3

(zk−3 − y)

≤ C���(4pL
2)kκ2p,t,Lt

7���−6
��� ‖γ‖3L���(R2)1{|x−y|<t−s}

∫ t

s
dr1 · · ·

∫ rk−4

s
drk−3

×
∫

R4k−12

dz1 · · · dzk−3dz
′
1 · · · dz′k−3




k−4∏
j=0

Grj−rj+1(zj − zj+1)Grj−rj+1(zj − z′j+1)γ(zj+1 − z′j+1)




using (5.26). Now we can perform integration successively with respect to dzk−3dz
′
k−3, . . . ,

dz1dz
′
1 and we get

∫

R4k−12

dz1 · · · dzk−3dz
′
1...dz

′
k−3

k−4∏
j=0

Grj−rj+1(zj − zj+1)Grj−rj+1(zj − z′j+1)γ(zj+1 − z′j+1) ≤ mk−3
t

so that

∥∥T (n)
k

∥∥
p
≤ C���

√
(4pL2)kκ2p,t,Lt

7���−6
��� ‖γ‖3

L���(R2)
1{|x−y|<t−s}

(tmt)k−3

(k − 3)!
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≤ C���(4pL
2)k/2κp,t,Lt

9���−6
2��� ‖γ‖3/2

L���(R2)

√
(tmt)k−3

(k − 3)!
Gt−s(x− y). (5.28){QQ3}

Combining (5.6), (5.20), (5.25), (5.27) and (5.28) yields

‖Ds,yun+1(t, x)‖p ≤ Cp,t,L,γκp,t,LGt−s(x− y), (5.29) {Conq1}

with

Cp,t,L,γ : = 1 + C���Lt
3���−2
2���

√
p‖γ‖L���(R2) + C���pL

2t
3���−2

��� ‖γ‖L���(R2)

+ C���t
9���−6
2���

(
pL2‖γ‖L���(R2)

)3/2 ∞∑
k=0

(
4pL2tmt

)k/2
√
k!

. (5.30) {def:CPTL2}

This concludes the proof of (5.4). �

5.3. Proof of Theorem 1.3. We can now proceed with the proof of Theorem 1.3. We first
apply Minkowski’s inequality and (5.4) to obtain

∥∥Dun+1(t, x)
∥∥2
Lp(Ω;H)

≤
∫ t

0
dr

∫

R2d

dzdyγ(z − y)
∥∥Ds,yun+1(t, x)Ds,zun+1(t, x)

∥∥
p/2

≤
∫ t

0
dr

∫

R2d

dzdyγ(z − y)
∥∥Ds,yun+1(t, x)

∥∥
p

∥∥Ds,zun+1(t, x)
∥∥
p

�
∫ t

0
dr

∫

R2d

dzdyγ(z − y)Gt−s(x− y)Gt−s(x− z),

which is uniformly bounded. Then standard Malliavin calculus arguments imply that up to a
subsequence Dunk

(t, x) converges to Du(t, x) with respect to the weak topology on Lp(Ω;H);
see e.g. [14]. Similarly, for any q ∈ (1, 2),

∥∥Dun+1(t, x)
∥∥p
Lp(Ω;Lq(R+×Rd))

=

∥∥∥∥
∫

R+×R2d

dsdy
∣∣Ds,yun+1(t, x)

∣∣q
∥∥∥∥
p/q

p/q

≤
(∫

R+×Rd

dsdy
∥∥Ds,yun+1(t, x)

∥∥q
p

)p/q

�

(∫

R+×Rd

dsdyGq
t−s(x− y)

)p/q

� 1.

So
{
Dunk

(t, x)
}
has a further subsequence that converges to the same limit Du(t, x) with respect

to the weak topology on Lp
(
Ω;Lq(R+ × Rd)

)
and as a result, for 1 < q < 2 ≤ p < ∞ and for

any finite T ,

sup
(t,x)∈[0,T ]×Rd

∥∥∥∥
∫

R+×Rd

∣∣Ds,yut,x
∣∣qdyds

∥∥∥∥
p/q

< ∞.

Therefore, following exactly the same lines in the proof of [2, Theorem 1.2] (step 4 therein), we
can get the upper bound in (1.9). The lower bound is straightforward in light of the formula of
Clark-Ocone (Lemma 2.2). �
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