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ABSTRACT. Fix d € {1,2}, we consider a d-dimensional stochastic wave equation driven by a
Gaussian noise, which is temporally white and colored in space such that the spatial correlation
function is integrable and satisfies Dalang’s condition. In this setting, we provide quantitative
central limit theorems for the spatial average of the solution over a Euclidean ball, as the
radius of the ball diverges to infinity. We also establish functional central limit theorems. A
fundamental ingredient in our analysis is the pointwise L”-estimate for the Malliavin derivative
of the solution, which is of independent interest. This paper is another addendum to the recent
research line of averaging stochastic partial differential equations.
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1. INTRODUCTION

In this article, we fix d € {1,2} and consider the stochastic wave equation

0%u .

— =Au+o(u)W, 1.1

= Aut o) (1)
on R, x R? with initial conditions u(0,z) = 1 and %(O, x) = 0, where A is Laplacian in space
variables and W is a centered Gaussian noise with covariance

E[W (&, 2)W (s,y)] = do(t — s)v(x —y). (1.2)
Here W is a distribution-valued field and will be formally introduced in Section

Throughout this article, we fix the following conditions:

(C1) o :R — R is Lipschitz continuous with Lipschitz constant L € (0, c0).
(C2) 7 is a tempered nonnegative and nonnegative definite function, whose Fourier transform

1 satisfies Dalang’s condition:
d
/ pdz) (1.3)
R

al—+ ’2‘2

where | - | denotes the Euclidean norm on R¢.
(C3) o(1) #0.
Conditions (C1) and (C2) ensure that equation (1.1]) has a unique random field solution, which
is adapted to the filtration generated by W, such that sup {E[|u(t,z)|*] : (t,z) € [0,T] x R?} is
finite for all T € (0,00) and k > 2, and

u(t, ) =1+ /0 /R Gl = y)o(uls,y))W (ds, dy), (1.4)
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2 D. NUALART AND G. ZHENG

where the above stochastic integral is defined in the sense of Dalang-Walsh and G;—s(z — y)
denotes the fundamental solution to the corresponding deterministic wave equation, i.e.

1 .
51{|$|<t}7 lf d =1

1 .
o e 1=
see [0, [7]. Condition (C3) excludes the trivial case where u(t,x) = 1, see Section

We are interested in the behavior of the solution to (|I.1]) in the space variable, and the next
result provides relevant stationarity and ergodicity properties.

Proposition 1.1. Suppose that v satisfies v € L'(R) if d = 1 and v € L'(R?) N L4(R?) for
some £ > 1 ifd =2. Fixt > 0. Then, the random field {u(t,z) : = € R} have the following
properties:

Gy(z) == (1.5)

(i) it is strictly stationary: The finite-dimensional distributions of {u(t,z+y) : x € R%} does
not depend on y € R%;
(ii) 1t is ergodic.
We postpone the proof to Section [3

We define for each ¢ € [0, 00),
Fgr(t) = / (u(t,z) — 1) de, where Br = {z € R?: |z| < R}. (1.6)
Br
It follows from Proposition [I.1] and the ergodic theorem that

Fr(t)/R? £2%0 ) almost surely and in LP(2) for any p > 1. (1.7)

In this framework, it is natural to investigate second-order fluctuations. Indeed, when con-
sidering equation driven by a space-time white noise on R x R, it is easy to see that
u(t, x) is independent from u(t,y) for |z — y| > 2t, see for instance [§, Page 3021|; in this case,
the random variable Fr(t) can be roughly understood as a sum of weakly dependent random
variables. If the spatial correlation kernel v is integrable, one deduce from Lemma that the
process {u(t,x) : x € R?} has short-range dependence so that it is natural to expect Gaussian
fluctuations of Fr(t), as R — oo.

Notation. We denote the standard Gaussian distribution by N(0,1) and the LP(2)-norm by
| - |lp for any p > 1. Also, wq denotes the volume of the unit ball, that is, wg = 2 for d =1 and

wq =m for d =2. We put a < b if a < Cb for some positive constant C that does not depend on
a,b.

In what follows, we present the main result of this article.

Theorem 1.2. Suppose that v satisfies v € L*(R) if d = 1 and v € L*(R?) N L4(R?) for some
£>1ifd=2. Then the following statements hold:

(i) The process {R_d/QFR(t) :t > 0} converges in law to a centered continuous Gaussian
process {Qt it > 0}, where

B[Gn 6] = wa | Covlu(ts,€).ulta,0))
(ii) For any fized t > 0,
drv (FR(t)/URvN(O7 1)) S R_d/2a (18)

{fundamental$S
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where 0% := Var(Fg(t)) > 0 for everﬂ R > 0 s part of the conclusion and drv stands
for the total variation distance.

Remark 1. (1) Here are two examples of integrable kernels:

a—d 1 ‘2

_ {(47r)a/21“(04/2) Joowz e Wexp (—'f—) dw  (Bessel kernel of order a > 0)

W

(4rB) =2 exp ( — |2|?/(48)) (heat kernel with parameter § > 0)

and the corresponding spectral measures are given as pu(d€) = (1 + |£]?)~*/2d¢ and p(d€) =
e~ 4m*BIEI* | Note that Dalang’s condition is satisfied for the Bessel kernel of order oo > 2.
(2) When d =1, Theorem and Theorembelow are still true under the assumption that
v is a finite measure. We leave the details to interested readers.
(3) Our rate of convergence and the limiting variance order depend on the correlation kernel
~. In [{], it was proved that for d = 1:
e when v = dy (which is a finite measure on R), the limiting variance is of order R and the
rate of convergence is of order R~1/2;
e when v(z) = [2|?72 for some H € (1/2,1) (Riesz kernel), the limiting variance is of
order R?" and the rate of convergence is of order R~

In [2] it is proved that for d = 2, when v(z) = |2|~? for some § € (0,2), the limiting variance is
of order R*~# and the rate of convergence is of order R~?/2.

In the sequel, we sketch the “usual proof strategy” and highlight the key ingredients. The proof
of the functional CLT consists in proving the f.d.d. convergence and tightness. We appeal to
the tightness criterion of Komogorov-Chentsov (see e.g. [13]) and prove tightness by obtaining
moment estimate of the increments Fr(t) — Fr(s). For the f.d.d. convergence, we first derive
the asymptotic variance and then apply the so-called Malliavin-Stein approach to show the f.d.d.
convergence. More precisely, we need a multivariate Malliavin-Stein bound for this purpose,
while the univariate Malliavin-Stein bound provides the rate for the marginal convergence that is
described by the total-variation distance. It is worth remarking that as a tailor-made combination
of Malliavin calculus and Stein’s method initiated by Nourdin and Peccati, the Malliavin-Stein
approach has proved to be a very useful toolkit in establishing Gaussian fluctuations in various
frameworks, notably for the functionals over a Gaussian field, see the recent monograph [I5] for
a comprehensive treatment.

That being said, we will use the Malliavin calculus intensively for our computations and
inevitably, we will encounter random variables of the form D, yu(t, ). Note that Du(t, ) denotes
the Malliavin derivative of u(t,x), which lives in the Hilbert space ) associated to the noise W;
see section 2] for precise definitions. The space $) may contain generalized functions, so to estimate
LP-norm of D, yu(t,x), we shall first clarify that D, u(t,x) is indeed a real function in (s,y).
Moreover, we need to prove an estimate of the form

HDs,yu(um)Hp S Gis(z —y)

in order to proceed with our computations for asymptotic variance and f.d.d. convergence. This
is the content of the following theorem.

Theorem 1.3. Let the assumptions in Theorem prevail. For any p € [2,00) and any t > 0,
the following estimates hold for almost all (s,y) € [0,1] x RY :

Gis(r — y)Ha(u(s,y))Hp < HD&yu(t, ac)Hp < Cp,t,L,V“pi,LGt—S(‘T - y), (1.9)
INote that or depends on the parameter ¢ and the conclusion “or > 0 for each R > 0” is ensured by condition

(C3). The proof of this part is omitted here and can be done by following the same arguments as in [8, Lemma
3.4].

{THM}
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where the constant k4 1, is defined in (5.3)) and the constant Cpy 1, is given by (5.16) in the 1D
case and by (5.30) in the 2D case.

Remark 2. As one can read from the proof of the above theorem, the lower bound holds whenever
the spatial correlation kernel v satisfies Dalang’s condition ([1.3]). Concerning the upper bound
in the case d = 2, the assumption v € L!(R?) is not needed.

Let us compare our result with similar results in the literature. There have been several recent
works on the application of the Malliavin-Stein approach to establish central limit theorems for
spatial averages of stochastic partial differential equations and to derive quantitative error bound
in the total variation distance. A fundamental ingredient in all these papers is an upper bound
similar to (1.9). The works [I0] and [LI] deal with the stochastic heat equation with d = 1 and
v =68 and d > 1 and y(z) = |2|?, 0 < < min(2,d) (Riesz kernel covariance), respectively.
The case of an integrable kernel v has been considered in [4, [5]. For the stochastic heat equation,
an upper bound of the form , holds with G being the heat kernel. In this case, the proof
relies heavily on the semigroup property of the heat kernel.

For the wave equation, the works [8] 2] establish the Gaussian fluctuation of spatial averages
of stochastic wave equations in the following cases: d = 1 and () = |z|*7=2, H € [1/2,1), and
d =2 and y(x) = |2|7%, 0 < B < 2, respectively. In the case d = 1, the proof of is not
very difficult because Gy_s(x — y) is uniformly bounded. The case d = 2 is much more difficult
due to the singularity within the fundamental solution . In the present article, we consider
the integrable covariance kernel that requires novel technical estimates and as we can read from
Theorem the order of fluctuation in this case is R%2, which is the same as in the case of
parabolic Anderson model driven by integrable covariance kernel [19]. Our paper can be viewed
as another pixel, along with [2, [4, [8 [10, 1T} 19], for completing the picture of averaging SPDEs.
It is worth pointing out that the authors of [I] considered the 1D linear stochastic wave equation
driven by space-time homogeneous Gaussian noise and they obtained a weaker result than .
Their methodology is totally different than ours: Due to the linearity, one has the explicit chaos
expansion of the solution, then obtaining the upper bound for || Ds,u(t, x)||, reduces to explicit
(but very complicated) computations. And in view of this reference, we believe our bounds
in could be very useful in establishing absolute continuity result for the solution to 2D
stochastic wave equation.

The rest of this article is organized as follows: In Section [2] we present preliminary results for
our proofs, and Sections [3|[4] [f] are devoted to the proofs of Proposition Theorem and
Theorem respectively.

2. PRELIMINARIES

In this section we present some preliminaries on stochastic analysis, Malliavin calculus and
the Stein-Malliavin approach to normal approximations.

2.1. Basic stochastic analysis. Let $) be defined as the completion of C.(Ry x R?) under the
inner product

(o g)s = /RMRM F(5,9)9(5, 2)7(y — 2)dydzds = /]R+ (

where Z f(s,£) = [pa e @ f(s,2)dz.

Consider an isonormal Gaussian process associated to the Hilbert space §), denoted by W =
{W(qb) P € 53}. That is, W is a centered Gaussian family of random variables such that
E[W (@)W ()] = (¢,9)g for any ¢,¢ € §. As the noise W is white in time, a martingale
structure naturally appears. First we define F; to be the o-algebra generated by P-negligible

F1(5,6)Fgls, sm(de)) ds,

R4
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sets and {W(¢) : ¢ € C(R; x R?) has compact support contained in [0,¢] x R?}, so we have a
filtration F = {F : t € Ry} If {®(s,y) : (s,y) € Ry x R?} is an F-adapted random field such
that IE[H@H%] < 400, then

M; = / @(S,y)W(dS,dy),
[0,t] xR

interpreted as the Dalang-Walsh integral (6l 20]), is a square-integrable F-martingale with qua-
dratic variation

(M), = / B(s, y)B(s, )1y — 2)dyd=ds.
[0,t] xR2d

Let us record a useful version of Burkholder-Davis-Gundy inequality (BDG for short); see e.g.
[12, Theorem B.1]|.

Lemma 2.1. If {®(s,y) : (s,y) € Ry x R?} is an adapted random field with respect to F such
that ||®||g € LP(2) for some p > 2, then

2

/ ) (s, y)W(ds,dy)|| <4p
[0,t] xR »

/[0 - O(s,y)P(s, 2)y(y — 2)dydzds
] x

p/2

Now let us recall some basic facts on Malliavin calculus associated with W. For any unex-
plained notation and result, we refer to the book [16]. We denote by Cp°(IR™) the space of smooth
functions with all their partial derivatives having at most polynomial growth at infinity. Let S
be the space of simple functionals of the form F' = f(W(h1),...,W(hy)) for f € C;°(R") and
hi € 9,1 < i <n. Then, the Malliavin derivative DF' is the $)-valued random variable given by

DF = Zl gi (W(h1),...,W(hp))h;.

The derivative operator D is closable from LP(2) into LP(Q; $) for any p > 1 and we define D
to be the completion of S under the norm

1
|Elp = (B[IFP] +E[IDFIR])

The chain rule for D asserts that if FF € D%? and h : R — R is Lipschitz, then h(F) € DY? with
DIh(F)] = YDF, (2.1)
where Y is some o{F}-measurable random variable bounded by the Lipschitz constant of h;

when h is additionally differentiable, we have Y = h/(F).

We denote by § the adjoint of D given by the duality formula

E[6(u)F] = E[(u, DF)g) (2.2)

for any F' € D2 and u € Dom§ C L?(Q; ), the domain of §. The operator ¢ is also called the
Skorohod integral and in the case of the Brownian motion, it coincides with an extension of the
It6 integral introduced by Skorohod (see e.g. |9, [18]).

In our context, the Dalang-Walsh integral coincides with the Skorohod integral: Any adapted
random field @ that satisfies IE[H‘I)H%] < oo belongs to the domain of § and

s@)= [ [ els.pwds.dy),
0o Jrd
As a consequence, the mild formulation equation (|1.4) can be written as
ult,2) = 1+ 6(Groa(a — Mo (ule, 1)),

{BDG}

{cr}

{D:delta}
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6 D. NUALART AND G. ZHENG

Using the two-parameter Clark-Ocone formula, we can represent F' € D2 as a stochastic
integral; see e.g. [3, Proposition 6.3| for a proof.

Lemma 2.2 (Clark-Ocone formula). Given F € DY2, we have almost surely

F =E[F] + / E|[Ds, F|Z|W (ds, dy).
R+ XRd
As a consequence of Lemma@7 we can derive the following Poincaré inequality: For any two
random variables F, G € D"?2, we have

Cov(P.G) < [ [ 1Dy FIallDy-Glar(y = 2)dydzas. (2.3

Recall that the total variation distance between two probability measures p and v on R is
defined by

dTV(:u’a V) = Sup |/’L(B> - Z/(B>‘7
BeB(R)

where B(R) denotes the family of all Borel subsets on R. As usual, dpv(F,G) will denote the
total variation distance between the distribution measures of F' and G; and dpy(F ,N(0,1)) is
is the total variation distance between F' and a standard Gaussian random variable.

The combination of Stein’s method for normal approximations with Malliavin calculus leads
to the following bound on the total variation distance, see [I7, Theorem 8.2.1| for more details.

Proposition 2.3. Suppose that F = §(v) € DY2 has unit variance for some v € Dom(8). Then

drv(F,N(0,1)) < 2y/Var(DF,v)g. (2.4)

2.2. Basic formulas. We close this section with some basic relations for the fundamental solu-
tion Gy(x). For t > 0 and m > 0, we have

B _ sin? (t[¢])
[ GGty = 2)ayas = [ FEE uae)
I sin? (¢[¢]) p sin? (¢[¢]) p
_téglﬂw “9+4M11w )
2 M(df)
Stmmsm+ﬁwnmf

As a consequence,

Gi(y)Gi(2)y(y — 2)dydz < inf <t2u(!€| <m)+ / !flzu(d§)> =:my. (2.5)

R2d &l>m

It is clear that m; is nondecreasing in ¢.
For any s < r <t and d = 1, we have

/ Gir(x — 2)Gr_s(z —y)dz <
R
For any ¢ € (0,00), we define

@t,R(Sa y) = Gis(r —y)dx (2.7)
Br

%(t Gz — ). (2.6)

where we recall that Bg = {x € R? : |z| < R}. In the following lemma, we provide a useful
estimate about y € R? — ¢y g(s,y).
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{lemfact}
Lemma 2.4. For ty,ty € (0,00), the quantity

Rd/ﬂw ©11,R(8, Y)P1a,R(8, 2)y(y — 2)dydz

is uniformly bounded over s € [0,t2 At1] and R > 0, provided v € L'(RY).
Proof. 1t is clear that for any d € {1,2} and s < ¢,

orr(s,y) < / Gi—s(z —y)dx =t — s, (2.8) {ineq:241}
Rd

/ i r(s,y)dy = / dx/ dyGy_s(x —y) < wy(t — s)R™ (2.9) {ineq:242}
R4 Br R4
Then, we can write

R [ (oo n(s, 2o = yds < (0= R [ nls 27l = 2)dydz by @)

< (t1 — s)H’yHLl(Rd)R*d /]Rd ©ts,R(S,2)dz

< Wd(tl - 5)(t2 - S)Hr}/HLl(Rd)'
This gives us the desired uniform boundedness. O
In the end of this section, we state two useful estimates from the paper [2].
{LEM51}
Lemma 2.5. When d =2, Gy(z) = 5= [t? — |$|2]_1/21{|z\<t}' The following estimates hold:
(1) For g € (1/2,1) and s < t, then

/dr(G2q £ G2 )Y < (t - 5)i TG f(z),

S
where the implicit constant only depends on q; see Lemma 3.3 in [2].
(2) For any p € (0,1) and q € (1/2,1) such that p + 2q < 3, we have for s < t,

[ G 5 (- g,
where the implicit constant only depends on p and q; see Lemma 3.4 in [2].

3. PROOF OoF PROPOSITION [I.]
{SEC3}

The strict stationarity follows from two facts:

(1) For each y € R?, the random field {u(t,z +y) : € R%} coincides almost surely with the
random field u driven by the shifted noise W, given by

/ o(s,z —y)W(ds,dz), ¢ € H.
R, JRd

(2) The noise Wy, has the same distribution as W, which allows to conclude the proof of the
stationarity property.

We refer readers to Lemma 7.1 in [3] and footnote 1 in [§] for similar arguments. Now let us
prove the ergodicity and in view of |3, Lemma 7.2|, it suffices to prove

Vg(t) := Var / H gj(u(t,z + ¢7))dz LNy

le



{EQ2}

{EQ1}

{SEC:Proof11}

{sub41}

{R1}

{lem_41}
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for any fixed ¢',...,¢¥ € R? and g1, ..., gr € Cp(R) such that each g; vanishes at zero and has
Lipschitz constant bounded by 1.
Using the Poincaré inequality (2.3)), we obtain

Vr(t) < R~  dady|Cov(R(z), R(y))|  with R(z H gj(u(t,z +¢%))
BR
t
< [ ] IDRERIDRO) 2 (o — i dsdody. (3.)
B% Jo JR2d
By the chain rule ,
k .
‘DS,ZR(x)’ < 1(O,t)(3) Z 9] u(t,z + C] ‘Ds,yu(t,x +¢7)|,
Jo=1|j=1,j#jo

which implies, for any s € [0, ],

k k
k—1 j j
|D::R(@)ll2 < mex sup|g;(a) Zl | Dsyult, x4+ )|, < Zl Gis(x—y+¢°), (3.2)
Jo= Jo=

where in the second inequality we used Theorem E 1.3] Plugging (3.2 into ), yields

V()<R_2d2/ / R2th s — 24+ OGi_sy — 2" + (2 — 2)dzdz dsdzxdy.

j =1
Using
/ dyGi_s(y — 2 + ¢ < / dyGi—s(y) St—s and / dz'y(z — 2') < 0,
Br R4 R4
we deduce that Vz(t) < R~ This finish the proof of Proposition . O

4. PROOF OF THEOREM

The proof will be decomposed in several steps.

4.1. Asymptotic behavior of the covariance. For any t1,t5 > 0, in view of the stationarity
of the random field {(u(t1,z),u(ts, z)) : x € R?}, we have

E[Fr(t)Fr(ts)] = /B E(u(ti, z — ) — 1)(u(ts, 0) — 1)|dzdy.

By the dominated convergence theorem (see e.g. [19, page 27]), we obtain

lim R_dE[FR(tl)FR(tg)] =wy [ Cov(u(ty,x),u(ts,0))dx, (4.1)

R—o00 R4

provided z € R? — ‘Cov u(ty, z ),U(tQ,O))‘ is integrable. In the next lemma we show this
integrability property.

Lemma 4.1. For any t1,t2 > 0,

/}Cov u(t1, z), u(ts, 0))|dz < oo.
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Proof. Fix t1,ts € [0,T]. Using Poincaré inequality (2.3) and the estimate ([1.9) yields

/dx]Cov(u(tl,x),u(tQ,O)ﬂ
]Rd
t1N\to
< / da / / dydzds|| Dy yu(ts, o)||2| Dy ctuts, )27 (y — 2)dydzds
Rd 0 R2d

t1/A\t2
< Coasoparal [ do [ [ dsGiyie — 9)Gal2nly - 2y
Ra 0 R2d

which is finite, by integrating successively in the variables x, y, z and using the integrability of
~. This completes the proof. ([l

4.2. Convergence of the finite-dimensional distributions. From the mild equation (|1.4))
satisfied by u(t, ) and using the fact that the Dalang-Walsh integral coincides with the divergence
operator, we can write

Falt) = [ (u(t.) =)o = 3(Vi.0) (42)

with
Vi.r(s,y) = ¢t r(s,y)0(u(s,y)), (4.3)

where ¢; r(s,y) has been defined in ([2.7]).
The next proposition is the basic ingredient for the convergence of the finite-dimensional
distributions and also for the total variation bound in (|1.8)).

Proposition 4.2. For any t1,ty € [0,T],
Var((DFg(t1), Vi, r)5) S R (4.4)

Together with Proposition , the above estimate (4.4)) leads us to the total variation bound
in (L3).
Proof of Proposition[{.9 Note that

t
Doy Filt) = s n)a(uls,n) + [ [ oun(r2)SneDuyulr W (dr. o)

where {3, : (r,2) € Ry x R?} is an adapted random field that is uniformly bounded by
L, the Lipschitz constant of o; see condition (C1). Then, for ti,ts € [0,7], we can write
<DFR(t1), Vt2,R>ﬁ = Ay + As, with

t1N\to
A= <V;51,R7 VtQ,R>f) = /O ds /R2d dydzv(y - Z)Sptl,R(sa y)g0t27R(8, Z)U(u(sa y))a(u(sv Z))

and

t1Ato t1
Ay = / ds/ dydy'y(y — y' )iy r(5,Y) </ / o1, mR(1, 2) 2y . D yu(r, )W (dr, dz)> .
0 R2d s JR2
It is clear that Var((DFg(t1), Vis,r)s) S Var(Ar) + Var(Az). So in the sequel, we need to prove
Var(A;) < R for j =1,2.
Following the same strategy as in [2, Section 4.2|, we only need to prove

sup (75 +Us) S R4, (4.5)

s<t1At2

{sec42}

{EQ4}

{prop42}

{finalbdd}

{TU:suf}
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where for s € (0,t1 A to],

To= [ [ ounts e nlsn/bonals. e n(s,)Gior (= Gl =€)

X (& =Ny — 2y — 2')dEdE dydzdy'dz'
and

t1 - ~
Us = / dr / dzdzdydy'dydy'~y(y —y' )7 (¥ —y')v(z = 2)
s R6d

X 0ty 1 (5,9 )Pta (5, Y) 011 R, 2) 0ty 1 (1, ) Gres (y — 2)Grs (§ — 2).

In what follows, we only prove sup {7; s <t A tg} < R?% and we omit the other part because
U, has the similar-type expression as 7.

Using , we can write
To<(t=s)ta=s) [ ar [ onnlsoonn(s =G =)
X Gy (2 = EN(E = (Y — 2')dEdE dydzdy'd?

then we perform integration with respect to dy’, dz’, d¢’, d¢ successively to write

Ts 5/ dr/zd <Pt1,R(8,y)<,0t27R(s,z)'y(y — Z)dydz S Rd,
0 R
where the last estimate follows from Lemma This leads to the bound . O

We are ready to show the convergence of the finite-dimensional distributions. Let us choose
m > 1 points t1,...,ty, € (0,00). Consider the random vector ®p = (FR(tl),...,FR(tm))
and let G = (G1,...,Gn) denote a centered Gaussian random vector with covariance matrix
(Cij))1<ij<m, where

Ci,j = Wy ., Cov(u(ti,f),u(tj,O))df.
R
Recall from (4.2)) that Fr(t;) = 0(V, r) foralli =1,...,m. Then, by a generalization of a result
of Nourdin and Peccati (see e.g. [15, Theorem 6.1.2]), we can write

[B(h(R20r) ~EW(G)] < T oo, | 3 E(|Cis = R-UDFR(t:) Vi m)sl”)  (46)
ij=1

for every h € C?(R™) with bounded second partial derivatives, where
O*h(z)|
81‘i8$j ’
see also Proposition 2.3 in [I0]. Thus, in view of , in order to show the convergence in law
of R=%2®p to G, it suffices to show that for any i,j =1,...,m,

2
ngrnl)oE ( C@j - Rid<DFR(ti) 7‘/;5j,R>5’3‘ > = 0. (4.7)
Notice that, by the duality relation (2.2]) and the convergence (4.1]), we have
R’dE(<DFR(ti) ,th,R)y)) - R*dla(FR(ti)é(wj,R)) - R’dIE(FR(ti)FR(tj)) Boboo, 0,0 (4.8)

Therefore, the convergence (4.7) follows immediately from (4.8) and (4.4). Hence the finite-
dimensional distributions of {R_d/QFR(t) 1te R+} converge to those of G as R — 00. g

12" loc = | max  sup
_'l,]Sm IERm
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{sec43}
4.3. Tightness via the criterion of Chentsov-Kolmogorov. In what follow, we appeal to
the tightness criterion of Chentsov-Kolmogorov (see e.g. [13]) and we only need to obtain the

following moment estimate
{lem_tight}
Lemma 4.3. Let the conditions (C1)-(C3) hold. If additionally v € L*(R?), then for any p > 2

and 0 < s <t <T <R, we have
R Fr(t) — Fr(s)||, < (t = )", (4.9) {tight}
where the implicit constant does not depend on (R, s,t).
Proof. Recall that
Fr(t) :/ e (T, y)a(u(r, y))W(dr, dy).
R4 xR4

Then by BDG inequality (see Lemma and Minkowski’s inequality,

|Fr(t) = Fr(s)[|, < /R a (PR (9) = @u (1)) (PR Y) = @ar (1Y)

x o (u(r,y))o(u(r,y')y(y —y')dydy'dr

p/2

< / |t r(ry) — s.r(r )| |enr(r, Y) — 0sr(r,Y)]
R+ xR2d
x|l (ulr, y))o (ulr,y))|, )57y — o) dydy'dr

2 2
< /R » (\wt,R(r,y)—ws,R(r,y)\ + |letr(r,y) — esr(r,y)] )’V(y—y')dydy’dr (4.10) {s:app}
+><

2
= / |t r(r,y) — @s.r(ry)| v (y — ) dydy/ dr,
R+ XR2d

where we have used the following two facts to obtain (4.10)):
(i) [lu(r,y)|p is uniformly bounded on [0, 7] x RY, (i) |ab] < &(a® + b?) for any a,b € R.
Integrating first with respect to dy’ yields,
2 2
Fe) = P2 S [ lourrio) = purtroo) Pdydr
R+ xRd

By direct computation (see also [2l, Section 4.3] for the 2D case and [8, Equation (4.2)] for the
1D case),

2
ek (r,y) — esr(ry)|” S (=) Uy crin < (t— )Y 1y <2m)

from which we have

¢
|Fr(t) = Fa(s)||! < / /Rd(t — )"/ gy <amydydr S Rt — 5)*/,
0
This gives us the desired tightness. ([l

Combing the results from Sections and we can complete the proof of Theorem
L2
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5. PROOF OF THEOREM [[.3
{BE€aPddof12}

5.1. Moment estimates for Picard approximations. We define uy(¢,2) = 1 and for n > 0,

Un+1 (tv :L‘) =1+ /0 R2 ths(x - y)a(un(s, y))W(dS, dy)

It is a classic result that u, (¢, ) converges in LP(2) to u(t, x) uniformly in 2 € R? for any p > 2;
see e.g. [0, Theorem 4.3]. If o(1) = 0, we will end up in the trivial case where u(t,x) = 1, in
view of the above iteration, which explains the imposed condition (C3).

We will first derive moment estimates for u,(t,z). By BDG and Minkowski’s inequalities, we
can write with n > 1,

lun (t,2) 7

<2+ 8p/0 ds | dydy'Gis(z — y)Gis(z =y )7y — ) ||o(un—1(s,9))o (un-1(s,9"))]],

R2d

t
<248 [ ds [ dudyGioslo = )Gimsla = 1= 9ol (50

R2d

since [|o(un—1(5,9))0 (un—1(5,5"))llps2 < 5 (o (un—1(s,9))II} + llo(un-1(s,5))13);

t
<2+ 8p/0 ds |, dydy' Gy—s(x — y)Gi—s(x =y )7 (y — ¥/) (20(0)2 + 2L |up—1(s, y) Hf,)-

Then, it follows from the estimate (2.5 that

Ho(t) < e1(t) + es(t) /0 CdsHo (), (5.1)

where H,,(t) = sup,cpa ||un(t, :z:)Hg,
c1(t) := 2+ 16po(0)*tm, and cy(t) := 16pL°m,.

Note that the functions ¢ (t),co(t) are nondecreasing in ¢ € R;. Therefore, by iterating the
inequality (5.1)) for s € [0,¢] and taking into account that Hy = 1, yields

H,(s) < ci(t) exp(ca(t)s), for all s € [0,¢]. (5.2)

Essentially we applied Gronwall’s lemma here.

Now we deduce from ([5.2]) that
[|un(t, 33)”;% < (2 + 16po(0)*tmy) exp (16pL*tm;).

As a consequence,
o (un(t, 2)llp < 10(0)] + L(V2 + 4yplo(0)|Vim: ) exp (SpL2tme) = kprp.  (5.3)

5.2. Moment estimates for the derivative of Picard approximations. Now, let us derive
moment estimates for the derivative of the Picard approximations. Our goal in this section is to
establish that for n > 4,

[1Dsytint1(t 2)llp < Cpr.rkipsLGrs(x = y), (5.4)

where the constant k1, is defined in (5.3) and the constant Cp 1 is given by (5.16) in 1D
case and by (5.30) in 2D case.
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Proof of (5.4). It is known that for each n > 0, u,(t,z) € D with
t
Dy yun+1(t, ) = Gi—s(z — y)o (un(s,y)) —|—/ / Gi—r(z — Z)nglz)Ds7yun(r, 2)W(dr,dz),
d

where {Es v (s,y) e Ry x ]Rd} is an adapted random field that is uniformly bounded by L, for
each n. Now finite iterations yield (with ro = ¢, 2o = z)

Dy yunti1(t,z) = Gi—s(x — y)a(un(s y))

/ / G (& — 20)S0, Gy (21 — 1) (tn1 (5,9)) W (dr, dz)

N Z / / Crp—s(zr — 9)o (un—(5.))

R2k

X H Grjfl—rj (Zj—l — zj)Z(”“ J)W(de, de) = T]gn), (55)

'I’J ,Z]
j=1 k=0

where T,En) denotes the kth item. For example, Tén) = G_s(x — y)a(un(s, y)) and

t
" = / /R Gy (= 2) B, Gry a1 = 9)o (una (s,9)) W (dry, dzn).
S

We are going to estimate ||T,§n)\|p foreach k =0,...,n

Case k = 0: It is clear that
1757 llp < FpanGroola — 1), (5.6)
where k)¢ 1, is the constant defined in (5.3)).

Case k = 1: Applying BDG and Minkowski’s inequalities, we can write

t
TN < | [ ars [ dndetGron (@ = 2)Gin (@ = )Grs(1 = 0)Gr—s(et — 1)

X ’)/(Zl — Zi)z(n) E(/) /0'2(un—1(5>y))

T1,21

< 4PL2ﬂ12;7t,LKs,t(33, Y), (5.7)
p/2

where

K (z,y) /dr/ 9r(2)(gr ¥ 7)(2)dz (5.8)
with the notation g.(z) = Gi— (v — 2)Gr—s(z —
Case 2 < k <n: We can write

t
7" :/ /th—h (& = 20) X0, Niy oy W(dr1, dz)
S R

with

Npjz = / / Grk—s(zk - y)U(unfk(&y))
<rk< <ro<r; JRkd—d

X HGTJ - Tj(zj 1—2J)2("+1 J)W(drj,dzj),

75,2
7j=2

{finiteit}

{k=0}

{k=1}

{eq: 1w}
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which is clearly .%,,-measurable. Then, by BDG inequality, we obtain

t
n) |2 n n
T2 < 4p / dry /R  Gropy (@ = 280, Ny 2y Grory (2 = 2S00, Ny,

X y(2] — 21)dz1d2]

p/2
¢

< 4pL? / dry Giri(x — 21)Ny, Zth (T = 207 (2] — 21)d21dz] (5.9) {ineq:ab}

s R2d /2

t
<apl? [ dry [ Gionlo = 2)Gion (o= )N B3] - 21)dsnd,

s R
where we used |ab| < # in the second inequality and we applied Minkowski’s inequality in

the last step.
Now we can iterate the above process to obtain

1T, n)H (4pL*)*~ 1/ dﬁ/ / dry— 1/ dzy - dzg—1dz)...dz)_y
R2dk—2d
2

H Gr]frﬁl Z]+1)GT']'*’I"J‘+1 (25 — j+1)7(2j+1 - Z;‘-i-l) HNrkflzzkfl Hp7

where zp = x,79 =t and Nrk_1,Zk_1 is given by

=)

e = / W (dry, dzk)a(un_k(s,y))GTk*l,rk(zk_l - zk)Eg’;jgi_k)Grk,s(zk — ).
[s,rp—1] xR
By the same arguments that led to (5.7]), we have

“Nrk—lazk—l H; < 4pL2K:Z,t,LKSJ’k—1 (Zkfly y)?

which implies

HTIS;n)H 4PL2 ptL/ drl/ / dry— 1/ dzy - -dzk_ldzi...dz,;_l
R2dk—2d
{EQ15} X H Grjmry1 (25 = 2j41) Gy (25 = 25007 (25401 — Z541) | Koy (2,9). (5.10)

To complete the estimation of the quantities HT,gn)Hp for k =1,...,n, we consider separately
the cases d =1 and d = 2.

Case d = 1: In this case, Gy_,(x — z) = %1{|x_z|<t_r}, so that, using the integrability of v and
[2.6) yields
1 t
Kz, y) < 41{x—y|<t—s}H’YHL1(R)/ dr/RdZGt—r(ff —2)Gr—s(z —y)
S

1
g Le—yl<t—sy IVl Loy (t = $)°Ges(z — y)

IN

< 2yl w)

ineq:d=1
{ineq } < 3

Gi—s(z —y). (5.11)
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Plugging this bound into (5.7)) yields

{ineq:k=d=1} 1Tl < tLtip /Pl o ) Gies (@ — v)- (5.12)

For k =2,...,n, from (5.10) and (5.11]), we obtain

2 _ Ml t Th—2
HT,E")HpS 8()(4pL2)kt2,<;I2)7t’L/ dn‘--/ dri 1
s s

X / dzy..dzg_1d2y ... dz)_1Gr,  —s(2k—1 —Y)
R2k—2

H GTj—T’j+1(Zj - Zj+1)GTj—Tj+1(Zj - Z}+1)’Y(Z'j+1 - z;'Jrl) : (5'13) {ineq:bdd=1}
In the particular case k = 2, we obtain

t
/ dr | dzd2'Gi—(x — 2)Gi—r(z — 2 )y (2 — 2')Gr—s(2 — y)
s R2

1 ! [pdlFAN
< 11{\w—y|<t—s} /S dr /R2 dzd' Gy—p(x — 2 )y(z = 2') < T()Gt_s(x —y)(t—s)%

which yields
1T, < (P @ypLp ) Giosle = ). (5.14) {bdd:k=2,d=1}

For 3 < k < n, we rewrite the spatial integral in (5.13]) as

k—2
1

/ / , / {lzk—1—y|<rrp_1—s}

/R%_2 ledek—lel .. 'dzk—l H 1{|Zj—Zj+1|<7'j_rj+1}7(zj+1 — jJrl) 52k 1

J=0 lzi—2j 41 |<ri—rjt1

Lja—y|<t-s}
< T 9%k-1 dZ2dZé Tt de_1d22,11{|$_22|<t_7»2} H {|Zj—2j+1|<7"j—7'j+1}

R2k—4 |z—zh|<t—ra |z =25 4| <rj—Tjt1

X y(zj41 — Z}H)) V(22 — 23) /1@2 dz1dz1v(21 = 21) ez <t—ri)

Note that / dz1d21y(21 — 21)1{jg—z|<t—r} < 2t||17[|L1r) and then we can iterate the above
R2
process to deduce that the spatial integral in (5.13)) can be bounded by

1{jo—y|<t—s}

k—1 1(13— t—s k—1
o 2t ) T = 2 el wy)

92k
Thus, from ((5.13)),

1 (2pL2t2H’YHL1(R))k
HTlgn Hp —= g“;z%,t,L (k — 1)! 1{\x—y|<t—s}-

That is,

k
(222 1 )™
(k—1)!

| " H Kp,t,L Gis(r —y). (5.15) {bdd:d=1k>2}
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Now combining the estimates in -, (5.12)), (5.14) and (5.15) yields

HD yun+1 t .%' < Z HT(n < "'fp,t,LC ,t,L,'yGt—s(x - y):

with

*. (2pL2t2 k/2
{def:CPTL} Cporn =1+ (2p (H;:”Ligﬂf)) '

k=1

(5.16)

Remark 3. In the case d = 1, one can give a simplified proof of the upper bound in . Indeed,
note that G2(z) = th( ’) and one can use the relation as a replacement for thc scmlgloup
property of the heat kernel so that the upper bound in can be proved by using the same
method as in the proof of [I0, equation (5.1)].

Case d = 2: Recall Gy—(z — z) = [(t —r)? — |z — 2| ] 1/2 1{jz—2|<t—r} and

K (z,y) /dr/ 9r(2)(gr ¥ 7)(2)d2 (5.17)

with g,(2) = Gi—r(x — 2)Gr_s(z — y), see . By Holder’s inequality and Young’s inequality,
we obtain

/ 9r(2) (g 9)(2)d= < gl 19w 7|2

where ¢ := % 7 € (1/2,1). Therefore,

2—1(R2 HQTH%M(R?)||7||L‘(R2)7

K, o) < 11 e / dr(G21, % G2 )Yz )

{EQL6} < Cylt — )V | ez Gz — ), (5.18)

where the last inequality follows from Lemma [2.5] Note that here and in the rest of the paper,
Cy will denote a generic constant that only depends on £ and may vary from line to line.
Then we deduce from ([5.7]) that

n e L
{ineq:k=1d=2} 17"y < CeLapgr /ol e (t = )% G (x — ). (5.19)
1
Note that G (z —y) < (2#)1_5(75 — s)l_iGt_S(x — y). Therefore, from (5.19) we can write

(n) T se2
{casek=1} HTl ||p < CgLfﬁpﬂg’L pH/YHLe(]RQ)t 2t Gt_s({IZ‘ — y) (520)
Consider now the case k € {2,...,n}. We have, from (5.10) and (5.18)

[l n)H (4pL?)*x p,tL(t_S = H’YHLZ Rz)/ dry - / dri—1

x/ dz1...dzk_ldzi...dz,gflef —s(Zk-1—y)
RAk—4

{ineq:bdd=2} H Gri—rjr (25 = 2j11)Gry—rj 1 (25 — 25 )21 — Zj41) | - (5.21)

For k = 2, we deduce from
n -1 >
{ineq:k=d=2} HT2 )H 4pL2) t,L(t —8) € |Vl Lere)Ks i (z — v), (5.22)
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with
{def :Khat} / dr/ dzdz Gl/e — ) Gir(z — 2)Gi_p(z — 2 )y(2 — 7). (5.23)
R4

We can write, with h,(z) := Gi_(z — Z)Gl/e (z—y) and ¢ = 2;%1 ;

_ / dr /R 4Gy = )y ) ()

¢
< [ arlGucal a1 el ey
S
where the last inequality follows from Holder’s inequality and Young’s convolution inequality.

1
_ HLQq(R2) = ((2;112(12(1) (t — 7’) q Then

~ 9 1—2q QL
Ks,t(SU - y) < <(2ﬂj) q HryHLl(RQ lq / dT’\/(G 9 4 qu/se)l/q( y)

2q
1
2m)t—24 o1 2
< () Wl 5 ([ (i, 62y )
2 —2q
where we used the Jensen’s inequality for finite measure in the last estimate. Using G, 20/ e(z y) <

227? 2571 q _
(2m)2e=1r2e=1G, L (2 —y) and applying Lemma [2.5] we obtain

/ dT’(qu *GQQ/Z)l/Q( )S (271_)22%2752[_ / d’l“(qu *GQQ ) /Q(x_y)

< Ot" TG (x — y).

Therefore,

N

~ —q — — 1
Kooz =) < el eyt ™ (87 G =) = Cal | gyt G (e =) (529) {EST:kmaR)

from which, together with (5.22)), we obtain

N 1/2
7 ey G s<xy>)

3£6—2
< Cot ™ 4pLPrps LVl peqre) Gi—s(@ — v), (5.25) {qQq1}

HT2(n)Hp <Gy <t 57 (4pL Kp .

1
where we used G (v —y) < 27Tt1_4ith,S(:L' — y) to obtain the last estimate.

For k € {3,...,n}, we first point out that the following integral

Tk—2
1/6
/ dry_1 /4 de—1dZ;;_1Gr,{_l_s(Zk—1 —Y)Gry_y—rp_y (k-2 — 2k-1)
s R
X Gry vy (22 — 2 )V (Ze-1 — 2_1)

is exactly Ks,rk,2(2k—2 — ), see (5.23). This is bounded by CgH’yHLZ t 5 Gﬁ: —s(Zk—2 = ¥),
in view of rp_o <t and (/5.24)).

Then, we have

t Tk—3
2 827
‘}Tlin)}|p < Cg(4pL2)kn§,tth 2 \*yH%e(RQ)/S dr1-~/s der/R dzy...dzg_od2)...dz},_,

4k—8
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k=3 .
X H GTj—Tj+1 (Zj - zj+1)G7“j—7’j+1 (zj - 23‘-1-1)’7('2]'—4—1 - Z;‘—i-l) Gﬁ:,Qfs(zk’—Q - y)
7=0

. ~ 1
Similar to the estimation of K¢, we write with h,(z) := Gi—,(z — 2)G*2 (2 —y) and ¢ = ﬁ,

t . t ~
Reslw=9):= [ dr [ Grorlo =0 5) ) < [ drlGuel e 17 s 1P e

_ t %
< T ey [ e ([ GG - 26 - i)

Since 2q + 3 = % < 3, we can apply Lemma to write

1
t 2q _
(/ d?’/ G?gr(.f - Z)Gg/_es<2 - y)dz) ’ < Cgtzel#]_ﬂx_th_s}.
s R2

Thus,

o5
Ksi(z —y) < Cot 2 |7 era) Lo —y|<t—s}- (5.26)

From this estimate, we deduce

8e—7 ~
175, < OM (P22, 1t 2 112 o Kt (2 — o)

3/2 766
< Co(4pL2 |1Vl e r2)) / Fpt, Lt 2 Ljzy|<i—s)
3/2 926
< Co(4pL2 | peae)) *ip e nt 5 Gus( = ), (5.27)
where we also used the fact 1,y <;—s} < 27tGrs(z — y).
For 4 < k < n, we write

t Tk—4
n)||2 8e-7
HT’g )Hp < C£(4pL2)k,{§’t’Lt 22 ”7|ie(R2)/s drl.../s drk_3/R dzl...dzk_g,dzi...dzfc_g

4k—12

k—4
X H G?"j*T‘jJA (Zj - Zj‘i’l)GTj*TjJrl (Zj - Z;‘+1)7(Zj+1 - Z;‘—H) KSﬂ”k73 (Zk—3 - y)
=0

Nk, 2 L6, .3 ! T
< Co(4pL*) "k, pt H’Y\|Le(R2)1{x—y|<t—s}/ d?‘l"'/ dri—s3
S S

k—4
/ / / /
% /4k12 dzy - dzk_?’dzl T dzkf?) H Grj—Tj-o-l (zj - zj+1)G7'j—7’j+1 (zj - zj+1)7(zj+1 - zj—f—l)
R =0
using (5.26). Now we can perform integration successively with respect to dzy_sdz_5, ...,
dz1dz} and we get
k—4
! / / ! k—3
/4k—12 dz1 - deg—3d2..dzy_g H Grj—rjn (2 — Zj+1)Grj—7"j+1 (2 — Zj+1)7(2j+1 - Zj+1) s=my
R =0
so that

. ¢ (tmy)k=3
HT,S )Hp < Ce\/(4pL2)km§7t7Lt 2 ||7”ie(R2)1{|z—y\<t—s}m
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3/2 (tmy)k—
< CepL) st 0t | 3 U)o = ). (5.28)
Combining ([5.6]), (5.20)), (5.25)), (5.27) and (5.28) yields
||D37yun+1(t’ x)”p S Cp7t7L77K}p7t’LGt75(x - y)’ (5'29)
with
30—2 30—2
CptLy =14 CoLt 2 [pllyLemey + CopLt™ € ||| e (R2)
oo 2 k/2
96 3/2 4PL tm
+Cot " (pL2 ) eque)) ™ D ) (5.30)
k=0
This concludes the proof of (5.4)). U

5.3. Proof of Theorem We can now proceed with the proof of Theorem [I.3] We first
apply Minkowski’s inequality and ) to obtain

HDunH (t,z HLP s < / dr/ dzdyy(z — HD yUnt1(t, @)Dy zuni (t, @ ||/p/2
S/ dr/ dZdy’Y(Z—y)HDs,yunH(t,ZC)HpHDs,zUnH(t,J»‘)Hp
R2d

t
< / dr / dzdy(z — 3)Gis (2 — 1)Grslz — 2),
0 R2d

which is uniformly bounded. Then standard Malliavin calculus arguments imply that up to a
subsequence Duy, (t,z) converges to Du(t,z) with respect to the weak topology on LP();$);
see e.g. [14]. Similarly, for any ¢ € (1,2),

p/q

[Dunsa (¢, 2)] |7 (LR xRD)) — ‘/R iy dsdy| Dy yun1(t, )|
+

p/q

p/q p/q
([ wsapuntalt) 5 ([ asacta-n) s
R+ XRd R+ XRd

So {Dunk (t, :L')} has a further subsequence that converges to the same limit Du(t, ) with respect

to the weak topology on LP(Q;Lq(RJ’_ X ]Rd)) and as a result, for 1 < ¢ < 2 < p < oo and for
any finite T,

< Q.
p/q

sup
(t,z)€[0,T]|x R4

/]R o ‘Ds,yut@‘qdyds
+ X

Therefore, following exactly the same lines in the proof of [2, Theorem 1.2] (step 4 therein), we
can get the upper bound in (1.9)). The lower bound is straightforward in light of the formula of
Clark-Ocone (Lemma [2.2). O
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