Electron. Commun. Probab. 25 (2020), article no. 48, 1-10. ELECTRONIC
https://doi.org/10.1214/20-ECP327 COMMUNICATIONS
ISSN: 1083-589X in PROBABILITY

Intermittency for the parabolic Anderson model of Skorohod
type driven by a rough noise*

Nicholas Ma' David Nualart? Pangiu Xia®

Abstract

In this paper, we study the parabolic Anderson model of Skorohod type driven by a
fractional Gaussian noise in time with Hurst parameter H € (0,1/2). By using the
Feynman-Kac representation for the L?(£2) moments of the solution, we find the upper
and lower bounds for the moments.

Keywords: parabolic Anderson model; Wick product; Skorohod integral; Feynman-Kac formula;
moment bounds; Brownian bridges; intermittency.

AMS MSC 2010: 60H15.

Submitted to ECP on January 27, 2020, final version accepted on June 14, 2020.

1 Introduction

In this paper, we consider the following parabolic Anderson model of Skorohod type

0 1 0
&u(t, x) = gAu(t, x) +u(t,x) o aW(t, x), (1.1)
where ¢ denotes the Wick product. The noise W = {W(t,z), (t,z) € Ry x R%} is a
Gaussian random field, that is a fractional Brownian motion of Hurst parameter H € (0, %)
in time, and has a correlation in space given by a function (), namely,

E[W (t,2)W (s,y)] = 5 (t*7 + s> — |t — s]*)Q(z, ),

N | =

for all s,¢ € R, and z,y € R?. We assume that the covariance function ) satisfies the
following conditions:

Hypothesis (H1). There exist constants « € (1 — 2H, 1] and C; > 0 such that

Q(z,z) + Qy,y) — 2Q(z,y) < Cilz — y|*, (1.2)

for all z,y € R%.
Hypothesis (H2). There exist constants 5 € [0,1) and C5 > 0 such that for any M > 0,

. inf Q(z,y) > CoM*, (1.3)
min (|2 Algil) > M

geeey
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Intermittency for the Skorohod PAM with rough noise

A similar equation in the Stratonovich sense, where the Wick product in (1.1) is
replaced by the ordinary product, has been studied by Hu et al. [5] and Chen et al.
[1]. In these papers, it has been proved that under Hypotheses (H1) and (H2), the
Stratonovich type equation with bounded initial condition has a unique solution, which
admits a Feynman-Kac representation. Additionally, by using the Feynman-Kac formula
for the moments of the solution, the authors in [1] studied the intermittency phenomenon
for the solution and obtain the following bounds

C,exp (an%fjffj,f> < E[u(t, x)”] < O exp (671%%375211{:;&)

forallt > 1, z € R? and n > 1, where C and C are positive constants depending on
d, H,a,||ugl|e @and C,, Cy > 0 depend on d, H, ., ||ug || and z.

In this paper, we will study the intermittency for the Skorohod equation (1.1). The
upper bounds for the moments of the solution can be easily obtained. This is due to the
fact that the solution to the Skorohod equation is bounded by the solution to the equation
of Stratonovich type. For the same reason, to get lower bounds is more involved. By
using the Feynman-Kac formula for the moments, we see that in comparison with the
Stratonovich case, the exponent in our case contains an additional negative term. This
increases the difficulty to estimate lower bounds for the moments. To settle this difficulty,
we pin the Brownian motion B; at the middle point ¢/2, and observe that conditional
on B/, = r, B is a Brownian bridge before time /2, and an independent Brownian
motion after ¢/2. Then, we estimate the probability of the event that the supremum
and the Holder norm of the Brownian bridge (motion) are bounded above and below
by appropriate constants. This allows us to find a lower bound for the moments of the
solution.

This paper is organized as follows. In Section 2, we give a brief introduction on the
Malliavin calculus and present the precise definition of the solution to equation (1.1). In
Section 3, following the idea of Hu et al. [5], we prove that equation (1.1) has a unique
solution and give the Feynman-Kac formula and the chaos expansion of the solution.
Then, we provide the upper bounds for the moments. Finally, the lower bounds for the
moments are proved in Section 4.

2 Preliminaries

Let W = {W(t,x),(t,z) € Ry x R?} be the Gaussian random field introduced in
Section 1 defined on a probability space (2, 7, P). Let $ be the Hilbert space defined
as the completion of the linear span of the indicator functions of rectangles of R, x R?
with respect to the inner product

(t2H 4+ g2H _ |t — S‘ZH)Q(l’ay)v

DN =

(L10,41x[0,2]> Ljo,5]x[0,4]) 9 =

forall s,t € Ry and v = (21,...,74),y = (y1,...,ya) € R?, where L0 = Hle 1j0,2,) @nd
1j0,0,] = —1{z,,0 if z; < 0. For any function h € ), we write

W(h) = /OOO/R h(t, 2)W (dt, dz),

where the integral is the [t6-Wiener integral. In other words, {W(h),h € $H} is an
isonormal Gaussian process on $), that is, a centered Gaussian family with covariance
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Intermittency for the Skorohod PAM with rough noise

for all h,ﬁ € . For any positive integer n, we write H,, for the Hermite polynomial on R,
that is,

ez ez, x€R.
n! dzn ’

Let H,, be the closed linear subspace of L?(f2) generated by the set of random variables
{H,(W(h)),h € $,||h||ls = 1}. The space H,, is called the n-th Wiener chaos. Denote by
$H®" the n-fold tensor product space of §). We write I,, for the isometry map between
H®" (with the modified norm v/n!|| - |se~) and H,,, given by I,,(h®") = H,, (W (h)). It is
known (c.f. Lemma 1.1.1 and Theorem 1.1.2 of Nualart [7]) that

H,(z)=

(i) H,, and H,,, are orthogonal if n # m. That is
E(FG)=0, VFeH,,GeH,,n#m.

(ii) Any square integrable W-measurable random variable F' can by uniquely repre-
sented as the following orthogonal Wiener chaos expansion

F=E(F)+> I(fa) (2.1)
n=1

where f,, € H®" are symmetric.

By above properties and the isometry between $®" and H,,, for any F' € L?(Q) has the
chaos expansion (2.1), the following equality holds

E(F?) = E(F)? + Z | fullfon-
n=1
Let F,G € L?(). Suppose that F = E(F) 4+ Y07 | L,(f,) and G = E(G) + Y -, Ln(gm)-

Then, by definition, the Wick product of F' and G can be written as the following
expression, if the last series is convergent in LQ(Q),

FOG = E(F) Z Im(g"L) + E(G) Z I”l(fn) + Z In+m(fn®gm)7
m=1 n=1 n,m=1

where f,®g,, is the symmetrization of f,, ® g,, in HS"+m),

Remark 2.1. The assumption F, G € L*(f2) does not imply the convergence of F o G. We
refer the readers to the book of Hu [3] for a detailed account on the Wick product and
sufficient conditions for the existence of F ¢ G.

Let u = {u(t,z), (t,¥) € Ry x R?} be a W-measurable random field. Suppose that
E[u(t,z)?] < oo for all (¢,z) € Ry x R% Then, u(t,r) has a Wiener chaos expansion as
follows

ut, z) = Bu(t, z)) + i Ln(hn (-, t,2)). (2.2)

n=1

In the following, we define the Skorohod integral and the solution to the Skorohod type
stochastic partial differential equation (SPDE) (1.1). For more details on this topic, we
refer the readers to Hu and Nualart [6].

Definition 2.2. A square integrable random field u of the the form (2.2) is called to be
Skorohod integrable, if B(u) € $), h, € H®"*V for alln > 1 and the series

5(u):/0 /Rdu(m)(sW(t,x) = W(E(u))+;1n+1(hn)

ECP 25 (2020), paper 48. http://www.imstat.org/ecp/
Page 3/10


https://doi.org/10.1214/20-ECP327
http://www.imstat.org/ecp/

Intermittency for the Skorohod PAM with rough noise

converges in LQ(Q), where l~Ln is the symmetrization of h,, as an element in H®0+1) | The
collection of all such random fields is denoted by Dom/(9).

Definition 2.3. Let uy be a bounded measurable function on R?. A random field u =
{u(t,z) € Ry x R?} is said to be a (mild) solution to the SPDE (1.1) with initial condition
ug, if for any (t,r) € Ry x R? the random field

{l[O,t](S) /det—s(l' - Z)U(S, Z)]-[O,z] (y)dZ, (Say) € IR-‘- X Rd}

is an element of Dom(¢), and the following equality holds almost surely,
ut.a) = [ o= gpuoids+ [ [ (100 [ peale = ulsl0(0)d:) W (s,0),
R o JrR R

22
where p,(z) = (27715)—%6—% denotes the heat kernel on R and the last integral is the
Skorohod integral in the sense of Definition 2.2.

3 Feynman-Kac formula, chaos expansion and the upper bound

Let B be a standard d-dimensional Brownian motion independent of W. For any
(t,x) € Ry x R4, let Bf =z + By, and let 95, Ry % R? — R be given by

1(2). (3.1)

Then due to Theorem 2.2 of Chen et al. [1], we know that g, , € $. Since the Feynman-
Kac representation for the Stratonovich type equation has been already established in
[1], then by the same argument as in Section 6 of Hu et al. [5], we can immediately
derive the following theorem.

Theorem 3.1. Suppose that () satisfies Hypothesis (H1). Let B be a standard d-
dimensional Brownian motion independent of W. For any (t,x) € R, x R%, let gffx
be defined in (3.1). Then for any bounded measurable function uy on R4, the process
u = {u(t,z), (t,z) € Ry x R4} given by

ggw(rv z) == 1p0,4(r)1j0,B=

t—r

1
u(t, ) = Bluo(Bf) exp (W(gi,) — 5 llo[13)] (3.2)

is the unique (mild) solution to (1.1) with initial condition u.

Remark 3.2. We can further deduce that u(t, z) has the following chaos expansion,

u(t, l) = Z In(hn(tv :L’)),
n=0

with
1 1 n
hn(t,z)(r,z) = EE[UO(Bf)gfx (ri,21).. .gfm (7, zn)],
where {B*};>; are independent copies of B, r = (r1,...,r,) € RT and z = (21,...,2,) €
(RY)".

The next theorem provides an upper bound for moments of the solution to (1.1).

Theorem 3.3. Suppose that uq is bounded and () satisfies Hypothesis (H1). Let u be the
solution to equation (1.1). Then for all positive integern, t > 1 and x € RY, the following
inequality holds,

Elu(t,z)"] < Cypexp (C’n%ta{tﬁ)

where C' > 0 depends on d, H, , ||uo||cc and C;, > 0 depends on d, H, «, ||ug||cc and x.
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Proof. Recall that { B*};>; are independent d-dimensional Brownian motions and gfg’: is
defined in (3.1). By the Feynman-Kac formula (3.2), we can write the moment formula
for the solution as follows

Efu(t, z [ﬁ (BY") exp (;K%; (9P 9P )} (3.3)
it e

Combining (3.3) and Theorem 3.1 in [1], we can deduce that

Elu(t,z)"] < E? [ ﬁ uo(BP™) exp (% Z (gf;,gt L) )] < Cypexp (Cn%ffff).
k=1

1<i,j<n
The proof of this theorem is completed. O

Remark 3.4. An alternative proof of Theorem 3.3 can be established by the chaos
expansion of the solution to the SPDE (1.1) and the hypercontractivity property of fixed
Wiener chaos (c.f. Hu et al. [4]).

4 Lower bound for the moments

In this section, we prove the following theorem, which provides a lower bound for
the moments of the solution to the SPDE (1.1).

Theorem 4.1. Suppose that ug is bounded, inf cra uo > 0, and @ satisfies Hypotheses
(H1) and (H2) with o = 3. Let u be the solution to equation (1.1). Then there exists a
positive integer N depending on d, H and o, such that for alln > N, t > 1 and x € R¢,
the following inequality holds,

2—a 2H+a

E[u(t,x)”] > C,exp (C’nmt T-a ), 4.1)

where C' > 0 depends on d, H, o, ||ug|| 0o, inf,crae uo and C,, > 0 depends on d, H, «, ||uo || o,
inf, crauo and x.

Proof. We follow the ideas of Chen et al. [1] and Hu et al. [4] to prove this theorem.
Without loss of generality, we assume that uy = 1. Recall that { B¥} k>1 are independent

d-dimensional Brownian motions and gf; is defined in (3.1). By the moment formula
(3.3) and Lemma 4.2 of [1], there exist a Gaussian process X = {X(z),z € ]Rd} with
correlation E[X (2)X(y)] = Q(x,y) and an independent fractional Brownian motion
B = {B,,t € R} with Hurst parameter H, such that

Elu(t.0)") = B exp {3 / ZX Bi*,)dB.) ]—anmnﬁ} (4.2)

Due to Lemma 4.3 of [1], we know that there exists a constant C'y > 0 depending on H
such that

~r1 tn ) ~\2 s 12H
X,B| 2,T > 6T RJT . .
E [2(/0 ;X(Bts)st) } > Oy [/ (jle (Bi=, BI )) ds} (4.3)
On the other hand, by (2.2) and (2.12) of [1], we have
é L k i,T i, i,x i,
Hgt]?gcy ”.%) :E[Il(gfz’ )2] :H/O 92H71[Q(B9’ aBg’ )+Q(Bt7_973t’_9)}d9

t [
+ |aH|/ / r2H=20Q(0,60 — r, B¥®, B"®)drd#, (4.4)
0 0
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where oy = 2H(2H — 1) and

~ 1
Q(’Lh v, ¢a w) = 5 [Q(QS’UJ wu) + Q<¢v7 ’(/}'u) - Q(Qs’UJ 7%) - Q<¢v7 ’(/}u)]
Recall that @) satisfies Hypothesis (H1). Thus it is easy to deduce that
A i,T 1,T Cl 7 i 2a
Q(GvofraB’ 7B’ )§7‘397BG—7"‘ (45)
and
1/2) |« 1/2 1/2) 1« 1/2
1Q(z,y)| < (Cy7[z]* + Q(0,0) /=) (C1 " |y|* + Q(0,0)7/7). (4.6)
To simplify the computations, we assume that Q(0,0) = 0. In the general case, the proof

can be done in a similar way without significant differences. Let M > 0 and let € € (0, %)
Consider the following events

Gy(M) = inf Bb®i| > ML, GE(M :{ su BL®: <4M},
o(M) {1§z§n,1§]§d| i } 0(M) 19’@,%;‘@' e
s€[t/2,1] s€[0,t]
and
Bi x,j Bz ,T,7 16M
cion={ s | <)
1<i<n,1<j<d \u—v|2 € t2—¢
0<v<u<t
where B%®J denotes the j-th component of B*® for j = 1,...,d.

On G} (M), by Hypothesis (H2) and using the assumption that a = 3, we have the
inequality

([ (3 e men) ™ as]™ o[ [ (coniaape) ]

i,5=1
=272H Cop? M2 (4.7)

On GZ(M), using (4.6), we get that

t t
[ Qi By + QUi B < [ 0tz av i
0

0
=24 g g1 M2 (4.8)

Finally, on Gg(M), using (4.5), we get

t 6 N ) ) t 6 . 20
2122000 v 8 B yardg < [ 22 16vdM ri=) " drd
0 JO 0 JO 2

t3—e
B 28a71da01M2at2H
C(2H + o —2ce — 1)(2H 4 a — 2ae)’

(4.9)

Set Go(M) = ﬂi:l GE(M). Due to inequalities (4.2)-(4.4) and (4.7)-(4.9), we obtain
Efu(t,z)"] > exp [(c1n® — con) M>* 7| P[Go(M)], (4.10)

where

28a_2da01|04H|
(2H + o — 2ce — 1)(2H + o — 2ae)

c1 = 2_2HCQCH and ¢ = 2404—1da01 +
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For any » = (z1,...,74) € RY, let {Ej’””ﬂ'}lgjsd be independent one-dimensional
Brownian motions such that B7% starts from z; forall j =1,...,d. For any j, let GI(M)
be the event given by

; = ~ By — BY™| _ 16M
@)= { ok (B> M, sup |BEo| < am, s BB T
s€[t/2,t] s€[0,¢] 0<v<u<t |u—wv|z”€ tz—e

(4.11)

and denote G(M) = ﬂ;lzl G7(M). Since {B"*}i<;<, are independent d-dimensional
Brownian motions starting at « = (1, ..., x4), the following equality holds

d
P(Go(M)] = P[G(M)]" = [[ P[G/ (M
j=1
This allows us to rewrite (4.10) in the following way,

d
E[u(t, 2)"] >exp [(c1n”® — con) MzatZH H (4.12)

In order to estimate P[G?(}M)], we pin the Brownian motion B*/ at ¢/2, and obtain
that

) 4 M ) .
PG/ = [ RIGI DB = rlays(r —ay)dr

3M
2/ PG (M)|By =r]aua(r — a;)dr, (4.13)
2M

where ¢, (z) = (2rt)~ 2 exp[—22/(2t)] is the one-dimensional heat kernel. Notice that
conditioned on éf/? = r, the process {BJ"/, s € [0,4/2]} is a Brownian bridge, denoted
by Y = {Y,,s € [0,t/2]}, such that Yy = z; and Y;, = r. In addition, the process
(B —r s€0,t/2]}, denoted by Z = {Z,, s € [0,£/2]}, is a standard Brownian motion

t/2+s
independent of Y. Let A4,..., A4 be the events given by

ar={ sw |Zs|sM}, A ={ swp || <am},
s€[0,t/2] s€[0,t/2]

| Zy — Z | Y, — Y\ 8M
As = sup , Ay = sup .
0<u<v<t/2 |u —v|27¢ ti*6 0<u<v<t/2 [u — v|2 ¢ ﬁ*ﬁ

Observe that for any 0 < v < t/2 < u < ¢, it is easy to see that

|§Z@j o quj’$]| _ - { |Bg/§] B%’mj| |BJ »Tj Bi/ﬂ;]‘ }

Ju— | t/2 = vl T fu—t/2[27
It follows that conditional on Ei/? =,
\Blmi Bl { Y, — Y\ | Zu — Zy| }
sup —— < 2max sup @—— su —_— 7,
0<v<u<t |u—wv|27¢ 0<v<u<t/2 [u —v|27¢ o<vcus<t/2 [u — v|2 €
and thus
By — BY™| _ 16M
{ sup ‘ | < 3 } D A3 N Ay. (4.14)
0<v<u<t |u—v|z7¢ t§*
ECP 25 (2020), paper 48. http://www.imstat.org/ecp/
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Moreover, if we restrict r € [2M,3M] as in (4.13), the following inclusion is true,

{ inf |BIw| > M, sup |BI| < 4M} S Ap N As. (4.15)
sE[t/2,t] s€[0,t]

Therefore, by (4.11), (4.14) and (4.15), we have for r € [2M,3M],

P[GI(M)[Bly =] = P( (4] Ay).

t/2
k=1

Because Y and Z are independent, we can write

4 4
]P(kﬂlAk) —1- ]P(kUlAz) > 1-P(As| JAg) - P45 )49
=P(A;)P(As) + P(A3)P(Ay) — 1. (4.16)

Estimation of P(A,): It follows from Doob’s martingale inequality that
t
2M?
Estimation of P(A43): Recall that € € (0,1/2). By Kolmogorov’s continuity criterion (c.f.

Theorem 3.1 of Friz and Hairer [2]), there exists a modification of Z, denoted by Z, and
a random variable K., such that

P(A;) =1-P(AS) > 1— M ?E(|Z;5*) = 1 (4.17)

Zu B Zv
sup 12 = 2| < K. and E(|K.

2
©) < Cet?
0<u<v<t/2 |u —v]z ) o

where C, > 0 is a constant depending only on ¢. Combining this fact with Chebyshev’s
inequality, we have

.

SM)—%

2 6 te
2)=1— S>1— ) >1-2"<C.—. .
P(A3) =1 — P(AS) > 1 (t%* B(K]?) > 1-27%C s (4.18)

€

Estimation of P(A,): Let B be a one-dimensional standard Brownian motion. Then the
Brownian bridge Y has the same distribution as the process Y = {Y;,0 < s < ¢/2} where

Yo=a;+ B T (Bys—r+ ). (4.19)

Thus, we can deduce that

2 2 ~ 25 ~
P(AS) :]P[ sup ‘(1 - 3)%— +=2 4B - ﬁBt/Q‘ > 4M}
0<s<t/2 t t t
o 5 Iz
§IP( sup |Bs|+ |Byja| > 4M — 1 — |x]|> < IP( sup |Bs| >2M — 7)

0<s<t/2 0<s<t/2 2

Assume that & > max{|z1],...,|z,|} and recall that r € [2M/,3M]. It follows that
~ M t

P(As) = 1 — P(AS) 21711)( sup |Bs| > 7) >1- (4.20)

0<s<t/2 4 M

Estimation of IP(A4): Due to (4.19) and the fact r € [2M, 3M], we have

‘?u_i;v| |§u_§l}‘ 2|U_U|%+E
1 S 1
lu—v|27¢ " |ju—wv|2~¢ t

i en 7
Py 2Bl + 30

€

(|Bejal + 7+ ;)

ta=e ’
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forall 0 < v < u <t/2, where Kf is the almost surely upper bound of the (1 — ¢)-Hélder
norm of B on [0,t/2] and E[|KZ|?] < C.t2. Therefore,

Y, - Y, M
P(A) =1 - P4 =1-P( sup el B
0<u<wv<t/2 |u —v|Z7¢  tz7€
23—¢|B M ~ oo tE
1' 2] > ) >1- 28710+ 2 %E|B [f] —5.  (4.21)
tz—¢ tz—¢ M*

€

>1 —JP(KF +

According to inequalities (4.17), (4.18), (4.20) and (4.21), and choosing

%)6/2}15%, (4.22)

8 )1/2 (25106+2?3E|1§1
1-+3/2/ 7 1-+3/2

we can make P(A4;) > \/§/2 forall k =1,...,4. Thus by (4.16), we have

M > C’Lst% 1= max {(

Ap) > = (4.23)

N =

DL

P[G7(M)|B])5 =r] = P(

k=1

Plugging (4.23) into inequality (4.13) and recalling that M satisfies (4.22) and % > |z,
we can write

’

; 1 M ; M 16M2 4 1602 1602
P(G? (M 27/ dr ! —r)> et > et >eT Tt . (4.24)
( ( )) 2 - qt/Q( ) \/m \/E

Combining (4.12) and (4.24), we have
Elu(t, 2)"] >exp [(cin® — con) Mt — csnM?t™ 1], (4.25)

where c3 = 16d. Let N be the smallest integer such that ¢cyn — ¢o > 0. Then, for any
n > N, by maximizing the function

F(M) = (e1n® — con) MM — canM>t !,

we find
My = (alein — ea)cg "2 772 (4.26)
such that
_a —2o 1 2H+a
sup f(M) = f(My) =(1 —a)aT7cy " “n(cin —cy)T-at -
M>0
>(1—a)a™ac; " (¢ — CQ/N)TZ%IJ;ZF_J:‘Q. (4.27)

Notice that for any t > 1 and n > N, the number M, given by (4.26) satisfies the
following inequality

1 1
My > max{(a(c1 N — co)ey AT rays (acin — 02)651) 2-2a t%}. (4.28)
Let s
— —a(
TL()(ZL') — maX{N, 02a+03[2max{|x1|,...,\xdmz Q,CQOL+630L€ }

(&)t clo

and let
fo(a) 1= max {1 (c3[2 max{[z], .., [zal}J> 2 ) e ( csCre™ ) L
Oé(ClN — CQ) Oé(ClN — CQ)
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Then, for any

(t,n) € Ly :={(s,m) e Ry xN,s>1,m > ng(z)}, (4.29)
or

(t,n) € Ly :={(s,m) € Ry x N, s > to(x),m > N}, (4.30)
by using (4.28), we have 22 > max{|z1|,...,|zq|} and M, > Cy.ct?. This implies that

if (t,n) € L1 U Lo, inequality (4.25) is true when M is replaced by M. In this case, it
follows from (4.27) that

Efu(t, z)"] > e/ Mo) > exp [(1- a)aﬁc;ﬁ(cl - CQ/N)n?:ZtZ{{t"a} (4.31)
On the other hand, let M; = max{2|1],...,2|zq4|, C1.cto(x)2 }. Then for any
(t,n) € Lz :={(s,m) € Ry xN,1 < s <tp(z), N <m <ng(z)}, (4.32)

inequality (4.25) is true when M is replaced by M;. In this case, we can deduce that

E[u(t,z)"] > exp [(c1n® — can) M{*t*" — canMit™]

> o { exp [(e1n® — con) MP*t*" — can Mt~ — Coyni=a tsz;"‘]}
1<t<to(z)
N<n<ng(z)

2—a 2H+a
X exp (C’Onl—at T-a )

2—a 2H+4«o
:=C exp (Conmt T-a ) (4.33)

Notice that {¢ > 1,n > N} = Ly U Ly U L3 where Ly, L, and L3 are defined in (4.29),
(4.30) and (4.32) respectively. Therefore, by (4.31) and (4.33), we have inequality (4.1).
This completes the proof of this theorem. O
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