ASYMPTOTIC PROPERTIES OF THE STOCHASTIC HEAT
EQUATION IN LARGE TIMES

ARTURO KOHATSU-HIGA AND DAVID NUALART

ABSTRACT. In this article, we study the asymptotic behavior of the stochastic
heat equation for large times.

1. Introduction and main results

Suppose that W = {W (t,z),t > 0,2 € R} is a two-parameter Wiener process.
That is, W is a zero-mean Gaussian process with covariance function given by

E(W (¢, 2)W(s,y)) = (s At)(Jx] Ay[)1zy>o0}-
Consider the stochastic heat equation

ou  103%u O*W
—_— = —_— R.t > 1.1 1
e 2 92 + p(W(t, x))atax, reR,t>0, (1.1)  {ecut}

where ¢ : R — R is a given Borel measurable function such that for each t > 0 and
r € R,

//pt J(x— (z)ps‘y|(z)dydzds<oo. (1.2)  {ecu2}

Along the paper pi(x) denotes the one-dimensional heat kernel, that is, p(z) =

(2mt) =12 */2t The mild solution to equation 1} with initial condition u(0,z) =
0 is given by

ult,z) = /0 /R Prs(i — 9)p(W (s,4))W (ds, dy),

where the stochastic integral is well defined in view of condition (1.2).

We are interested in the asymptotic behavior as t — oo of u(t, z) for x € R fixed.
Notice first that in the particular case where ¢(x) = ¢, then u(t,x) is a centered
Gaussian random variable with variance

t 2
E y)dyds = 2 ds = /1.
(u( / /pt s )dyds = ¢ /0p2(t—s)(0) 5 \/77\[
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Therefore t_%u(t, x) has the law N(0,c?//7). In the general case, using the change
of variables s — ts and y — \/ty, we can write

1
ult, z) = /O /R Py (@ — ) p(W (ts, )W (tds, dy)
1 1 T —y
- / /R proa" oW (15, )W (1. dy)
1
=¢1Z /0 /R P = W (s, Vi)W s, Vidg). (13)

By the scaling properties of the two-parameter Wiener process it follows that u(t, )
has the same law as

at, z) = 1 / / Py~ W W ) Wds.dy). (14

The asymptotic behavior of u(t,x) w1ll depend on the properties of the function
. We will consider three classes of functions for which different behaviors appear.
We are going to use the following notion of convergence, which is stronger that the
convergence in distribution (see, for instance, [6, Chapter 4]).

Definition 1.1. Let {F},} be a sequence of random variables defined on a probability
space (£, F, P). Let F be a random variable defined on some extended probability

space (¥, F', P"). We say that F,, converges stably to F, written F, Stably F, if
lim E |:G€Z>\F":| _ g [GemF} ’ (15)
n—oo

for every A € R and every bounded F—measurable random variable G.
The first theorem deals with the case where ¢ is an homogeneous type function.

Theorem 1.2. Suppose that ¢ : R — R, is a measurable and bounded on compacts
function such that limy_ 1o 2|~ %p(z) = cx for some constants ci,c_ and o > 0.
Then, as t — 00,

1
_ 3a+1 stabl = o =
() Y o /0 Y TS R )

1
ter [ ] mes W)™ gy, ooy s, )

Note that in the case that ¢y = c— and a = 0 then the limit is Gaussian. Note
that one may also consider the case lim, , o |z|T®*@(x) = c+ for some constants

Cq,C—, ay,a_ > 0. In this case the renormalization factor is t~— 4 and the
limit will only have contributions from the largest a; = a4 V a_.

In the second theorem we consider the case were ¢ satisfies some integrability
properties with respect to the Lebesgue measure on R. The limit involves a weighted
local time of the two-parameter Wiener process and the proof has been inspired by

{eq:1}
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the work of Nualart and Xu [§] on the central limit theorem for an additive functional
of the fractional Brownian motion.

Theorem 1.3. Suppose that ¢ € L?>(R) N LP(R) for some p < 2. Then, as t — oo,

1
1 2
1 stabl. —
tsu(t,z) —>yZ</0 /Rp?_s(y)éo(w (S,y))dyd8> el r2 ),

where W is a two-parameter Wiener process independent, Z is a N(0,1) random
variable and W, W and Z are independent.

In Theorem L071 = fol Jz p%_s(y)(so(W(s,y))dyds is a weighted local time of

the random field W, that can be defined (see Lemmam below) as the limit in L?(£2)
of

1
5, = /0 /R 2 (0)pe(W(s,))dyds,

as € tends to zero.

The paper is organized as follows. Section 2 contains the proofs of the above
theorems and in Section 3 we discuss an extension of these results in the case where
we consider also space averages on an interval [—R, R] and both R and ¢ tend to
infinity.

2. Proofs
Proof of Theorem : We know that t_%u(t, x) has the same law as

3a 1 X
o) =% /0 /R i~ W) W (s, )W (s dy),

Therefore, we only have to show the stable convergence, with the limit defined as the
stochastic integral with respect to an independent two-parameter Wiener process.

We divide the study of v into two parts according to the boundedness on compacts
property for . In fact, for any compact K consider ¢ (z) = ¢(2)1,ex. Then we
will prove that v (z) — 0 in L?(£2) where

1
o) = % /0 /R s = w1 s, W (ds. ).

In fact, as @k is bounded by a constant, say M, we have

1
Bl (o) < M % [ (=) [ piu (- B (s,y) € Kdsdy
0 R Vi
The above quantity clearly converges to zero if one considers separately the cases
a>0and a=0.
Given the above result, we can assume without loss of generality that p(z) =
f(x)|z|* with a bounded measurable function f such that lim, 4+ f(z) = c4.

{thm2}



4 ARTURO KOHATSU-HIGA AND DAVID NUALART

For this, we fix t9 > 0 and compute the conditional characteristic function of

o u(t, z) given Fy,, where t > tg and {F;,t > 0} denotes the natural filtration
of the two-parameter Wiener process used in the definition of 74E| W. For any A € R,
we have

E e ) ;to] _ NI O L (o) (W (s,9)) W (ds.dy)
< E [ T Lm0V () W) ft]
0

ei)‘At X Bt.

It is easy to show that lim; ,oo A; = 0in Lz(Q) as t — oo. In fact, using the rescaling
properties we obtain that as ¢ — co

B[ [ [ e = oW )]
<[IfIIZE [/to t/pl s( y)2|W (s, y)|2adsdy] — 0.

Now, we continue with the term B; for which we will use the decomposition
W(s,y) =W(s,y) — W(to,y) + W(to,y),
=: W(S — to, y) + W(th y)

Then, we can write

D=8 fexp (v [t = e )+ W a0, W s, )|

where E denotes the mathematical expectation with respect to the two-parameter
Wiener process W. By the same renormalization arguments as in (1.3 leading to

(1.4), this gives

exp <m (t_t‘)) / /p1 , y)F(t,s,y)W(ds,dy)>].

Ft,s,y) == F((t — 502 (W (s,) + (t — t0) "1 W (to, VE— foy)))
X |W (s, ) + (t — to) "3 W (to, VT — foy)|°

As t — oo, By converges almost surely to Probably more detailed should be added

e E [exp <i)\ /01 /Rpl—s(y)Fa(W(Svy))w(ds’dy)ﬂ 7

IThat is, F: is generated by W(s,z),s <t,x € R.

~

B, =E

Here
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where F,(z) = c41,50 + ¢-1,<0. Then the above formula is the characteristic
function of v(0) . As a consequence, for every bounded F;, measurable random
variable G we obtain

lim E[GeM T u(t)] = E[GE[NO)

t—o0
This can be extended to any bounded random variable G measurable with respect
to the two-parameter Wiener process W and this provides the desired stable conver-
gence in the sense of Definition O

For the proof of Theorem [I.3] we need the following lemma on the existence of the
weighted local time Lo .

Lemma 2.1. For any r € [0,1], the limit in L*(Q), as ¢ tends to zero, of

. / [ 7t W (s, )iy,

eists and will be denoted by Lo, := [ [oPi_s(y)00(W (s,y))dyds.

Proof. Using the inverse Fourier transform formula for a Gaussian law, we have

1 [" - 2
Loy =5, / / P ()e V=T dedyds.
™ Jo R2
Therefore,

B(Lh, L) = 0 [ [ e

. 52 12 et 1o 5/2 12
<K (ez5W(s,y)2£ ='W (s'y')—5¢ > dédyde'dy' ds'ds

_ 2527&{/2
27T / / / pl s pl s(y) 2 2

x e 2EUEW ) =& W) ge dyde' dy' ds'ds.

As € and £’ tend to zero we obtain the limit

/ / / pl s pl s( ,)f(sayv 8/7y,)dydy' dS,dS,
R2

where f(s,y,s’,7') is the density at (0,0) of the random vector (W (s,y), W(s',y')),
which is bounded by

Jun

@2m) 7 (sslylly'| = (s A 821yl A YD Liyyrsoy) 2
Then, it is easy to check I do not see as so easy maybe a hint should be added here.
In particular for the case yy’ > 0 that

1 r1
/0 A /]RQ p%fs(y)p%—s’(y/)f(s, Y, S/, y/)dydy/ ds'ds < 0,

and this allows us to conclude the proof of the lemma. O

{lem1}
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Proof of Theorem- Consider the random variable u(t, z) defined in ((1.4]). We can
put u(t,z) =t~ SMt(l x), where for r € [0,1],

- / / Proa T2 = DR W (5,)W (ds, ).

Then {M;(-,z),t > 0} is a family of continuous martingales in the time interval [0, 1].
We will find the limit as ¢ — oo of the quadratic variation of these martingales. We
have

o

3
(M, / /p1 (7 =Y EIW (s, y))dsdy.
The proof of the theorem will be done in several steps.

Step 1. In this step we prove that (M;(-,z)), converges in L!(Q) to the weighted
local time L. First, we claim that

tlggl@E(‘( —t4/ /pl ()PP (s, y))dsdyD 0. (2.1)

This follows from the fact that
3 3 _1
E (121w (s,9))) < lIpl32msly)) ™

lim / / p2_s — pi_s( ’ o
On the other hand, for any ﬁxed t, we have
lim J.; = 0, (2.2)
e—0

/ / P2 ()2 (ETW (s,1))dsdy
_/0 /Rpls(y)/R(p (g)psr%(W(s,y)—f%f)dfdsdy‘).

/ ' / 2) / PEp 3 (W(s,y) — t1¢)dedsdy
0 R R

and

——dyds = 0.

where

et—

Notice that
et 4

=t [ [ [ S On W — asdsiy
i / / P o) (62 % po) (£ (5,))dsdy.

= [ [#) [ P04 0V(s) - Ferasasay
0 R R
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Therefore
s " 2 2 2 3
Jg,tzE(w | [ - *pgxmvv(s,y))dsdy\)

j/ /m s (9% — % % pe) (HTW (s, 9)) | dsdy

_1
< — el /0 /R P2 (y)@msly) S dyds,

which converges to zero as € tends to zero because [; [p p%fs(y)(27r3\y|)7%dyd3 < 0
and ¢ € L*(R).
We also claim that
lim sup I, =0, (2.3) {ecud}

t—o0 e>0
where

‘/ / Pl §)p fZ(W(Say)—f%S)dfdyds

et

ol / /R P )pe(W (s, y)dyds| ).

To show ([2.3]), we write

5 2

. 2% . _3
P @)e*(©) /R W ()= = (gt e _ 1) andedyds

I, = (2m)*E

R2

/[0 ) /R4 Wpi_y (¥ (€)e*(€)

7
« / o= SE(nW (s.0) =0 W (' )12) o= 452 (2 412)
R2

.3 . ,,—3
% (emt 1e _ 1)(e—mt 1¢ 1)dndn’d§d§’dydy/dsds/,

which leads to the estimate

splea <m0 ©E)

X / e 2E(nW (s:4)—n'W(s' /) (|n5n’g'|ﬂf%5 /\4) dndn’ déd€' dydy' dsds’,
RQ

for any 5 € [0,1]. Then, by the dominated convergence theorem, the limit ([2.3])
follows from

/ / P (V) / e~ B )= W) dpdy dydy' dsds’ < oo,
0,r]2 JR4 R2

which can be easily proved using the fact that (27) 2 Jxe 67%E(WW(S’?”)*”,W(SI’Z’/)‘Z)dndn’
is the density at (0,0) of the random vector (W (s,y), W(s',v/)).
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By Lemma 2.1/ below, [ [5 1 (¥)p-(W (s,y))dyds converges in L*(Q) as t — oo

to the weighted local time Lo,. As a consequence, from (2.1), (2.2), (2.3) and
Lemma 2.1 we deduce that (M,(-,x)), converges in L*() to the weighted local time

LOT f[) f]Rpl s W(S y))dyds U

Step 2. Fix an orthonormal basis {e;,i > 1} of L?(R) formed by bounded functions
and consider the martingales

:/Or/Rei(y)W(ds,dy), re0,1].

We claim that the joint quadratic variation (M (-, z), M*), converges to zero in L*(Q)
as t — o0o. Indeed,

I 3
) MYy = [ [ o1 = i) 6V () s,
Then,
. 3
E((My(- ), M), ) < 13 / [ 1o = e B W (s, )y
2:2
3 3
<t 8/ /p1 s y)ei(y /|g0 ———e 2f75\y\dzdyds
27rt2s\y|
3_
<t® 4p|€2H00H90||LP(R)/ /p1 s(—= —v)(sly)~ 2pdyds
where ]l) + 5 = 1. Then, the claim follows because % - @ < 0 for p € (1,2) and

/OT /Rpl_s(ji - y)(s‘y’)_%dyds < 0.

Step 3. Given a sequence t, T oo, set M, = My, (r,x) and M}, = M'(r) for
1 > 1. These martingales, after possibly enlarging the probability space, possess
Dambis-Dubins-Schwarz Brownian motions [3;', such that

Mo,r = 53,(]\4;;),.
and
M = Bis fycowpay 121
We have proved in Step 2 that sup,.cp 1 [(M]", M')»| — 0 in probability as n — oo.
Moreover, it is clear that for any 1 <1 < j, (M, M]">T = 0. Then, by the asymptotic
Ray-Knight theorem [9], we conclude that the Brownian motions Bty © = 0, converge

in law to a family of independent Brownian motions 3;,, ¢ > 0. Together with Step
1, we obtain that My, (r, z) converges weakly as n — oo to B 1, lellz, > where the
b T (R)

Brownian motion £ is independent of the stochastic integrals { [ e;(y)W (ds, dy),r €
[0,1],7 > 1}, that is, By is independent of the white noise W on [0, 1] x R. Thus, we
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have proved the convergence in law of (/V[7 t%ﬂ(t x)) to (/V[7 Bo, Lo, ol g ) as t — 00,

where Lo = fol Jepi_y( ()80 (W (s,y))dyds and Sy is independent of W The role of

W has to be better explained It remains to show the independence of (S, ) and
W. For this we use the method of characteristic functions as in the proof of Theorem

T2

Step 4.  Fix A € R and tg > 0. We follow a similar argument as in the proof of
Theorem In fact, we can write

E |:ei)\téu(t,x):| _ em% J5° fo pe—s(z—y) (W (s,))W (ds,dy)

“E [em% fiy Je =)o OV ()W ()
0
=: At X Bt.

As before, it is easy to show that lim; s, A = 1 in L?(©2). On the other hand, with
the decomposition

W(Svy) = W(37 y) - W(to,t) + W(t07y)7

for the term By, we can write
R 1 t—to - o
=8 oo (063 [ [ ireigealo = (o) + Wt )W (s ) |
0 R

where E denotes the mathematical expectation with respect to the two-parameter
Wiener process W. By the same arguments as before, this leads to

exp z)\ts t—toi//ms )
Vi—to

X @(W((t —to)s, vVt —toy) + (t —to)~ i W(to, vVt —t y)) (ds, dy))]

~

B, =E

As t — oo, By converges almost surely to

i [exp (i)\ﬁo,LO,1II<ﬂ§<R)>] '

As a consequence, for every bounded and Fy, measurable random variable G we
obtain

. L .
tgrgo E[G exp (zAtSu(t,x))] = E[G]E |exp Z)‘BO,LO,1H90||§(R> .

This completes the proof. O
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3. Large times and space averages

The asymptotic behavior of the spacial averages f u(t, x)dz as R — oo has been
recently studied in the references [4, Bl [3]. In these papers u(t, z) is the solution to
a stochastic partial differential equation with initial condition «(0,z) = 1 and a
Lipschitz nonlinearity o(u). The solution process is stationary in z € R and the
limit is Gaussian with a proper normalization. In the case considered here, the lack
of stationarity creates different limit behaviors. In order to have a more complete
picture of the problem, we will consider the case where both R and ¢ tend to infnity.

Set
-/ Z [ [ pesa =)0 s s,

As before, ug(t) has the same law as

- / / / Proa T = (W (s,) W (s, dy)da:

Consider first the case where ¢ is an homogeneous function.

{thmia}

Theorem 3.1. Suppose that p(x) = |x|* for some a > 0. Suppose that tr — oo as

R — oco. Then, with W 1is a two-parameter Wiener process independent of W, the

following stable convergences hold true:

(i) If \/% — ¢, with ¢ € (0,00),
—3(a+1 stabl € 1 = aTss
G uten) [ [ o= ) W (o) TV s, dy)is
—cJO0 JR
(ii) If \/% -0,
g, Rkl stably ! = ats
R ate) " 2 [ [ i )]0 T s )
0
(i) If 7= — oo,
il okl sia IS e
R8T ) S [ W)W s, dy).
-1Jo
Proof. We have, with the change of variable \/% — x,
datly 1 R/Vtr
ugr(tr) =tgp* 2 / / /p1 s(x —y)|W(s,y)|“W(ds,dy)dzx,
R/ViR
and (i) follows by letting R — oo. If \/% — 0, with the change of variable x — Rz,
we can write
~ 3a R
{eq1} ugr(tr) = Rtp* pi—s(x——= — )W (s,y)|* W (ds, dy)dz, (3.1)
R Vir
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which implies (ii). The proof of (iii) is more involved. Making the change of variable
Yy — y\/% in 1’ yields

1 1
~ at+3 & R o
Tn(tr) = R 43 / / / P12 ()W (s, )| W (ds, dy)d
—1Jo JR ViR
at+1 otl 1 1
~RFE [ =W s )W s, dy)s
1 Jo Jr 25 (1-s)

Finally the stochastic integral

///PfR (z — y)|[W(s,y)|*W (ds, dy)dx

converges in L?(Q) as R — oo to

/_1/0 W (s, 9)| W (ds, dy).

The stable character of the convergence can be proved by the same arguments, based
on the conditional characteristic function, as in the proof of Theorem [I.2] O

For a function which satisfies integrability conditions with respect to the Lebesgue
measure, we have.

Theorem 3.2. Suppose that ¢(z) € L*(R). Suppose thattr — 0o as R — oo. Then,
with Z a N(0,1) random wvariable and W an independent two-parameter Wiener

process such that (Z, /W) are independent of W, the following stable convergences
hold true:

(i) If \/% — ¢, with ¢ € (0,00),

e stablyZ<|| e //</ prs(z — )dm)25o(W(s,y))dyds>

(ii) If & 7 0

(SIS

1
1.1 tabl 1 2
R\ hu(tn) Y 7 (2\@1@2@ I/ p%s<y>ao<w<s,y>>dyds) |

R
(iii) If T

1
11l stabl Lol 2
R™2tpu(tr) —>yZ<2H<PH%2(R)/ / p?_s(y)éo(W(s,y))dy%) :

Proof. Let us prove first the case (i). We have, with the change of variable f — x,

R/VEr
witr) =t [ o / / Pis(@ — Y)W (5,1))W (ds, dy)da.

{thm11}
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Consider the family of martingales

s [R/Vir
8/ //p1 s(x — tRW(s Y)W (ds, dy)dz,
R/\Tr

€ [0,1]. We can write

3
(M) = 1, [
oy
Then, as in the proof of Theorem we can show that (Mg(-,x)), converges in
LY(Q) as R — oo to the weighted local time

el [ ([ pesta y)dx)2 ol (5. ))dyds.

This completes the proof of (i).
If \/% — 0, with the change of variable x — Rx, we can write

3
/ /Pl s(@—y)p1—s(a’ *y)wz(tf%W(s,y))dydsdxd:c’.

1orbopl R 3
in(te) = Bty [ [ [ piso g - ek W s p)Wds dy)ds. 32)
-1Jo JR ViR
As before, the stochastic integral

s R 3
[ | pesose = oW s ) Wds. dyyie

converges in law to

1 3
2 (2l [ [ 2 b7 (s )

which implies (ii). To show (iii), we make the change of variable y — y\/% in i
to get

('.Q

n(tn) = R} / / / Pis(—m (@ — )L AW (3,)) WV (ds, dy)da

é/ //Rpg% (@~ W)W (5,)W (ds, dy)dz.

Finally the stochastic integral

[ ] [t - vietehw s s, anyis

converges in law as R — oo to

1 1 1
2 (2l [ [ 7R ha7 ()i

m\»—t
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The stable character of the convergence can be proved by the same arguments, based
on the conditional characteristic function, as in the proof of Theorem [I.3] U

4. Case of a nonlinear coefficient o

In this section we discuss the case of a nonlinear stochastic heat equation

ou 10%u *wW

8t 28$2+ ( )%, reR,t>0, (41)

with initial condition u(0, z) = 1, where o : R — R is a Lipschitz function. The mild
solution to equation (4.1]) is given by

u(t, @) =1+ /0 /R Pies (@ — y)o(uls, )W (ds, dy).

We are interested in the asymptotic behavior of u(t,z) as t tends to infinity. As
before we consider different cases:

Case 1. Suppose that o(u) = u. In this case, the solution has a Wiener chaos
expansion given by

U(t, x) =1 + Z/ / H Ds;— Si+1 (x’L - xi—‘rl) W(d817dx1) e W<d8n7dx7’b)

=1+ Z In(ft,x,n) ,

n>1
. 1
with ft,x,n(sly sy Sy Tl ey xn) = 1An(t)(817 ceey Sn) H? 0 psz—sz+1($ xl-i—l) Here
I, denotes the multiple stochastic integral of order n with respect to the noise W.

If we consider the projection of u(t,z) on a fixed Wiener chaos, we can write with
the change of variables s; — ts; and z; — v/ty;,

ft:pn / / t(1—s1) - 1)
Ap (1) n

X H pt(Sl 51+1 $1+1)W(td817 \/Ed-%l) ct e W(tdsn’ \/den)

3/ /nplsl — 1)

X H Dsi—siir (Ti — Tig1)W (tds1, Vidzy) - - W (tdsn, Viday).

{ecu7}
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By the scaling properties of the two-parameter Wiener process it follows that I, (f; z.n)
has the same law as

ft:cn = Sn/ /npl s1( — 1)

X H Psi—sisr (T — ip1)W(ds1, dxy) - - W(dsy, dxy).
As a consequence, t_E”In( ft,zn) converges stably to

/ /Hpsz o (@5 — T4 )W (dsr, day) - W (ds, doy),
Ap (1) n

where W is a two-parameter Wiener process independent of W and with the con-
vention sy = 1 and xy = 0.

Notice that the rate of convergence depends on the order of the Wiener chaos.
This is consistent with the asymptotic behavior of log u(t, z), when u(0,x) = do(z),
obtained by Amir, Corwin and Quastel in [1].

Case 2. When o is a Lipschitz function that belongs to L?(RR,), the problem is
much more involved. We can write

u(t, x) —1+/ /p1 s —y)a(u(ts,\/fy))W(tds,\/fdy).
Furthermore,
u(ts, Vty) _1+/S/pts (VY — z)o(u(r, z))W(dr, dz)
:1+7 | [ sty = hotuter, Vi)W, Vids),

By the scaling properties of the two-parameter Wiener process, as a function of W,
u(ts, v/ty) has the same law as

Vsg) =1+t [ [ b= 2ol 2) W, o)
0o Jr
Therefore, u(t, ) has the same law as
1
ito) =14t [ [ p( =)ol (s, p) W (ds.dy),
o Jr Vi
Then,

1 1 1 1 X -
A a(ta) = 0 1 /0 /R Pz = ) (0! (5. ) P (s, dy).
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The quadratic variation of the martingale part of the above stochastic integral is

é/ /p1 s t—y)02(1+tézt(s,y))d8dy

/ Ty / 2(€)50(Z4(s,y) + % — £t F)dedsdy
Vvt R

where Z!(s, y) satisfies
Zl(s,y) =t~ +tfz/ /ps_r(y—z)a(l—l—téZt(r, 2))W (dr, dz).
0 JR

We see that ¢~ seems to be the right normalization and the limit would satisfy an
equationvinvolving a weighted local time of the solution.
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