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Abstract. In this article, we study the asymptotic behavior of the stochastic
heat equation for large times.

1. Introduction and main results

Suppose that W = {W (t, x), t ≥ 0, x ∈ R} is a two-parameter Wiener process.
That is, W is a zero-mean Gaussian process with covariance function given by

E(W (t, x)W (s, y)) = (s ∧ t)(|x| ∧ |y|)1{xy>0}.

Consider the stochastic heat equation

∂u

∂t
=

1

2

∂2u

∂x2
+ ϕ(W (t, x))

∂2W

∂t∂x
, x ∈ R, t ≥ 0, (1.1) {ecu1}{ecu1}

where ϕ : R → R is a given Borel measurable function such that for each t ≥ 0 and
x ∈ R, ∫ t

0

∫

R2

p2t−s(x− y)ϕ2(z)ps|y|(z)dydzds < ∞. (1.2) {ecu2}{ecu2}

Along the paper pt(x) denotes the one-dimensional heat kernel, that is, pt(x) =

(2πt)−1/2e−x2/2t. The mild solution to equation (1.1) with initial condition u(0, x) =
0 is given by

u(t, x) =

∫ t

0

∫

R
pt−s(x− y)ϕ(W (s, y))W (ds, dy),

where the stochastic integral is well defined in view of condition (1.2).
We are interested in the asymptotic behavior as t → ∞ of u(t, x) for x ∈ R fixed.

Notice first that in the particular case where ϕ(x) ≡ c, then u(t, x) is a centered
Gaussian random variable with variance

E(u(t, x)2) = c2
∫ t

0

∫

R
p2t−s(x− y)dyds = c2

∫ t

0
p22(t−s)(0)ds =

c2√
π

√
t.
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Therefore t−
1
4u(t, x) has the law N(0, c2/

√
π). In the general case, using the change

of variables s → ts and y →
√
ty, we can write

u(t, x) =

∫ 1

0

∫

R
pt(1−s)(x− y)ϕ(W (ts, y))W (tds, dy)

=
1√
t

∫ 1

0

∫

R
p1−s(

x− y√
t

)ϕ(W (ts, y))W (tds, dy)

=
1√
t

∫ 1

0

∫

R
p1−s(

x√
t
− y)ϕ(W (ts,

√
ty))W (tds,

√
tdy). (1.3) {eq:1}{eq:1}

By the scaling properties of the two-parameter Wiener process it follows that u(t, x)
has the same law as

ũ(t, x) = t1/4
∫ 1

0

∫

R
p1−s(

x√
t
− y)ϕ(t3/4W (s, y))W (ds, dy). (1.4){ecu3}{ecu3}

The asymptotic behavior of u(t, x) will depend on the properties of the function
ϕ. We will consider three classes of functions for which different behaviors appear.
We are going to use the following notion of convergence, which is stronger that the
convergence in distribution (see, for instance, [6, Chapter 4]).

{d:stable}
Definition 1.1. Let {Fn} be a sequence of random variables defined on a probability
space (Ω,F , P ). Let F be a random variable defined on some extended probability
space (Ω′,F ′, P ′). We say that Fn converges stably to F , written Fn

stably−→ F , if

lim
n→∞

E
[
GeiλFn

]
= E′

[
GeiλF

]
, (1.5){e:stable}{e:stable}

for every λ ∈ R and every bounded F–measurable random variable G.

The first theorem deals with the case where ϕ is an homogeneous type function.
{thm1b}

Theorem 1.2. Suppose that ϕ : R → R, is a measurable and bounded on compacts
function such that limx→±∞ |x|−αϕ(x) = c± for some constants c+, c− and α ≥ 0.
Then, as t → ∞,

t−
3α+1

4 u(t, x)
stably−→ c−

∫ 1

0

∫

R
p1−s(y)|Ŵ (s, y)|α1{Ŵ (s,y)<0}Ŵ (ds, dy)

+ c+

∫ 1

0

∫

R
p1−s(y)|Ŵ (s, y)|α1{Ŵ (s,y)>0}Ŵ (ds, dy),

Note that in the case that c+ = c− and α = 0 then the limit is Gaussian. Note
that one may also consider the case limx→−∞ |x|±α±ϕ(x) = c± for some constants

c+, c−, α+, α− ≥ 0. In this case the renormalization factor is t−
3(α+∨α−)+1

4 and the
limit will only have contributions from the largest αi = α+ ∨ α−.

In the second theorem we consider the case were ϕ satisfies some integrability
properties with respect to the Lebesgue measure on R. The limit involves a weighted
local time of the two-parameter Wiener process and the proof has been inspired by
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the work of Nualart and Xu [8] on the central limit theorem for an additive functional
of the fractional Brownian motion.

{thm2}
Theorem 1.3. Suppose that ϕ ∈ L2(R) ∩ Lp(R) for some p < 2. Then, as t → ∞,

t
1
8u(t, x)

stably−→ Z

(∫ 1

0

∫

R
p21−s(y)δ0(Ŵ (s, y))dyds

) 1
2

‖ϕ‖L2(R),

where Ŵ is a two-parameter Wiener process independent, Z is a N(0, 1) random
variable and Ŵ , W and Z are independent.

In Theorem 1.3, L0,1 :=
∫ 1
0

∫
R p21−s(y)δ0(Ŵ (s, y))dyds is a weighted local time of

the random field Ŵ , that can be defined (see Lemma 2.1 below) as the limit in L2(Ω)
of

Lε
0,1 :=

∫ 1

0

∫

R
p21−s(y)pε(Ŵ (s, y))dyds,

as ε tends to zero.
The paper is organized as follows. Section 2 contains the proofs of the above

theorems and in Section 3 we discuss an extension of these results in the case where
we consider also space averages on an interval [−R,R] and both R and t tend to
infinity.

2. Proofs

Proof of Theorem 1.2: We know that t−
3α+1

4 u(t, x) has the same law as

v(x) := t−
3α
4

∫ 1

0

∫

R
p1−s(

x√
t
− y)ϕ(t3/4W (s, y))W (ds, dy).

Therefore, we only have to show the stable convergence, with the limit defined as the
stochastic integral with respect to an independent two-parameter Wiener process.

We divide the study of v into two parts according to the boundedness on compacts
property for ϕ. In fact, for any compact K consider ϕK(x) = ϕ(x)1x∈K . Then we
will prove that vK(x) → 0 in L2(Ω) where

vK(x) := t−
3α
4

∫ 1

0

∫

R
p1−s(

x√
t
− y)ϕK(t3/4W (s, y))W (ds, dy).

In fact, as ϕK is bounded by a constant, say M , we have

E[v2K(x)] ≤ M2t−
3α
2

∫ 1

0
(1− s)−1/2

∫

R
p1−s(

x√
t
− y)P(t3/4W (s, y) ∈ K)dsdy.

The above quantity clearly converges to zero if one considers separately the cases
α > 0 and α = 0.

Given the above result, we can assume without loss of generality that ϕ(x) =
f(x)|x|α with a bounded measurable function f such that limx→±∞ f(x) = c±.
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For this, we fix t0 > 0 and compute the conditional characteristic function of
t−

3α+1
4 u(t, x) given Ft0 , where t > t0 and {Ft, t ≥ 0} denotes the natural filtration

of the two-parameter Wiener process used in the definition of u1 W . For any λ ∈ R,
we have

E
[
eiλt

− 3α+1
4 u(t,x)|Ft0

]
= eiλt

− 3α+1
4

∫ t0
0

∫
R pt−s(x−y)ϕ(W (s,y))W (ds,dy)

× E
[
e
iλt−

3α+1
4

∫ t
t0

∫
R pt−s(x−y)ϕ(W (s,y))W (ds,dy)|Ft0

]

=: eiλAt ×Bt.

It is easy to show that limt→∞At = 0 in L2(Ω) as t → ∞. In fact, using the rescaling
properties we obtain that as t → ∞

t−
3α+1

2 E
[∫ t0

0

∫

R
pt−s(x− y)2ϕ(W (s, y))2dsdy

]

≤‖f‖2∞E

[∫ t0/t

0

∫

R
p1−s(

x√
t
− y)2|W (s, y)|2αdsdy

]
→ 0.

Now, we continue with the term Bt for which we will use the decomposition

W (s, y) = W (s, y)−W (t0, y) +W (t0, y),

=: Ŵ (s− t0, y) +W (t0, y).

Then, we can write

Bt = Ê
[
exp

(
iλt−

3α+1
4

∫ t−t0

0

∫

R
pt−t0−s(x− y)ϕ(Ŵ (s, y) +W (t0, y))Ŵ (ds, dy)

)]
,

where Ê denotes the mathematical expectation with respect to the two-parameter
Wiener process Ŵ . By the same renormalization arguments as in (1.3) leading to
(1.4), this gives

Bt = Ê

[
exp

(
iλ

(
t− t0

t

) 3α+1
4

∫ 1

0

∫

R
p1−s(

x√
t− t0

− y)F (t, s, y)Ŵ (ds, dy)

)]
.

Here

F (t, s, y) := f((t− s0)
3/4(Ŵ (s, y) + (t− t0)

− 3
4W (t0,

√
t− t0y)))

× |Ŵ (s, y) + (t− t0)
− 3

4W (t0,
√
t− t0y)|α.

As t → ∞, Bt converges almost surely to Probably more detailed should be added
here

Ê
[
exp

(
iλ

∫ 1

0

∫

R
p1−s(y)Fα(Ŵ (s, y))Ŵ (ds, dy)

)]
,

1That is, Ft is generated by W (s, x), s ≤ t, x ∈ R.
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where Fα(x) = c+1x>0 + c−1x<0. Then the above formula is the characteristic
function of v(0) . As a consequence, for every bounded Ft0 measurable random
variable G we obtain

lim
t→∞

E[Geiλt
− 3α+1

4 u(t,x)] = E[G]E[eiλv(0)].

This can be extended to any bounded random variable G measurable with respect
to the two-parameter Wiener process W and this provides the desired stable conver-
gence in the sense of Definition 1.1. �

For the proof of Theorem 1.3, we need the following lemma on the existence of the
weighted local time L0,r.

{lem1}
Lemma 2.1. For any r ∈ [0, 1], the limit in L2(Ω), as ε tends to zero, of

Lε
0,r :=

∫ r

0

∫

R
p21−s(y)pε(W (s, y))dyds,

exists and will be denoted by L0,r :=
∫ r
0

∫
R p21−s(y)δ0(W (s, y))dyds.

Proof. Using the inverse Fourier transform formula for a Gaussian law, we have

Lε
0,r =

1

2π

∫ r

0

∫

R2

p21−s(y)e
iξW (s,y)− ε2

2
ξ2dξdyds.

Therefore,

E(Lε
0,rL

ε′
0,r) = (2π)−2

∫ r

0

∫ r

0

∫

R4

p21−s(y)p
2
1−s′(y

′)

× E
(
eiξW (s,y)− ε2

2
ξ′2−iξ′W (s′,y′)− ε′2

2
ξ′2
)
dξdydξ′dy′ ds′ds

= (2π)−2

∫ r

0

∫ r

0

∫

R4

p21−s(y)p
2
1−s′(y

′)e−
ε2

2
ξ2− ε′2

2
ξ′2

× e−
1
2
E(|ξW (s,y)−ξ′W (s′,y′)|2)dξdydξ′dy′ ds′ds.

As ε and ε′ tend to zero we obtain the limit∫ 1

0

∫ 1

0

∫

R2

p21−s(y)p
2
1−s′(y

′)f(s, y, s′, y′)dydy′ ds′ds,

where f(s, y, s′, y′) is the density at (0, 0) of the random vector (W (s, y),W (s′, y′)),
which is bounded by

(2π)−1
(
ss′|y||y′| − (s ∧ s′)2(|y| ∧ |y′|)21{yy′>0}

)− 1
2 .

Then, it is easy to check I do not see as so easy maybe a hint should be added here.
In particular for the case yy′ > 0 that∫ 1

0

∫ 1

0

∫

R2

p21−s(y)p
2
1−s′(y

′)f(s, y, s′, y′)dydy′ ds′ds < ∞,

and this allows us to conclude the proof of the lemma. �
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Proof of Theorem 1.3: Consider the random variable ũ(t, x) defined in (1.4). We can
put ũ(t, x) = t−

3
8Mt(1, x), where for r ∈ [0, 1],

Mt(r, x) := t
3
8

∫ r

0

∫

R
p1−s(

x√
t
− y)ϕ(t3/4W (s, y))W (ds, dy).

Then {Mt(·, x), t ≥ 0} is a family of continuous martingales in the time interval [0, 1].
We will find the limit as t → ∞ of the quadratic variation of these martingales. We
have

〈Mt(·, x)〉r = t
3
4

∫ r

0

∫

R
p21−s(

x√
t
− y)ϕ2(t

3
4W (s, y))dsdy.

The proof of the theorem will be done in several steps.

Step 1. In this step we prove that 〈Mt(·, x)〉r converges in L1(Ω) to the weighted
local time L0,r. First, we claim that

lim
t→∞

E
(∣∣∣∣〈Mt(·, x)〉r − t

3
4

∫ r

0

∫

R
p21−s(y)ϕ

2(t
3
4W (s, y))dsdy

∣∣∣∣
)

= 0. (2.1){ecu6}{ecu6}

This follows from the fact that

E
(
t
3
4ϕ2(t

3
4W (s, y))

)
≤ ‖ϕ‖22(2πs|y|)−

1
2

and

lim
t→∞

∫ r

0

∫

R

∣∣∣∣p21−s(
x√
t
− y)− p21−s(y)

∣∣∣∣
1√
s|y|

dyds = 0.

On the other hand, for any fixed t, we have

lim
ε→0

Jε,t = 0, (2.2){ecu5}{ecu5}

where

Jε,t = E
(∣∣∣t 3

4

∫ r

0

∫

R
p21−s(y)ϕ

2(t
3
4W (s, y))dsdy

−
∫ r

0

∫

R
p21−s(y)

∫

R
ϕ2(ξ)p

εt−
3
4
(W (s, y)− t−

3
4 ξ)dξdsdy

∣∣∣
)
.

Notice that ∫ r

0

∫

R
p21−s(y)

∫

R
ϕ2(ξ)p

εt−
3
4
(W (s, y)− t−

3
4 ξ)dξdsdy

=

∫ r

0

∫

R
p21−s(y)

∫

R
ϕ2(ξ)p

εt−
3
4
(W (s, y)− t−

3
4 ξ)dξdsdy

= t
3
4

∫ r

0

∫

R
p21−s(y)

∫

R
ϕ2(ξ)pε(t

3
4W (s, y)− ξ)dξdsdy

= t
3
4

∫ r

0

∫

R
p21−s(y)(ϕ

2 ∗ pε)(t
3
4W (s, y))dsdy.
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Therefore

Jε,t = E
(∣∣∣∣t

3
4

∫ r

0

∫

R
p21−s(y)(ϕ

2 − ϕ2 ∗ pε)(t
3
4W (s, y))dsdy

∣∣∣∣
)

≤ t
3
4

∫ r

0

∫

R
p21−s(y)E(|(ϕ2 − ϕ2 ∗ pε)(t

3
4W (s, y))|)dsdy

≤ ‖ϕ2 − ϕ2 ∗ pε‖L1(R)

∫ r

0

∫

R
p21−s(y)(2πs|y|)−

1
2dyds,

which converges to zero as ε tends to zero because
∫ r
0

∫
R p21−s(y)(2πs|y|)−

1
2dyds < ∞

and ϕ ∈ L2(R).
We also claim that

lim
t→∞

sup
ε>0

Iε,t = 0, (2.3) {ecu4}{ecu4}

where

Iε,t = E
(∣∣∣

∫ r

0

∫

R2

p21−s(y)ϕ
2(ξ)p

εt−
3
4
(W (s, y)− t−

3
4 ξ)dξdyds

− ‖ϕ‖22
∫ r

0

∫

R
p21−s(y)pε(W (s, y))dyds

∣∣∣
2)

.

To show (2.3), we write

Iε,t = (2π)−2E



∣∣∣∣∣
∫ r

0

∫

R2

p21−s(y)ϕ
2(ξ)

∫

R
eiηW (s,y)− ε2t

− 3
2

2
η2(eiηt

− 3
4 ξ − 1)dηdξdyds

∣∣∣∣∣
2



= (2π)−2

∫

[0,r]2

∫

R4

p21−s(y)p
2
1−s′(y

′)ϕ2(ξ)ϕ2(ξ′)

×
∫

R2

e−
1
2
E(|ηW (s,y)−η′W (s′,y′)|2)e−

ε2t
− 3

2
2

(η2+η′2)

× (eiηt
− 3

4 ξ − 1)(e−iη′t−
3
4 ξ′ − 1)dηdη′dξdξ′dydy′dsds′,

which leads to the estimate

sup
ε>0

Iε,t ≤ (2π)−2

∫

[0,r]2

∫

R4

p21−s(y)p
2
1−s′(y

′)ϕ2(ξ)ϕ2(ξ′)

×
∫

R2

e−
1
2
E(|ηW (s,y)−η′W (s′,y′)|2)

(
|ηξη′ξ′|βt−

3
4
β ∧ 4

)
dηdη′dξdξ′dydy′dsds′,

for any β ∈ [0, 1]. Then, by the dominated convergence theorem, the limit (2.3)
follows from∫

[0,r]2

∫

R4

p21−s(y)p
2
1−s′(y

′)

∫

R2

e−
1
2
E(|ηW (s,y)−η′W (s′,y′)|2)dηdη′dydy′dsds′ < ∞,

which can be easily proved using the fact that (2π)−2
∫
R2 e

− 1
2
E(|ηW (s,y)−η′W (s′,y′)|2)dηdη′

is the density at (0, 0) of the random vector (W (s, y),W (s′, y′)).
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By Lemma 2.1 below,
∫ r
0

∫
R p21−s(y)pε(W (s, y))dyds converges in L2(Ω) as t → ∞

to the weighted local time L0,r. As a consequence, from (2.1), (2.2), (2.3) and
Lemma 2.1 we deduce that 〈Mt(·, x)〉r converges in L1(Ω) to the weighted local time
L0,r =

∫ r
0

∫
R p21−s(y)δ0(W (s, y))dyds. �

Step 2. Fix an orthonormal basis {ei, i ≥ 1} of L2(R) formed by bounded functions
and consider the martingales

M i(r) =

∫ r

0

∫

R
ei(y)W (ds, dy), r ∈ [0, 1].

We claim that the joint quadratic variation 〈Mt(·, x),M i〉r converges to zero in L1(Ω)
as t → ∞. Indeed,

〈Mt(·, x),M i〉r = t
3
8

∫ r

0

∫

R
p1−s(

x√
t
− y)ei(y)ϕ(t

3
4W (s, y))dyds.

Then,

E(|〈Mt(·, x),M i〉r|) ≤ t
3
8

∫ r

0

∫

R
p1−s(

x√
t
− y)ei(y)E(|ϕ(t

3
4W (s, y))|)dyds

≤ t
3
8

∫ r

0

∫

R
p1−s(

x√
t
− y)ei(y)

∫

R
|ϕ(z)| 1√

2πt
3
2 s|y|

e
− z2

2t
3
2 s|y|dzdyds

≤ t
3
8
− 3

4p ‖ei‖∞‖ϕ‖Lp(R)

∫ r

0

∫

R
p1−s(

x√
t
− y)(s|y|)−

1
2pdyds,

where 1
p + 1

q = 1. Then, the claim follows because 3
8 − 3

4p < 0 for p ∈ (1, 2) and
∫ r

0

∫

R
p1−s(

x√
t
− y)(s|y|)−

1
2pdyds < ∞.

Step 3. Given a sequence tn ↑ ∞, set Mn
0,r = Mtn(r, x) and Mn

i,r = M i(r) for
i ≥ 1. These martingales, after possibly enlarging the probability space, possess
Dambis-Dubins-Schwarz Brownian motions βn

i , such that

Mn
0,r = βn

0,〈Mn
0 〉r

and
Mn

i,r = βn
i,r

∫
R ei(y)2dy

, i ≥ 1.

We have proved in Step 2 that supr∈[0,1] |〈Mn
i ,M

n
0 〉r| → 0 in probability as n → ∞.

Moreover, it is clear that for any 1 ≤ i < j, 〈Mn
i ,M

n
j 〉r = 0. Then, by the asymptotic

Ray-Knight theorem [9], we conclude that the Brownian motions βn
i,y, i ≥ 0, converge

in law to a family of independent Brownian motions βi,y, i ≥ 0. Together with Step
1, we obtain that Mtn(r, x) converges weakly as n → ∞ to β0,L0,r‖ϕ‖22(R)

, where the

Brownian motion β0 is independent of the stochastic integrals {
∫ r
0 ei(y)W (ds, dy), r ∈

[0, 1], i ≥ 1}, that is, β0 is independent of the white noise W on [0, 1]×R. Thus, we
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have proved the convergence in law of (Ŵ , t
3
8 ũ(t, x)) to (Ŵ , β0,L0,1‖ϕ‖22(R)

) as t → ∞,

where L0,1 =
∫ 1
0

∫
R p21−s(y)δ0(Ŵ (s, y))dyds and β0 is independent of Ŵ . The role of

Ŵ has to be better explained It remains to show the independence of (β0, Ŵ ) and
W . For this we use the method of characteristic functions as in the proof of Theorem
1.2.

Step 4. Fix λ ∈ R and t0 ≥ 0. We follow a similar argument as in the proof of
Theorem 1.2. In fact, we can write

E
[
eiλt

1
8 u(t,x)

]
= eiλt

1
8
∫ t0
0

∫
R pt−s(x−y)ϕ(W (s,y))W (ds,dy)

× E
[
e
iλt

1
8
∫ t
t0

∫
R pt−s(x−y)ϕ(W (s,y))W (ds,dy)|Ft0

]

=: At ×Bt.

As before, it is easy to show that limt→∞At = 1 in L2(Ω). On the other hand, with
the decomposition

W (s, y) = W (s, y)−W (t0, t) +W (t0, y),

for the term Bt, we can write

Bt = Ê
[
exp

(
iλt

1
8

∫ t−t0

0

∫

R
pt−t0−s(x− y)ϕ(Ŵ (s, y) +W (t0, y))Ŵ (ds, dy)

)]
,

where Ê denotes the mathematical expectation with respect to the two-parameter
Wiener process Ŵ . By the same arguments as before, this leads to

Bt = Ê

[
exp

(
(iλt

1
8 (t− t0)

1
4

∫ 1

0

∫

R
p1−s(

x√
t− t0

− y)

× ϕ(Ŵ ((t− t0)s,
√
t− t0y) + (t− t0)

− 3
4W (t0,

√
t− t0y))Ŵ (ds, dy)

)]
.

As t → ∞, Bt converges almost surely to

Ê
[
exp

(
iλβ0,L0,1‖ϕ‖22(R)

)]
.

As a consequence, for every bounded and Ft0 measurable random variable G we
obtain

lim
t→∞

E[G exp
(
iλt

1
8u(t, x)

)
] = E[G]E

[
exp

(
iλβ0,L0,1‖ϕ‖22(R)

)]
.

This completes the proof. �
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3. Large times and space averages

The asymptotic behavior of the spacial averages
∫ R
−R u(t, x)dx as R → ∞ has been

recently studied in the references [4, 5, 3]. In these papers u(t, x) is the solution to
a stochastic partial differential equation with initial condition u(0, x) = 1 and a
Lipschitz nonlinearity σ(u). The solution process is stationary in x ∈ R and the
limit is Gaussian with a proper normalization. In the case considered here, the lack
of stationarity creates different limit behaviors. In order to have a more complete
picture of the problem, we will consider the case where both R and t tend to infnity.

Set

uR(t) =

∫ R

−R

∫ t

0

∫

R
pt−s(x− y)ϕ(W (s, y))W (ds, dy)dx.

As before, uR(t) has the same law as

ũR(t) = t
1
4

∫ R

−R

∫ 1

0

∫

R
p1−s(

x√
t
− y)ϕ(t

3
4W (s, y))W (ds, dy)dx.

Consider first the case where ϕ is an homogeneous function.
{thm1a}

Theorem 3.1. Suppose that ϕ(x) = |x|α for some α > 0. Suppose that tR → ∞ as
R → ∞. Then, with Ŵ is a two-parameter Wiener process independent of W , the
following stable convergences hold true:

(i) If R√
tR

→ c, with c ∈ (0,∞),

t
− 3

4
(α+1)

R u(tR)
stably−→

∫ c

−c

∫ 1

0

∫

R
p1−s(x− y)|Ŵ (s, y))|αŴ (ds, dy)dx.

(ii) If R√
tR

→ 0,

R−1t
− 3α+1

4
R u(tR)

stably−→ 2

∫ 1

0

∫

R
p1−s(y)|Ŵ (s, y))|αŴ (ds, dy)dx.

(iii) If R√
tR

→ ∞,

R−α+1
2 t

−α+1
2

R u(tR)
stably−→

∫ 1

−1

∫ 1

0
|Ŵ (s, y)|αŴ (ds, dy).

Proof. We have, with the change of variable x√
tR

→ x,

ũR(tR) = t
3α+1

4
+ 1

2
R

∫ R/
√
tR

−R/
√
tR

∫ 1

0

∫

R
p1−s(x− y)|W (s, y)|αW (ds, dy)dx,

and (i) follows by letting R → ∞. If R√
tR

→ 0, with the change of variable x → Rx,
we can write

ũR(tR) = Rt
3α+1

4
R

∫ 1

−1

∫ 1

0

∫

R
p1−s(x

R√
tR

− y)|W (s, y)|αW (ds, dy)dx, (3.1){eq1}{eq1}
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which implies (ii). The proof of (iii) is more involved. Making the change of variable
y → y R√

tR
in (3.1) yields

ũR(tR) = R
α+3
2 t

α
2
R

∫ 1

−1

∫ 1

0

∫

R
p1−s(

R√
tR

(x− y))|W (s, y)|αW (ds, dy)dx

= R
α+1
2 t

α+1
2

R

∫ 1

−1

∫ 1

0

∫

R
p tR

R2 (1−s)
(x− y)|W (s, y)|αW (ds, dy)dx.

Finally the stochastic integral
∫ 1

−1

∫ 1

0

∫

R
p tR

R2 (1−s)
(x− y)|W (s, y)|αW (ds, dy)dx

converges in L2(Ω) as R → ∞ to
∫ 1

−1

∫ 1

0
|W (s, y)|αW (ds, dy).

The stable character of the convergence can be proved by the same arguments, based
on the conditional characteristic function, as in the proof of Theorem 1.2. �

For a function which satisfies integrability conditions with respect to the Lebesgue
measure, we have.

{thm11}
Theorem 3.2. Suppose that ϕ(x) ∈ L2(R). Suppose that tR → ∞ as R → ∞. Then,
with Z a N(0, 1) random variable and Ŵ an independent two-parameter Wiener
process such that (Z, Ŵ ) are independent of W , the following stable convergences
hold true:

(i) If R√
tR

→ c, with c ∈ (0,∞),

t
− 3

8
R u(tR)

stably−→ Z

(
‖ϕ‖2L2(R)

∫ 1

0

∫

R

(∫ c

−c
p1−s(x− y)dx

)2

δ0(W (s, y))dyds

) 1
2

.

(ii) If R√
tR

→ 0,

R−1t
1
2
Ru(tR)

stably−→ Z

(
2‖ϕ‖2L2(R)

∫ 1

0

∫

R
p21−s(y)δ0(W (s, y))dyds

) 1
2

.

(iii) If R√
tR

→ ∞,

R− 1
2 t

1
4
Ru(tR)

stably−→ Z

(
2‖ϕ‖2L2(R)

∫ 1

0

∫ 1

−1
p21−s(y)δ0(W (s, y))dyds

) 1
2

.

Proof. Let us prove first the case (i). We have, with the change of variable x√
tR

→ x,

ũR(tR) = t
3
4
R

∫ R/
√
tR

−R/
√
tR

∫ 1

0

∫

R
p1−s(x− y)ϕ(t

3
4
RW (s, y))W (ds, dy)dx.
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Consider the family of martingales

MR(·, x) = t
3
8
R

∫ R/
√
tR

−R/
√
tR

∫ ·

0

∫

R
p1−s(x− y)ϕ(t

3
4
RW (s, y))W (ds, dy)dx,

r ∈ [0, 1]. We can write

〈MR(·, x)〉r = t
3
4
R

∫

[− R√
tR

, R√
tR

]2

∫ r

0

∫

R
p1−s(x−y)p1−s(x

′−y)ϕ2(t
3
4
RW (s, y))dydsdxdx′.

Then, as in the proof of Theorem 1.3, we can show that 〈MR(·, x)〉r converges in
L1(Ω) as R → ∞ to the weighted local time

‖ϕ‖2L2(R)

∫ r

0

∫

R

(∫ c

−c
p1−s(x− y)dx

)2

δ0(W (s, y))dyds.

This completes the proof of (i).
If R√

tR
→ 0, with the change of variable x → Rx, we can write

ũR(tR) = Rt
1
4
R

∫ 1

−1

∫ 1

0

∫

R
p1−s(x

R√
tR

− y)ϕ(t
3
4
RW (s, y))W (ds, dy)dx. (3.2){eq2}{eq2}

As before, the stochastic integral

t
3
4
R

∫ 1

−1

∫ 1

0

∫

R
p1−s(x

R√
tR

− y)ϕ(t
3
4
RW (s, y))W (ds, dy)dx

converges in law to

Z

(
2‖ϕ‖2L2(R)

∫ 1

0

∫

R
p21−s(y)δ0(W (s, y))dyds

) 1
2

,

which implies (ii). To show (iii), we make the change of variable y → y R√
tR

in (3.2)
to get

ũR(tR) = R
3
2

∫ 1

−1

∫ 1

0

∫

R
p1−s(

R√
tR

(x− y))ϕ(t
3
4
RW (s, y))W (ds, dy)dx

= R
1
2 t

1
2
R

∫ 1

−1

∫ 1

0

∫

R
p tR

R2 (1−s)
(x− y)ϕ(t

3
4
RW (s, y))W (ds, dy)dx.

Finally the stochastic integral

t
3
4
R

∫ 1

−1

∫ 1

0

∫

R
p tR

R2 (1−s)
(x− y)ϕ(t

3
4
RW (s, y))W (ds, dy)dx

converges in law as R → ∞ to

Z

(
2‖ϕ‖2L2(R)

∫ 1

0

∫ 1

−1
p21−s(y)δ0(W (s, y))dyds

) 1
2

.



ASYMPTOTIC PROPERTIES 13

The stable character of the convergence can be proved by the same arguments, based
on the conditional characteristic function, as in the proof of Theorem 1.3. �

4. Case of a nonlinear coefficient σ

In this section we discuss the case of a nonlinear stochastic heat equation

∂u

∂t
=

1

2

∂2u

∂x2
+ σ(u)

∂2W

∂t∂x
, x ∈ R, t ≥ 0, (4.1) {ecu7}{ecu7}

with initial condition u(0, z) = 1, where σ : R → R is a Lipschitz function. The mild
solution to equation (4.1) is given by

u(t, x) = 1 +

∫ t

0

∫

R
pt−s(x− y)σ(u(s, y))W (ds, dy).

We are interested in the asymptotic behavior of u(t, x) as t tends to infinity. As
before we consider different cases:

Case 1. Suppose that σ(u) = u. In this case, the solution has a Wiener chaos
expansion given by

u(t, x) = 1 +
∑
n≥1

∫

Rn

∫

∆n(t)

n−1∏
i=0

psi−si+1(xi − xi+1) W (ds1, dx1) · · ·W (dsn, dxn)

=: 1 +
∑
n≥1

In(ft,x,n) ,

with ft,x,n(s1, . . . , sn, x1, . . . , xn) = 1∆n(t)(s1, . . . , sn)
∏n−1

i=0 psi−si+1(xi − xi+1). Here
In denotes the multiple stochastic integral of order n with respect to the noise W .
If we consider the projection of u(t, x) on a fixed Wiener chaos, we can write with
the change of variables si → tsi and xi →

√
tyi,

In(ft,x,n) =

∫

∆n(1)

∫

Rn

pt(1−s1)(
x√
t
− x1)

×
n−1∏
i=1

pt(si−si+1)(xi − xi+1)W (tds1,
√
tdx1) · · ·W (tdsn,

√
tdxn)

= t−
n
2

∫

∆n(1)

∫

Rn

p1−s1(
x√
t
− x1)

×
n−1∏
i=1

psi−si+1(xi − xi+1)W (tds1,
√
tdx1) · · ·W (tdsn,

√
tdxn).
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By the scaling properties of the two-parameter Wiener process it follows that In(ft,x,n)
has the same law as

Ĩn(ft,x,n) := t
3n
4

∫

∆n(1)

∫

Rn

p1−s1(
x√
t
− x1)

×
n−1∏
i=1

psi−si+1(xi − xi+1)W (ds1, dx1) · · ·W (dsn, dxn).

As a consequence, t−
3
4
nIn(ft,x,n) converges stably to

∫

∆n(1)

∫

Rn

n−1∏
i=0

psi−si+1(xi − xi+1)Ŵ (ds1, dx1) · · · Ŵ (dsn, dxn),

where Ŵ is a two-parameter Wiener process independent of W and with the con-
vention s0 = 1 and x0 = 0.

Notice that the rate of convergence depends on the order of the Wiener chaos.
This is consistent with the asymptotic behavior of log u(t, x), when u(0, x) = δ0(x),
obtained by Amir, Corwin and Quastel in [1].

Case 2. When σ is a Lipschitz function that belongs to L2(R, γ), the problem is
much more involved. We can write

u(t, x) = 1 +
1√
t

∫ 1

0

∫

R
p1−s(

x√
t
− y)σ(u(ts,

√
ty))W (tds,

√
tdy).

Furthermore,

u(ts,
√
ty) = 1 +

∫ ts

0

∫

R
pts−r(

√
y − z)σ(u(r, z))W (dr, dz)

= 1 +
1√
t

∫ s

0

∫

R
ps−r(y − z)σ(u(tr,

√
tz))W (tdr,

√
tdz).

By the scaling properties of the two-parameter Wiener process, as a function of Ŵ ,
u(ts,

√
ty) has the same law as

vt(s, y) = 1 + t
1
4

∫ s

0

∫

R
ps−r(y − z)σ(vt(r, z)))Ŵ (dr, dz).

Therefore, u(t, x) has the same law as

ũ(t, x) = 1 + t
1
4

∫ 1

0

∫

R
p1−s(

x√
t
− y)σ(vt(s, y))Ŵ (ds, dy).

Then,

t−
1
6 ũ(t, x) = t−

1
6 + t

1
12

∫ 1

0

∫

R
p1−s(

x√
t
− y)σ(vt(s, y))Ŵ (ds, dy).
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The quadratic variation of the martingale part of the above stochastic integral is

t
1
6

∫ 1

0

∫

R
p21−s(

x√
t
− y)σ2(1 + t

1
6Zt(s, y))dsdy

=

∫ 1

0

∫

R
p21−s(

x√
t
− y)

∫

R
σ2(ξ)δ0(Z

t(s, y) + t−
1
6 − ξt−

1
6 )dξdsdy

where Zt(s, y) satisfies

Zt(s, y) = t−
1
6 + t

1
12

∫ s

0

∫

R
ps−r(y − z)σ(1 + t

1
6Zt(r, z)))Ŵ (dr, dz).

We see that t−
1
6 seems to be the right normalization and the limit would satisfy an

equationvinvolving a weighted local time of the solution.
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