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Abstract: Let X = {X,,},ez be zero-mean stationary Gaussian sequence of random variables with
covariance function p satisfying p(0) = 1. Let ¢ : R — R be a function such that E[¢(X()?] < oo
and assume that ¢ has Hermite rank d > 1. The celebrated Breuer-Major theorem asserts that, if
> ez 1p(r)|¢ < oo then the finite dimensional distributions of ﬁ ZZLZ'OJ_l ©(X;) converge to those
of o W, where W is a standard Brownian motion and o is some (explicit) constant. Surprisingly,
and despite the fact this theorem has become over the years a prominent tool in a bunch of different
areas, a necessary and sufficient condition implying the weak convergence in the space D([0,1]) of
cadlag functions endowed with the Skorohod topology is still missing. Our main goal in this paper is
to fill this gap. More precisely, by using suitable boundedness properties satisfied by the generator
of the Ornstein-Uhlenbeck semigroup, we show that tightness holds under the sufficient (and almost
necessary) natural condition that E[|¢(X()|P] < oo for some p > 2.

1 Introduction

Consider a zero-mean stationary Gaussian sequence of random variables X = {X,},ez
with covariance function E[X, X,,] = p(|n —m|) such that p(0) = 1. Let v = N(0,1) be the
standard Gaussian measure on R. Consider a function ¢ € L?(R, ) of Hermite rank d > 1,
that is, ¢ has a series expansion given by

QD(-%) = ZCqu(x)v Cd 7& 07 (11)
q=d

where H(x) is the gth Hermite polynomial with leading coefficient 1.
A classical central limit theorem, proved by Breuer and Major in [3], asserts that under

the condition
D lo(k)|4 < oo, (1.2)
keZ

the finite-dimensional distributions of the process

nt]—1

L
V)= = 3 elX). tel0] (13)
=0

converge to those of W as n tends to infinity, where W = {W} },¢(0 1] is a standard Brownian

motion and -~
S Z q!cg Z p(k). (1.4)
q=d kEZ
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Observe that |p(k)| = |E[XxXo]| < p(0) = 1 by Cauchy-Schwarz, and thus o is well defined
under the integrabilility assumption (1.2) imposed on p. We also refer the reader to [7,
Chapter 7], where a modern proof of the Breuer-Major theorem is given, by means of the
recent Malliavin-Stein approach.

What about the functional convergence, that is, convergence in law of Y,, to ¢W in the
space D([0, 1]) endowed with the Skorohod topology? The best-to-date available criterion
ensuring tightness for Y;, is due to Ben Hariz [1] and Chambers and Slud [4] (the former
being only a slight improvement with respect to the latter*), in the simpler situation where
sums are replaced by integrals and convergences are understood in the space C([0,1]) of
continuous functions endowed with the uniform topology. Transformed into our setting, the
criterion in [1, 4] reads as follows®: tightness holds provided there exists R > 1 such that

>~ Vil (wor) e (15)

keZ

But, in our opinion, condition (1.5) is not meaningfull, for at least three reasons: (i) it is
not very natural, (ii) it is far from being optimal, and (ii7) it may be difficult to check it
in practice, especially when the computation of the Hermite coefficients ¢, appears to be
tricky or even impossible. Moreover, the proof given in [1, 4] / of the fact that (1.5) implies
tightness can be simplified a lot, by proceeding as follows. Let us first recall that tightness
in D([0,1]) holds if their exist p > 2 and ¢ > 0 such that, for all n,

n — |ns 1/2
W) = (ol < o (P T 0 saci (16)

(see Lemma 3.1 below). Here, we have

[nt]—1

HYn(t)_Yn(S)HLP(Q) == ZCQ\F ZJ

Lr(Q)
00 [nt|—
< Slal|—= Z . (17)
q=d z |ns] Lr(Q)

[nt]— 1 (

At this stage, a crucial observation is that > i=(ns] X;) belongs to the gth Wiener chaos,

where all LP(2)-norms are equivalent by hypercontractivity. More precisely,

[nt]—1 [nt]—1
g
1= |_nsJ LP(Q) i= I_nsj LQ(Q)
“Chambers and Slud criterion corresponds to Ben Hariz criterion (1.5) with R = 2 and without the terms

ZkEZ |o(k)|? all bounded by (1.2).

®Compared to [1], condition (1.5) is stated here with /gl instead of (v/g!)™! (since we work here with
Hermite polynomials with leading coefficient 1) and with sums replacing integrals (since we work here in a
discrete framework).



see, e.g., [7, Corollary 2.8.14]. The interest of the right-hand side of (1.8) with respect to the
left-hand side is that the former is straightforward to calculate and to estimate, as follows:

Int]—1 2

=Y m| < S e
i=|ns] L2(9) kEZ

By plugging this into (1.8) and then into (1.7), we obtain

nt] — [ns|\/? & q :
90 = Yl < () TS - 2 v (Z\pw)rq) ,
q=d

kEZ

implying in turn that (1.6) is satisfied (and then tightness) under (1.5) with R = /p — 1 > 1.

As we have just seen, the criterion (1.5) of [1, 4] for tightness is actually not so difficult to
prove. But on the other hand it is neither natural, nor easy to check in practice. The main
objective of this note is thus to provide a simpler sufficient condition for the convergence
Y,, = oW to hold in law in D([0, 1]) endowed with the Skorohod topology. Actually, our
finding is that only a little more integrability of the function ¢ is needed.

Theorem 1.1. Let X = {X,, }nez be a zero-mean Gaussian stationary sequence with covari-
ance function E[X,, X;n] = p(|n —m|) such that p(0) = 1. Consider a function ¢ € L*(R,~)
with expansion (1.1) and Hermite rank d > 1, and suppose that 3", |p(k)|¢ < co. Finally,
recall Yy, from (1.3) , let W = {Wi}ieo1] be a Brownian motion and let o* be defined in
(1.4). Then, as n — o,

1. The finite-dimensional distributions of Y, converge to those of oW ;

2. If p € LP(R,~) for some p > 2, then Y,, converges in law to oW in D([0,1]) endowed
with the Skorohod topology.

We can prove a similar result in the space C([0, 1]) of continuous functions endowed with
the uniform topology. Of course, in this case we have to consider the linear interpolation
Zy, instead of Y,,, defined as follows:

[nt]—1

Z(1) = "R oK) + 7= D @K, 1e 01l (19)
1=0

Theorem 1.2. Let X = { X, }nez be a zero-mean Gaussian stationary sequence with covari-
ance function E[X,, Xm] = p(|n —m|) such that p(0) = 1. Consider a function ¢ € L*(R,~)
with expansion (1.1) and Hermite rank d > 1, and suppose that 3", |p(k)|? < co. Finally,
recall Z,, from (1.9), let W = {W,;},ep01) be a Brownian motion and let o® be defined in
(1.4). Then, as n — oo,

1. The finite-dimensional distributions of Z,, converge to those of cW ;

2. If p € LP(R,~) for some p > 2, then Z,, converges in law to oW in C([0,1]) endowed
with the uniform topology.



The proof of Theorems 1.1 and 1.2 are based on the application of the techniques of
Malliavin calculus, especially Meyer inequalities from [6] (in the modern form taken from
[8]). The method we employ is based on the representation p(X;) = §%((D(—L)™1)4(¢(X3)))
where §, D and L are the usual Malliavin operators (see Section 2). It is robust enough to
be used for other families of interest than Y;, and Z,,, see indeed [5] for an application to the
self-intersection local time of the fractional Brownian motion, or Section 4 in the present
paper for an extension of Theorem 1.1 in a critical situation where 3, -, | p(k)|¢ diverges
slowly enough when n — co.

The rest of the paper is organized as follows. Section 2 contains some useful preliminaries
on Malliavin calculus, as well as some boundedness properties of the so-called shift operator,
which is our main tool in this paper. The proof of Theorem 1.1 (resp. 1.2) is given in Section
3 (resp. 4). Finally, in Section 4 we provide an extension of Theorem 1.1 in the case where

> ez |p(k)|¢ explodes slowly.

2 Preliminaries

In this section, we gather several preliminary results that are needed for the proofs of the
main results of this paper.

2.1 Elements of Malliavin calculus with respect to the Wiener process

We refer the reader to the references [7, 8, 9] for a detailed account on the Malliavin calculus.
In this paper we will make use of the following notation and results.
First, let us introduce a specific realization of the sequence { Xy }rez. The space

2
H :=span{ Xy, k € Z}L @

being a real separable Hilbert space, it is isometrically isomorphic to either RV (for some
N > 1) or L2(R;). In both cases, there exists an isometry ® : H — L*(R,). Set e, = ®(X})
for each k € Z. We have

plk—1) =E[XX|] = /000 ex(x)e(x)dr, k,1>1. (2.1)

Let W = {W(h), h € L>(R,)} be the standard Wiener process, that is, a centered Gaussian
family satisfying E[W (h)W (9)] = (h,g)12(r,) for all b, g € L*(R,.). We deduce immediately
from (2.1) that

{Xibrez = {W(en) ez
Since, in this paper, the quantities we are interested in only depend on the law, starting
from now and without loss of generality, we set

X = W(ek)7 kel (2.2)

For integers ¢ > 1, the gth Wiener chaos is the closed linear subspace of L?(Q) that
is generated by the random variables {Hy(W (h)), h € L*(Ry), ||l 2, ) = 1}, where H,
stands for the gth Hermite polynomial defined by

L2 dl 22
Hy(r) = (—1)%e> drd© 2 qg=>1,

i
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and Hy(x) = 1. For ¢ > 1, it is known that the map
I,(h®9) = Hy(W(R)), he LAR.), [, =1, (2.3)

provides a linear isometry between the set of symmetric square integrable functions Lg(Ri)
(equipped with the modified norm /¢!|| - || LR y) and the gth Wiener chaos. By convention,
Ip(xz) =z for all x € R.

It is well-known that any F' € L?(2) measurable with respect to W can be decomposed
into Wiener chaos as follows:

F=E[F]+ Z Iq(fq)a (2.4)
q=1

where the kernels f, € Lg(Ri) are uniquely determined by F'.

For a smooth and cylindrical random variable F' = f(W(hy),...,W(hy,)), with h; €
L*(Ry) and f € C°(R™) (f and of its partial derivatives are bounded), we define its
Malliavin derivative D as the L?(R, )-valued random variable given by

DF = Z; gi (W (h1),...,W(hn))hi.

By iteration, one can define the k-th derivative D¥F as an element of L?(€; L?(R)). For
any natural number k and any real number p > 1, we define the Sobolev space D*P as the

closure of the space of smooth and cylindrical random variables with respect to the norm

| - ||kp defined by
k

17k, = E(FP) + ZE(HDZFH%(RQ).
=1

For any Hilbert space V we denote by D¥P?(V) the corresponding space of V-valued random
variables.

The divergence operator § is defined as the adjoint of the derivative operator D. An
element u € L?*(Q; L?(R.)) belongs to the domain of §, denoted by Dom, if there is a
constant ¢, depending on u such that

ECDF, u)r2m,))| < cull Fllz20)

for any FF € D%2. If u € Dom 6, then the random variable &(u) is defined by the duality
relationship
E[F3(u)] = E[(DF,u)a(a, ) (2.5)

which holds for any F' € D%2. In a similar way we can introduce the iterated divergence
operator 6% for each integer k > 2, defined by the duality relationship

E[Fo*(w)] = E [{D*F,u) paqe) | (2.6)
for any F € D*2, where u € Dom 6F C L?(€; L2(RY)). If u € L2(R¥) is deterministic, then

oF (u) = Iy (u). (2.7)



For any p > 1 and any integer k > 1, the operator 6* is continuous from D*?(L? (Ri)) into
LP(Q2), and we have the inequality (see, for instance, [8, Proposition 1.5.4])

k

165 @)l 2o < &0 D 1D 0ll 0201 (2.8)
7=0

for any v € D*P(L?(R%)). This inequality is a consequence of Meyer inequalities (from
[6]), which states the equivalence in LP(Q), for any p > 1, of the operators D and (—L)'/2,

where L is the infinitesimal generator of the Ornstein-Uhlenbeck semigroup (P;);>o in L2(£2)
defined as

PF=Y e "I(f), t>0, and (-L)'F =Y ¢ I,(f), r€R,
=1

q=0

if ' is given by (2.4). More precisely, their exist two constants ¢; ,, ¢ = 1,2, such that, for
any F € D'P,

c1pl DF | poia.r2.y) < 1(=L)2F || o) < capll DF || o r2(, ))- (2.9)

More generally, we can state Meyer’s inequalities in the general case (see [8, Theorem 1.5.1]):
for any p > 1 and any integer k > 1, their exist two constants ¢; 1, i = 1,2, such that, for
any F € D'P,

Cl,k,pHDkFHLP(Q,m(M)) < N(=L)*2F | o) < caep(IDPF Il @r2@s) T 1Fllr)-
(2.10)

2.2 The shift operator

Let ¢ € L?(R,7) be a function of Hermite rank d > 1 and expansion (1.1). Consider the
function ¢4 defined by a shift of d units in the coefficients, that is,

oo
04 = Z ceHy—a- (2.11)
q=d

It is immediately checked that ¢4 € L*(R,7).
Given (2.11) and the relation (2.3) between Hermite polynomials and multiple stochastic

integrals, the random variable ¢4(W (h)) admits the following chaotic decomposition when
h € L?*(Ry) has norm 1 :

h) =Y cqlg_a(h®).
q=d

Moreover, we claim that o4(W (h)) belongs to D*9. Indeed, for any k = 1,...,d we have
that

o0

D*(gq =Y clg—d)g—d—1)-(q—d—k+1)I_q (B F)p%k,
q=d



and this series converges in L?(Q, L2(R%)) since

o0

E||D*(@aW (ID)I72ry = D _cgla = d)*(g—d = 1)*- (g —d =k +1)*(q —d — k)!
q=d

oo
< chq! < 0.
q=d

The following two lemmas will play a crucial role in the sequel.

Lemma 2.1. Suppose that ¢ € L*(R,~) given by (1.1) has Hermite rank d > 1 . We have,
for any h € L3(Ry) of norm 1,

(W (h) = 6%pa(W(h)h®) (2.12)
pa(W(h)R®! = (D(=L)")*(o(W(h))) (2.13)
pa(W(h) = ((D(=L)") (W (1)), h%) [2(pa)- (2.14)

Proof. Using (2.7) and the relation (2.3) between Hermite polynomials and multiple stochas-
tic integrals, we can write

p(W(h) = cqHy( = gdy(h®9) = c09(h9)
q=d q=d q=d

- f; eyt (5770 (nE1-) o) — 1 f; coly-a (HE0) o1

D cqHg-a(W ()™ | = 6%(pa(W () h™),
which is (2.12). On the other hand, we can compute that
(D(=L)" )W (h)) =Y cqLg—1(h®7~") B,

By iteration, we get

(D(_L)_l)d(@(W Zcq q— d h®q d h®d Zcq q— d )h®d7
q=d
and the desired conclusions (2.13) and then (2.14) follow. O

Lemma 2.2. Suppose that ¢ € L*(R,~) given by (1.1) has Hermite rank d > 1 and is such
that E[[@(N)P’] < oo for some p>2 and N ~ N(0,1). Then, for any 0 < k <r <d,

su k =1y .
s B[ (DL (oW ()] <

where the supremum runs over the set of all square integrable functions h € L*(Ry) of norm
1.



Proof. The proof is by induction on r. When 7 = 0, one has k = 0 and D°(D(—L)~1)? is
the identity operator, so there is nothing to prove.

Suppose now that the conclusion of Lemma 2.2 holds true for some r—1 € {0,...,d—1},
and let us prove that it holds true for r 4+ 1 as well.

If k=0, we have D°(D(—L)™1)" = (D(—L)™')". But D(—L)~! = [;° DP; dt according
to [7, Prop. 2.9.3]. Moreover, according® to [9, Prop. 5.1.5], there exists ¢p > 0 such that,
for any F' € LP(Q2),

—t
\/7%
1

It follows from these two facts and the Minkowski inequality that the operator D(—L)™" is
bounded from LP(€2) to LP(2, L>(R)). As a consequence, by iteration one has

sup E[[|(D(=L) )" (oW (h))2z;)] < cEllp(N)I7] < o0

[[2[|=1

[DPF Le(o,2 (R )) < 1 E | Lo (- (2.15)

for any 0 < r <d.
Let us finally consider the case 1 < k < r. We can write, using among other the left-hand
side of (2.9) and then its right-hand side,

sup E[||[D*(D(=L) ™))" (oW (M), Rw)]

Inll=1

= s BIDM L)L) W ) g
isu -1yt

< e BlICD T DL W Dl
€2 su k-1 ry—1yr—1

< 2w (E0D* L) oW ) )

AE[IDEL) ) W ) 1}),
which is finite by the induction property. O

3 Proof of Theorem 1.1

Since the point 1 (that is, convergence of the finite-dimensional distributions) follows from
the classical Breuer-Major theorem of [3], let us only concentrate on the point 2.

We are thus left to show that the family (Y},)n>1 is tight in the Skorohod space D(]0, 1]).
Recall from [2, Theorem 15.6] that a sufficient condition for tightness in D([0,1]) is the
existence of v > 0 and ¢ > 0 such that, for all n,

E[|Y,(t) = Yo (t)|" | Ya(t2) = V(@)1 < c(ta =)', 0<t; <t <ty <1. (3.1

5The statement of [9, Prop. 5.1.5] is with ¢+ ~*/? instead of

\/16;%2“ but the given proof actually provides
the estimate stated in (2.15).



We are not going to check (3.1) directly. Instead, we shall use the following lemma, which
is not stated in Billingsley book [2] but has nevertheless become part of the folklore. For
the sake of completeness, we give its proof.

Lemma 3.1. Fizp > 2 and ¢ > 0. If

nt] — |ns]\
||Yn(t)—Yn(s)||Lp(Q)gc(%“) . s, tel0,1] (3.2)

for some p > 2 and C > 0 then (3.1) holds with v =5 —1>0 and ¢ = 32CP > 0.

Proof. Suppose (3.2). Using Cauchy-Schwarz, one has

P

E[|Ya(t) = Ya(t1)|2 |Ya(tz) = Ya(0)]?]
HYn(t) - Yn(tl)HEp(Q) ”Yn(tQ) - Yn(t)ng(Q)

C%Whmm>0mrmw? 53)

n
If max(n(t —t1), n(tz — t)) < %, then the quantity in (3.3) is zero, and so (3.1) is verified. If
n(t —t1) > 3, then

IN

IN

[nt] = [nt1] _ nt—nt1+1 _ nt—nt +2n(t —t)

- < " < - < 3(t2 — t1),
whereas
|nty] — |nt] < nta —nt +1 < nte — nt + 2n(t —t1) <3(ts—t).
n n n
Similar estimates hold if n(to —t) > 3. So, if max(n(t—t1),n(t2—t)) > 3, then the quantity
in (3.3) is bounded by 3%cP(to — t1)2, and the proof of (3.1) is complete. O

We are now ready to proceed with the proof of point 2 in Theorem 1.1. Combining the
previous Lemma 3.1 with [2, Theorem 15.6], we are left to show that (3.2) is satisfied.
We can write

[nt]—1 [nt]—1

1 1
1Ya(t) = Ya ey = 7= | D2 @) =l D0 6% (wa(Xef)| by (212)
i=|ns] LP(Q) i=|ns] Lr(Q)
d 1 [nt]—1
<Y 7 > DF (@d(Xi)e?d> by (2.8)
k=0 1= LTLSJ LP(Q;L2(Ri+d))
a||, izt 1/2
=y |- Y DHeaX))DH(eaX)) e en) T,
k=0 i,j=|ns] L (Q;L2(Ri))
d
=iCp Z Rk.
k=0



On the other hand,

B =

k : — k ) [P
fgg”D (de(Xl))HLP(Q;LQ(R’i)) —ilelgE[”D (Sﬁd(Xz))Hp(Rii))]

= supE[IDM (D)) (X)), €0%) ot gy )] 7 by (214

€7
< s B[IDYD(-L) ) e (X)L, a7 (3.9
€L +

and (3.4) is finite thanks to Lemma 2.2.
Recall from (2.1) that (e;, ;) 12w, ) = p(i — j). Using Minkowski and Holder inequalities,
we can write, for any 0 < k < d,

1/2
1 [nt]—1 .
Ry, < sup ||Dk(90d(Xz'))||Lp(Q;L2(R’;)) - Z (i — §)|*F
€L ij=|ns)
| lnt=t 1/2
< 4 . d .
<eel S loli-j)] since |p(k)| < 1.
i,j=|ns]
Finally, the change of indices (i,7) — (i,7 + h) leads to
p nt] — |ns] [nt] — |ns]
SO el < e S ()t = o
i,j=|ns] heZ
which provides the desired estimate (3.1) and concludes the proof of Theorem 1.1. O

4 Proof of Theorem 1.2

—vn ¥
point 1 (that is, convergence of the finite-dimensional distribution of Z,,) follows again from
the classical Breuer-Major theorem of [3].
Let us now turn to point 2. It remains to show that the family (Z,),>1 is tight in the
space C([0,1]). Recall from [2, Theorem 12.3] that a sufficient condition for tightness in
C([0,1]) is this time the existence of v > 0 and ¢ > 0 such that, for all n,

—In . nt—|n 2
Since Z,(t) = Y,(t) + L\/LEHQO(X[MJ) with | [( el (XWJ)) ] S %H@O”%Q(%R) =0,

1Za(t) = Zy(s)|| ooy < clt — s['/%, st €[0,1]. (4.1)

Using the equivalent representation

1 nt
Z,0) = 2= [ e(Xpy)an
we can write
1 nt
1Za(t) — Zu() o) = ]/wmmw
@ =75\, oK
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nt

. &4 (@d(XLuJ) H)du

by (2.12)
LP(Q)

/nnt DF (gpd(Xw)e(ﬁfj) du

S

L
vn

by (2.8)
Lr(Q;L2(REFY))

1/2

// DM (pa(X ) DM(pa(X o)) e ) o) T i, dudy
[ns,nt] Ls (Q§L2(R§.))

=: CPZ Ry..
k=0

Minkowski and Hélder inequalities yield, for any 0 < k < d,

u€R

= l u| — de’U
. (n//[] o] — Lv))|**d d) ,

with ¢, finite by (3.4).
Finally, since |p(k)| <1 for all k,

L[ = tepstande < (" e - LvJ)!ddw) 2

1/2
Ry < sup HDkQOd(XLuJ))HLp ;L2 (RE)) ( //[ P2 — v J)‘dJrkdUdU)

N

< [ =1e- s Slot)
ns ez JEZ
which provides the desired estimate (4.1) and concludes the proof of Theorem 1.2. O

5 An extension of Theorem 1.1

In this section, our aim is to show that the method we have employed for the proofs of
Theorems 1.1 and 1.2 can be easily extended to deal with the case where 3, _, lp(5)]¢
diverges as a slowly varying function when n — oo. Instead of stating such a result at
a great level of generality, to avoid too much technicalities we prefer to illustrate what
happens in a guiding example and only in the setting of Theorem 1.1. The same extension
for Theorem 1.2 would follow similar lines; details are left to the interested reader as an
exercise.

Consider the fractional Gaussian noise X = Bjy41 — By associated with a fractional
Brownian motion B of Hurst index H € (0,1); in this case, p(k) = 5 (|k+ 1|7 + |k — 1|2 —
2|k[*"). Also, consider a function ¢ € L*(R,~) with expansion (1.1) and Hermite rank
d > 1. Finally, recall Y;, from (1.3), let W = {W;},c(0,1) be a Brownian motion and let o?
be defined in (1.4).

11



Since p(k) ~ c|k|*# =2 (where c is an explicit constant whose value is useless), in the case

where H € (0,1—55) one can apply Breuer-Major theorem of [3] to deduce that Y;, fd .

If moreover ¢ € LP(R,~) for some p > 2, then Y, PG W thanks to our Theorem 1.1.

In contrast, when H € (1 — 21d, 1) Taqqu [10, Theorem 5.6] has shown in the seventies

that
nd(lfH)—%Yn D(0,1]) Yo,
where Y, stands for the Hermite process of index d. Here, note that no additional integra-
bility condition on ¢ is required for the convergence to hold in D([0,1]); indeed, since the
limiting process Yo, is a-Holder continuous with « strictly greater than %, it is enough to
bound [|Y,,(t) — Yo (s) | z2() (and not [|Y5(t) — Yn(s)||Lr(o) with p > 2) to get the tightness,
so classical and easy calculations are enough to conclude.
What about the critical case H = 1—55? In this case, p(k) ~ c|k]_% and so ), |p(k)| =

+o00. Nevertheless, since the divergence of the series is slow, the fluctuations are still Brow-

nian after proper normalisation. More precisely, it is shown in [3] that \/E"T fdd oW, with

= 2d! (%)d. As far as the convergence in D([0, 1]) is concerned, a slight extension

of our method leads to the following result.

Theorem 5.1. Consider a function ¢ € L*(R,~) with expansion (1.1) and Hermite rank
d>1. Let X = {X, }nez be the fractional Gaussian noise of index H =1 — 2d7 that is, X
1s a mean-zero Gaussian stationary sequence with convariance function

1 1 1 1
B[X Xoek] = p(k) = 5 (b + 1275 o [k — 1274 — 2[kf274).

Finally, recall Yy, from (1.3) , let W = {Wi}ie(o,1) be a Brownian motion and let o be given

by o2 = 2d!(%)d. Then, as n — 00,

1. The finite-dimensional distributions of \/1?@ converge to those of oW ;

2. If ¢ € LP(R,v) for some p > 2, then \/% converges in law to oW in D([0, 1])

endowed with the Skorohod topology.

Proof. Point 1 follows from Breuer and Major [3]. Combining Lemma 3.1 with [2, Theorem

15.6] (for \/lignin instead of Y;,), to prove point 2 it is enough to show that (3.2) holds true.

We can write

_ Yi(s)
Viegn  Vlogn ||y
1 [nt]—1 ( )
= 64 (a(X;)ed? by (2.12)
e Z

[nt]—1

1
<C”k20 | Z D* (pa(Xy)ef") by (2.8)

Lp(;L2(REFY))
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= DH(pa(X) DM (ol X)) ew ) e,

0
- Z nlogn
k=0

e L% (L2(RE))
< - K g et v
<¢ kgoigg D (‘pd(Xi))|’LP(Q;L2(R¢)) nlogn m’:ZLnSJ lp(i = J)
g bt v , .
nlogn m:ZLnSJ lp(i — 7)) since |p(k)| < 1 and using (3.4).

Finally, the change of indices (i,j) — (4,5 + h) and the fact that |p(r)|? ~ c|r|7! as

|r] — oo leads to

[nt]—1

1 o d [nt| — |ns]
— <ot U]
nlogn,,z p(i — 5)| < ——,
i,j=|ns]
which provides the desired estimate (3.1) and concludes the proof of Theorem 1.1. O
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