

Title: Mesoscale eddies regulate seasonal iron supply and carbon drawdown in the Drake Passage

Authors: Annika Jersild*, Sara Delawalla, and Takamitsu Ito

Affiliation: School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia, USA

Corresponding author: Annika Jersild (Email: ajersild3@gatech.edu)

Key Points:

- Resolving mesoscale ocean eddies is critical for the seasonality of the regional carbon cycle in the Drake Passage.
- Eddy parameterization reduces the annual mean carbon cycle bias but does not improve the seasonal cycle
- Suppressing eddy activity increases iron supply, causing a stronger and earlier spring bloom at the expense of summer-time productivity

Abstract

The Southern Ocean is a major region for uptake of anthropogenic carbon. The transport of carbon and nutrients are dominated by the Antarctic Circumpolar Current and its rich mesoscale eddy field, however, current generation of Earth System Models lack the resolution to resolve eddies. Here we show that a computational model that explicitly represents mesoscale eddies can reproduce observed phases and amplitudes of seasonal biological productivity and partial pressure of carbon dioxide. Our sensitivity study demonstrates that when eddies are suppressed or parameterized, the model cannot reproduce these seasonal cycles. Experiments with suppressed eddy activity show that the lack of eddies significantly changes the iron supply and phenology of phytoplankton blooms. The mismatch in the timing and intensity of the bloom causes significant biases in the seasonal carbon cycle of the region with implications to the enigmatic biases in partial pressure of carbon dioxide among the state-of-the-art Earth System Models.

Plain Language Summary

The Southern Ocean plays a critical role in the global carbon cycle and is an important region for uptake of carbon. Movement of carbon and nutrients in this region is driven by lots of smaller scale (10-100km) transient movements, known as mesoscale eddies. We use a computational model to run a sensitivity study analyzing the impact of these movements on the seasonality of surface carbon in the Drake Passage region. We find that when the mesoscale eddies are explicitly represented, we are able to reproduce the seasonal cycle of carbon dioxide and biological productivity. However, when the small-scale movements are suppressed or represented through a parameterized equation, the model cannot reproduce the seasonality. Model runs that suppress the transient movements shift the surface iron supply and result in a change of timing and intensity of summertime phytoplankton blooms, which causes bias in the seasonal carbon cycle. This research has important implications for modeling, parameterization, and resolution choices when looking at questions relying on the seasonal-scale of the carbon cycle.

1 **1. Introduction**
2

3 The Southern Ocean plays a critical role in the global carbon cycle. The dominating
4 current in the region, the Antarctic Circumpolar Current (ACC), circumnavigates the globe and
5 connects all of the major ocean basins. Its overturning circulation brings up the deep water and
6 subducts thermocline and intermediate waters that are major conduits for the oceanic uptake of
7 heat and anthropogenic carbon (Armour, Marshall, Scott, Donohoe, & Newsom, 2016; Ben
8 Bronselaer & Zanna, 2020; Toggweiler & Russell, 2008), contributing over 40 percent of the
9 ocean carbon uptake (Khatiwala, Primeau, & Hall, 2009). Despite its importance, there are large
10 uncertainties surrounding components controlling the regional carbon flux. While the state-of-
11 the-art Earth System Models (ESMs) generally reproduce the annual mean carbon flux in the
12 region, its seasonal cycle is often poorly correlated with observations (Jiang, Gille, Sprintall, &
13 Sweeney, 2014; Mongwe, Chang, & Monteiro, 2016).

14 The ACC is filled with mesoscale (approx. 10-100km) features with meandering jets and
15 vortices (eddies) that play central roles to maintain the stratification and the overturning
16 circulation with global implications (Gnanadesikan, 1999; Johnson & Bryden, 1989; Marshall &
17 Radko, 2003; Marshall & Speer, 2012). This rich mesoscale eddy field is critical for the transport
18 of carbon and nutrients in the region, but the current generation of ESMs cannot resolve these
19 features due to their coarse resolution and the eddies are challenging to parameterize
20 realistically.

21 In order to study the influence of mesoscale eddies on the carbon cycle in this region, we
22 perform and compare three computational simulations for a sensitivity study using a regional
23 physical and biological model with a 10-km horizontal resolution. This modeling study is
24 focused on the Drake Passage region, which is the only section of the Antarctic Circumpolar

25 Current (ACC) bounded by land topography to the north and south and relatively well sampled
26 by ship-based observations. The three runs compare the same region with resolved mesoscale
27 eddies, parameterized mesoscale eddies, and eddies suppressed via enhanced viscous friction.
28 We compare the surface partial pressure of carbon dioxide ($p\text{CO}_2$) and the seasonal carbon and
29 iron budgets to show the importance of resolving mesoscale eddies for reproducing seasonality
30 in the Drake Passage region.

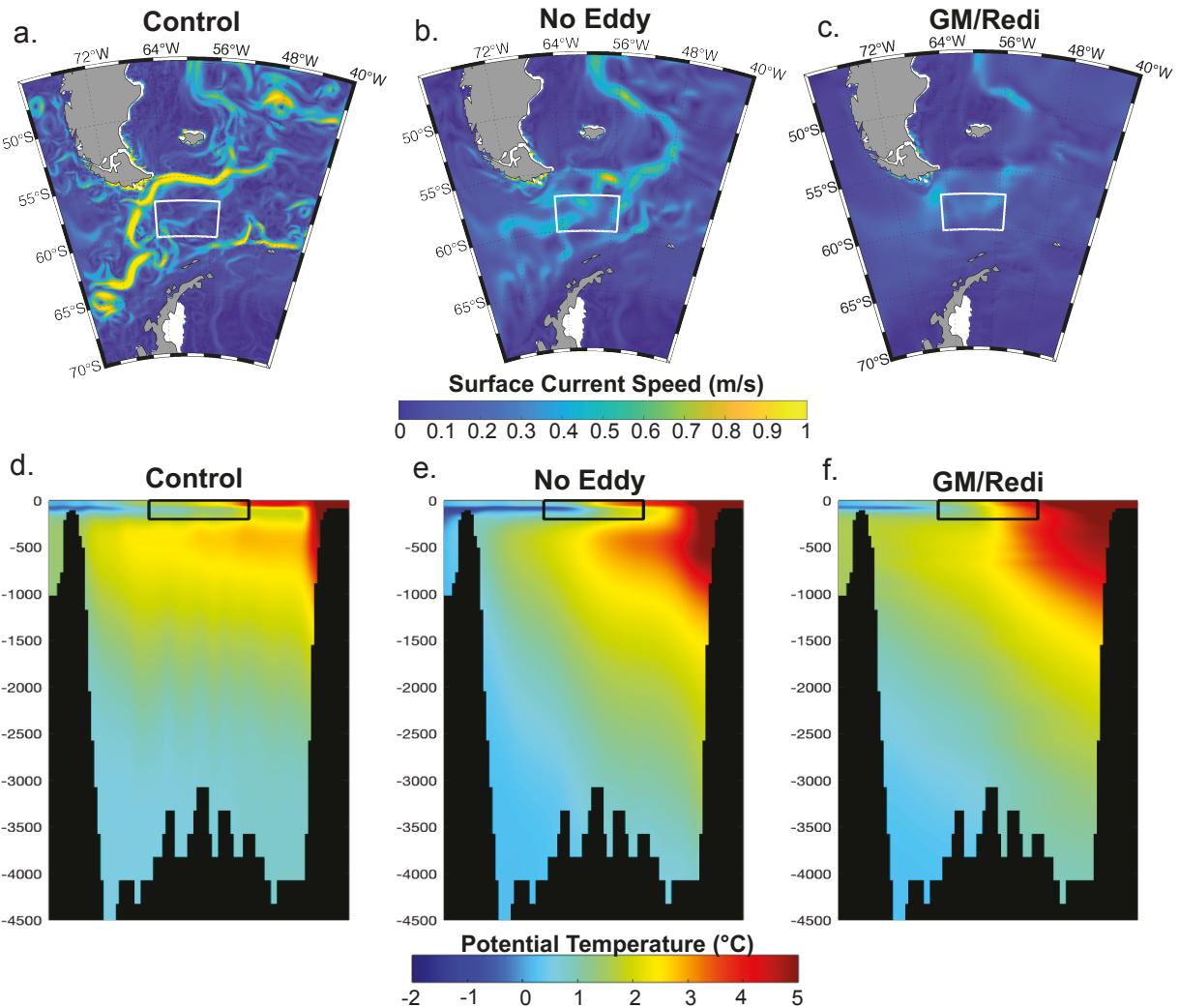
31

32 **2. Model configurations and experimental design**

33 The regional physical and biological model for the Drake Passage region is simulated in
34 three configurations, “Control”, “No Eddy”, and “GM/Redi”. The control simulation follows the
35 work of Jersild and Ito (Jersild & Ito, 2020), where the model domain covers from 80°W to
36 40°W and from 70°S to 45°S. The Control run includes biharmonic viscosity for momentum and
37 biharmonic diffusion for tracers both set to $3 \times 10^9 \text{ m}^4/\text{s}$ (comparable to $30 \text{ m}^2/\text{s}$ for Laplacian
38 viscosity/diffusivity). The “No Eddy” simulation follows the same configuration but additional
39 horizontal (Laplacian) viscosity is included at $1000 \text{ m}^2/\text{s}$, suppressing eddies, while tracer
40 diffusivity is not altered. The “GM/Redi” simulation is the same, but eddies are parameterized by
41 the isopycnal thickness and tracer diffusion scheme (Gent & Mcwilliams, 1990; Redi, 1982). The
42 GM scheme represents the advective effect of mesoscale eddies that tends to flatten isopycnal
43 surfaces, and the Redi scheme represents the diffusive effect by mixing tracers along isopycnal
44 surfaces. Thus, the GM/Redi is expected to produce more stratified and well mixed properties
45 relative to the No Eddy run. For simplicity, uniform constant GM coefficient and isopycnal
46 diffusivity are used at the rate of $1000 \text{ m}^2/\text{s}$, which is set equal to the elevated viscosity.

47 For all three simulations, the hydrodynamics is based on Navier-Stokes equation in
48 hydrostatic and Boussinesq approximation, and the domain is discretized into a longitude-
49 latitude grid at a nominal 10-km resolution with 42 vertical depth levels. Grid spacing is
50 approximately 10m near the surface and increases to 250m at the bottom (5500m). The model
51 has open boundary conditions on all four sides which are restored to the data-constrained
52 circulation and biogeochemical fields of the Biogeochemical Southern Ocean State Estimate
53 ensuring the realistic boundary properties (B-SOSE, (Verdy & Mazloff, 2017)). Surface
54 momentum and buoyancy forcing is taken from NCEP-2 reanalysis products at daily frequency
55 (Kanamitsu et al., 2002) and the surface temperature and salinity fields are weakly restored
56 towards B-SOSE climatology to minimize model drift.

57 The biological and biogeochemical components of the model are based on the 6
58 phytoplankton version of the Darwin model (Dutkiewicz et al., 2015) with improved
59 representation of iron biogeochemistry including three classes of iron-binding ligands,
60 sedimentary and hydrothermal iron sources, and interactions between particulate and dissolved
61 iron (Pham & Ito, 2021). Furthermore, this model represents the iron limitation on the
62 photosynthetic efficiency and the variable iron to carbon ratio in the biological
63 parameterizations.


64

65 **3. Results**

66 **3.1 An overview of the sensitivity experiments**

67 The three simulations, “Control”, “No Eddy”, and “GM/Redi”, exhibit large differences
68 in patterns of both horizontal and vertical distribution of tracers (Figure 1). Detailed analysis has
69 been completed on a central, non-coastal region bounded by 57-60°S and 55-65°W, denoted by

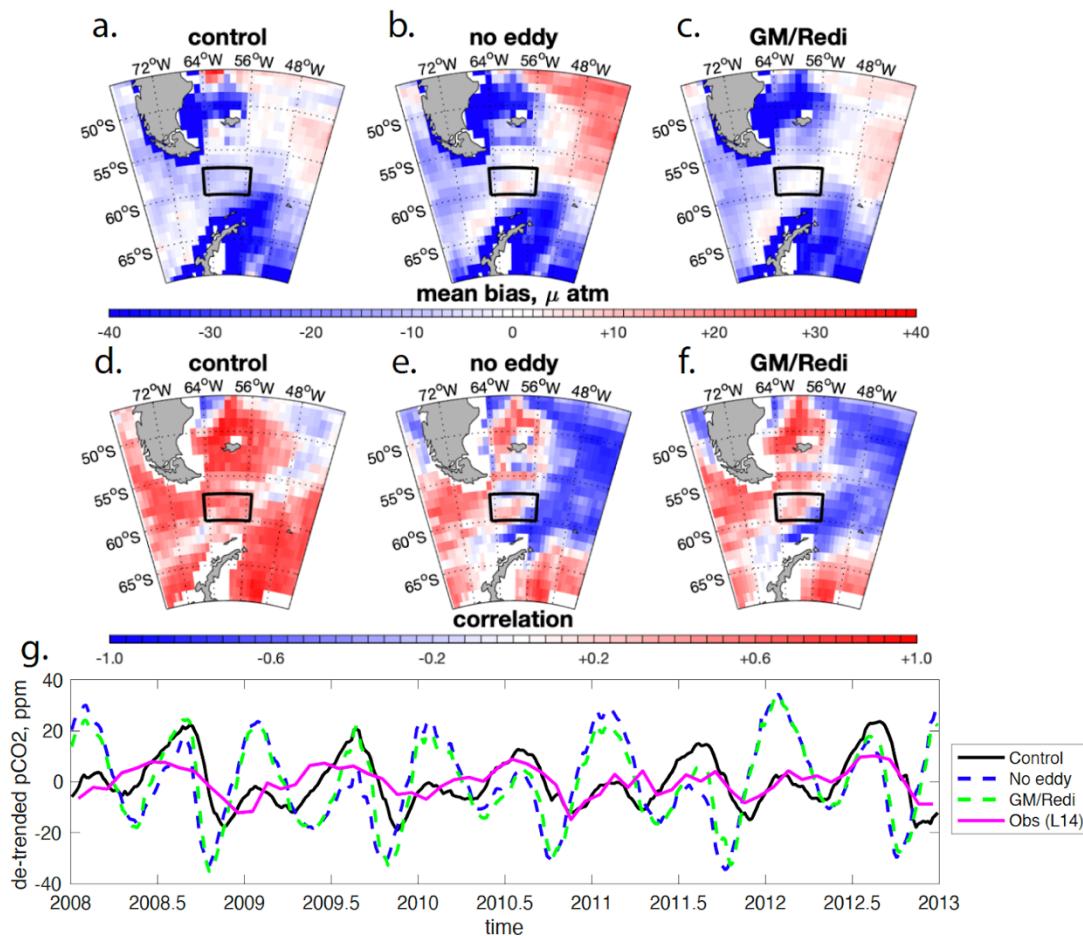
70 the boxes in the top row of Figure 1. As expected, surface current speed is diminished in the No
71 Eddy and GM/Redi runs due to the elevated level of viscous friction. The hydrographic structure
72 is altered in the sensitivity experiments. The Control run exhibits flatter isopycnals and cooler
73 temperatures in the thermocline of the central Drake Passage region and a steep (nearly vertical)
74 isopycnal slope associated with the narrow jet at the northern shelf break. The No Eddy and
75 GM/Redi runs show warmer thermocline in the central Drake Passage with more gradual change
76 in temperature. The average mixed layer depths (MLD) are generally similar between the three
77 runs, 104m for the Control, 94m for the No Eddy, and 112m for the GM/Redi run, but the
78 GM/Redi run does not represent the subsurface temperature minima that are present in the
79 Control and the No Eddy runs. Stronger differences in MLD are found on seasonal timescale, but
80 no coherent patterns are found. MLD is comparable across all three runs for the first year, year
81 two the GM/Redi run has a deeper wintertime MLD, and year five the control run has the deepest
82 MLD, with all three returning to the same summertime depth averaging around 50m
83 (Supplementary Figure 1). These variations in seasonal pattern provide motivation for diving
84 deeper into the other ways mesoscale eddies influence the near-surface carbon cycle.

85

86 **Figure 1.** Comparison of Control run on left (a,d), No Eddy run in the middle (b,e) and GM/Redi
 87 run on the right (c,f) for July surface current speed (a,b,c) and vertical transect of potential
 88 temperature at 65°W (d,e,f).

89

90 **3.2 Drivers of partial pressure of CO₂**


91 The modeled surface partial pressure of Carbon Dioxide (pCO₂) is compared to the
 92 observationally derived pCO₂ product from Landschützer et al (Landschutzer, Gruber, & Bakker,
 93 2020) (hereafter L20) for both mean bias and temporal correlation (Figure 2). These metrics are
 94 calculated using the model output interpolated onto 1° x 1° monthly grid points of the L20

95 product which uses a machine learning approach to fill data gaps for the open ocean observations
96 excluding coastal oceans. Because potentially significant biases are expected in the coastal
97 waters along the shelves of the South America and Antarctic continents, the comparisons are
98 performed for the open ocean only. The control run is overall negatively biased (-8.4 ppmv) with
99 a positive correlation throughout most of the domain ($r=0.71$) in the central Drake Passage
100 region, whereas the No Eddy run exhibits opposite signals in the western and eastern portions of
101 the domain with a smaller mean bias (Figure 2b, -1.5 ppmv). The No Eddy run has negative
102 temporal correlation with the observation ($r=-0.2$). While the GM/Redi run does improve the
103 annual patterns and the mean bias (Figure 2c, -2.0 ppmv), when the temporal correlation is
104 compared, the GM/Redi run does not robustly reproduce observations (Figure 2g, $r=-0.02$).
105 While all three runs captured the annual mean pCO_2 within observational uncertainty
106 (approximately 12 ppmv (Landschützer, Gruber, Bakker, & Schuster, 2014)), the Control run is
107 significantly better than the other runs in reproducing the temporal evolution of the surface ocean
108 pCO_2 .

109 Additional observational product is incorporated from the SeaFlux ensemble which
110 includes six observation-based pCO_2 products that regularly update and incorporate data from
111 the SOCAT database, including the Landschützer data (Fay et al., 2021). To provide comparison
112 to the neural-network derived product provided by Landschützer, we incorporate the JMA-MLR,
113 a multiple linear regression, in Figure 2g.

114 In the center of the Drake Passage region (approximately 65°W, 58°S) the difference
115 between the “Control”, “No Eddy”, and “GM/Redi” runs are small (Figure 2). All three
116 simulations slightly underestimate surface ocean pCO_2 in the mean sense. The major difference
117 occurs in the downstream of the ACC to the east of the Drake Passage (approximately 55°W,

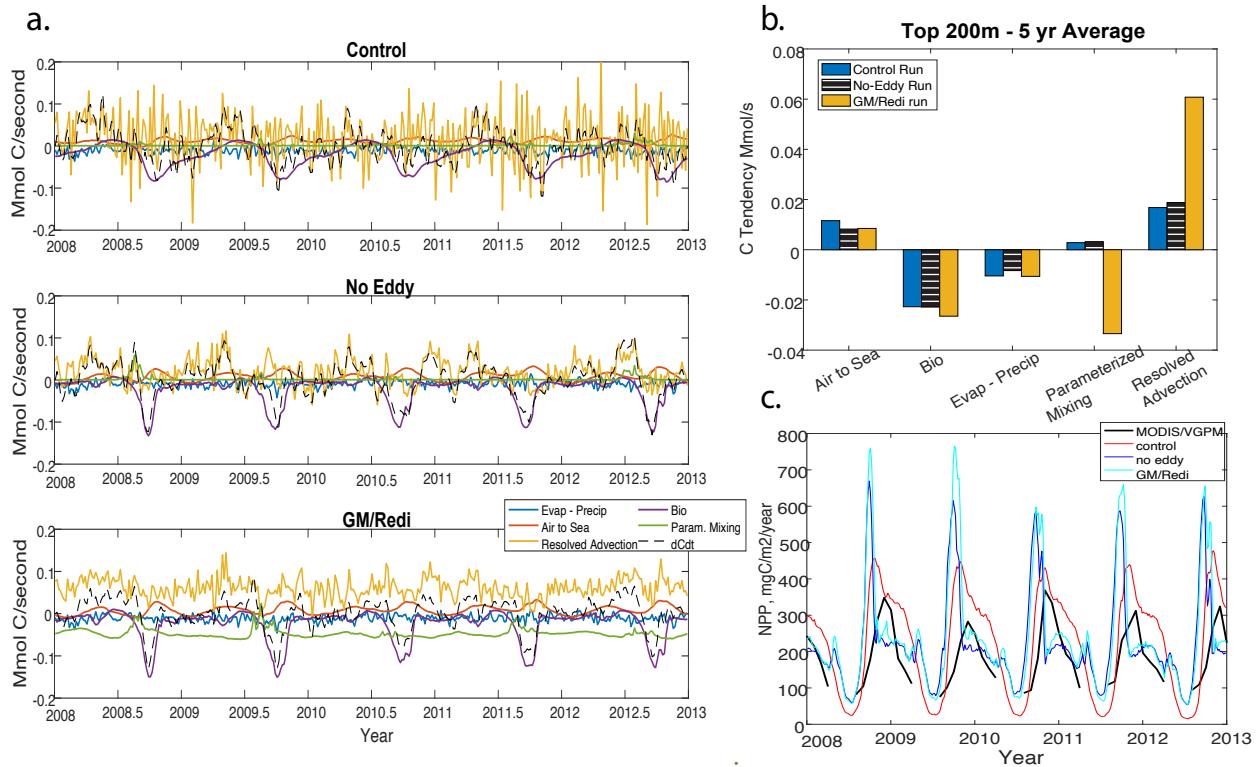
118 55°S) where the control run shows slightly negative mean bias where the “No Eddy” run shows a
 119 much larger positive bias and the “GM/Redi” run shows a smaller positive bias. This bias
 120 becomes more pronounced towards the northeastern corner of the model domain. As stated
 121 earlier, the L14 dataset may not represent coastal waters well. The modeled coastal regions are
 122 highly productive and it tends to bring down surface ocean pCO₂ to a significantly lower value.

123
 124 **Figure 2.** Evaluation of surface ocean pCO₂ in terms of (a-c) annual mean bias, (d-f) temporal
 125 correlation and (g) regionally averaged time series of central boxed region (57-60°S by 55-
 126 65°W). The three simulations (Control, No Eddy and GM/Redi) are compared against
 127 observation (Landschutze et al., 2016) for the 5-year period of 2008-2012. Black dots in panel
 128 (d-f) indicate statistically significant correlation at 95% confidence level.
 129

130

131 Figure 2 also compares the correlations between the model and observation (L14) for the
132 three simulations (panel d, e and f). The effect of eddies is more obvious in this comparison.
133 Overall modeled pCO₂ is strongly correlated with the observation when the effects of eddies are
134 fully represented in the “Control” run (Fig 2d), however, a slightly negative correlation is found
135 in the northeastern part of the domain. In the Drake Passage region (approximately 65°W, 58°S)
136 the correlation is positive in the “Control” run but it is close to zero in the “No Eddy” and the
137 “GM/Redi” runs (Fig 2ef). For all runs, the correlation values are lower in the eastern half of the
138 domain. The “No Eddy” and “GM/Redi” runs have generally lower correlation and become
139 negative in almost half of the domain.

140 The pCO₂ variability is driven by temperature, dissolved inorganic carbon (DIC), salinity,
141 and alkalinity through equilibrium carbonate chemistry. In the Southern Ocean, the primary
142 drivers are temperature and DIC with opposing effects on the seasonal cycles. During summers,
143 elevated biological carbon uptake reduces the surface DIC and pCO₂, partially compensated by
144 the lower solubility with warmer temperatures. In winters, entrainment of subsurface waters
145 raises surface DIC and pCO₂, partially compensated by the higher solubility with cold
146 temperatures. The net effect is dominated by the DIC changes in the Drake Passage region (Fay
147 et al., 2018). Observations demonstrate a maximum in pCO₂ in winter months (July-September),
148 and this feature is well represented by the output of the Control run (Figure 2g). In both the No
149 Eddy and GM/Redi runs, there are strong peaks in late summer, driven by the warmer sea surface
150 temperature (SST) and lower solubility, that do not agree with the observations. The summertime
151 secondary peaks may be visible in the Control and observations but they are in much smaller
152 amplitudes than the primary wintertime peaks. While the pCO₂ seasonal patterns vary
153 significantly between the three runs, the temperature between these runs is comparable. All three


154 runs exhibit similar seasonal patterns and no clear bias between the runs when compared across
155 years (Supplementary Figure 2). Therefore, in order to further analyze the differences between
156 the drivers of seasonal pCO₂, we turn to the DIC budget.

157 **3.3 Dissolved Inorganic Carbon budget**

158 The evolution of surface DIC is driven by fluxes due to air-sea gas
159 exchange, evaporation-minus-precipitation, advection, mixing and biological sources and sinks
160 (Figure 3a,b). The carbon budget is analyzed for the central Drake Passage region in the top
161 200m. The air-sea gas flux, a net positive source into the ocean, is a seasonal flux driven by the
162 air-sea disequilibrium of pCO₂. Its uptake is strongest when the surface pCO₂ is at its minimum.
163 Evaporation minus precipitation also occurs at the surface, and is a net negative flux in this
164 region due to the net precipitation diluting DIC. While this is an apparent carbon sink, it has
165 limited impact of ocean pCO₂ because it also dilutes the total alkalinity at the same rate. The
166 (resolved) advection term is the convergence of advective carbon flux, including both the mean
167 flow and the effect of transient eddies as resolved by the model velocity field. While it does not
168 have a clear seasonal pattern, overall, it is a positive source of carbon in the surface region. The
169 (parameterized) mixing term includes the background vertical diffusion, the horizontal
170 biharmonic diffusion, and the vertical mixing due to the KPP parameterization (Large,
171 McWilliams, & Doney, 1994). In the Control and No Eddy runs, the mixing term is dominated
172 by the parameterized convection due to the KPP scheme. In the GM/Redi run, the effects of
173 parameterized mixing are also included in this term, which explains the much larger contribution
174 of the (parameterized) mixing term in the overall carbon budget relative to the Control and No
175 Eddy runs for that component in Figure 3b.

176

177

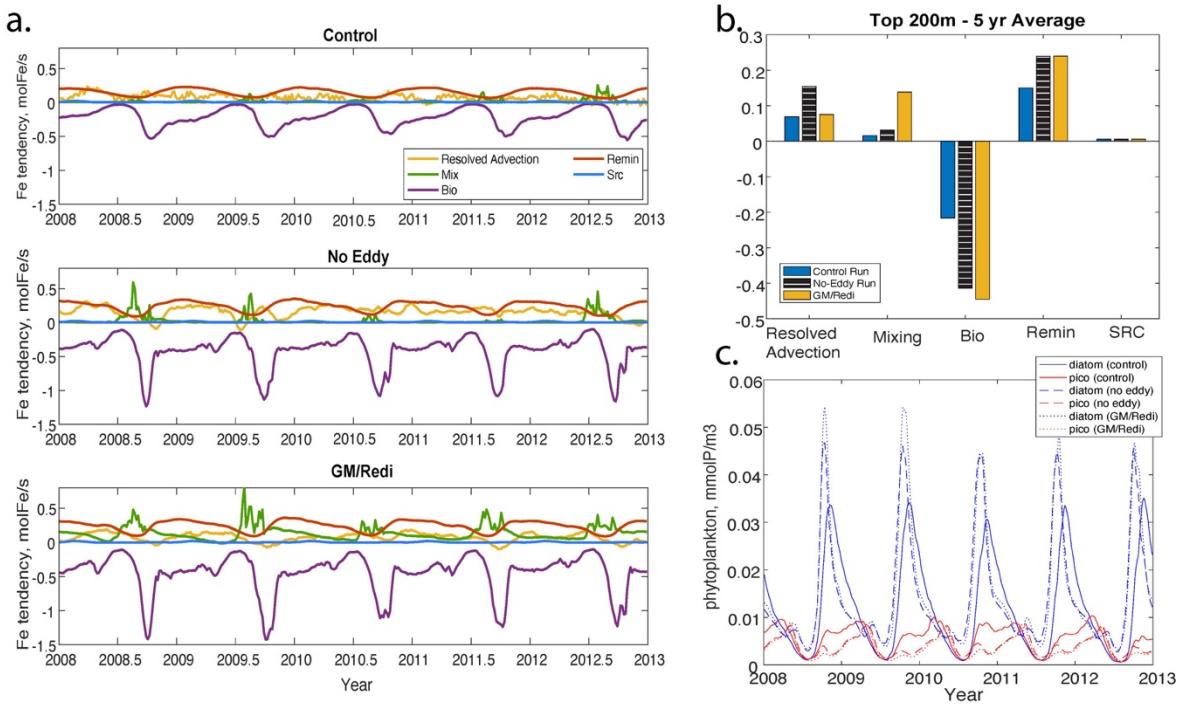
178

179 **Figure 3.** DIC budget terms, averaged over top 200m of central Drake Passage box (57-60°S by
 180 55-65°W). (a) Time series from 2008-2012 showing magnitude and seasonality of components
 181 of the DIC budget including evaporation minus precipitation, air-to-sea flux, resolved advection,
 182 biological flux, and parameterized mixing for Control run (top), No Eddy run (middle), and
 183 GM/Redi run (bottom). (b) Bar plot showing magnitudes of flux averaged across 5 years, 2008-
 184 2012 for Control (blue), No-Eddy (black striped), and GM/Redi run (gold). (c) Net Primary
 185 Productivity (NPP) for each run compared with the MODIS/VGPM satellite data from 2008-
 186 2012.

187

188

189 **4. Sensitivity of Biological Productivity and Iron Cycling**


190 The biological processes influencing the surface DIC includes photosynthesis,
 191 remineralization of dissolved and particulate organic matter, and the dissolution and production
 192 of calcium carbonate. While the net biological carbon export are similar in terms of the
 193 magnitude for all three runs (Figure 3b), the amplitudes and patterns of seasonal cycle are

194 significantly different between the three runs (Figure 3a). The biological carbon uptake of the
195 Control run has a longer season of drawdown across the summertime months, whereas the runs
196 without eddies have a very sharp, strong uptake that dies off quickly after the spring bloom.
197 Evidence of the influence of this change in biological drawdown is exhibited in the net primary
198 productivity (NPP), with a seasonal shift visible from a sharper peak and faster drawdown in the
199 No Eddy and GM/Redi runs to a smaller peak and longer season of productivity across the
200 summertime months in the Control run (Figure 3c). The seasonality of the Control run is a better
201 representation of observations based on the satellite ocean color product (Behrenfeld &
202 Falkowski, 1997).

203 While the seasonal sea surface temperature changes are important, the dominant driver of
204 ocean pCO₂ in this region is the biological carbon uptake and export (Jersild & Ito, 2020). The
205 productivity of the Southern Ocean is iron-limited. Deep wintertime mixing and diapycnal
206 mixing are thought to be the dominating sources of dissolved iron to the surface ecosystem
207 (Tagliabue, Williams, Rogan, Achterberg, & Boyd, 2014), and mesoscale eddies play a critical
208 role in the productivity of the region (Ellwood et al., 2020). In order to analyze this shift in net
209 primary productivity and biological drawdown, we compare the iron budget of the three runs
210 (Figure 4). The iron budget is made up of many terms but can be categorized into five groups
211 including (1) resolved advection, (2) parameterized mixing including wintertime mixing and
212 GM/Redi parameterization, (3) biological uptake, (4) remineralization including the release from
213 particulate phase (i.e. remineralization minus scavenging), and (5) external sources including
214 dust, sedimentary and hydrothermal input. The sum of these five terms control the temporal
215 evolution of dissolved iron field. This budget varies between all three runs for both seasonal
216 patterns and annual averages (Figure 4ab).

217 The No Eddy and GM/Redi runs both have stronger physical iron supply by advection
218 and parameterized mixing in the annual mean sense (Figure 4b), and as a consequence, these
219 runs also show stronger biological drawdown of iron than in the Control run. This is caused by
220 different transport terms (Figure S3). The mean upwelling is too strong in the No Eddy run, and
221 the parameterized, winter-time mixing is too strong in the GM-Redi run. It is important to
222 highlight the role of spring bloom in facilitating the stronger biological drawdown. These runs
223 have the indication of the sharper peaks of the springtime, diatom-dominated bloom, likely
224 caused by the stronger physical supply of iron. The oversupply of iron in these runs leads to a
225 shift in phytoplankton community structure towards diatom dominance (Figure 4c). In this
226 model, there are two major phytoplankton groups in the region, diatoms and picoplankton.
227 Diatom quickly grows early in the season but it requires a higher level of iron supply, and it
228 tends to die off once the iron level goes down in the summertime. In both the GM/Redi run and
229 the No Eddy run, we see a shift to a stronger, earlier and sharper peak of diatoms correlated with
230 a lower magnitude and a later bloom for the picoplankton.

231 The shift in community structure explains the pCO₂ seasonality of the region. In the
232 Control run, diatom is still the major driver of biological carbon uptake but it is sustained by both
233 diatom and picoplankton throughout the summer season, thus it maintains the surface pCO₂ level
234 relatively low despite the warmer SST. By suppressing the eddies, those sensitivity runs
235 enhanced the level of physical iron supply to the surface layer, intensifying the diatom bloom
236 that shifted the seasonal cycle of surface pCO₂.

237

238 **Figure 4.** Breakdown of Iron budget, averaged over top 200m of Drake Passage central region
 239 (57-60°S by 55-65°W). (a) components of iron budget over time including resolved advection,
 240 mixing, biological flux, remineralization, and src (term including sedimentary iron input and
 241 hydrothermal iron), for Control run (top), No Eddy run (middle) and GM/Redi run (bottom). (b)
 242 bar plot showing magnitudes of flux averaged across 5 years, 2008-2012 for Control (blue), No-
 243 Eddy (black striped), and GM/Redi run (gold). (c) phytoplankton concentration for Control run
 244 (line), No Eddy run (dashed), and GM/Redi run (dotted) for the two dominating phytoplankton in
 245 the region, diatoms and picoplankton.

246

247 5. Conclusions

248 Resolving mesoscale eddies is critical for reproducing the seasonality of the carbon cycle
 249 in the Drake Passage. When mesoscale eddies are suppressed, the annual mean remains
 250 comparable especially when the GM/Redi parameterization is applied. The eddy
 251 parameterization indeed improves the pattern of annual mean $p\text{CO}_2$. However, the phases of the
 252 seasonal cycle did not show a similar improvement. The Control run better reproduces
 253 seasonality in the surface $p\text{CO}_2$, with a longer, sustained biologically-driven carbon flux that
 254 lasted further into the summer season. Suppressing the eddy activity led to an increase in the iron

255 supply either through increased advection or eddy parameterization, and disrupted the summer-
256 time productivity, which caused seasonal pCO₂ bias in our sensitivity study.

257 Our results have implications for the interpretation of current ESMs and their ability to
258 reproduce the correct seasonal cycle of the carbon cycle in the Southern Ocean. Many ESMs
259 include explicit representations of the phytoplankton community in the surface ocean but the
260 mesoscale eddies still need to be parameterized for the long-term integrations on the relevant
261 timescales concerning global climate change. For seasonality and shorter time scale, mesoscale
262 eddies are critical and parameterization can still poorly reproduce the seasonal carbon flux. One
263 caveat of this study is that the nominal 10km resolution cannot represent submesoscale eddies
264 which can also play an important role (Uchida et al., 2020). However, the comparability of the
265 annual mean pCO₂ could have a certain level of confidence associated with the annual and long-
266 term projections. It should also be noted that variations in choice of iron scheme can have a large
267 influence on both seasonal iron supply and subsequent phytoplankton growth and ecosystem
268 carbon (Pham & Ito, 2021). In this sensitivity study, since the same iron forcings were used
269 across the runs, we attribute the differences in results to other components. However, the
270 importance of iron scheme choice should be considered when applying these results to other
271 regions or models.

272 This research serves as motivation for further regional high-resolution studies to
273 investigate the role of mesoscale/submesoscale processes to better simulate and understand
274 regional, seasonal-scale biogeochemical dynamics. Further sensitivity studies in other sectors of
275 the Southern Ocean are warranted to apply the conclusions to a broader scale, with important
276 implications for lower-resolution ESMs and mesoscale eddy parameterizations.

277

278 **Acknowledgements**

279 This study is supported by the U.S. National Science Foundation, OPP-1744755. Modifications
280 to the MITgcm source code, scripts, and instructions to reproduce input files for the model
281 simulations are available as the Regional Southern Ocean package (Version v1.0, Zenodo,
282 <https://doi.org/10.5281/zenodo.3754803>).

283

284

285 **References**

286

287 Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A., & Newsom, E. R. (2016). Southern Ocean
288 warming delayed by circumpolar upwelling and equatorward transport, 1–7.
289 <http://doi.org/10.1038/ngeo2731>

290 Behrenfeld, M. J., & Falkowski, P. G. (1997). Photosynthetic rates derived from satellite-based
291 chlorophyll concentration. *Limnology and Oceanography*, 42(1), 1–20.
292 <http://doi.org/10.4319/lo.1997.42.1.0001>

293 Ben Bronselaer, & Zanna, L. (2020). Heat and carbon coupling reveals ocean warming due to
294 circulation changes. *Nature*, 1–21. <http://doi.org/10.1038/s41586-020-2573-5>

295 Dutkiewicz, S., Hickman, A. E., Jahn, O., Gregg, W. W., Mouw, C. B., & Follows, M. J. (2015).
296 Capturing optically important constituents and properties in a marine biogeochemical and
297 ecosystem model. *Biogeosciences*, 12(14), 4447–4481. <http://doi.org/10.5194/bg-12-4447-2015>

298 Ellwood, M. J., Strzepek, R. F., Strutton, P. G., Trull, T. W., Fourquez, M., & Boyd, P. W.
299 (2020). Distinct iron cycling in a Southern Ocean eddy. *Nature Communications*, 1–8.
300 <http://doi.org/10.1038/s41467-020-14464-0>

301 Fay, A. R., Gregor, L., Landschützer, P., McKinley, G. A., Gruber, N., Gehlen, M., et al. (2021).
302 SeaFlux: harmonization of air–sea CO₂ fluxes from surface pCO₂ data products using a
303 standardized approach. *Research-Collection.Ethz.Ch*. <http://doi.org/10.5194/essd-2021-16>

304 Fay, A. R., Lovenduski, N. S., McKinley, G. A., Munro, D. R., Sweeney, C., Gray, A. R., et al.
305 (2018). Utilizing the Drake Passage Time-series to understand variability and change in
306 subpolar Southern Ocean. *Biogeosciences*, 15(12), 3841–3855. <http://doi.org/10.5194/bg-15-3841-2018>

307 Gent, P. R., & Mcwilliams, J. C. (1990). Isopycnal Mixing in Ocean Circulation Models. *Journal*
308 of *Physical Oceanography*, 20(1), 150–155. [http://doi.org/10.1175/1520-0485\(1990\)020<0150:IMIOCM>2.0.CO;2](http://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2)

309 Gnanadesikan, A. (1999). A Simple Predictive Model for the Structure of the Oceanic
310 Pycnocline. *Science*, 283(5410), 2077–2079.
311 <http://doi.org/10.2307/2896696?refreqid=search-gateway:df43f1887aeb141c0728ac254be90ba8>

312 Jersild, A., & Ito, T. (2020). Physical and Biological Controls of the Drake Passage pCO₂
313 Variability. *Global Biogeochemical Cycles*, 34(9), e2020GB006644.
314 <http://doi.org/10.1029/2020GB006644>

315 Jiang, C., Gille, S. T., Sprintall, J., & Sweeney, C. (2014). Drake Passage Oceanic pCO₂ 2:
316 Evaluating CMIP5 Coupled Carbon–Climate Models Using in situ Observations. *Journal of*
317 *Climate*, 27(1), 76–100. <http://doi.org/10.1175/JCLI-D-12-00571.1>

318 Johnson, G. C., & Bryden, H. L. (1989). On the size of the Antarctic Circumpolar Current.
319 [http://doi.org/10.1016/0198-0149\(89\)90017-4](http://doi.org/10.1016/0198-0149(89)90017-4)

320 Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., & Potter, G. L.
321 (2002). NCEP–DOE AMIP-II Reanalysis (R-2). *Bulletin of the American Meteorological*
322 *Society*, 83(11), 1631–1644. <http://doi.org/10.1175/BAMS-83-11-1631>

323 Khatiwala, S., Primeau, F., & Hall, T. (2009). Reconstruction of the history of anthropogenic
324 CO₂ concentrations in the ocean. *Nature*, 1–5. <http://doi.org/10.1038/nature08526>

325 Landschützer, P., N. Gruber and D.C.E. Bakker (2020). An observation-based global monthly
326 gridded sea surface pCO₂ and air-sea CO₂ flux product from 1982 onward and its monthly
327

331 climatology (NCEI Accession 0160558). Version 6.6. NOAA National Centers for
332 Environmental Information. Dataset.

333 Landschutzer, P., Gruber, N., & Bakker, C. E. (2016). Decadal variations and trends of the
334 global ocean carbon sink. *Global Biogeochemical Cycles*, (30), 1396–1417.
335 [http://doi.org/10.1002/\(ISSN\)1944-9224](http://doi.org/10.1002/(ISSN)1944-9224)

336 Landschutzer, P., Gruber, N., Bakker, D. C. E., & Schuster, U. (2014). Recent variability of the
337 global ocean carbon sink. *Global Biogeochemical Cycles*, 28(9), 927–949.
338 <http://doi.org/10.1002/2014GB004853>

339 Large, W. G., McWilliams, J. C., & Doney, S. C. (1994). Oceanic vertical mixing: a review and
340 a model with a nonlocal boundary layer parameterization. *Rev. Geophysics*, 32(4), 363–403.

341 Marshall, J., & Radko, T. (2003). Residual-mean solutions for the Antarctic Circumpolar Current
342 and its associated overturning circulation. *Journal of Physical Oceanography*, 33(11), 2341–
343 2354. [http://doi.org/10.1175/1520-0485\(2003\)033<2341:RSFTAC>2.0.CO;2](http://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2)

344 Marshall, J., & Speer, K. (2012). Closure of the meridional overturning circulation through
345 Southern Ocean upwelling. *Nature Geoscience*, 1–10. <http://doi.org/10.1038/ngeo1391>

346 Mongwe, N. P., Chang, N., & Monteiro, P. M. S. (2016). The seasonal cycle as a mode to
347 diagnose biases in modelled CO₂ fluxes in the Southern Ocean. *Ocean Modelling*, 106(C),
348 90–103. <http://doi.org/10.1016/j.ocemod.2016.09.006>

349 Pham, A. L. D., & Ito, T. (2021). Anthropogenic Iron Deposition Alters the Ecosystem and
350 Carbon Balance of the Indian Ocean Over a Centennial Timescale. *Journal of Geophysical
351 Research: Oceans*, 126(2), e2020JC016475. <http://doi.org/10.1029/2020JC016475>

352 Redi, M. H. (1982). Oceanic Isopycnal Mixing by Coordinate Rotation. *Journal of Physical
353 Oceanography*, 12(10), 1154–1158. [http://doi.org/10.1175/1520-0485\(1982\)012<1154:OIMBCR>2.0.CO;2](http://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2)

355 Tagliabue, A., Williams, R. G., Rogan, N., Achterberg, E. P., & Boyd, P. W. (2014). A
356 ventilation-based framework to explain the regeneration-scavenging balance of iron in the
357 ocean, 1–11. [http://doi.org/10.1002/\(ISSN\)1944‐8007](http://doi.org/10.1002/(ISSN)1944‐8007)

358 Toggweiler, J. R., & Russell, J. (2008). Ocean circulation in a warming climate. *Nature*,
359 451(7176), 286–288. <http://doi.org/10.1038/nature06590>

360 Uchida, T., Balwada, D., Abernathey, R. P., McKinley, G. A., Smith, S. K., & Levy, M. (2020).
361 Vertical eddy iron fluxes support primary production in the open Southern Ocean. *Nature
362 Communications*, 1–8. <http://doi.org/10.1038/s41467-020-14955-0>

363 Verdy, A., & Mazloff, M. R. (2017). A data assimilating model for estimating Southern Ocean
364 biogeochemistry. *Journal of Geophysical Research: Oceans*, 122(9), 6968–6988.
365 <http://doi.org/10.1002/2016JC012650>

366