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ABSTRACT ARTICLE HISTORY
Let £: Q x R” — R be zero mean, mean-square continuous, station- Received 28 November 2019
ary, Gaussian random field with covariance function r(x)=  Accepted 24 December 2019

E[E(0)E(x)] and let G : R — R such that G is square integrable with
. . . KEYWORDS
respect to the standard Gaussian measure and is of Hermite rank d. Breuer-Major theorem;

The Breuer-Major theorem in it's continuous setting gives that, if r € functional limit theorem;
L4(R"), then the finite dimensional distributions of Z(t)=  Wiener chaos expansions
Wf[,s,unlsﬂ/n]n [G(&(x)) — E[G(&(x))]]dx converge to that of a scaled 2010 MATHEMATICS

Brownian motion as s — co. Here we give a proof for the case when ~ SUBJECT
£:QxR"— R™ is a random vector field. We also give a proof for g(')‘;t)ssslg(::%ﬂ;;é]s.
the functional convergence in C([0,0)) of Z; to hold under the con- 60G60: 60HO7 '
dition that for some p>2, G e LP(R",y,) where 7, denotes the '

standard Gaussian measure on R and we derive expressions for the

asymptotic variance of the second chaos component in the Wiener

chaos expansion of Z(1).

1. Introduction

The classical Breuer-Major theorem in its primitive form, as proved first by Péter
Breuer and Péter Major in their seminal paper [1] in 1983, states that, under an appro-
priate condition involving the covariances, the sum of a functional of a stationary
sequence of Gaussian variables, scaled by the square root of the number of terms, con-
verges in distribution to a Gaussian variable. A formal statement is as follows. For a
centered stationary sequence of Gaussian variables {&; : k € Z} with unit variance and
a function G € L*(R,y,) of Hermite rank d, where 7, denotes the standard Gaussian
measure on R, if ), |E[¢,¢1.44]|” < oo, then the following convergence in law holds

=St — el = No.v)
k=1

as n — oo, for some V € [0, 00).

The theorem has now become one of the most celebrated and widely applicable
results in stochastic analysis. An extension of the original version to sequences of vec-
tors was done by Arcones in [2] and continuous versions of the theorem for real valued
fields are found in [3-5].
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A continuous version of this theorem (see Theorem 2.3.1 of [5]) asserts that for a
zero mean, stationary, isotropic Gaussian random field ¢ : Q x R” — R with covariance
function r(x) = E[E(0)¢(x)], if r € LYR") and r(x) — 0 as |x| — oo, then as s — oo,
the finite dimensional distributions of the processes

= 3, GCEC) ~ EIGECNe £ € 0,09

Z(t)
converge to those of a scaled Brownian motion. Here B, (a) denotes the ball of radius a
centered at the origin in R".

Estrade and Leén in [6] have partially addressed the case of random vector fields on
the Euclidean space when they mention adapting the Breuer-Major theorem to prove a
Central Limit Theorem for the Euler characteristic of an excursion set (see Proposition
2.4 of [6]).

The purpose of this paper is to obtain a mutidimensional extension of the continuous
Breuer-Major theorem for random fields, including the corresponding invariance prin-
ciple. We will use the n-cubes [—s,s|" instead of balls as expanding sets and we prove it
without the assumption of isotropy. We will also give a proof for the convergence of Z;
to hold in a functional sense, i.e. convergence in law in C([0,00)) under the condition
that G € LP(R™,y,,) for some p > 2, where y,, denotes the standard normal distribution
on R™. This remains an unaddressed question in the literature in the case of vectors.
The approach here is similar to the method that has been employed in [7, 8], namely
using the representation by means of the Malliavin divergence operator, which is
obtained through a shift operator, and applying Meyer inequalities to show tightness.
However, in the case of vectors fields, this approach is more involved and requires the
introduction of weighted shift operators.

The modern proof of the Breuer-Major theorem is based on the Stein-Malliavin
approach and is presented in [9]. We will rely on this methodology for the proofs. We
refer the reader to the monographs [9] or [10] for unexplained usage of terms.

The organization of the paper is as follows. Section 2 describes the necessary frame-
work and notations. The third section contains the statements of our results. In
Section 4 we briefly describe several preliminary results and definitions regarding
Malliavin calculus on Wiener space and we write the Wiener chaos expansions of varia-
bles of interest. Finally, Section 5 contains the proofs.

2. Setup

Let £ :QxR"—R,i=1,...,m be zero mean, mean-square continuous, stationary
Gaussian random fields which are jointly stationary, ie., for 1 <i,j <m, the cross
covariance functions, rj(%y) = [E[(fi(x)éj(y)] =r,j(x—y) (in an abuse of notation),
depend only on x - y. Then the function 7 : R" — M,,(R), r(x) = (ri’j(x>)1§i,j§m is the
covariance function for the vector valued field,

EQXR = R, E(x) = (éi("))gigm'

We now recall the Hermite polynomials in the multivariate case. We denote the n-th
Hermite polynomial by
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Hy(x) = (—1)"e(*/2) A (202), 2.1)

dx"
For any multi-index a = (ay,...,am),a; € NU{0} and x € R", we write |a| =>"" a;,
al =[], a;! and

m

Hoy(x) = [ [ Ha,(x:). (2.2)

iZi
We then have that {ﬁﬁa caisa multi—index} is an orthonormal basis of L*(R",7,,),

where v,, denotes the standard Gaussian measure on R” (see [11]).

Let G : R” — R be such that G is not a constant and G € L*(R",7,,). Denoting for
an integer q, Z, = {a € Z™ : a; > 0,]a| = q}, we have the following expansion of G
where the convergence of the series is in L? sense,

i Z c(G,a)H,(x) = G(x). (2.3)
q=0 acZ,

In above expansion ¢(G,a) =4 [onG( ()7 (dx). Let Gy = [onG(x)7,,(dx) = 0 and
call smallest integer d € N to be the mnk of G if there exists a mu1t1 index a such that
la| = d and ¢(G, a) # 0. Therefore,

f: Z c(G,a)H,(x) = G(x). (2.4)
q=d acl,

For any integer g > 1, we will make use of the notation

Gy(x) = Z (G, a)Hy(x). (2.5)

acl,

We are interested in the asymptotic behavior as s — co of the random variables
defined by

1
Ly = WJ[ | G(&(x))dx. (2.6)
S —s,s]"
For any integer ¢ > 1, we put
1
qu) — WJ[ | Gy(&(x))dx. (2.7)
S S, S|

Also we denote the variances of L, and qu) by Var(L;) = V; and Var(qu)) = Vs(q>,
respectively. For x,y € R”, set

Ce(xy) = [E[G(é(x))G(f(y))]

as the covariance function of G({(x)). We ignore the degenerate case when V; = 0 for
all s>0.

Remark 2.1. We will use Fubini-Tonelli’s theorem to exchange integrals and expectation
and everytime its use will be justified by Theorem 1.1.1 of [5]. We will also use it to
interchange the multiple Wiener-I1to integral and Lebesgue integral.
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We will impose the following condition on the covariances. As noted in the proof of
Theorem 1 of [2], given that r(0) is invertible, by a linear transformation we can assume
that r(0) =Iduxm (m x m identity matrix). Moreover, recall that d > 1 is the Hermite
rank of our functional G.

Condition (C1). r(0) =Id,x and for every 1 <j,k < m,rj; € L*(R").

Remark 2.2. Since by Cauchy-Schwarz inequality and stationarity, E[&;(x)&(0)] <1,
(C1) implies that r;; € LP(R™) for all p>d.

3. Statements

We are now in a position to state the main results of this paper. The following very
useful lemma provides a simple characterization for the asymptotic variance of L
defined in (2.6). Note here that we have assumed E[G(£(0))] =0, that means the
Hermite rank of G is d > 1.

Lemma 3.1. Under (Cl), the random field Go & : Q x R" — R is weakly stationary, i.e.
Co(x%.y) = E[G(E(x))G(E(y))] = Co(x —y) is a function of x ~ y and Cg € LY (R"). The
following also holds,
Vi=1mV,= J Ce(x)dx < o0, (3.1)
|R7l

§—0Q
where we recall that V denoted the variance of the random variable L, defined in (2.6).
Theorem 3.2. Under (C1),
1

b WJ , 0CENE > NO.Y) s s = oo

Here V is as in Lemma 3.1 and = denotes convergence in law.
The above statement is a continuous version of Theorem 4 of [2].
Theorem 3.3. Under (Cl1) as s — oo, the finite dimensional distributions of the process
1

Zoy WJ Lo O N0 € [0:00),

converge to those of \/VB, on [0, 00), where B = {By,y > 0} is a standard Brownian motion.

The above statement is a multi-dimensional extension of Theorem 2.3.1 of [5]. The
above two theorems are presented separately for better elucidation and to save on
unnecessary notation. Clearly Theorem 3.3 contains Theorem 3.2.

Theorem 3.4. Assume (C1) and G € LP(R™,y,,) for some p > 2. As s — oo, the probabil-
ity measures {P;: s > 0} on C(]0,00)) induced by {Z;:s > 0} (as defined in Theorem
3.3) converge weakly to the probability measure induced by \/VB, on C([0,00)), where
again B denotes a standard Brownian motion.

The above result is multi-dimensional counterpart of Theorem 1.1 of [7].
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Consider the m x m symmetric matrix C = (Cj’k)1<j L,y SiVeD by

Gk = J G(x)xjxiy,(dx), for j#k
- (32)

= J G(x) <x]2 - l)ym(dx), for j=k.
|R?l

We have the following lemma which gives an expression for the asymptotic variance of
the second chaos component.

Lemma 3.5. Let G be of Hermite rank 2 and assume (CI1). Let C be the matrix defined
in (3.2). Then,

1
lim v = v® = ST CrCl s . (3.3)

§—00

Suppose in addition that for every 1 <jk <m,r;; € L'(R"). Note that due to the
stationarity and mean-square continuity of the fields ¢;s, we have, by Bochner’s theorem
(Theorem 5.4.1 of [12] or Equation 1.2.1 of [5]), that there exist finite measures vjs
(called the spectral measures) such that

ri,j(x) = Jwei<t”‘>l/j(dt)- (3.4)

Moreover, due to the integrability of the covariances, we have that the v;s are absolutely
continuous with respect to the Lebesgue measure and admit densities (called spectral
densities). Denote the spectral density of &; as f; and o = \/f;. Set a(x) = (ai(x)), ;o

and let H(x) = T (—x)Cax(x). Under these conditions, Equation (3.3) can be written as
(2n)”"
2
This formula has been motivated by the result obtained in [13] in the context of the
Central Limit Theorem for the number of critical points, where V@ is obtained as the

L?-norm of a function. These results can be used, for instance, to obtain lower bounds
on the asymptotic variance V =3 ., V(9 when V@ exists.

V(Z) —_

| H[72(50- (3.5)

4, Preliminaries and chaos expansions

In this section, we recall the Malliavin operators associated with an isonormal Gaussian
process and the properties of the multiple Wiener-Ito integrals. We refer the reader to
[10] for a detailed account on this topic. We then write the chaos expansions of the var-
iables L, introduced in (2.6).

We claim that there exists a Hilbert space $ and elements ﬂj,x €N 1<ij<muxe
R", such that

rij(x =)= (BixBiy)s

for all x,y € R" and 1 <4,j < m. Indeed, it suffices to choose as $ the Gaussian sub-
space of L*(Q) generated by the random field ¢ and take f; , = &(x). Consider an iso-
normal Gaussian process X on $. That is, X = {X(h) the 55} is a Gaussian centered
family of random variables, defined in a probability space (Q,F,P), such that
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E[X(h)X(g)] = (hg)g for any g,h € 9. In this situation, {&(x):x € R",1<i<m}
has the same law as {X (ﬂi)x) xeRN1<i< m}. Therefore, without loss of generality
we can assume the existence of an isonormal process X on $ such that

&(x) = X(B). (4.1)

We will also assume that the o field F is generated by &.

For a smooth and cylindrical random variable F = f (X(¢,),...X(¢,)), with ¢, € H
and f € C*(R") (f and its partial derivatives are bounded), we define its Malliavin
derivative as the $-valued random variable given by

P (X(@1)s - X (@) Ps-

By iteration, we can also define the k-th derivative D¥F which is an element in the space
12(Q; $®%). The Sobolev space D*P is defined as the closure of the space of smooth
and cylindrical random variables with respect to the norm || - [[, , defined by

k
IEIE, = E(EF) + D E(IDEI ),
i=1

for any natural number k and any real number p > 1. For any Hilbert space H, we
denote by D*?(H) the corresponding Sobolev space of H-valued random variables.

We define the divergence operator 0 as the adjoint of the derivative operator D.
Namely, an element u € L2 (Q; 9) belongs to the domain of §, denoted by Dom 9, if
there is a constant ¢, > 0 depending on u and satisfying

[E((DF, u))| < cullFll2(q)

for any F € D2 If u € Dom &, the random variable §(u) is defined by the duality
relationship

E(Fo(u)) = E({DF.u)g),

which is valid for all F € D"2. In a similar way, for each integer k > 2, we define the
iterated divergence operator 6* through the duality relationship

[E(Fa"(u)) - [E((DkF, u>5gk>,

valid for any F € D*?, where u € Dom ¢ ¢ L(Q; $%F).
For any p>1 and any integer k > 1, the operator 6* is continuous from DF? (%)
into L(Q), and we have the inequality (see, for instance, [10, Proposition 1.5.4])

K
1)) < & IDV]]}, (q.g07): (4.2)
=0

for any v € D*? (55®k ) This inequality is a consequence of Meyer inequalities (from [14/]),
which states the equivalence in LP(Q), for any p> 1, of the operators D and (-10)"?,
where L is the generator of the Ornstein-Uhlenbeck semigroup introduced below.

Let % the g-th tensor product of the Hilbert space $ and denote by 9% as the sub-
set of 7 consisting of all symmetric tensors. For any f € § we define the generalized
multiple Wiener-Ito stochastic integral of the symmetric tensor f©7 by
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I (f*1) = Hy(X(f)), (4.3)

where H,(x) is the g-th Hermite polynomial given by (2.1). It is known that the mul-
tiple integral I, can be extended to $“? and it has the following properties

E[L(N)] =0, E[L,(NI4(8)] = 5ja(f.8) 5o (4.4)

for f,g € 7. That is, I, is a linear isometry between $“? equipped with the modified
norm /q!|| - ||ges and the g-th Wiener chaos H,. For an element f € $“ which is not

necessarily symmetric, we define I,(f) = I, (f), where f denotes the symmetrization of f.

Any element F € L*(Q) admits a Wiener chaos expansion

F= Zlq (fa)> (4.5)
q=0

where fy = E[F], I, is the identity on R and the kernels f, € $*? are uniquely deter-
mined by F.

Following appendix B and equation B.4.4 of [9], we can define the contractions of
two tensors as follows. For two tensors f = Zjof...,jpzl aj,,..;,¢ @ - ®e, € HP and
g£=>r kg1 Ok = € @ - R e, € %, the Ith contraction of f and g
(I < min(p, q)) is the element of Sf)®p +i-2 given by

00 00 1
feig= E E @,y Ok, ok, H € €k, @ D e, Dep, © D ey
i jp=1 ks oy kg=1 i=1

(4.6)

Notice that even if f and g are symmetric, the contraction f ®;g is not necessarily a
symmetric tensor. Using contractions, we can state the following product formula for
multiple Wiener-Ito integrals.

L@ Zz'( ) () e-als 1), @)

where f € $°7 and g € H1.
The Ornstein-Uhlenbeck semigroup {P;:t > 0} is the semigroup of operators on
L*(Q) defined by

o0
P,F = Z e ', (fy)»
q=0

if F admits the Wiener chaos expansion (4.5). Denote by L = % |,_oP: the infinitesimal
generator of {P;:t>0} in L*(Q). Then we have LF = — 3", qJ,(F) for any F ¢
Dom L = D*? where J,(F) = I, (fq) We define the pseudo-inverse of L as

2.1
== —J,F. (4.8)
q=1 9

The basic operators D, ¢ and L satisfy the relation LF = —dDF, for any random vari-
able F e D*2. As a consequence, any centered random variable F € L*(Q) can be
expressed as a divergence:
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F=06(-DL'F). (4.9)

We now turn to giving the chaos expansions for L, given by (2.6). For f; , as intro-
duced in (4.1), we have that for any x € R” and j # k, under (C1),

(B x B x)s = E[&(x)Ek(x)] = 0. (4.10)

Now consider any multi-index a such that |a| = q. By the previous facts (2.2), (4.1) and
taking into account the product formula (4.7) and (4.10), we can write

e = [T1a (2) = 1 (B2 @@ B3

J

We introduce the elements pi and I which characterize the expansions. Let

pl=> c(Ga)piy @ - @ pu. (4.11)
acl,

Notice that, although for each a € Z,, the tensor % ®--- ® f,,* is not necessarily
symmetric, the element p? is symmetric because we sum over all multi-indices a. Set

1
1= —J pldx. (4.12)
s <2S)n/2 iy x
By linearity of the multiple Wiener-Ito integral and Fubini’s theorem for multiple
Wiener-Ito integral, we have that

GalE(x)) = I (p2); LV = 1, (9),

@ are defined in (2.5) and (2.7), respectively. Therefore, we have the

where G, and L
chaos expansion

L= ilq(xg) = iL@. (4.13)

= dxdy — 0
(25) J[—s,s]”J[—s, 5" 4

as | — oo. The last step follows from stationarity and Cauchy-Schwarz inequality.
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Remark 4.1. Due to properties of the multiple Wiener-It6 integrals noted in (4.4),
we have E[LY]=E[L(4])] =0 and E[G,(¢(x))] = E[L(p})] =0. Also E[G, (&(x))
Gy, (E(y))] = 0 for all g1 # g».

5. Proofs
5.1. Proof of Lemma 3.1

Let us first prove the weak stationarity of the random field G o ¢. Taking into account
that G,(¢(x)) is the projection on the gth Wiener chaos of G({(x)), we can write, for
any x,y € R,

E[GE)G(ED))] = 3 E[Ga(60)Gy(E()]-

q=d

Furthermore, in view of the Diagram formula (see [2]) we have that Cg, (%) depends
on the covariances r; ix=) and hence Cg, (%.y) is a function of x - y. As a conse-
quence, we get that Cg(x,y) = Cg(x — ) is a function of x - y.

To show (3.1) we will make use of Lemma 1 of [2] and condition (C1). We have

(29)"V,=E [(J[—s,s}"G(é(x))dx> 2] = L_S)S]WJ[_S’S]nCG(x — y)dxdy.

Since by Cauchy-Schwarz inequality and stationarity, |E[G(E(x))G(E(y))]] < [E[(G(f(O)))z],
we have V; < oo for all s> 0 and

Vs = @ J N J[_s . G(x — y)dxdy

. <1 e
2s, 23 2s
Xi

=: J Co(x)I(x)dx.
R

We set

Y(x) = ( sup Z |7:,j(x) ) ( sup Z |7 j(x ) (5.2)
1<i< m; 1<j<m ;=
By Lemma 1 of [2], on the set {x: y/(x) <1}, we have

|Ce(x)| = |E[G(£(0))G(E(x))]| < ¥ (%)|Gl72

Also f[Rn x)dx < 00 as fne“|”11 )\ddx < oo for all 1 <i,j < m. On the other hand, on
the set {x : (x) > 1} we can write, taking into account that [Cg(x)| < ||G||iz([Rm ")
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Colw)ldx <

J J Ca(x)ldx
{w>1} =19 {0

m
d
< ||G||12,2(Rm,ym)md E JRn|ri,j(x)| dx < oo.
i, j=1

Observe that |L(x)| = |ITZ, (1 - %) Lo 24"

Therefore by dominated convergence theorem,

<1 for all s>0 and as s — 00, I(x) — 1.

V=lim V= j Cq(x)dx < o0.
RVI

§—00

Moreover, we have for all s >0,

Vi | Cobomax< |

which implies that V> 0. O

Co(x)dx =V,
|RYI

5.2. Proof of Theorem 3.2

We will apply Nualart and Hu’s criteria for convergence in distribution to a normal
variable (Theorem 3 of [15] or Theorem 6.3.1 of [9]). As a consequence, the theorem
follows if the following conditions hold,

For every q > d, VD L v@) < o0 as s — oo.

V=32V < oo

For every ¢ > d and every 1 < b < g — 1,||{ @, X?nguq—zb) — 0 as s — o00.
SUP;g D gt Vi —0asl— oo.

Ll e

Here 7 is given by (4.12). Conditions 1), 2) hold by Lemma 3.1. For condition 3), by
(4.12) we have that

1
e I s (53)
(25) [=s8]"J[=s,5]"
Denoting for a multi-index i = (i1,....ig),{jx = B x ® -+~ ® B ,» for the desired con-

vergence to hold, we have, by Equation (4.11), that it suffices to show that for any
multi-indices i and j,

1
o= H—J J Coe @l ydxd
(25) [=s,5]"J s, s]" Py 4

as s — 0o. We have, using (4.6),

b
1
Js = (ZS)ZH J[ " (Hrik»jk (X = V)i ji (z—w)
=5 k=1

2

—0 (5.4)
§7(20-20)

x < (®Z:b+1ﬂiz,x) ® (®Z:b+1ﬁjz,y)’<®Z:h+1ﬁiz,2) ® (®Z:b+1ﬁiz,W) >

§©(2a-20)

> dxdydzdw.
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and f3,

In the above expression, pairing together —

j» we get that,

ks X and similarly with the index

Js = (25 J (Hrtk (X =), ]k H Tiwii ( T]k Wy — W)) dxdydzdw

k b+1
1
(25)2?1

J[_ " Y (x— )/)lﬁ (z — Wt 0 (x — z)lpq_b(y — w)dxdydzdw.

where  is as defined by (5.2). In what follows, the value of constant C is immaterial
and changes with each step. By Holder’s inequality and the fact that y € L1(R") for all
q > d we have that

Js < Cs_Z"J tpb(x —y)l,bq_b(y — w)dxdydw. (5.5)

[—S,S]Sn

By the change of variables (x,y, w) — (x — y,y — w, w) we have

Ji < Cs"J Yo ()1t (v)dudy.

[—2s,25)*"

We proceed in a manner similar to [3]. For k>0 denote Ty = [—k, k}zn and Tj to be its
complement in R*". Consider the decomposition

J < cs"J WP ()Tt (v)dudy + cs"J Yo ()1t (v)dudv.

2n 2n
[—2s,2s]""NTy [~2s,25]"NT}

For any fixed k, since i is bounded, we have that the first term tends to zero as s —
00. For the second term, by Holder’s inequality we can write

S"J Yo ()1t (v)dudy
[—2s,25]"'NT¢

b/q (4-b)/q
< Cs™" (s”J z/ﬂ(u)du) (s”J z/ﬂ(v)dv)
R\ [—k, k" R™\[—k, k"

< CJ Yl(x)dx — 0
RM\ [, K]

as k — oo yielding the desired conclusion.
Condition 4) also holds as we have, by (5.1) in Lemma 3.1,

i V5<‘1) _ i JRnCGq(x)IZS(x)dx < i JRnCGq(x)dx - i V@ — o

g=Il+1 q=I+1 q=I+1 q=1+1

as [ — oo uniformly in s. O
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5.3. Proof of Theorem 3.3
As defined in the statement,

1

T
(25) /2 [~sy/n,syv/n]

G(&(x))dx, y € [0,00).

We gather the necessary notation for the Wiener chaos expansions for the new varia-

bles. By the Wiener chaos expansions in (4.13), we have for any y>0, Z, =

ZZO:d Zs(,qy) = Z;id I (qu)),). Here

@_ 1 J
z = — Gy(E(x))dx
(28) /2 [75},1/"’3},1/”] q
and
X?y = ln/zJ Pzdx
> (25) [_Syl/n) Syl/n]

Due to results by Nualart and Peccati [16] and Peccati and Tudor [17] (or see Theorem
2.1 of [7]), the convergence of the finite dimensional distributions of Z; to those of the
Brownian motion /VB, follows if we show that the covariances of the corresponding
projections on each Wiener chaos converge. Namely for any g > d and y;,y, > 0,

[E[ZS(?}IZS(?}L] — V@yi Ay,
as s — oo, where V(@ = lim,_, V¥,

Let y; <y, and set s; = sy}/" and s, = sy; . Denote A; = [—s; — 55,51 +5]" and
Cs = [s1 — 52,5 — s1]". By the change of variables (x,y) + (x — y,y) we have,

/n

1
E(z8) 29, = J Co, (x — y)dxd
[ 5 )1 :)’zi| (zs)n ol smar Gq(x y) xay
1
= C 2s1)"d
(2)" Jc, 6,()(251)"du
1 n
C — |u;|)du.
+(25)n e Gq(“)g(sl‘ﬂz |ui|)du

Due to Lemma 3.1 applied to the random field G,({(x)), we have that as s — oo

1 n
WJ[ | Ca,(u)(2s1)"du — Viy,

and by dominated convergence theorem the second term converges to zero, that is,
n 1/n 1/n
2 |
Cq, (u a2 T du — 0.
Jw G, (1) ,11 ( 5 55 ) lancidu —

Therefore, the theorem follows. O
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5.4. Proof of Theorem 3.4

Since we have established the convergence of the finite dimensional distributions, it
now suffices to show that the family of probability measures {P;:s > 0} is tight. By
problem 4.11 of [18], it suffices to show that for some p>2 and for every T >0, the
following holds for 0 < y; <y, < T,

su(;)) ||Zs,yz - Zs,mHLD(Q) < Crly _)’1|1/2- (5.6)
s>

The desired estimate will be obtained by employing a weighted shift operator and
obtaining a representation using the divergence operator. We proceed to define the
shift operator.

If G € L*(R™,y,,) has rank d > 1 with the expansion (2.4), for any index i = 1,...,m
we define the operator T; by

ZZ Ga) 2 H,_ (%) H H, (x)). (5.7)

q=d acZ, =1, j#i

We know that G(¢(x)) has the Wiener chaos expansion

G(¢(x)) ZZC(G a)l ( oY ® ﬁ®“m) (5.8)

q=d acl,

The shift operator allows us to represent G((x)) as a divergence. Notice that this
operator is more complicated than the shift operator considered in the one-dimensional
case (see [8]) because we need the weights a;/q in order to have the representation as a
divergence. Actually, we are interested in representing G(£(x)) as an iterated divergence.
For any 2 < k < d and indexes iy, ..., ix € {1,...,m}, we can define the iterated operator

— T o k) OT‘

Teeess ik il 'S

The following result is our representation theorem.

Lemma 5.1. For any 2 < k < d, we have
G( - 5k< Z Tn ...,zk x))ﬁil,x @ ® ﬁik,x> :
i1y .oy k=1

Proof. Using the Wiener chaos expansion (5.8) and the operator L' introduced in
(4.8), we can write

L7'G(¢(x)) = —ZZ (G,a) ( Y ® ®[3®“M)

q=d acZ,

o0

= =3 137G @)Ha(E(x).

q=d 9 a€l,

This implies, taking into account that H, = mH,,_,, that
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~DL'G(¢(x) =Y Y «(G Z% 1(&(x)) H
q;d acl, =1 j=1,j#i (59)
= TiG((x))Bi -
i=1
Iterating k times this procedure, we can write
(DL 'GE®) = Y TykGEX)B @ @ By (5.10)

iy ey =1

Taking into account that —0DL™! is the identity operator on centered random variables,
we obtain

S(—pL ) G(¢(x)) =8¢ '6(—DL™) [(—DL’I)k_lG(é(x))}
=31 (—pL) G(¢(x)).

Iterating this relation and using (5.10), yields
G(e() = o (=DL ) G(¢(x) = 6"( S T kG @ ﬂ)

Then, the statement in the lemma is a consequence of (4.9). This completes the proof.
The next result is the regularization property of the shift operator T; ;.

Lemma 5.2. Let p > 2. Suppose that G € LP(R", ,,). Then T;, ;G(&(x)) belongs to
Dk? for any k < d and, moreover,

sup  sup [Ty, G(E(X))]lx, < o0 (5.11)

x€R" 1<iy, ..oy ik <m

Proof. Because (; .. Bj,)s = 0ij using (5.10), we can write for any x € R",
Y
Ty, GEE) = ((DL)GE) B @ @ Bie)

Then, by Meyer inequalities, which imply the equivalence in L? of the operators D and
(—L)l/z, we can estimate the D*’-norm of T, .iiG(¢(x)) by a constant times the
1P(Q)-norm of G(&(x)). O

Let s; = syil/" and S; = [—s;s;]" for i=1,2. We now have

||Zs,yz - Zs,yl ||LP(Q)

l
= G(&(x))dx
(25)"* l)s, s, (Q)
1 J d ’”
= 5 Til,..., X ﬁzl X ® ® ﬂ’d X dx
(29" || )s. s (zl Z;:l ) ) (@)
1 m
_ 5 J Ty G(E(X))Byr @ - @ B iy
(25)"? (zl ;—1 S 81 ‘ (@)
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Applying Meyer inequalities (see (4.2)), we obtain

HZsyz _ZS,’V1||LP

( Z J Til,...,idG(f(x))ﬁil,x X ® ﬁid,xdx>
i1, S S U(Q;Sﬁx‘(ﬁrd))

d m m
1 ) ‘
=%, £ J D]Ti1>-~»)idG ¢(x >D1Ti1,...,idG E(x ®j
! dz (25)”/2 < ’ila Z;ljla Zj:dljsz $1J8 51< ( ( )) ( ( ))>35
P/2> 1/p

Now, using Minkowski’s inequality and the estimate (5.11), we can write

X Tigjy (X = ¥) = Tigja (X —y)dxdy

||Zs,yz - ZsmHUJ(Q)
< Cpa Sup sup sup ||D]Ti1,...,idG(€(x))||U/2(Q;55®j)

F=0y ooy d XER i1y vy ig=1, o0y

m m 1/2
1
X ——— i (X —Y) - 1iy i, (% — y)|dxd
(25)"/2 ( Z Z Lz Sle Sl| ax=Y) wis(* =) y)

ity oo ig=1j1, .y ja=1

1/2
Cs "2 J J rii(x — ddxd) )
Z( It sy

Therefore, we finally obtain

n 1/2
d
||Zs,yz - ZS,}’1||LP(Q) < Cl)’l *)’2|1/2 Z (Jnen|ri’j(x)| dx> ’

iy j=1

5.5. Proof of Lemma 3.5

Recall that C = (¢;, k)1< k< is the matrix given by (3.2). For any j # k, we denote by al-%
the multiindex in Z, such that ao M=, a(] '~ 1 and a?’k) = 0 for any ¢ # j, k. Also al"))

will denote the multiindex in 7, such that aj(] ) =2 and ag’j ) =0 for any ¢ # j. Then,
7, = {a¥9,1 <j,k < m}.

Moreover, from the definition of the matrix C, it follows that for any
jhk=1,..,.mj#k,

C(G, a(j’k)) =Gk

and forall j=1,...,m, c(G,al)) = %cj, j- With this notation we can write

v :JW[E[Gz(é(O))Gz(é(x))]dx
:ij z’”: ¢ jco, kE[H g (E(0))H yw (4(x))] dx

K55k €=1
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The computation of the expectations E[H iy (E(0))H 400 (E(x))] depends on the
indexes i, j, £, k. Consider the following cases:

(i) Casei#jand ¢ # k: In this case, we have
E[H 4 (£(0))H yiov (E(x))] = E[£:(0)&;(0)&(x) Ek(x)]
=1;,0(X)1j,k(x) + 13,1 (x)15,0(x).
(ii) Case i#jand { =k : In this case, we have
E[H 40 (8(0))H yo0 (£(x))] = [E[éi(o)éj(o)(é?(x) —1)]
=2r; 0(x)15,0(x).
(ili) Case i=j and ¢ = k: In this case, we have
E[H 00 (E00) H o0 (£(2))] =E[(&(0) = 1)° (& (x) — 1)]

=21 o(x)*.

As a consequence, taking into account the symmetry of the matrix C, we obtain

1 = 1

v = —J Z CiyjCo, ki, e(X)1 k(%) dx = —J Tr[r(x)Cr(x)Cldx.

2 g = 2 )
isjy ky =1

This completes the proof of Lemma 3.5. O

Finally, we will show formula (3.5), assuming that the covariances are integrable. To

do this, it is convenient to choose a different underlying isonormal Gaussian process.

Let W denote a complex Brownian measure on R” and define the isonormal process X
on L2(R") by

x() = |_Fiewa), (5.12)

where Ff] denotes the Fourier transform of f € L?(R"). Recall the following properties
of the Fourier transform:

| roFgoa =] Frogoar (5.13)

for f,g € L*(R") and F[F[f])(x) = 2n) "f(—x).

Due to the assumption that for 1 <i,j <m,r;; € L*(R"), we have that the spectral
measures ;s of ¢js are absolutely continuous with respect to the Lebesgue measure and
hence ¢;s admit spectral densities. Denoting the spectral density of ¢; as f;, we have that
the following representation holds (see Equation 1.2.16 of [5]).

50 = | e - awe), 519

where o; € L*(R") are such that |ocj(t)|2 = f;(t). Denoting ﬁ]’.)x(t) = ei<”">ozj(t), we get
that ¢;(x) = X ( ]’x> and so we have an” embedding” of the field into the isonormal

process (5.12). Moreover, we have
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rik(x) = E[&(x)E(0)] = (B 1 Bro) r2mr) = F [o5%] (%)- (5.15)

As a consequence, we can write

m
J Z Ci,jCo, ki, e(x)1; k(%) dx

iy ]y ky f=1

m

J Z ¢i,jco, kF [odtg] (x) F o0t ] (x ) dx.

>]> ky (=1

By Plancherel’s theorem,

J[an’: [ociotg] () F o0t ] (%) dx :J Floittg] () F [ (o0 ) o sign] (x)dx

R"

= (Zn)”J[Rnoc,-(x)ocg (x) ot (—x) ok (—x) dix,

where sign(x) = —x. This implies
(27r)
v = 112 o)

where

Z ¢i, kot —x) o (x) = o (—x)Cor(x). (5.16)

jy k=1
This completes the proof of (3.5). O
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