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Continuous Breuer-Major theorem for vector valued fields

David Nualarta and Abhishek Tilvab�
aDepartment of Mathematics, University of Kansas, Lawrence, Kansas, USA; bDepartment of Mathematics,
Indian Institute of Science Education and Research, Pune, India

ABSTRACT
Let n : X� Rn ! R be zero mean, mean-square continuous, station-
ary, Gaussian random field with covariance function r xð Þ ¼
E½n 0ð Þn xð Þ� and let G : R ! R such that G is square integrable with
respect to the standard Gaussian measure and is of Hermite rank d.
The Breuer-Major theorem in it’s continuous setting gives that, if r 2
Ld Rnð Þ, then the finite dimensional distributions of Zs tð Þ ¼

1
2sð Þn=2

Ð
½�st1=n , st1=n �n ½G n xð Þð Þ � E½G n xð Þð Þ��dx converge to that of a scaled

Brownian motion as s ! 1: Here we give a proof for the case when
n : X� Rn ! Rm is a random vector field. We also give a proof for
the functional convergence in C ½0,1ð ÞÞ of Zs to hold under the con-
dition that for some p> 2, G 2 Lp Rm, cmð Þ where cm denotes the
standard Gaussian measure on Rm and we derive expressions for the
asymptotic variance of the second chaos component in the Wiener
chaos expansion of Zs 1ð Þ:
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1. Introduction

The classical Breuer-Major theorem in its primitive form, as proved first by P�eter
Breuer and P�eter Major in their seminal paper [1] in 1983, states that, under an appro-
priate condition involving the covariances, the sum of a functional of a stationary
sequence of Gaussian variables, scaled by the square root of the number of terms, con-
verges in distribution to a Gaussian variable. A formal statement is as follows. For a
centered stationary sequence of Gaussian variables nk : k 2 Zf g with unit variance and
a function G 2 L2 R, c1ð Þ of Hermite rank d, where c1 denotes the standard Gaussian
measure on R, if

P
k2Z jE½n1n1þk�jd < 1, then the following convergence in law holds

1ffiffiffi
n

p
Xn
k¼1

G nkð Þ � nE G n1ð Þ½ �
" #

) N 0,Vð Þ

as n ! 1, for some V 2 ½0,1Þ:
The theorem has now become one of the most celebrated and widely applicable

results in stochastic analysis. An extension of the original version to sequences of vec-
tors was done by Arcones in [2] and continuous versions of the theorem for real valued
fields are found in [3–5].
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A continuous version of this theorem (see Theorem 2.3.1 of [5]) asserts that for a
zero mean, stationary, isotropic Gaussian random field n : X� Rn ! R with covariance
function r xð Þ ¼ E½n 0ð Þn xð Þ�, if r 2 Ld Rnð Þ and r xð Þ ! 0 as jxj ! 1, then as s ! 1,
the finite dimensional distributions of the processes

Zs tð Þ ¼ 1
sn=2

ð
Bn st1=nð Þ

G n xð Þð Þ � E G n xð Þð Þ½ �½ �dx, t 2 0,1½ Þ

converge to those of a scaled Brownian motion. Here Bn að Þ denotes the ball of radius a
centered at the origin in Rn:

Estrade and Le�on in [6] have partially addressed the case of random vector fields on
the Euclidean space when they mention adapting the Breuer-Major theorem to prove a
Central Limit Theorem for the Euler characteristic of an excursion set (see Proposition
2.4 of [6]).
The purpose of this paper is to obtain a mutidimensional extension of the continuous

Breuer-Major theorem for random fields, including the corresponding invariance prin-
ciple. We will use the n-cubes ½�s, s�n instead of balls as expanding sets and we prove it
without the assumption of isotropy. We will also give a proof for the convergence of Zs
to hold in a functional sense, i.e. convergence in law in C ½0,1ð ÞÞ under the condition
that G 2 Lp Rm, cmð Þ for some p> 2, where cm denotes the standard normal distribution
on Rm: This remains an unaddressed question in the literature in the case of vectors.
The approach here is similar to the method that has been employed in [7, 8], namely
using the representation by means of the Malliavin divergence operator, which is
obtained through a shift operator, and applying Meyer inequalities to show tightness.
However, in the case of vectors fields, this approach is more involved and requires the
introduction of weighted shift operators.
The modern proof of the Breuer-Major theorem is based on the Stein-Malliavin

approach and is presented in [9]. We will rely on this methodology for the proofs. We
refer the reader to the monographs [9] or [10] for unexplained usage of terms.
The organization of the paper is as follows. Section 2 describes the necessary frame-

work and notations. The third section contains the statements of our results. In
Section 4 we briefly describe several preliminary results and definitions regarding
Malliavin calculus on Wiener space and we write the Wiener chaos expansions of varia-
bles of interest. Finally, Section 5 contains the proofs.

2. Setup

Let ni : X� Rn ! R, i ¼ 1, :::,m be zero mean, mean-square continuous, stationary
Gaussian random fields which are jointly stationary, i.e., for 1 � i, j � m, the cross
covariance functions, ri, j x, yð Þ ¼ E½ ni xð Þnj yð Þ� ¼ ri, j x � yð Þ

�
(in an abuse of notation),

depend only on x – y. Then the function r : Rn ! Mm Rð Þ, r xð Þ ¼ ri, j xð Þ� �
1�i, j�m

is the
covariance function for the vector valued field,

n : X� Rn ! Rm, n xð Þ ¼ ni xð Þð Þ1�i�m:

We now recall the Hermite polynomials in the multivariate case. We denote the n-th
Hermite polynomial by
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Hn xð Þ ¼ �1ð Þne x2=2ð Þ dn

dxn
e �x2=2ð Þ: (2.1)

For any multi-index a ¼ a1, :::, amð Þ, ai 2 N [ 0f g and x 2 Rn, we write jaj ¼Pm
i¼1 ai,

a! ¼Qm
i¼1 ai! and

Ha xð Þ ¼
Ym
i¼i

Hai xið Þ: (2.2)

We then have that 1ffiffiffi
a!

p Ha : a is a multi-index
n o

is an orthonormal basis of L2 Rm, cmð Þ,
where cm denotes the standard Gaussian measure on Rm (see [11]).
Let G : Rm ! R be such that G is not a constant and G 2 L2 Rm, cmð Þ: Denoting for

an integer q, I q ¼ a 2 Zm : ai � 0, jaj ¼ q
� �

, we have the following expansion of G
where the convergence of the series is in L2 sense,X1

q¼0

X
a2Iq

c G, að ÞHa xð Þ ¼ G xð Þ: (2.3)

In above expansion c G, að Þ ¼ 1
a!

Ð
RmG xð ÞHa xð Þcm dxð Þ: Let G0 ¼

Ð
RmG xð Þcm dxð Þ ¼ 0 and

call smallest integer d 2 N to be the rank of G if there exists a multi-index a such that
jaj ¼ d and c G, að Þ 6¼ 0: Therefore,X1

q¼d

X
a2Iq

c G, að ÞHa xð Þ ¼ G xð Þ: (2.4)

For any integer q � 1, we will make use of the notation

Gq xð Þ ¼
X
a2Iq

c G, að ÞHa xð Þ: (2.5)

We are interested in the asymptotic behavior as s ! 1 of the random variables
defined by

Ls ¼ 1

2sð Þn=2
ð
�s, s½ �n

G n xð Þð Þdx: (2.6)

For any integer q � 1, we put

L
qð Þ
s ¼ 1

2sð Þn=2
ð
�s, s½ �n

Gq n xð Þð Þdx: (2.7)

Also we denote the variances of Ls and L
qð Þ
s by Var Lsð Þ ¼ Vs and Var L

qð Þ
s

� �
¼ V

qð Þ
s ,

respectively. For x, y 2 Rn, set

CG x, yð Þ ¼ E G n xð Þð ÞG n yð Þ
� �� �

as the covariance function of G n xð Þð Þ: We ignore the degenerate case when Vs ¼ 0 for
all s> 0.

Remark 2.1. We will use Fubini-Tonelli’s theorem to exchange integrals and expectation
and everytime its use will be justified by Theorem 1.1.1 of [5]. We will also use it to
interchange the multiple Wiener-Itô integral and Lebesgue integral.
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We will impose the following condition on the covariances. As noted in the proof of
Theorem 1 of [2], given that r(0) is invertible, by a linear transformation we can assume
that r 0ð Þ ¼ Idm�m (m�m identity matrix). Moreover, recall that d � 1 is the Hermite
rank of our functional G.

Condition (C1). r 0ð Þ ¼ Idm�m and for every 1 � j, k � m, rj, k 2 Ld Rnð Þ:

Remark 2.2. Since by Cauchy-Schwarz inequality and stationarity, E½nj xð Þnk 0ð Þ� � 1,
(C1) implies that rj, k 2 Lp Rnð Þ for all p � d:

3. Statements

We are now in a position to state the main results of this paper. The following very
useful lemma provides a simple characterization for the asymptotic variance of Ls
defined in (2.6). Note here that we have assumed E½G n 0ð Þð Þ� ¼ 0, that means the
Hermite rank of G is d � 1:

Lemma 3.1. Under (C1), the random field G � n : X� Rn ! R is weakly stationary, i.e.
CG x, yð Þ ¼ E½G n xð Þð ÞG n yð Þ� �� ¼ CG x� yð Þ is a function of x – y and CG 2 L1 Rnð Þ. The
following also holds,

V :¼ lim
s!1Vs ¼

ð
Rn
CG xð Þdx < 1, (3.1)

where we recall that Vs denoted the variance of the random variable Ls defined in (2.6).

Theorem 3.2. Under (C1),

Ls ¼ 1

2sð Þn=2
ð
�s, s½ �n

G n xð Þð Þdx ) N 0,Vð Þ as s ! 1:

Here V is as in Lemma 3.1 and ) denotes convergence in law.

The above statement is a continuous version of Theorem 4 of [2].

Theorem 3.3. Under (C1) as s ! 1, the finite dimensional distributions of the process

Zs, y ¼ 1

2sð Þn=2
ð

�sy1=n, sy1=n½ �n
G n xð Þð Þdx, y 2 0,1½ Þ,

converge to those of
ffiffiffiffi
V

p
By on ½0,1Þ, where B ¼ By, y � 0f g is a standard Brownian motion.

The above statement is a multi-dimensional extension of Theorem 2.3.1 of [5]. The
above two theorems are presented separately for better elucidation and to save on
unnecessary notation. Clearly Theorem 3.3 contains Theorem 3.2.

Theorem 3.4. Assume (C1) and G 2 Lp Rm, cmð Þ for some p> 2. As s ! 1, the probabil-
ity measures Ps : s > 0f g on C ½0,1ð ÞÞ induced by Zs : s > 0f g (as defined in Theorem
3.3) converge weakly to the probability measure induced by

ffiffiffiffi
V

p
By on C ½0,1ð ÞÞ, where

again B denotes a standard Brownian motion.

The above result is multi-dimensional counterpart of Theorem 1.1 of [7].
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Consider the m�m symmetric matrix C ¼ cj, kð Þ1�j, k�m
given by

cj, k ¼
ð
Rn
G xð Þxjxkcm dxð Þ, for j 6¼ k

cj, j ¼
ð
Rn
G xð Þ x2j � 1

	 

cm dxð Þ, for j ¼ k:

8>>><>>>: (3.2)

We have the following lemma which gives an expression for the asymptotic variance of
the second chaos component.

Lemma 3.5. Let G be of Hermite rank 2 and assume (C1). Let C be the matrix defined
in (3.2). Then,

lim
s!1V 2ð Þ

s ¼ V 2ð Þ ¼ 1
2
kTr rCrC½ �kL1 Rnð Þ: (3.3)

Suppose in addition that for every 1 � j, k � m, rj, k 2 L1 Rnð Þ: Note that due to the
stationarity and mean-square continuity of the fields njs, we have, by Bochner’s theorem
(Theorem 5.4.1 of [12] or Equation 1.2.1 of [5]), that there exist finite measures �js
(called the spectral measures) such that

rj, j xð Þ ¼
ð
Rn
eiht, xi�j dtð Þ: (3.4)

Moreover, due to the integrability of the covariances, we have that the �js are absolutely
continuous with respect to the Lebesgue measure and admit densities (called spectral
densities). Denote the spectral density of nj as fj and aj ¼

ffiffiffi
fj

p
: Set a xð Þ ¼ ai xð Þð Þ1�i�m

and let H xð Þ ¼ aT �xð ÞCa xð Þ: Under these conditions, Equation (3.3) can be written as

V 2ð Þ ¼ 2pð Þ�n

2
jjHjj2L2 Rnð Þ: (3.5)

This formula has been motivated by the result obtained in [13] in the context of the
Central Limit Theorem for the number of critical points, where V 2ð Þ is obtained as the
L2-norm of a function. These results can be used, for instance, to obtain lower bounds
on the asymptotic variance V ¼Pq�1 V

qð Þ when V 2ð Þ exists.

4. Preliminaries and chaos expansions

In this section, we recall the Malliavin operators associated with an isonormal Gaussian
process and the properties of the multiple Wiener-Itô integrals. We refer the reader to
[10] for a detailed account on this topic. We then write the chaos expansions of the var-
iables Ls introduced in (2.6).
We claim that there exists a Hilbert space H and elements bj, x 2 H, 1 � i, j � m, x 2

Rn, such that

ri, j x � yð Þ ¼ hbi, x , bj, yiH
for all x, y 2 Rn and 1 � i, j � m: Indeed, it suffices to choose as H the Gaussian sub-
space of L2 Xð Þ generated by the random field n and take bi, x ¼ ni xð Þ: Consider an iso-
normal Gaussian process X on H: That is, X ¼ X hð Þ : h 2 H

� �
is a Gaussian centered

family of random variables, defined in a probability space X,F ,Pð Þ, such that
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E½X hð ÞX gð Þ� ¼ hh, giH for any g, h 2 H: In this situation, ni xð Þ : x 2 Rn, 1 � i � m
� �

has the same law as X bi, x
� �

: x 2 Rn, 1 � i � m
� �

: Therefore, without loss of generality
we can assume the existence of an isonormal process X on H such that

nj xð Þ ¼ X bj, x
� �

: (4.1)

We will also assume that the r field F is generated by n.
For a smooth and cylindrical random variable F ¼ f X u1ð Þ, :::,X unð Þ� �

, with ui 2 H
and f 2 C1

b Rnð Þ (f and its partial derivatives are bounded), we define its Malliavin
derivative as the H-valued random variable given by

DF ¼
Xn
i¼1

@f
@xi

X u1ð Þ, :::,X unð Þ� �
ui:

By iteration, we can also define the k-th derivative DkF which is an element in the space
L2 X;H	k
� �

: The Sobolev space Dk, p is defined as the closure of the space of smooth
and cylindrical random variables with respect to the norm jj 
 jjk, p defined by

jjFjjpk, p ¼ E jFjp� �þXk
i¼1

E jjDiFjjp
H	i

	 

,

for any natural number k and any real number p � 1: For any Hilbert space H, we
denote by Dk, p Hð Þ the corresponding Sobolev space of H-valued random variables.
We define the divergence operator d as the adjoint of the derivative operator D.

Namely, an element u 2 L2 X;Hð Þ belongs to the domain of d, denoted by Dom d, if
there is a constant cu > 0 depending on u and satisfying

jE hDF, uiH
� �j � cujjFjjL2 Xð Þ

for any F 2 D1, 2: If u 2 Dom d, the random variable d uð Þ is defined by the duality
relationship

E Fd uð Þð Þ ¼ E hDF, uiH
� �

,

which is valid for all F 2 D1, 2: In a similar way, for each integer k � 2, we define the
iterated divergence operator dk through the duality relationship

E Fdk uð Þ
	 


¼ E hDkF, uiH	k

	 

,

valid for any F 2 Dk, 2, where u 2 Dom dk � L2 X;H	k
� �

:

For any p> 1 and any integer k � 1, the operator dk is continuous from Dk, p H	k
� �

into Lp Xð Þ, and we have the inequality (see, for instance, [10, Proposition 1.5.4])

jjdk vð ÞjjLp Xð Þ � cp
Xk
j¼0

jjDjvjj
Lp X;H	jð Þ, (4.2)

for any v 2 Dk, p H	k
� �

: This inequality is a consequence of Meyer inequalities (from [14]),
which states the equivalence in Lp Xð Þ, for any p> 1, of the operators D and �Lð Þ1=2,
where L is the generator of the Ornstein-Uhlenbeck semigroup introduced below.
Let H	q the q-th tensor product of the Hilbert space H and denote by H�q as the sub-

set of H	q consisting of all symmetric tensors. For any f 2 H we define the generalized
multiple Wiener-Itô stochastic integral of the symmetric tensor f	q by
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Iq f	q
� � ¼ Hq X fð Þð Þ, (4.3)

where Hq xð Þ is the q-th Hermite polynomial given by (2.1). It is known that the mul-
tiple integral Iq can be extended to H�q and it has the following properties

E Iq fð Þ� � ¼ 0, E Ip fð ÞIq gð Þ
� � ¼ dqpq!hf , giH	q (4.4)

for f , g 2 H�q: That is, Iq is a linear isometry between H�q equipped with the modified

norm
ffiffiffiffi
q!

p jj 
 jjH	q and the q-th Wiener chaos Hq: For an element f 2 H	q which is not

necessarily symmetric, we define Iq fð Þ ¼ Iq ~f
	 


, where ~f denotes the symmetrization of f.

Any element F 2 L2 Xð Þ admits a Wiener chaos expansion

F ¼
X1
q¼0

Iq fq
� �

, (4.5)

where f0 ¼ E½F�, I0 is the identity on R and the kernels fq 2 H	q are uniquely deter-
mined by F.
Following appendix B and equation B.4.4 of [9], we can define the contractions of

two tensors as follows. For two tensors f ¼P1
j1, :::, jp¼1 aj1, :::, jp ej1 	 
 
 
 	 ejp 2 H	p and

g ¼P1
k1, :::, kq¼1 bk1, :::, kq ¼ ek1 	 
 
 
 	 ekq 2 H	q, the l-th contraction of f and g

(l � min p, qð )) is the element of H	pþq�2l given by

f 	l g ¼
X1

j1, :::, jp¼1

X1
k1, :::, kq¼1

aj1, :::, jpbk1, :::, kq
Yl
i¼1

heji , ekiiHejlþ1 	 
 
 
 	 ejp 	 eklþ1 	 
 
 
 	 ekq :

(4.6)

Notice that even if f and g are symmetric, the contraction f 	l g is not necessarily a
symmetric tensor. Using contractions, we can state the following product formula for
multiple Wiener-Itô integrals.

Ip fð ÞIq gð Þ ¼
Xp� q

l¼0

l!
p
l

� �
q
l

� �
Ipþq�2l f e	l g

� �
, (4.7)

where f 2 H�p and g 2 H�q:

The Ornstein-Uhlenbeck semigroup Pt : t � 0f g is the semigroup of operators on
L2 Xð Þ defined by

PtF ¼
X1
q¼0

e�qtIq fq
� �

,

if F admits the Wiener chaos expansion (4.5). Denote by L ¼ d
dt jt¼0Pt the infinitesimal

generator of Pt : t � 0f g in L2 Xð Þ: Then we have LF ¼ �P1
q¼1 qJq Fð Þ for any F 2

Dom L ¼ D2, 2 where Jq Fð Þ ¼ Iq fq
� �

: We define the pseudo-inverse of L as

L�1F ¼ �
X1
q¼1

1
q
JqF: (4.8)

The basic operators D, d and L satisfy the relation LF ¼ �dDF, for any random vari-
able F 2 D2, 2: As a consequence, any centered random variable F 2 L2 Xð Þ can be
expressed as a divergence:
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F ¼ d �DL�1Fð Þ: (4.9)

We now turn to giving the chaos expansions for Ls given by (2.6). For bj, x as intro-
duced in (4.1), we have that for any x 2 Rn and j 6¼ k, under (C1),

hbj, x ,bk, xiH ¼ E nj xð Þnk xð Þ� � ¼ 0: (4.10)

Now consider any multi-index a such that jaj ¼ q: By the previous facts (2.2), (4.1) and
taking into account the product formula (4.7) and (4.10), we can write

Ha n xð Þð Þ ¼
Ym
j¼1

Iaj b
	aj
j, x

	 

¼ Iq b	a1

1, x 	 
 
 
 	 b	am
m, x

	 

We introduce the elements qqx and vqs which characterize the expansions. Let

qqx ¼
X
a2Iq

c G, að Þb	a1
1, x 	 
 
 
 	 b	am

m, x : (4.11)

Notice that, although for each a 2 Iq, the tensor b	a1
1, x 	 
 
 
 	 b	am

m, x is not necessarily
symmetric, the element qqx is symmetric because we sum over all multi-indices a. Set

vqs ¼
1

2sð Þn=2
ð
�s, s½ �n

qqxdx: (4.12)

By linearity of the multiple Wiener-Itô integral and Fubini’s theorem for multiple
Wiener-Itô integral, we have that

Gq n xð Þð Þ ¼ Iq qqx
� �

; L
qð Þ
s ¼ Iq vqs

� �
,

where Gq and L
qð Þ
s are defined in (2.5) and (2.7), respectively. Therefore, we have the

chaos expansion

Ls ¼
X1
q¼d

Iq vqs
� � ¼X1

q¼d

L
qð Þ
s : (4.13)

This is true because,

E Ls �
Xl
q¼d

L
qð Þ
s

0@ 1A2
264

375 ¼ 1

2sð Þn E
ð
�s, s½ �n

G n xð Þð Þ �
Xl
q¼d

Gq n xð Þð Þdx
0@ 1A2
264

375
¼ 1

2sð Þn
ð
�s, s½ �n

ð
�s, s½ �n

E G n xð Þð Þ �
Xl
q¼d

Gq n xð Þð Þ
0@ 1A24

G n yð Þ
� ��Xl

q¼d

Gq n yð Þ
� �0@ 1A35dxdy

�
E G n 0ð Þð Þ �Pl

q¼d Gq n 0ð Þð Þ
	 
2
 �

2sð Þn
ð
�s, s½ �n

ð
�s, s½ �n

dxdy ! 0

as l ! 1: The last step follows from stationarity and Cauchy-Schwarz inequality.
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Remark 4.1. Due to properties of the multiple Wiener-Itô integrals noted in (4.4),

we have E½Lqs � ¼ E½Iq vqs
� �

� ¼ 0 and E½Gq n xð Þð Þ� ¼ E½Iq qqx
� �

� ¼ 0: Also E½Gq1 n xð Þð Þ
Gq2 n yð Þ� �� ¼ 0 for all q1 6¼ q2:

5. Proofs

5.1. Proof of Lemma 3.1

Let us first prove the weak stationarity of the random field G � n: Taking into account
that Gq n xð Þð Þ is the projection on the qth Wiener chaos of G n xð Þð Þ, we can write, for
any x, y 2 Rn,

E G n xð Þð ÞG n yð Þ� �� � ¼X1
q¼d

E Gq n xð Þð ÞGq n yð Þ� �� �
:

Furthermore, in view of the Diagram formula (see [2]) we have that CGq x, yð Þ depends
on the covariances ri, j x � yð Þ and hence CGq x, yð Þ is a function of x – y. As a conse-
quence, we get that CG x, yð Þ ¼ CG x � yð Þ is a function of x – y.
To show (3.1) we will make use of Lemma 1 of [2] and condition (C1). We have

2sð ÞnVs ¼ E
ð
�s, s½ �n

G n xð Þð Þdx
 !2
24 35 ¼

ð
�s, s½ �n

ð
�s, s½ �n

CG x� yð Þdxdy:

Since by Cauchy-Schwarz inequality and stationarity, jE½G n xð Þð ÞG n yð Þ� ��j � E½ G n 0ð Þð Þð Þ2�,
we have Vs < 1 for all s> 0 and

Vs ¼ 1

2sð Þn
ð
�s, s½ �n

ð
�s, s½ �n

CG x � yð Þdxdy

¼
ð
�2s, 2s½ �n

CG xð Þ
Yn
i¼1

1� jxij
2s

� �
dx

¼
ð
Rn
CG xð Þ

Yn
i¼1

1� jxij
2s

� �
1 �2s, 2s½ �n xð Þdx

¼:

ð
Rn
CG xð ÞI2s xð Þdx:

(5.1)

We set

w xð Þ ¼ sup
1�i�m

Xm
j¼1

jri, j xð Þj
 !

� sup
1�j�m

Xm
i¼1

jri, j xð Þj
 !

: (5.2)

By Lemma 1 of [2], on the set x : w xð Þ � 1
� �

, we have

jCG xð Þj ¼ jE G n 0ð Þð ÞG n xð Þð Þ� �j � wd xð ÞkGk2L2 Rm, cmð Þ:

Also
Ð
Rn wd xð Þdx < 1 as

Ð
Rn jri, j xð Þjddx < 1 for all 1 � i, j � m: On the other hand, on

the set x : w xð Þ > 1
� �

we can write, taking into account that jCG xð Þj � kGk2L2 Rm, cmð Þ,
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ð
w xð Þ>1f g

jCG xð Þjdx �
Xm
i, j¼1

ð
jri, j xð Þj> 1

mf g
jCG xð Þjdx

�kGk2L2 Rm , cmð Þm
d
Xm
i, j¼1

ð
Rn
jri, j xð Þjddx < 1:

Observe that jI2s xð Þj ¼ jPn
i¼1 1� jxij

2s

	 

1½�2s, 2s�n j � 1 for all s> 0 and as s ! 1, I2s xð Þ ! 1:

Therefore by dominated convergence theorem,

V ¼ lim
s!1Vs ¼

ð
Rn
CG xð Þdx < 1:

Moreover, we have for all s> 0,

Vs ¼
ð
Rn
CG xð ÞI2s xð Þdx �

ð
Rn
CG xð Þdx ¼ V ,

which implies that V> 0. w

5.2. Proof of Theorem 3.2

We will apply Nualart and Hu’s criteria for convergence in distribution to a normal
variable (Theorem 3 of [15] or Theorem 6.3.1 of [9]). As a consequence, the theorem
follows if the following conditions hold,

1. For every q � d,V
qð Þ
s ! V qð Þ < 1 as s ! 1:

2. V ¼P1
q¼d V

qð Þ < 1:

3. For every q � d and every 1 � b � q� 1, jjvqs 	b v
q
s jjH	 2q�2bð Þ ! 0 as s ! 1:

4. sups>0

P1
q¼lþ1 V

qð Þ
s ! 0 as l ! 1:

Here vqs is given by (4.12). Conditions 1), 2) hold by Lemma 3.1. For condition 3), by
(4.12) we have that

vqs 	b v
q
s ¼

1

2sð Þn
ð
�s, s½ �n

ð
�s, s½ �n

qqx 	b q
q
ydxdy: (5.3)

Denoting for a multi-index i ¼ i1, :::, iqð Þ, fi, x ¼ bi1, x 	 
 
 
 	 biq , x, for the desired con-
vergence to hold, we have, by Equation (4.11), that it suffices to show that for any
multi-indices i and j,

Js :¼
���� 1

2sð Þn
ð
�s, s½ �n

ð
�s, s½ �n

fi, x 	b fj, ydxdy

����2
H	 2q�2bð Þ

! 0 (5.4)

as s ! 1: We have, using (4.6),

Js ¼ 1

2sð Þ2n
ð
�s, s½ �4n

 Yb
k¼1

rik , jk x� yð Þrik, jk z � wð Þ

�
�

	q
‘¼bþ1bi‘, x

	 

	 	q

‘¼bþ1bj‘, y
	 


, 	q
‘¼bþ1bi‘ , z

	 

	 	q

‘¼bþ1bi‘,w
	 
�

H	 2q�2bð Þ

!
dxdydzdw:
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In the above expression, pairing together bibþk , x and bibþk, z and similarly with the index
j, we get that,

Js ¼ 1

2sð Þ2n
ð
�s, s½ �4n

Yb
k¼1

rik, jk x � yð Þrik, jk z � wð Þ
Yq

k¼bþ1

rik, ik x� zð Þrjk , jk y� wð Þ
0@ 1Adxdydzdw

� 1

2sð Þ2n
ð
�s, s½ �4n

wb x� yð Þwb z � wð Þwq�b x� zð Þwq�b y � wð Þdxdydzdw:

where w is as defined by (5.2). In what follows, the value of constant C is immaterial
and changes with each step. By H€older’s inequality and the fact that w 2 Lq Rnð Þ for all
q � d we have that

Js � Cs�2n
ð
�s, s½ �3n

wb x � yð Þwq�b y� wð Þdxdydw: (5.5)

By the change of variables x, y,wð Þ 7! x� y, y� w,wð Þ we have

Js � Cs�n
ð
�2s, 2s½ �2n

wb uð Þwq�b vð Þdudv:

We proceed in a manner similar to [3]. For k> 0 denote Tk ¼ ½�k, k�2n and Tc
k to be its

complement in R2n: Consider the decomposition

Js � Cs�n
ð
�2s, 2s½ �2n\Tk

wb uð Þwq�b vð Þdudvþ Cs�n
ð
�2s, 2s½ �2n\Tc

k

wb uð Þwq�b vð Þdudv:

For any fixed k, since w is bounded, we have that the first term tends to zero as s !
1: For the second term, by H€older’s inequality we can write

s�n
ð
�2s, 2s½ �2n\Tc

k

wb uð Þwq�b vð Þdudv

� Cs�n sn
ð
Rnn �k, k½ �n

wq uð Þdu
 !b=q

sn
ð
Rnn �k, k½ �n

wq vð Þdv
 ! q�bð Þ=q

� C
ð
Rnn �k, k½ �n

wq xð Þdx ! 0

as k ! 1 yielding the desired conclusion.
Condition 4) also holds as we have, by (5.1) in Lemma 3.1,

X1
q¼lþ1

V
qð Þ
s ¼

X1
q¼lþ1

ð
Rn
CGq xð ÞI2s xð Þdx �

X1
q¼lþ1

ð
Rn
CGq xð Þdx ¼

X1
q¼lþ1

V qð Þ ! 0

as l ! 1 uniformly in s. w

678 D. NUALART AND A. TILVA



5.3. Proof of Theorem 3.3

As defined in the statement,

Zs, y ¼ 1

2sð Þn=2
ð

�sy1=n, sy1=n½ �n
G n xð Þð Þdx, y 2 0,1½ Þ:

We gather the necessary notation for the Wiener chaos expansions for the new varia-

bles. By the Wiener chaos expansions in (4.13), we have for any y> 0, Zs, y ¼P1
q¼d Z

qð Þ
s, y ¼P1

q¼d Iq vqs, y
� �

: Here

Z
qð Þ
s, y ¼ 1

2sð Þn=2
ð

�sy1=n , sy1=n½ �n
Gq n xð Þð Þdx

and

vqs, y ¼
1

2sð Þn=2
ð

�sy1=n, sy1=n½ �
qqxdx:

Due to results by Nualart and Peccati [16] and Peccati and Tudor [17] (or see Theorem
2.1 of [7]), the convergence of the finite dimensional distributions of Zs to those of the
Brownian motion

ffiffiffiffi
V

p
By follows if we show that the covariances of the corresponding

projections on each Wiener chaos converge. Namely for any q � d and y1, y2 > 0,

E Z
qð Þ
s, y1Z

qð Þ
s, y2

h i
! V qð Þy1�y2

as s ! 1, where V qð Þ ¼ lims!1 V
qð Þ
s :

Let y1 � y2 and set s1 ¼ sy1=n1 and s2 ¼ sy1=n2 : Denote As ¼ ½�s1 � s2, s1 þ s2�n and
Cs ¼ ½s1 � s2, s2 � s1�n: By the change of variables x, yð Þ 7! x� y, yð Þ we have,

E Z
qð Þ
s, y1Z

qð Þ
s, y2

h i
¼ 1

2sð Þn
ð
�s1, s1½ �n

ð
�s2, s2½ �n

CGq x � yð Þdxdy

¼ 1

2sð Þn
ð
Cs

CGq uð Þ 2s1ð Þndu

þ 1

2sð Þn
ð
AsnCs

CGq uð Þ
Yn
i¼1

s1 þ s2 � juijð Þdu:

Due to Lemma 3.1 applied to the random field Gq n xð Þð Þ, we have that as s ! 1
1

2sð Þn
ð
s1�s2, s2�s1½ �n

CGq uð Þ 2s1ð Þndu ! Vqy1

and by dominated convergence theorem the second term converges to zero, that is,ð
Rn
CGq uð Þ

Yn
i¼1

y1=n1 þ y1=n2

2
� juij

2s

 !
1 AsnCs½ �du ! 0:

Therefore, the theorem follows. w
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5.4. Proof of Theorem 3.4

Since we have established the convergence of the finite dimensional distributions, it
now suffices to show that the family of probability measures Ps : s > 0f g is tight. By
problem 4.11 of [18], it suffices to show that for some p> 2 and for every T> 0, the
following holds for 0 � y1 � y2 � T,

sup
s>0

kZs, y2 � Zs, y1kLp Xð Þ � CT jy2 � y1j1=2: (5.6)

The desired estimate will be obtained by employing a weighted shift operator and
obtaining a representation using the divergence operator. We proceed to define the
shift operator.
If G 2 L2 Rm, cmð Þ has rank d � 1 with the expansion (2.4), for any index i ¼ 1, :::,m,

we define the operator Ti by

Ti Gð Þ xð Þ ¼
X1
q¼d

X
a2I q

c G, að Þ ai
q
Hai�1 xið Þ

Ym
j¼1, j6¼i

Haj xjð Þ: (5.7)

We know that G n xð Þð Þ has the Wiener chaos expansion

G n xð Þð Þ ¼
X1
q¼d

X
a2I q

c G, að ÞIq b	a1
1, x 	 
 
 
 	 b	am

m, x

	 

: (5.8)

The shift operator allows us to represent G n xð Þð Þ as a divergence. Notice that this
operator is more complicated than the shift operator considered in the one-dimensional
case (see [8]) because we need the weights ai=q in order to have the representation as a
divergence. Actually, we are interested in representing G n xð Þð Þ as an iterated divergence.
For any 2 � k � d and indexes i1, :::, ik 2 1, :::,mf g, we can define the iterated operator

Ti1::::, ik ¼ Ti1 � 
 
 
kÞ �Tik :

The following result is our representation theorem.

Lemma 5.1. For any 2 � k � d, we have

G n xð Þð Þ ¼ dk
Xm

i1, :::, ik¼1

Ti1, :::, ikG n xð Þð Þbi1, x 	 
 
 
 	 bik , x

 !
:

Proof. Using the Wiener chaos expansion (5.8) and the operator L�1 introduced in
(4.8), we can write

L�1G n xð Þð Þ ¼ �
X1
q¼d

X
a2I q

c G, að Þ 1
q
Iq b	a1

1, x 	 
 
 
 	 b	am
m, x

	 

¼ �

X1
q¼d

1
q

X
a2Iq

c G, að ÞHa n xð Þð Þ:

This implies, taking into account that H0
m ¼ mHm�1, that
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�DL�1G n xð Þð Þ ¼
X1
q¼d

X
a2Iq

c G, að Þ
Xm
i¼1

ai
q
Hai�1 ni xð Þð Þ

Ym
j¼1, j 6¼i

Haj nj xð Þ� �
bi, x

¼
Xm
i¼1

TiG n xð Þð Þbi, x:
(5.9)

Iterating k times this procedure, we can write

�DL�1ð ÞkG n xð Þð Þ ¼
Xm

i1, :::, ik¼1

Ti1::::, ikG n xð Þð Þbi1, x 	 
 
 
 	 bik, x: (5.10)

Taking into account that �dDL�1 is the identity operator on centered random variables,
we obtain

dk �DL�1ð ÞkG n xð Þð Þ ¼ dk�1d �DL�1ð Þ �DL�1ð Þk�1
G n xð Þð Þ

h i
¼ dk�1 �DL�1ð Þk�1

G n xð Þð Þ:
Iterating this relation and using (5.10), yields

G n xð Þð Þ ¼ dk �DL�1ð ÞkG n xð Þð Þ ¼ dk
Xm

i1, :::, ik¼1

Ti1::::, ikG n xð Þð Þbi1, x 	 
 
 
 	 bik, x

 !
:

Then, the statement in the lemma is a consequence of (4.9). This completes the proof. w

The next result is the regularization property of the shift operator Ti1, :::, ik :

Lemma 5.2. Let p � 2. Suppose that G 2 Lp Rm,/mð Þ. Then Ti1, :::, ikG n xð Þð Þ belongs to
Dk, p for any k � d and, moreover,

sup
x2Rn

sup
1�i1, :::, ik�m

jjTi1, :::, ikG n xð Þð Þjjk, p < 1: (5.11)

Proof. Because hbi, x , bj, xiH ¼ dij, using (5.10), we can write for any x 2 Rn,

Ti1, :::, ikG n xð Þð Þ ¼
D
DL�1ð ÞkG n xð Þð Þ, bi1, x 	 
 
 
 	 bik, x

E
H	k

:

Then, by Meyer inequalities, which imply the equivalence in Lp of the operators D and
�Lð Þ1=2, we can estimate the Dk, p-norm of Ti1, :::, ikG n xð Þð Þ by a constant times the
Lp Xð Þ-norm of G n xð Þð Þ: w

Let si ¼ sy1=ni and Si ¼ ½�si , si�n for i¼ 1,2. We now have

jjZs, y2 � Zs, y1 jjLp Xð Þ

¼ 1

2sð Þn=2
����ð

S2 S1

G n xð Þð Þdx
����
Lp Xð Þ

¼ 1

2sð Þn=2
�����
ð
S2 S1

dd
Xm

i1, :::, id¼1

Ti1, :::, idG n xð Þð Þbi1, x 	 
 
 
 	 bid , x

 !
dx

�����
Lp Xð Þ

¼ 1

2sð Þn=2
�����dd Xm

i1, :::, id¼1

ð
S2 S1

Ti1, :::, idG n xð Þð Þbi1, x 	 
 
 
 	 bid , xdx

 !�����
Lp Xð Þ

:
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Applying Meyer inequalities (see (4.2)), we obtain

jjZs, y2 � Zs, y1 jjLp Xð Þ

� Cp, d

Xd
j¼0

1

2sð Þn=2
�����Dj

Xm
i1, :::, id¼1

ð
S2 S1

Ti1, :::, idG n xð Þð Þbi1, x 	 
 
 
 	 bid , xdx

 !�����
Lp X;H	 jþdð Þð Þ

¼ Cp, d

Xd
j¼0

1

2sð Þn=2
E

����� Xm
i1, :::, id¼1

Xm
j1, :::, jd¼1

ð
S2 S1

ð
S2 S1

hDjTi1, :::, idG n xð Þð Þ,DjTi1, :::, idG n xð Þð ÞiH	j

 

� ri1, j1 x� yð Þ 
 
 
 rid , jd x � yð Þdxdy
�����
p=2!1=p

:

Now, using Minkowski’s inequality and the estimate (5.11), we can write

jjZs, y2 � Zs, y1 jjLp Xð Þ
� Cp, d sup

j¼0, :::, d
sup
x2Rn

sup
i1, :::, id¼1, :::,m

jjDjTi1, :::, idG n xð Þð ÞjjLp=2 X;H	jð Þ

� 1

2sð Þn=2
Xm

i1, :::, id¼1

Xm
j1, :::, jd¼1

ð
S2 S1

ð
S2 S1

jri1, j1 x � yð Þ 
 
 
 rid , jd x� yð Þjdxdy
 !1=2

� Cs�n=2
Xm
i, j¼1

ð
S2 S1

ð
S2 S1

jri, j x � yð Þjddxdy
� �1=2

:

Therefore, we finally obtain

jjZs, y2 � Zs, y1 jjLp Xð Þ � Cjy1 � y2j1=2
Xn
i, j¼1

ð
Rn
jri, j xð Þjddx

� �1=2

:

5.5. Proof of Lemma 3.5

Recall that C ¼ cj, kð Þ1�j, k�m
is the matrix given by (3.2). For any j 6¼ k, we denote by a j, kð Þ

the multiindex in I 2 such that a j, kð Þ
j ¼ 1, a j, kð Þ

k ¼ 1 and a j, kð Þ
‘ ¼ 0 for any ‘ 6¼ j, k: Also a j, jð Þ

will denote the multiindex in I 2 such that a j, jð Þ
j ¼ 2 and a j, jð Þ

‘ ¼ 0 for any ‘ 6¼ j: Then,

I 2 ¼ a j, kð Þ, 1 � j, k � m
� �

:

Moreover, from the definition of the matrix C, it follows that for any
j, k ¼ 1, :::,m, j 6¼ k,

c G, a j, kð Þ� �
¼ cj, k

and for all j ¼ 1, :::,m, c G, a j, jð Þð Þ ¼ 1
2 cj, j: With this notation we can write

V 2ð Þ ¼
ð
Rn
E G2 n 0ð Þð ÞG2 n xð Þð Þ� �

dx

¼ 1
4

ð
Rn

Xm
i, j, k, ‘¼1

ci, jc‘, kE½Ha i, jð Þ n 0ð Þð ÞHa ‘, kð Þ n xð Þð Þ�dx:
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The computation of the expectations E½Ha i, jð Þ n 0ð Þð ÞHa ‘, kð Þ n xð Þð Þ� depends on the
indexes i, j, ‘, k: Consider the following cases:

(i) Case i 6¼ j and ‘ 6¼ k: In this case, we have

E½Ha i, jð Þ n 0ð Þð ÞHa ‘, kð Þ n xð Þð Þ� ¼E½ni 0ð Þnj 0ð Þn‘ xð Þnk xð Þ�
¼ ri, ‘ xð Þrj, k xð Þ þ ri, k xð Þrj, ‘ xð Þ:

(ii) Case i 6¼ j and ‘ ¼ k : In this case, we have

E½Ha i, jð Þ n 0ð Þð ÞHa ‘, ‘ð Þ n xð Þð Þ� ¼E½ni 0ð Þnj 0ð Þ n2‘ xð Þ � 1
� ��

¼ 2ri, ‘ xð Þrj, ‘ xð Þ:
(iii) Case i¼ j and ‘ ¼ k: In this case, we have

E½Ha i, ið Þ n 0ð Þð ÞHa ‘, ‘ð Þ n xð Þð Þ� ¼E½ n2i 0ð Þ � 1
� �2

n2‘ xð Þ � 1
� ��

¼ 2ri, ‘ xð Þ2:
As a consequence, taking into account the symmetry of the matrix C, we obtain

V 2ð Þ ¼ 1
2

ð
Rn

Xm
i, j, k, ‘¼1

ci, jc‘, kri, ‘ xð Þrj, k xð Þdx ¼ 1
2

ð
Rn
Tr r xð ÞCr xð ÞC½ �dx:

This completes the proof of Lemma 3.5. w

Finally, we will show formula (3.5), assuming that the covariances are integrable. To
do this, it is convenient to choose a different underlying isonormal Gaussian process.
Let W denote a complex Brownian measure on Rn and define the isonormal process X
on L2 Rnð Þ by

X fð Þ ¼
ð
Rn
F f½ � tð ÞW dtð Þ, (5.12)

where F½f � denotes the Fourier transform of f 2 L2 Rnð Þ: Recall the following properties
of the Fourier transform: ð

Rn
f tð ÞF g½ � tð Þdt ¼

ð
Rn
F f½ � tð Þg tð Þdt, (5.13)

for f , g 2 L2 Rnð Þ and F½F½f �� xð Þ ¼ 2pð Þ�nf �xð Þ:
Due to the assumption that for 1 � i, j � m, ri, j 2 L1 Rnð Þ, we have that the spectral

measures �js of njs are absolutely continuous with respect to the Lebesgue measure and
hence njs admit spectral densities. Denoting the spectral density of nj as fj, we have that
the following representation holds (see Equation 1.2.16 of [5]).

nj xð Þ ¼
ð
Rn
F aj½ � t � xð ÞdW tð Þ, (5.14)

where aj 2 L2 Rnð Þ are such that jaj tð Þj2 ¼ fj tð Þ: Denoting b0j, x tð Þ ¼ eiht, xiaj tð Þ, we get

that nj xð Þ ¼ X b0j, x
	 


and so we have an” embedding” of the field into the isonormal

process (5.12). Moreover, we have
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rj, k xð Þ ¼ E nj xð Þnk 0ð Þ� � ¼ hb0j, x ,b0k, 0iL2 Rnð Þ ¼ F ajak½ � xð Þ: (5.15)

As a consequence, we can write

V 2ð Þ ¼ 1
2

ð
Rn

Xm
i, j, k, ‘¼1

ci, jc‘, kri, ‘ xð Þrj, k xð Þdx

¼ 1
2

ð
Rn

Xm
i, j, k, ‘¼1

ci, jc‘, kF aia‘½ � xð ÞF ajak½ � xð Þdx:

By Plancherel’s theorem,ð
Rn
F aia‘½ � xð ÞF ajak½ � xð Þdx ¼

ð
Rn
F aia‘½ � xð ÞF ajakð Þ � sign½ � xð Þdx

¼ 2pð Þ�n
ð
Rn
ai xð Þa‘ xð Þaj �xð Þak �xð Þdx,

where sign xð Þ ¼ �x: This implies

V 2ð Þ ¼ 2pð Þ�n

2
jjHjj2L2 Rnð Þ,

where

H xð Þ ¼
Xm
j, k¼1

cj, kaj �xð Þak xð Þ ¼ aT �xð ÞCa xð Þ: (5.16)

This completes the proof of (3.5). w
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