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Abstract. In this paper, we present an oscillatory version of the celebrated Breuer–Major theorem that is motivated by the
random corrector problem. As an application, we are able to prove new results concerning the Gaussian fluctuation of the
random corrector. We also provide a variant of this theorem involving homogeneous measures.
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1. Introduction and main results

Our work is motivated by the following random homogenization problem. Consider a one-dimensional
equation with highly oscillatory coefficients of the form{

− d
dx

(a(x/ε, ω) d
dx

uε(x, ω)) = f ∈ L1([0, 1], dx)

uε(0, ω) = 0, uε(1, ω) = b ∈ R,
(1.1)

where ε ∈ (0, 1]. In the literature (see e.g. [1,2,8,10]), the random potential a is often assumed to
be ergodic, uniformly elliptic (i.e. positive and bounded with bounded inverse). Notice that, under the
following hypothesis:

For all ε ∈ (0, 1],
∫ 1/ε

0

1

|a(x)| dx < ∞ and
∫ 1/ε

0

1

a(x)
dx �= 0 almost surely, (H)

we can solve (1.1) explicitly:

uε(x, ω) = cε(ω)

∫ x

0

1

a(y/ε, ω)
dy −

∫ x

0

F(y)

a(y/ε, ω)
dy, (1.2)

where F(x) := ∫ x

0 f (y) dy is the antiderivative of f vanishing at zero and

cε(ω) :=
(

b +
∫ 1

0

F(y)

a(y/ε, ω)
dy

)(∫ 1

0

1

a(y/ε, ω)
dy

)−1

.
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Throughout this note, we assume that a satisfies (H) and has the following form

a(x) =
(

1

a∗ + �(Wx)

)−1

, (1.3)

where

(i) {Wx, x ∈ R} is a centered stationary Gaussian process with a correlation given by ρ(x − y) =
E[WxWy], and we assume that ρ is continuous with ρ(0) = 1;

(ii) � ∈ L2(R, e−x2/2 dx) has the following orthogonal expansion

�(x) =
∑
q�m

cqHq, (1.4)

withHq(x) = (−1)qex2/2 dq

dxq e−x2/2 denoting the qth Hermite polynomial. Here cm �= 0 andm � 1
is called the Hermite rank of �.

The quantity a∗ := 1/E[1/a(0)] is known as the harmonic mean or effective diffusion coefficient of
the random potential, see [10,17].

Remark 1. Assuming the structure a(x)−1 = �(Wx) + (a∗)−1, our hypothesis (H) holds provided∫ 1/ε
0 ((a∗)−1 + �(Wx)) dx �= 0 almost surely, for all ε ∈ (0, 1]. Note that the local integrability of

a(x)−1 follows immediately from its structure: Indeed, for any ε > 0,

E

∫ 1/ε

0

1

|a(x)| dx � 1

|a∗|ε +
∫ 1/ε

0
E

[∣∣�(Wx)
∣∣] dx = 1

|a∗|ε + 1

ε
E

[∣∣�(W1)
∣∣] < +∞,

which implies that
∫ 1/ε
0 |a(x)|−1 dx is almost surely finite. It is clear that our hypothesis (H) holds in

presence of uniform ellipticity of a and the latter is equivalent to the boundedness of �; as one can see
from page 276–277 in [11], one can easily construct bounded measurable function � with given Hermite
rank. Note that if �(x) = |x| − √

2/π (this is unbounded with Hermite rank 2) and a∗ = √
π/2, then

a(x) = |Wx |−1 satisfies the assumption (H) but not the uniform ellipticity.

Under some mild assumptions on ρ and �, we can derive the following result concerning the asymp-
totic behavior of uε as well as the associated fluctuation.

Theorem 1.1. Let the above notation prevail. We assume that a satisfies (H) and has the form (1.3)
such that �, given as in (1.4), has Hermite rank m � 1 and the correlation function ρ of the centered
stationary Gaussian process {Wx, x ∈ R} belongs to Lm(R, dx) ∩ C(R) with ρ(0) = 1. Then the
following statements hold true:

(1) For every x ∈ [0, 1], uε(x) converges in probability to ū(x), as ε ↓ 0, where ū(x) solves the
following (deterministic) homogenized equation{

− d
dx

(a∗ d
dx

ū(x)) = f

ū(0) = 0, ū(1) = b.
(1.5)
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(2) For every x ∈ (0, 1), with μ2 := ∑
q�m c2qq! ∫

R
ρ(t)q dt ∈ [0, ∞),

uε(x) − ū(x)√
ε

ε↓0−→
law

N

(
0, μ2

∫ 1

0
F(x, y)2 dy

)
. (1.6)

Moreover, if in addition � ∈ Lp(R, e−x2/2 dx) for some p > 2, then{
uε(x) − ū(x)√

ε
, x ∈ [0, 1]

}
ε↓0−→
law

{
μ

∫ 1

0
F(x, y) dAy, x ∈ [0, 1]

}
, (1.7)

where the above weak convergence takes place in C([0, 1]),

F(x, y) := (
c∗ − F(y)

)
1[0,x](y) + x

(
F(y) − c∗)

for x, y ∈ [0, 1] and {Ay, y ∈ [0, 1]} is a standard Brownian motion. Here c∗ := ba∗+∫ 1
0 F(z) dz.

The difference uε − ū is known as the random corrector in the homogenization theory, see [1] and
references therein. Our Theorem 1.1 complements findings in the literature, see the following Remark 2:
Points (i)–(iii) sketch some relevant history and points (iv)–(v) summarize the novelty of our results.

Remark 2.

(i) The authors of [4] considered the short-range case where the random potential {a(x), x ∈ R}
satisfies certain (strong) mixing conditions: With the above notation, mixing conditions and uni-
form ellipticity in [4] imply that E[�(Wx)�(Wy)] is bounded by constant · |x − y|−α for some
α > 1. Since the correlation function of �(Wx) is also bounded by ‖�‖2∞, it is integrable, which
guarantees that the random corrector uε − ū is of order

√
ε; properly scaled, the random corrector

converges to a Wiener integral with respect to Brownian motion; see also Theorem 2.6 in [1].
(ii) In [1], the result has been extended to a large family of random potential with long-range cor-

relation (i.e. ρ(τ) ∼ constant · τ−α for some α ∈ (0, 1)): It was shown that when the Hermite
rank of � is one, the corrector’s amplitude is of order εα/2 and after properly scaled, the random
corrector converges in law to a stochastic integral with respect to the fractional Brownian motion
with Hurst parameter (2 − α)/2; see also Theorem 2.3 in [8].

(iii) Following [1], the authors of [8] studied the random corrector problem for the case where the
Hermite rank of � is two and ρ(τ) ∼ constant · |τ |−α as τ → ∞, with α ∈ (0, 1/2). They
established that the corrector’s amplitude is of order εα and the random corrector, after proper
rescaling, converges in law to a stochastic integral with respect to the Rosenblatt process; see [8,
Theorem 2.2]. In the end of the paper [8], the authors conjectured that when the Hermite rank
of � is three or higher, the properly rescaled corrector is expected to converge in law to some
stochastic integral with respect to the so-called Hermite process and this is confirmed in the work
[11].

(iv) Note that all the references mentioned in (i)–(iii) assume that a is stationary ergodic such that
0 < c1 � a(x) � c2 almost surely for some numerical constants c1, c2 (so � is bounded), while
we do not assume the uniform boundedness of �. Instead, we only assume hypothesis (H) and
� ∈ Lp(R, e−x2/2 dx) for some p > 2. In our framework, the correlation function ρ belongs to
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Lm(R, dx), with m � 1 being the Hermite rank of �, which ensures that the correlation function
of {�(Wx), x ∈ R} is integrable. So similar to [4], we are in the short-range setting and we
establish that the corrector’s amplitude is of order

√
ε and properly rescaled corrector converges

in law to a Gaussian process.
(v) For the functional convergence (1.7), we impose the condition p > 2 in order to have moment

estimates of order p that imply tightness. These moment estimates are derived using Meyer’s
inequalities. The aforementioned example �(x) = |x| − √

2/π belongs to Lp(R, e−x2/2 dx) for
any p � 2. Our proof of Theorem 1.1 uses techniques from Malliavin calculus and Gaussian
analysis, which might be helpful for other more complicated problems in random PDEs.

Our Theorem 1.1 is a special case of the following more general result. We denote by Bb the collection
of bounded closed sets in Rd . For any R � 0 we put BR := {x ∈ Rd : ‖x‖ � R}. Also, f.d.d. means
convergence of the finite-dimensional distributions of a given family of random variables depending on
a parameter R, which tends to +∞.

Theorem 1.2. Let {Wx, x ∈ Rd} be a centered Gaussian stationary process with continuous covariance
ρ(x −y) := E[WxWy] such that ρ(0) = 1 and ρ ∈ Lm(Rd, dx). Let � be given as in (1.4) with Hermite
rank m � 1. Then, with h ∈ C(Rd), we have{

Rd/2
∫

B

�(WxR)h(x) dx

}
B∈Bb

R→+∞−−−−→
f.d.d.

{
σ

∫
B

h(x) dZx

}
B∈Bb

, (1.8)

where Z denotes the standard Gaussian white noise on Rd and

σ 2 =
∞∑

q=m

q!c2q
∫
Rd

ρ(z)q dz ∈ [0, +∞).

If in addition � ∈ Lp(R, e−x2/2 dx) for some p > 2. Then, the following functional central limit
theorems hold true:
(1) With p > 2d and any finite 
 > 0,{

Rd/2
∫

[0,zzz]
�(WxR)h(x) dx

}
zzz∈[0,
]d

law−−−−→
R→+∞

{
σ

∫
[0,zzz]

h(x) dZx

}
zzz∈[0,
]d

, (1.9)

where the above weak convergence holds on the space C([0, 
]d) and [0, zzz] = ∏d
j=1[0, zj ] given zzz =

(z1, . . . , zd) ∈ [0, 
]d;
(2){

Rd/2
∫

Bt

�(WxR)h(x) dx

}
t�0

law−−−→
R→∞

{
σ

∫
Bt

h(x) dZx

}
t�0

, (1.10)

where the above weak convergence takes place on C(R+).
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Roughly speaking, the random corrector uε(x) − ū(x) from Theorem 1.1 can be written as a sum of
an oscillatory integral and a negligible term so that an easy application of Theorem 1.2 gives us The-
orem 1.1, see Section 3 for more details. We will proceed the proof of (1.8) by following the usual
arguments for the chaotic central limit theorem (see e.g. [9,13]), while the functional central limit theo-
rem in (1.10) is established with the help of Malliavin calculus techniques, notably Meyer’s inequality
(see [6,12]).

Remark 3.

(i) Theorem 1.2 is a generalization of the celebrated Breuer–Major theorem [5] that corresponds to the
case where h = 1, see also [6,12]. The integral on the left-side of (1.8) is known as an oscillatory
random integral, so we call our result an oscillatory Breuer–Major theorem and this explains our
title.

(ii) The functional limit theorem described in (1.9) is new and the limit is a d-parameter Gaussian
process with covariance given by

σ 2
∫

[0,zzz]∩[0,yyy]
h2(x) dx,

while the limit in (1.10) is a Gaussian martingale with quadratic variation given by

t ∈ R+ �−→ σ 2
∫

Bt

h2(x) dx.

Our approach is quite flexible and we can provide another variant of Breuer–Major’s theorem that
involves an homogeneous measure. Let us first recall the definition of homogeneous measure (see e.g.
[7]).

Definition 1.3. Given α ∈ R \ {0}, a measure ν on Rd is said to be α-homogeneous if

ν(sA) = sαν(A), for any s > 0 and A ⊂ Rd Borel measurable,

where sA := {x ∈ Rd : s−1x ∈ A}. For example, μ(dx) = |x|−β dx defines a (d − β)-homogeneous
measure on Rd for any β �= d. Note that for general h ∈ C(Rd), the measure γ (dx) = h(x) dx is not
necessarily homogeneous.

Theorem 1.4. Fix α ∈ (0, ∞) and consider an α-homogeneous measure ν onRd such that 0 < ν(B1) <

∞. Let � be given as in (1.4) with Hermite rank m � 1 and let {Wx, x ∈ Rd} be a centered Gaussian
stationary process with continuous covariance ρ(x − y) := E[WxWy] such that ρ(0) = 1 and ρ ∈
Lm(Rd, dν). Then{

Rα/2
∫

B

�(WxR)ν(dx)

}
B∈Bb

R→+∞−−−−→
f.d.d.

{
σνZ(B)

}
B∈Bb

(1.11)

where Z stands for the Gaussian random measure with intensity ν on Rd and

σ 2
ν :=

∑
q�m

c2qq!
∫
Rd

ρ(z)qν(dz) ∈ [0, +∞).
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Moreover, if additionally � ∈ Lp(R, e−x2/2 dx) for some p > 2 and αp > 2, then we have the following
functional central limit theorem:{

Rα/2
∫

Bt

�(WxR)ν(dx)

}
t�0

law−−−−→
R→+∞

{
σνZ(Bt)

}
t�0.

One can refer to the book [14] for any unexplained notation and definition. We would like to point out
that if the function � is a finite sum of Hermite polynomials, then, the Stein–Malliavin approach implies
that, in the framework Theorem 1.4, the convergence of the one-dimensional distributions hold in the
total variation distance (see for instance, the monograph [13]).
The rest of this article consists of three more sections: Section 2 is devoted to some preliminary

material. In Section 3, we present the proof of Theorem 1.2 and then as anticipated, we demonstrate how
Theorem 1.2 implies Theorem 1.1. We will sketch the proof of Theorem 1.4 in Section 4.
Note that all random objects in this note are assumed to be defined on a common probability space

(�, F ,P) and we will use C to denote a generic constant that is immaterial to our estimates and it may
vary from line to line.

2. Preliminaries

Recall that {Wx, x ∈ Rd} is a centered stationary Gaussian process such that it has a continuous
covariance function ρ. The continuity of ρ is equivalent to the L2(�)-continuity of process W . In what
follows, we first build the isonormal framework for later Gaussian analysis. Note that the Gaussian
Hilbert space generated by W is the same as the one generated by {Wx, x ∈ Qd} due to the L2 continuity,
so the resulting Gaussian Hilbert space is a real separable Hilbert space. By a standard fact in real
analysis, it is isometric to L2([0, 1], dt) =: H and we denote this isometry by X. By isometry, there
exists a sequence {ex, x ∈ Qd} ⊂ H such that

X(ex) = Wx for any x ∈ Qd .

By continuity again, the above equality extends to every x ∈ Rd . It is clear that {X(h), h ∈ H} is an
isonormal Gaussian process over the real separable Hilbert space H. By construction, ex ∈ H has unit
norm and 〈ex, ey〉H = ρ(x − y) for any x, y ∈ Rd . Note that x ∈ Rd �−→ ex ∈ H is a continuous map
and this can save us away from measurability issues.
In what follows, we introduce some standard notation fromMalliavin calculus; see the basic references

[13–15] for more details. For a smooth and cylindrical random variable F = f (X(h1), . . . , X(hn)) with
hi ∈ H and f ∈ C∞

b (Rn), we define its Malliavin derivative as the H-valued random variable given by

DF =
n∑

i=1

∂

∂xi

f
(
X(h1), . . . , X(hn)

)
hi.

By iteration, we can define the kth Malliavin derivative of F as an element in L2(�;H⊗k). Here H⊗k

denotes the kth tensor product of H and we denote by H�k the space of symmetric tensors in H⊗k. For
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any k ∈ N and p ∈ [1, ∞), we define the Sobolev space Dk,p as the closure of the space of smooth and
cylindrical random variables with respect to the norm ‖ · ‖k,p defined by

‖F‖p

k,p = E
(|F |p) +

k∑
i=1

E
(∥∥DiF

∥∥p

H⊗i

)
.

The divergence operator δ is defined as the adjoint of the derivative operator D. An element u ∈
L2(�;H) belongs to the domain of δ, denoted by dom(δ) if there is a constant cu that only depends
on u such that

∣∣E[〈DF, u〉H
]∣∣ � cu

√
E

[
F 2

]
for any F ∈ D1,2.

For u ∈ dom(δ), the existence of δ(u) is guaranteed by the Riesz representation theorem and it satisfies
the following duality relation

E
[〈DF, u〉H

] = E
[
Fδ(u)

]
for any F ∈ D1,2.

Similarly, we can define the iterated divergence δk: For u ∈ dom(δk) ⊂ L2(�;H⊗k), δk(u) is character-
ized by the following duality relation

E
[〈
DkF, u

〉
H⊗k

] = E
[
Fδk(u)

]
for any F ∈ Dk,2.

The well-known Wiener–Itô chaos decomposition states that any F ∈ L2(�, σ {W },P) admits the fol-
lowing expression

F = E[F ] +
∑
p�1

δp(fp), (2.1)

with fp ∈ H�p uniquely determined by F ; δp(fp) is also called the pth multiple integral with kernel
fp. Note that given any unit vector e ∈ H, we have Hp(X(e)) = δp(e⊗p). We call Cp, the closed linear
subspace of L2(�) generated by {Hp(X(e)) : e ∈ H and ‖e‖H = 1}, the pth Wiener chaos associated
with the isonormal Gaussian process X and we write Jp for the projection operator onto Cp. Then we
define Ornstein–Uhlenbeck semigroup (Pt , t ∈ R+) and its generator L by putting

Pt =
∑
p�0

e−ptJp and L =
∑
p�1

−pJp,

and we write L−1 for the pseudo-inverse of L, that is,

L−1F = −
∑
p�1

1

p
JpF for any centered F ∈ L2

(
�, σ {W },P)

.
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Note that these operators enjoy the following nice relation: F = −δDL−1F for any centered F ∈
L2(�, σ {W },P). Now let us record an important consequence of this relation. Let � be given as in (1.4)
and have Hermite rank m � 1. We define the shifted function

�m(x) =
∑
q�m

cqHq−m(x),

which satisfies the following properties:

(AAA) �m(Wx) = �m(X(ex)) ∈ Dm,2 and �(Wx) = δm(�m(Wx)e
⊗m
x ) for any x ∈ Rd ;

(BBB) �m(Wx)e
⊗m
x = (−DL−1)m�(Wx) and applying Meyer’s inequality, we have for every k ∈

{0, 1, . . . , m}, x ∈ Rd and p > 1,∥∥Dk
(
�m(Wx)

)∥∥
Lp(�;H⊗k)

� C
∥∥�(Wx)

∥∥
Lp(�)

. (2.2)

This inequality is a consequence of Lemmas 2.1, Lemma 2.2 in [12] (see also [6, (2.7)]).

Let {εi, i ∈ N} be an orthonormal basis of H. For f ∈ H�p and g ∈ H�q (p, q ∈ N), we define the
r-contraction as the element in H⊗p+q−2r (r ∈ {0, . . . , p ∧ q}) given by

f ⊗r g =
∑

i1,...,ir∈N
〈f, εi1 ⊗ εi2 ⊗ · · · ⊗ εir 〉H⊗r 〈g, εi1 ⊗ εi2 ⊗ · · · ⊗ εir 〉H⊗r .

In particular, f ⊗0 g = f ⊗ g and if p = q, f ⊗p g = 〈f, g〉H⊗p .
In the end of this section, we present a multivariate version of the chaotic central limit theorem [9]

that we borrow from [6, Theorem 2.1].

Proposition 2.1. Fix an integer n � 1 and consider a family {GR, R > 0} of random vectors in Rn

such that each component of GR = (GR,1, . . . , GR,n) belongs to L2(�, σ {W },P) and has the following
chaos expansion

GR,j =
∑
q�1

δq(gq,j,R) with gq,j,R ∈ H�q deterministic.

Suppose the following conditions (a)–(d) hold:

(a) For each i, j ∈ {1, . . . , n} and for every q � 1, q!〈gq,i,R, gq,j,R〉H⊗q converges to some σi,j,q ∈ R,
as R → +∞.

(b) For each i ∈ {1, . . . , n}, ∑q�1 σi,i,q < +∞.
(c) For each i ∈ {1, . . . , n}, q � 2 and r ∈ {1, . . . , q − 1}, we have that, as R → +∞, ‖gq,i,R ⊗r

gq,i,R‖H⊗2q−2r converges to zero.
(d) For each i ∈ {1, . . . , n}, limN→+∞ supR>0

∑
q�N+1 q!‖gq,i,R‖2

H⊗q = 0.

Then GR converges in law to N(0, �) as R → +∞, where � = (σi,j )
n
i,j=1 is given by σi,j =∑

q�1 σi,j,q .
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The above proposition is essentially a consequence of the Fourth Moment Theorems due to Nualart,
Peccati and Tudor (see [16,18]): In 2005, Nualart and Peccati discovered that for {Fn, n � 1} ⊂ Cp

(p � 2), if E[F 2
n ] → 1, then the asymptotic normality of this sequence is equivalent to E[F 4

n ] → 3.
Soon later, Peccati and Tudor provided a multidimensional extension, which asserts that for a sequence
of random vectors Gn = (G1,n, . . . , Gd,n) with covariance matrix convergent to some covariance matrix
C, if for each j , pj � 1, {Gj,n : n � 1} ⊂ Cpj

, then the joint convergence (Gn converges in law to
N(0, C)) is equivalent to the marginal convergence (Gj,n converges in law to N(0, Cjj ) for each j ). The
latter boils down to checking the fourth moment condition. For example, in the setting of Proposition 2.1,
let us look at the convergence ofGR,1: conditions (b) and (d) ensure that it suffices to consider finite many
chaoses, conditions (a) and (b) guarantee the convergence of the covariance matrix of the random vectors
formed by these finitely many chaoses. In view of the product formula for multiple integrals, verifying
the fourth moment condition would lead to the computation involving the contractions, where we need
condition (c) for this to work; see [6] for a proof and we refer the interested readers to the monograph
[13] for a comprehensive introduction to this line of research.

3. Proof of Theorem 1.2 and Theorem 1.1

In this section, we first prove the convergence of finite-dimensional distributions in the framework
of Theorem 1.2. Next, we will establish the tightness property under the additional assumption that
� ∈ Lp(R, e−x2/2 dx) for some p > 2, which is needed to establish (1.9) and (1.10). These two steps
will conclude the proof of Theorem 1.2, and in the end of this section, we demonstrate how one can
derive Theorem 1.1 from Theorem 1.2.

3.1. Convergence of finite-dimensional distributions

For each R > 0 and B ∈ Bb, we put

GR(B) = Rd/2
∫

B

�(WxR)h(x) dx. (3.1)

Then, it is enough to consider bounded Borel sets Bi ∈ Bb, i = 1, . . . , n, and establish the following
limit result(

GR(B1), . . . , GR(Bn)
) R→+∞−−−−→

law
N(0, �), (3.2)

where � = (σi,j )
n
i,j=1 is defined by

σi,j = σ 2
∫

Bi∩Bj

h(x)2 dx.

For j ∈ {1, . . . , n}, we can rewrite GR(Bj) using the Hermite expansion (1.4) as follows:

GR(Bj) = Rd/2
∫

Bj

∑
q�m

cqHq(WxR)h(x) dx = Rd/2
∫

Bj

∑
q�m

δq
(
cqe

⊗q

xR

)
h(x) dx
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=
∑
q�m

δq

(
cqR

d/2
∫

Bj

e
⊗q

xR h(x) dx

)
=:

∑
q�m

δq(gq,j,R),

where

gq,j,R = cqR
d/2

∫
Bj

e
⊗q

xR h(x) dx.

(a) For any i, j ∈ {1, . . . , n}, we have

q!〈gq,i,R, gq,j,R〉H⊗q = q!c2qRd

∫
Bi∩Bj

ρ(xR − yR)qh(x)h(y) dx dy

= q!c2qR−d

∫
RBi∩RBj

ρ(x − y)qh(x/R)h(y/R) dx dy

= q!c2qR−d

∫
{x∈RBi,x−z∈RBj }

ρ(z)qh(x/R)h
(
(x − z)/R

)
dx dz.

Making the change of variables x/R = y yields

q!〈gq,i,R, gq,j,R〉H⊗q = c2qq!
∫

{y∈Bi,y−zR−1∈Bj }
ρ(z)qh

(
y − zR−1

)
h(y) dy dz.

Taking into account that h is continuous and Bj is closed, we deduce from the dominated convergence
theorem that

q!〈gq,i,R, gq,j,R〉H⊗q
R→+∞−−−−→ c2qq!

(∫
Rd

ρ(z)q dz

) ∫
Bi∩Bj

h(y)2 dy =: σi,j,q .

(b) For each i ∈ {1, . . . , n},
∑
q�m

σi,i,q =
(∫

Bi

h(y)2 dy

) ∑
q�m

c2qq!
(∫

Rd

ρ(z)q dz

)
= σ 2

∫
Bi

h(y)2 dy.

Note that the quantity σ 2 as defined in the statement of Theorem 1.2 is finite, because
∫
Rd ρ(z)q dz is

bounded by
∫
Rd |ρ(z)|m dz and

∑
q�m c2qq! < +∞. So we just verified the condition (b).

(c) For each i ∈ {1, . . . , n}, q � 2 and r ∈ {1, . . . , q − 1}, we have,

gq,i,R ⊗r gq,i,R = c2qR
d

〈∫
Bi

e
⊗q

xR h(x) dx,

∫
Bi

e
⊗q

yR h(y) dy

〉
H⊗r

= c2qR
d

∫
Bi×Bi

〈
e

⊗q

xR , e
⊗q

yR

〉
H⊗r h(x)h(y) dx dy by Fubini’s theorem

= c2qR
d

∫
Bi×Bi

ρ(xR − yR)re
⊗q−r

xR ⊗ e
⊗q−r

yR h(x)h(y) dx dy
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and therefore,

‖gq,i,R ⊗r gq,i,R‖2
H⊗2q−2r

= c4qR
2d

∫
B4

i

ρ(Rx1 − Rx2)
rρ(Rx3 − Rx4)

rρ(Rx1 − Rx3)
q−r

× ρ(Rx2 − Rx4)
q−r

4∏
i=1

h(xi) dxxx

= c4q

R2d

∫
(RBi)

4
ρ(x1 − x2)

rρ(x3 − x4)
rρ(x1 − x3)

q−rρ(x2 − x4)
q−r

4∏
i=1

h(xi/R) dxxx,

where xxx = (x1, x2, x3, x4). In view of the elementary inequality arbq−r � aq + bq for any a, b ∈ R+,
we can write

‖gq,i,R ⊗r gq,i,R‖2
H⊗2q−2r �

c4q

R2d

∫
(RBi)

4

(∣∣ρ(x1 − x2)
∣∣q + ∣∣ρ(x1 − x3)

∣∣q)
× ∣∣ρ(x3 − x4)

∣∣r ∣∣ρ(x2 − x4)
∣∣q−r

4∏
i=1

∣∣h(xi/R)
∣∣ dxxx.

Our goal is to show

lim
R→+∞

q−1∑
r=1

‖gq,i,R ⊗r gq,i,R‖2
H⊗2q−2r = 0.

Then by symmetry, it is enough to show that for each r ∈ {1, . . . , q − 1},

KR = 1

R2d

∫
(RBi)

4

∣∣ρ(x1 − x2)
∣∣q∣∣ρ(x3 − x4)

∣∣r ∣∣ρ(x2 − x4)
∣∣q−r

4∏
i=1

∣∣h(xi/R)
∣∣ dxxx

R→∞−−−→ 0.

Recall that Bi is bounded, so we can assume Bi ⊂ [−
, 
]d for some 
 > 0. Taking the continuity of h

into account yields

KR � ‖h1[−
,
]d ‖∞
R2d

∫
[−
R,
R]4d

∣∣ρ(x1 − x2)
∣∣q∣∣ρ(x3 − x4)

∣∣r ∣∣ρ(x2 − x4)
∣∣q−r

dxxx

� C

R2d

(∫
Rd

∣∣ρ(z)
∣∣q dz

)∫
[−
R,
R]3d

∣∣ρ(x3 − x4)
∣∣r ∣∣ρ(x2 − x4)

∣∣q−r
dx2 dx3 dx4

� C

Rd

(∫
Rd

∣∣ρ(z)
∣∣m dz

)(∫
[−2
R,2
R]d

∣∣ρ(x)
∣∣r dx

)(∫
[−2
R,2
R]d

∣∣ρ(y)
∣∣q−r

dy

)
.
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It suffices to show that for each r = 1, . . . , q − 1,

1

Rd(1−rq−1)

∫
[−
R,
R]d

∣∣ρ(x)
∣∣r dx

R→+∞−−−−→ 0. (3.3)

One can establish the above limit as follows. Fix δ ∈ (0, 1), we first decompose the above integral into
two parts: With E(R) = [−
R, 
R]d ,

1

Rd(1−rq−1)

∫
E(R)

∣∣ρ(x)
∣∣r dx =

∫
E(δR)

|ρ(x)|r dx

Rd(1−rq−1)
+

∫
E(R)\E(δR)

|ρ(x)|r dx

Rd(1−rq−1)
. (3.4)

By Hölder’s inequality, we have

∫
E(δR)

∣∣ρ(x)
∣∣r dx �

(∫
Rd

∣∣ρ(x)
∣∣q dx

)r/q

(2δ
R)d(1−rq−1)

and ∫
E(R)\E(δR)

∣∣ρ(x)
∣∣r dx �

(∫
E(R)\E(δR)

∣∣ρ(x)
∣∣q dx

)r/q

2d(1−rq−1)
[
(
R)d − (δ
R)d

]1−rq−1

�
(∫

Rd

1{‖x‖�δ
R}
∣∣ρ(x)

∣∣q dx

)r/q

(2
R)d(1−rq−1).

Therefore, it is clear that due to ρ ∈ Lq(Rd, dx), for any fixed δ ∈ (0, 1), the second term in (3.4) goes
to zero, as R → +∞; and the first term in (3.4) can be made arbitrarily small by choosing sufficiently
small δ. This completes our verification of condition (c) from Proposition 2.1.
(d) For each i ∈ {1, . . . , n}, we can see from the computations from step (a) that

∑
q�N+1

q!‖gq,i,R‖2H⊗q =
∑

q�N+1

c2qq!
∫

{y∈Bi,y−zR−1∈Bj }
ρ(z)qh

(
y − zR−1

)
h(y) dy dz

�
(∫

Rd

1Bi
(x) dx

)(
sup
z∈Bi

∣∣h(z)
∣∣2) ∑

q�N+1

c2qq!
∫
Rd

∣∣ρ(z)
∣∣m dz,

which converges to zero (uniformly in R), as N goes to infinity.
Therefore, the limit in (3.2) is proved. In particular, (1.8) is established. �

Remark 4. If we only assume that h : Rd → R is continuous except at finitely many points, we can
still obtain (1.8). This observation will be helpful in the proof of Theorem 1.1.

3.2. Tightness

This part is split into two portions, dealing with proofs of (1.10) and (1.9) respectively.
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Proof of (1.10). For each t � 0, we recall that Bt = {x ∈ Rd : ‖x‖ � t} and put

XR(t) = Rd/2
∫

Bt

�(WxR)h(x) dx.

Clearly XR is a random variable with values in C(R+). We know from Billingsley’s book [3] that in
order to have the tightness of {XR, R > 0}, it is sufficient to prove the following moment estimate:
There exists some constant CT > 0 such that for any 0 < s < t � T ,∥∥XR(t) − XR(s)

∥∥
Lp(�)

� CT

√
t − s, (3.5)

where p > 2 is the fixed index in the statement of Theorem 1.2. To simplify the presentation, we assume
that T = 1.
Using the notation from Section 2, we first write �(WxR) = δm(�m(WxR)e⊗m

xR ). Then for any 0 <

s < t � 1,

∥∥XR(t) − XR(s)
∥∥

Lp(�)
= Rd/2

∥∥∥∥∫
Bt\Bs

�(WxR)h(x) dx

∥∥∥∥
Lp(�)

= Rd/2

∥∥∥∥∫
Bt\Bs

δm
(
�m(WxR)e⊗m

xR

)
h(x) dx

∥∥∥∥
Lp(�)

= Rd/2

∥∥∥∥δm

(∫
Bt\Bs

�m(WxR)e⊗m
xR h(x) dx

)∥∥∥∥
Lp(�)

=: ∥∥δm(vR)
∥∥

Lp(�)
,

with vR = Rd/2
∫
Bt\Bs

�m(WxR)e⊗m
xR h(x) dx. Now we apply the Meyer’s inequality (see [14, Proposi-

tion 1.5.4]), to get

∥∥δm(vR)
∥∥

Lp(�)
� C

m∑
k=0

∥∥DkvR

∥∥
Lp(�;H⊗k+m)

see also [12, (2.8)]

� C

m∑
k=0

∥∥∥∥Rd/2
∫

Bt\Bs

Dk
(
�m(WxR)e⊗m

xR

)
h(x) dx

∥∥∥∥
Lp(�;H⊗(m+k))

.

Keeping in mind the fact that h ∈ C(Rd), we have∥∥∥∥Rd/2
∫

Bt\Bs

Dk
(
�m(WxR)e⊗m

xR

)
h(x) dx

∥∥∥∥2

Lp(�;H⊗(m+k))

�
∥∥∥∥Rd

∫
(Bt\Bs)2

〈
Dk

(
�m(WxR)

)
, Dk

(
�m(WyR)

)〉
H⊗kρ(xR − yR)mh(x)h(y) dx dy

∥∥∥∥
L

p
2 (�)

� CRd

∫
(Bt\Bs)2

∥∥〈
Dk

(
�m(WxR)

)
, Dk

(
�m(WyR)

)〉
H⊗k

∥∥
L

p
2 (�)

∣∣ρ(xR − yR)
∣∣m dx dy, (3.6)
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where we also applied Minkowski’s inequality in the last inequality. Therefore, Cauchy–Schwarz in-
equality and property (BBB) from Section 2 imply that the quantity in (3.6) is bounded by

CRd

∫
(Bt\Bs)2

∣∣ρ(xR − yR)
∣∣m dx dy � C

(
td − sd

) ∫
Rd

∣∣ρ(z)
∣∣m dz.

It follows that ‖XR(t) − XR(s)‖Lp(�) � C
√

td − sd � C
√

t − s. �

Now we show the weak convergence described in (1.9).

Proof of (1.9). To simplify the notation, we assume 
 = 1. For zzz ∈ [0, 1]d , we put

YR(zzz) = Rd/2
∫

[0,zzz]
�(WxR)h(x) dx

and in what follows, we will focus on establishing the tightness of {YR, R > 0} by proving the following
estimate∥∥YR(zzz) − YR(yyy)

∥∥
Lp(�)

� C‖zzz − yyy‖1/2 for any yyy,zzz ∈ [0, 1]d , (3.7)

here ‖ · ‖ denotes the Euclidean norm and p > 2d. We write

YR(zzz) − YR(yyy) = Rd/2
∫

[0,zzz]\[0,yyy]
g(WxR)h(x) dx − Rd/2

∫
[0,yyy]\[0,zzz]

g(WxR)h(x) dx

=: A1 − A2.

Following the same arguments as in the proof of (1.10), we have

‖A1‖2Lp(�) � CRd

∫
[0,zzz]\[0,yyy]

∫
[0,zzz]\[0,yyy]

∣∣ρ(Rx − Ry)
∣∣m dx dy

� C

(∫
Rd

∣∣ρ(x)
∣∣m dx

)
d

max
j=1

|yj − zj | � C‖zzz − yyy‖.

The same arguments yields the estimate ‖A2‖Lp(�) � C‖yyy − zzz‖1/2, so that (3.7) holds true. �

3.3. Proof of Theorem 1.1

Put q(x) = a(x)−1 − (1/a∗) = �(Wx) and recall that the solution to (1.1) is given by

uε(x) = cε(ω)

∫ x

0

1

a(y/ε)
dy −

∫ x

0

F(y)

a(y/ε)
dy,

where F(x) := ∫ x

0 f (y) dy and

cε(ω) :=
(

b +
∫ 1

0

F(y)

a(y/ε)
dy

)(∫ 1

0

1

a(y/ε)
dy

)−1

.
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Note that for any h ∈ C([0, 1]) and each v ∈ (0, 1], we obtain, by using the Hermite expansion, that∥∥∥∥∫ v

0
q(y/ε)h(y) dy

∥∥∥∥2

L2(�)

=
∑
q�m

c2qq!
∫ v

0

∫ v

0
ρ

(
y − x

ε

)q

h(x)h(y) dx dy

� ‖h‖2∞
∑
q�m

c2qq!
∫ v

0

∫ v

0

∣∣∣∣ρ(
y − x

ε

)∣∣∣∣m dx dy � ‖h‖2∞
(∑

q�m

c2qq!
∫
R

∣∣ρ(z)
∣∣m dz

)
ε.

That is,∥∥∥∥∫ v

0
q(y/ε)h(y) dy

∥∥∥∥2

L2(�)

� ‖h‖2∞
(∑

q�m

c2qq!
∫
R

∣∣ρ(z)
∣∣m dz

)
ε. (3.8)

It follows that∫ v

0

1

a(y/ε)
h(y) dy converges in L2(�) to

1

a∗

∫ v

0
h(y) dy, as ε ↓ 0.

In particular, the random vector

Jε(x) :=
(∫ x

0

1

a(y/ε)
dy,

∫ x

0

F(y)

a(y/ε)
dy,

∫ 1

0

F(y)

a(y/ε)
dy,

∫ 1

0

1

a(y/ε)
dy

)
converges in L2(�;R4) to

J (x) :=
(

x

a∗ ,

∫ x

0

F(y)

a∗ dy,

∫ 1

0

F(y)

a∗ dy,
1

a∗

)
.

Put M(z1, z2, z3, z4) = (b + z3)z1z
−1
4 − z2, then it follows from continuous mapping theorem that

uε(x) = M(Jε(x)) → M(J(x)) = ū(x) in probability, as ε ↓ 0, where

ū(x) = c∗ x

a∗ −
∫ x

0

F(y)

a∗ dy with c∗ = ba∗ +
∫ 1

0
F(y) dy.

It is easy to see that ū solve equation (1.5), so part (1) of Theorem 1.1 is established.
Following the decomposition given in [8, pages 1082–1085], we rewrite the rescaled corrector as

follows:

uε(x) − ū(x)√
ε

= Uε(x) + rε(x) + ρε(x)√
ε

, (3.9)
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where Uε(x) := 1√
ε

∫ 1
0 F(x, y)q(y/ε) dy, rε(x) := cε−c∗√

ε

∫ x

0 q(y/ε) dy and

ρε(x) := x∫ 1
0

1
a(y/ε)

dy

[
c∗

(∫ 1

0
q(y/ε) dy

)2

−
(∫ 1

0
F(y)q(y/ε) dy

) ∫ 1

0
q(y/ε) dy

]
,

with F(x, y) = (c∗ − F(y))1[0,x](y) + x(F (y) − c∗)1[0,1](y). Therefore, it follows from Theorem 1.2
and the observation in Remark 4 that Uε(x) converges to a centered Gaussian distribution with variance
μ2

∫ 1
0 F(x, y)2 dy. Let us show that the terms rε(x) and ρε(x) do not contribute to the limit.

(i) Estimation of rε(x): We know that ε−1/2
∫ x

0 q(y/ε) dy converges in law to a Gaussian random
variable and cε − c∗ converges in probability to zero, as ε ↓ 0. It follows that rε(x) converges in
probability to zero, as ε ↓ 0. Moreover, under the additional assumption that � ∈ Lp(R, e−x2/2 dx) with
p > 2, we can apply (1.9) with d = 1 and R = 1/ε and conclude that, as ε ↓ 0,{

1√
ε

∫ x

0
q(y/ε) dy, x ∈ [0, 1]

}
converges in law to a Gaussian process.

Thus, the process {rε(x), x ∈ [0, 1]} converges in law, hence also in probability, to the zero process.
(ii) Estimation of ρε(x): Similarly,

ρε(x)√
ε

= c∗√ε

(∫ 1

0

1

a(y/ε)
dy

)−1( 1√
ε

∫ 1

0
q(y/ε) dy

)2

x

−
(∫ 1

0
q(y/ε) dy

)(∫ 1

0

1

a(y/ε)
dy

)−1( 1√
ε

∫ 1

0
F(y)q(y/ε) dy

)
x.

It is clear that both

c∗√ε

(∫ 1

0

1

a(y/ε)
dy

)−1

and

(∫ 1

0
q(y/ε) dy

)(∫ 1

0

1

a(y/ε)
dy

)−1

converge to zero in probability, while both{(
1√
ε

∫ 1

0
q(y/ε) dy

)2

· x
}

x∈[0,1]
and

{(
1√
ε

∫ 1

0
F(y)q(y/ε) dy

)
· x

}
x∈[0,1]

weakly converge to some processes in C([0, 1]), as ε ↓ 0. This implies the process {ε−1/2ρε(x) : x ∈
[0, 1]} converges in probability to the zero process. Then it follows immediately that

rε(x) + ρε(x)√
ε

converges in probability to the zero, for every x ∈ [0, 1];

and under the additional assumption � ∈ Lp(R, e−x2/2 dx),{
rε(x) + ρε(x)√

ε
, x ∈ [0, 1]

}
converges in probability to the zero process.
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(iii) Endgame: In view of Slutsky’s theorem, we have just established (1.6) and to reach (1.7), it
suffices to prove as ε ↓ 0,

Uε
law−→

{
μ

∫ 1

0
F(x, y) dAy, x ∈ [0, 1]

}
,

where A is a standard Brownian motion on [0, 1]. Now we write for every x ∈ [0, 1],

Uε(x) = 1√
ε

∫ x

0

(
c∗ − F(y)

)
q(y/ε) dy + x√

ε

∫ 1

0

(
F(y) − c∗)q(y/ε) dy

=: V1,ε(x) + V2,ε(x).

Then applying (1.9) again yields

V1,ε
ε↓0−→
law

V1 :=
{
μ

∫ x

0

(
c∗ − F(y)

)
dAy, x ∈ [0, 1]

}
.

Note that we can write V2,ε(x) = xκε with κε = ε−1/2
∫ 1
0 (F (y) − c∗)q(y/ε) dy bounded in L2(�) in

view of (3.8). It is also clear that as ε ↓ 0, κε converges in law toμ
∫ 1
0 (F (y)−c∗) dAy . As a consequence,

the f.d.d. convergence of V2,ε is trivial and the tightness follows from the fact that

E
[(
V2,ε(x) − V2,ε(y)

)2] = |x − y|2E[
κ2

ε

]
� C|x − y|2 by (3.8).

Thus,

V2,ε
law−→ V2 :=

{
μx

∫ 1

0

(
F(y) − c∗) dAy, x ∈ [0, 1]

}
.

It follows that the sequence (V1,ε,V2,ε) is tight, and so is V1,ε +V2,ε. That is, Uε is tight. Now consider
λk ∈ R and xk ∈ [0, 1] for k ∈ {1, . . . , 
} and any 
 � 1. We have


∑
k=1

λkUε(xk) = 1√
ε

∫ 1

0


∑
k=1

λkF (xk, y)q(y/ε) dy
ε↓0−→
law


∑
k=1

λkσ

∫ 1

0
F(xk, y) dAy.

This proves the convergence of the finite-dimensional distributions for Uε and conclude our proof with
the above tightness of {Uε, ε > 0}. �

4. Proof of Theorem 1.4

The proof follows similar arguments as in the proof of Theorem 1.2. Here we first sketch the proof of
(1.11). For any B ∈ Bb, we first rewrite using Hermite expansions

ĜR(B) : = Rα/2
∫

B

�(WxR)ν(dx) = Rα/2
∫

B

∑
q�m

cqHq(WxR)ν(dx)
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=
∑
q�m

δq

(
cqR

α/2
∫

B

e
⊗q

xR ν(dx)

)
.

By the orthogonality of Hermite polynomials, we have

E
[
ĜR(B)2

] = Rα
∑
q�m

c2qq!
∫

B2
ρ(xR − yR)qν(dx)ν(dy)

= R−α
∑
q�m

c2qq!
∫

(RB)2
ρ(x − y)qν(dx)ν(dy),

where we used the α-homogeneity and made a change of variable in the last equality: (xR, yR) →
(x, y). Making another change of variable (x = x, z = x − y) yields∫

(RB)2
ρ(x − y)qν(dx)ν(dy) =

∫
Rd

ρ(z)qν
[
(RB) ∩ (z + RB)

]
ν(dz)

= Rαν(B)

∫
Rd

ρ(z)q ν[(RB) ∩ (z + RB)]
ν(RB)

ν(dz).

In view of the α-homogeneity, the quantity ν[(RB) ∩ (z + RB)]/ν(RB) converges to 1 as R → +∞,
for each z ∈ Rd . Indeed, given z ∈ R, we can write

ν[(RB) ∩ (z + RB)]
ν(RB)

= ν[B ∩ (R−1z + B)]
ν(B)

.

By the dominated convergence theorem, our assumptions ensure that

RαE
[
ĜR(B)2

] = ν(B)
∑
q�m

c2qq!
∫
Rd

ρ(z)q ν[(RB) ∩ (z + RB)]
ν(RB)

ν(dz)

R→+∞−−−−→ ν(B)
∑
q�m

c2qq!
∫
Rd

ρ(z)qν(dz).

This gives us the limiting variance. To show the central convergence, it is routine to verify the contraction
conditions, which can be done in the same way as before. We omit the details here and point out that we
need to use the following limiting result instead of (3.3): for each r ∈ {1, . . . , q − 1},

1

Rα(1−rq−1)

∫
RB

∣∣ρ(x)
∣∣rν(dx)

R→+∞−−−−→ 0.

The above limit can be verified in the same way, by using Hölder’s inequality and the fact that ρ ∈
Lm(Rd, dν). In this way, we can obtain the f.d.d. convergence described in (1.11), and we leave this as
an easy exercise for the interested readers.
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In the following, we sketch the arguments for tightness. For every t � 0, we put

X̂R(t) = Rα/2
∫

Bt

�(WxR)ν(dx).

In the sequel, we show the tightness for {X̂R, R > 0}.
For fixed 0 < s < t � 1, we can obtain, by similar arguments as before, that∥∥X̂R(t) − X̂R(s)

∥∥
Lp(�)

= Rα/2

∥∥∥∥δm

(∫
Bt\Bs

�m(WxR)e⊗m
xR ν(dx)

)∥∥∥∥
Lp(�)

� C

(
Rα

∫
(Bt\Bs)2

∣∣ρ(xR − yR)
∣∣mν(dx)ν(dy)

)1/2

� C

(
R−αν(BtR \ BsR)

∫
Rd

∣∣ρ(z)
∣∣mν(dz)

)1/2

� C
(
tα − sα

)1/2;
see proof of (1.10). Note that for any a, b ∈ R+ and any β ∈ (0, 1], it holds that (a + b)β � aβ + bβ ;
for any a, b ∈ [0, 1] and β ∈ (1, +∞), there exists a constant Cβ that only depends on β such that
|aβ − bβ | � Cβ |a − b|. This gives us∥∥X̂R(t) − X̂R(s)

∥∥
Lp(�)

� C(t − s)(α∧1)/2.

Since αp > 2, we can deduce the tightness of {X̂R, R > 0}. �
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