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ABSTRACT. We show new estimates for the total variation and Wasserstein distances in
the framework of the Breuer-Major theorem. The results are based on the combination
of Stein’s method for normal approximations and Malliavin calculus together with Wiener
chaos expansions.
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1. INTRODUCTION

Suppose that X = {X,,n > 0} is a centered stationary Gaussian sequence of random
variables with unit variance. For all k € Z, set p(k) = E(XoX%) if £ > 0 and p(k) = p(—k) if
k < 0. We say that a function g € L?(R, ), where v is the standard Gaussian measure, has
Hermite rank d > 1 if

o

(1.1) g(z) = Zchq(m),

q=d
where cq # 0 and H, is the ¢gth Hermite polynomial. We will make use of the following
condition that relates the covariance function p to the Hermite rank of a function g:

(1.2) > ()l
jez

The Breuer-Major theorem (see [4]) says that, under condition (1.2), the sequence

(1.3) Fy = fzg

converges in law to the normal distribution N(0,0?), where

(1.4) Zq'cz S ol

kez

The aim of this paper is to estimate the rate of convergence to zero of the total variation
and Wasserstein distances between the normalized sequence

Fy
(1.5) Y, = AT

and the standard normal law N (0, 1), assuming minimal regularity and integrability conditions
on the function g. To show these results we will apply a combination of Stein’s method for
normal approximations and techniques of Malliavin calculus and we will make use of the
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2 S. KUZGUN AND D. NUALART

Wiener chaos expansion of the random variable F,. The combination of Stein’s method
with Malliavin calculus to study normal approximations was first developed by Nourdin and
Peccati (see the pioneering work [9] and the monograph [10]). For random variables on a
fixed Wiener chaos, these techniques provide a quantitative version of the Fourth Moment
Theorem proved by Nualart and Peccati in [16].

Given a function g € L?(R,v) with expansion (1.1), we denote by A(g) the function in
L?(R,~), whose Hermite coefficients are the absolute values of the coefficients of g, that is,

(1.6) Alg)(x) =) leg|Hq().
q=d

For any integer & > 1 and any real p > 1, we denote by D*P(R,~) the Sobolev space of
functions which are k£ times weakly differentiable, such that together with their derivatives
up to order k, they have finite moments of order p with respect to the measure . Also, we
denote by dry and dyw the total variation and Wasserstein distances, respectively. Along the
paper, Z will denote a N(0,1) random variable. Our first result is the following.

Theorem 1.1. Assume that g € L?(R,v) has Hermite rank d > 2 and satisfies A(g) €
DY4(R,v). Suppose that (1.2) holds true and let Yy, be the random variable defined in (1.5).
Then we have the following estimates:

(i) If d = 2, then

(NI
ol
(MY

(1.7) drv (Yo, 2) <On~z | S k) | +0n72 [ |o(k)]

Ik|<n Jk|<n
(i) If d > 3, we have

N

drv(Ya, Z2) <Cn2 Y (o)1=t [ S Ip(k)?

k|<n lk|<n

N[

1
2

(1.8) ron [ Y o] S Iek)]

lk|<n |k|<n

The proof of these results is based on Proposition 2.1, that requires the estimation of
Var((DF,, upn)gp), where u, is such that F,, = d(u,). Here D and § are the derivative and
divergence operators associated with the Malliavin calculus for the Gaussian sequence X.
Following the ideas developed in [8] and [17], we construct the sequence u,, using the operator
T (g) that shifts in one unit the Hermite expansion of g. A basic ingredient of the proof is an
explicit computation of the variance Var((DF,, u,)g), using Wiener chaos expansions. For
this we need a result on the convergence in L? of powers of truncated Wiener chaos expansions
established in Proposition 3.1, which has its own interest. A sufficient condition for a function
g to satisfy A(g) € DM (R, ) for any integer k > 0, M > 3 is given in Lemma 3.3.

Let us compare Theorem 1.1 with the existing results in the literature. For d = 2, the
estimate (1.7) coincides with the estimate obtained in [17] (see Theorem 4.3 (iii)), assuming
g € D**(R,7). This is the best estimate that one can obtain using Proposition 2.1 (it
coincides with the bound for g(z) = z? — 1). In [17] this estimate is obtained applying
Poincaré inequality to estimate the variance plus twice the integration-by-parts formula and
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for this reason one requires the function g to be four times differentiable. Here, we only
need one derivative, but for the function A(g). In a recent note (see [12]), the authors have
obtained the weaker bound

(1.9) drv (Yo, Z2) < Cn=2 | 3 (k)]

Ikl<n

assuming only g € DM(R,~) and applying Gebelein’s inequality, instead of Poincaré’s in-
equality, to estimate the variance of (DF),, u,)s. Notice that the bound (1.9) holds, for the
example, for the function g(z) = |z| — E(]Z]), which belongs to DY#(R, 7).

In the case d > 3, the estimate (1.8) coincides with the estimate obtained in [17, Theorem
4.5], assuming g € DSd*QA([R,’y), and applying the integration-by-parts argument several
times. Again our estimate requires only one derivative (for A(g)) instead of 3d — 2 derivatives.
Also, computing the third and fourth cumulants in the case ¢ = Hy, leads to the optimal
bound (see [2])

2
3d

2
drv(¥n 2) < S [ S 1t | S o+ [ X 10T | 2 v

|k|<n |k|<n vn |k|<n
The second part of the paper is devoted to showing two improvements of the above bound

for d = 2. First we establish the following upper bound for the Wasserstein distance, using

a new estimate (see Proposition 2.3) and the representation of F), as an iterated divergence
F, = 6%(vy).

Theorem 1.2. Assume that g € L*(R,v) has Hermite rank d = 2 and satisfies A(g) €
D*9(R,~). Suppose that (1.2) holds true and let Yy, be the random variable defined in (1.5).
Then we have the following estimate

2

ST
(V19

(1.10) dw(Yn, Z) < Cn72 [ 3 o) | +Cn7z [ D |p(k)]

[k|<n |k|<n

Going back to the total variation distance, we recall first that the optimal bound for d = 2
is
2

(1.11) drv(Yn, Z) < On” 3 > Ip(k)|2
|k|<n

This estimate was obtained for ¢ = Hs in [11], with a matching lower bound, and it was
extended to g € D%3(R,v) in [17]. This upper bound, however, cannot be obtained as a
consequence of Proposition 2.1 and requires a more intensive application of Stein’s method
(see [11, 17]). Using Proposition 2.2, we have obtained the following result.

Theorem 1.3. Assume that g € L*(R,v) has Hermite rank d = 2 and satisfies A(g) €
D33(R, ). Suppose that (1.2) holds true and let Y, be the random variable defined in (1.5).
Then the estimate (1.11) holds true.

Notice that the first term in (1.10) coincides with the first term in (1.7), while the second
term is precisely the optimal rate for the total variation distance (1.11).



4 S. KUZGUN AND D. NUALART

The paper is organized as follows. Section 2 reviews some preliminaries on the Malliavin
calculus for an isonormal Gaussian process and Stein’s method. Section 3 presents a new
result on the convergence in L?(Q) of powers of Wiener chaos expansions, which has its
own interest. Finally, Sections 4, 5 and 6 contain the proofs of Theorems 1.1, 1.2 and 1.3,
respectively.

Along the paper we will denote by C a generic constant that may vary from line to line.

2. PRELIMINARIES

In this section, we briefly recall some elements of the Malliavin calculus associated with a
Gaussian family of random variables. We refer the reader to [10, 13, 14] for a detailed account
on this topic. We will also recall two basic inequalities for the total variation distance proved
using Stein’s method and we present a new inequality for the Wasserstein distance.

2.1. Malliavin calculus. Let $ be a real separable Hilbert space. For any integer m > 1,
we use H®™ and HO™ to denote the m-th tensor product and the m-th symmetric tensor
product of $), respectively. Let W = {IWW(¢), ¢ € $H} denote an isonormal Gaussian process
over the Hilbert space $). That means, W is a centered Gaussian family of random variables,
defined on some probability space (€2, F, P), with covariance

We assume that F is generated by W.

We denote by ., the closed linear subspace of L?(f2) generated by the random variables
{Hn(W(p)):p €N, |ellyg =1}, where Hy, is the m-th Hermite polynomial defined by

m 22 dm 22
H,(z)=(-1)"ez2 € 2, >1,

and Ho(z) = 1. The space H,, is called the Wiener chaos of order m. The m-th multiple
integral of ¢®™ € HO™ is defined by the identity I,,(¢®™) = H,,(W(¢)) for any ¢ € $ with
¢l = 1. The map I,,, provides a linear isometry between ™ (equipped with the norm
Vml!|| - || gem) and H,y, (equipped with L2(2) norm). By convention, Ho = R and Iy(z) = =.

The space L%(2) can be decomposed into the infinite orthogonal sum of the spaces Hp,.
Namely, for any square integrable random variable F' € L?(§2), we have the following expan-
sion,

(2.1) F=Y" In(fm),
m=0

where fo = E(F), and f,, € §™ are uniquely determined by F. This is known as the Wiener
chaos expansion.

For a smooth and cylindrical random variable F' = f(W (p1),..., W (p,)), with ¢; € $ and
f € CP(R™) (f and its partial derivatives are bounded), we define its Malliavin derivative as
the $-valued random variable given by

DF = —_—
i1 81‘1

(W (p1), - s W(pn))pi.

By iteration, we can also define the k-th derivative D¥F, which is an element in the space
L2(2; H®F). For any real p > 1 and any integer k > 1, the Sobolev space D*? is defined as
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the closure of the space of smooth and cylindrical random variables with respect to the norm

| - ||kp defined by
k

IFIE, = EQFP) + Y E(IDFI[ge:)-
i=1
We define the divergence operator § as the adjoint of the derivative operator D. Namely, an
element u € L?(£);$) belongs to the domain of §, denoted by Dom 6, if there is a constant
¢y > 0 depending on u and satisfying

IE(DF, u)s)| < cul Fll 20
for any F € D12, If u € Dom d, the random variable §(u) is defined by the duality relationship
(2.2) E(Fo(u)) = E((DF, u)g)

which is valid for all F' € D2, In a similar way, for each integer k > 2, we define the iterated
divergence operator 6% through the duality relationship

(2.3) E(Fo*(u)) = E ((DkF, u>ﬁ®k) ,

valid for any F' € D*?2 where u € Dom 6¥ C L?(Q; H®F).

Let 7 be the standard Gaussian measure on R. The Hermite polynomials { H,,,(z), m > 0}
form a complete orthonormal system in L?(R,v) and any function g € L?(R,v) admits an
orthogonal expansion of the form (1.1). If g has Hermite rank d, for any integer 1 < k < d,
we define the operator T by

(2.4) Ti(9)(@) = 3 cmHon-i(a)
m=d

To simplify the notation we will write Tj(g) = gx.
Suppose that F'is a random variable in the first Wiener chaos of W of the form F' = I1(y),
where ¢ € $) has norm one. Then gi(F') has the representation

(2.5) g(F) = 6" (gr(F)p™")
Moreover, if g(F) € D/? for some j > 0 and p > 1, then gi(F) € DIT%P. We refer to [17] for
the proof of these results.

Consider $ = R, the probability space (22, F, P) = (R, B(R),~) and the isonornal Gaussian
process W (h) = h. For any k > 0 and p > 1, denote by D*?(R, ) the corresponding Sobolev

spaces of functions. Notice that if F' = I1(y¢) is an element in the first Wiener chaos with
ll¢lls = 1, then g € DFP(R, ) if and only if g(F) € D*P.

2.2. Stein’s method. We refer to [6] for a complete presentation of this topic. Let h: R — R
be a Borel function such that h € L'(R,~). The ordinary differential equation

(2.6) fi(@) = 2 f(z) = h(z) — E(h(2))

is called the Stein’s equation associated with h. The function
fulw)i= e [ (hly) ~ E(h(Z))e " 2y

is the unique solution to the Stein’s equation satisfying lim, o e=e’/2 fn(x) = 0. Moreover,
if h is bounded by 1, f, satisfies ||fn]loc < y/7/2 and ||f}|lcc < 2. On the other hand, if

h € Lip(1) (h is Lipschitz with a Lipschitz constant bounded by 1), then f} is continuously
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differentiable, || f}|loc < 1/2/m and (see [19, Lemma 3]) || f//|loc < 2. We refer to [10] and the
references therein for a complete proof of these results.

We recall that the total variation distance between the laws of two random variables F,G
is defined by

drv(F,G) = sup |P(F € B)-P(G e B),
BeB(R)

where the supremum runs over all Borel sets B C R. Substituting « by F' in Stein’s equation
(2.6) and using the estimate for || f; || lead to the fundamental estimate

(2.7) dry(F,Z) < sup  [E(f(F) = Ff(F))].
FECHR),floo<2

Furthermore, the Wasserstein’s distance between the laws of two random variables F,G is
defined by

dw (F,G) = o [E(f(F) = E(f((G))]

and using Stein’s equation leads to

(2.8) dw (F,G) < Sup [E(f(F) = Ff(F))l,

where Fyy is the set of functions f € C3(R) such that || f} [lec < +/2/7 and || f/]|cc < 2.

In the framework of an isonormal Gaussian process W, we can use Stein’s equation to
estimate the total variation distance between a random variable F' = d(u) and Z. A basic
result is given in the next proposition (see [15, 10]), which is an easy consequence of (2.7) and
the duality relationship (2.2).

Proposition 2.1. Assume that u € Dom§, F = §(u) € D2 and E(F?) = 1. Then,
drv(F,Z) < 2+/Var((DF,u)g) .

An iterative application of the Stein-Malliavin approach leads to the following result, which
requires the random variable F' to be three times differentiable (see [17, Proposition 3.2.]),

Proposition 2.2. Assume that u € Dom§, F = §(u) € D>? and E(F?) = 1. Then,
dry(F, Z) < (8 + V32m)Var((DF,u)g) + V2r|E(F?)| + V327E(| D F|?) + 47E(| D3 F|),
where we have used the notation D, F = (u, DF)g and DiY'F = (u, D(DLF))g fori> 1.

In the next proposition we present a new estimate for the Wasserstein’s distance between
a random variable F' = §%(v) and a N(0,1) random variable obtained using Stein’s method
and Malliavin calculus.

Proposition 2.3. Assume that v € Dom 6%, F = §2(v) € D*? and E(F?) = 1. Then,

dw (F, Z) < \/2/m\/Var ((D?F,v)gs2) + 2E (|(DF ® DF, v)52]) .
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Proof. By the duality relation (2.3), E (F62(v)) = E ((D?F,v)ge2). As a consequence, using
(2.8) we can write

"(F)) —E(Ff(F))]| = sup [E(f'(F)) —E(0*()f(F))]

feFw (f feFw
= suwp E(f'(F)) —E ((D*(f(F)),v)ge2) |
- fsg;p IE(f/(F)) —E(f/(F){(D*F,v)ge2) — E(f"(F)(DF ® DF,v)ge2) |
(

< /2/7E (|1 = (D?F,v)gez2|) + 2E (|(DF ® DF, v)ges|).

Now, since 1 = [E (F2) =L (F52(v)) =[ (<D2F, v)ﬁm), using Cauchy-Schwarz inequality, we
get

E (11— (D2F, v)geal) < \/ E (JE(D2F, v)ge2) — (D2F, v)ges[?) = /Var((D2F, ) go2),
which concludes our proof. O

2.3. Some basic inequalities. In this subsection we recall several inequalities proved in [17]
(see Lemmas 6.6, 6.7 and 6.8), which can be deduced from the Brascamp-Lieb inequality (see
[3]) or just using Holder’s and Young’s convolution inequalities.

Lemma 2.1. Fiz an integer M > 2. Let f be a non-negative function on the integers and
set k = (k1,...,kn). Then, we have:

(i) For any vector v.e RM whose components are 1 or —1

M M
(2.9) S fkev) H <C<Zf 1+&) .

kezZ

(ii) For any vector v.€ RM whose components are 0, 1 or —1, assuming Y. f(k)? < oo,

(2.10) kava <C<Zf )Ml.

kezM keZ

(iii) Suppose M > 3. Let v,w € IRM be linearly independent vectors, whose components
are 0, 1 or —1. Suppose Y5 f(k)*> < co. Then,

M M—2
(2.11) > fkev) H )< C (Zf ) .

kezM j=1 kez

3. SOME REMARKS ON WIENER CHAOS EXPANSIONS

In this section we present some useful results on Wiener chaos expansions. We first recall
a formula for the expectation of the product of multiple stochastic integrals.

Lemma 3.1. Let ¢; > 1 be integers, and consider functions f; € %, i=1,...,M. Then,

M
£ (HIQi(fl > Z Cqﬁ i= 1fz ]
i=1

BED,
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where
Hf\; g
H1§j<k§M 5jk! 7
D, is the set of nonnegative integers B, 1 < j < k < M satisfying

4 = Z Bjk, 1=1...,M

jork=i

Cqﬁ =

and (®f\i1fi)6 denotes the contraction of Bji, indexes between f; and fi, for all1 < j <k <
M.

Proof. The product formula for multiple stochastic integrals (see, for instance, [18, Theorem
6.1.1], or formula (2.1) in [1] for M = 2) says that

M
(3.1) [T 2a(f) = D" Byt (9215 p,)
i=1 P

where P denotes the set of all partitions {1,...,¢;} = J; U (Ug=1,... m k=ili), where for any

-----

i,k=1,...,M, I;; and I; have the same cardinality, 1;; is a bijection between I;; and Ij;
and v; = |J;|. Moreover, (M, f;),, = denotes the contraction of the indexes ¢ and t;;(¢) for

Py
any £ € I;; and any i,k = 1..., M. Then, the expectation E (Hf\il Iqi(fi)) corresponds to
the case y1 = --- = vy = 0, and, if we specify the number of partitions for fixed cardinalities
Bjk, we obtain the desired formula. ]

3.1. Convergence of truncated expansions. In general, given a random variable F' €
L%(Q) with chaos expansion (2.1), the fact that E(|F|P) < oo for some p > 2 does not imply
that the chaos expansion converges in LP(2). The next proposition provides a partial result in
this direction for p = 2M and in the one-dimensional case, assuming that all the coefficients
are nonnegative.

Proposition 3.1. Consider a function g € L*(R,7), with an expansion of the form g(z) =
E;io cqHy(x). Suppose that ¢, > 0 for each ¢ > 0 and g € L**(R,~) for some M > 1.
Consider the truncated sequence

N
(3.2) g = Zchq.
q=0

Then (gNNM converges in L*(R,~) to gM.

Proof. The proof will be done by induction on M. The result is clearly true for M = 1.
Suppose that M > 2 and the result holds for M — 1. Using the product formula for Hermite
polynomials, which is a particular case of (3.1), we can write

N

M
(g(N))M = Z chini

q1,-qm=01=1

N M
= Z (H qu) Z Co8rHyi+ 47
(

q1,-,qm=0 \i=1 B,y)€D,
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where

M
Hi:1 Qi!

C‘Z»ﬁﬂ s )
|| erd H1§j<k§M Bjk!
and ﬁq is the set of nonnegative integers 3,5, 1 < j <k < M and v;, 1 <@ < M, satisfying
jork=i

As a consequence, we obtain

= i dm7NHm7
m=0

where
N M
dm,N = E HC% E Co8v-
q1ram =0 A=l (B:7)EDg i+ 4+ =m

The function g™ belongs to L%(R, ). Therefore, it will have an expansion of the form

o
M=N"dHp.
m=0

In order to compute the coefficients d,,,, we write, taking into account that gH,, € L*(R,~)
and, by the induction hypothesis, (¢/N))M=1 converges to ¢™~! in L?(R,~) as N — oo, we
can write

i = (g™ H,) = lim i[E( (9N M " Hy )

m! N—oco m!

To compute the expectation E (g(g(N))M_le) we need the chaos expansion of (¢V))M-1H,, .

N M-1
(Q(N))Milﬂm: Z H Cq; Z Cop, ’H’+ Y

quan-1=0 =1 (g1 ey
where
m! HZ 1 Qi!
Hi]\il ;! H1§j<k§M ﬁ}k!
and 13; is the set of #’s and +’s such that (3.3) holds for i =1,..., M — 1 and
m =Yy + Z ﬁ;k

jork=M

9

Cop .y =

As a consequence,

N M-1
[E(g(g(N) M-1p ) qucq Z H Cqr Z Cyp oy

q1,--qn—1=0 i=1 (B )EDW’Yﬁ- +yh=q

and, taking into account that the coefficients ¢, are nonnegative and putting ¢ = qur,

= - H%1Qi!
dm=">_ ]leu > T

, M N . I
QoM =00=1 (g1 4Dl A1+t =am HZ:l% H1§]<k§Mﬁﬂk
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We claim that for any (5',7') € 73{1 there exist a unique element (3,v) € ﬁq such that

M M
H%'! H Bjk!:H%{! H Bk

i=1  1<j<k<M i=1  1<j<k<M
Indeed, it suffices to take 3, = B}k fl1<j<k<M-1~v=8,,fri=1..M-1,
M =Yy and Bju = qé for 1 <j < M —1. It follows that imy_c dm, N = dp,. This implies
that (¢(™)M converges in L(R,~) to g™ and allows us to complete the proof. O

3.2. The absolute value operator. Recall that A, defined in (1.6) is the operator acting
on L?(R,v) which replace the Hermite coefficients by its absolute values. Clearly, for any
integer £ > 0, and for any g € D*2(R,~), we have

1A Ik.2 = llgllx.2-

Therefore, g belongs to D¥2(R, ) if and only if A(g) € DF2(R,~). If we consider functions
in LP(R,~) for some real number p > 2, we do not know whether ¢ € LP(R,~) implies
A(g) € LP(R,~). However, the following result holds.

Lemma 3.2. Suppose that A(g) € D*2M(R,~) for some integers M > 2 and k > 0. Then
g € DP*M(R, ).

Proof. We will show the result only for k = 0, the case k > 1 being similar. Let g = Zgi 1 CqHy
and define g = "2 cqligc,>00Hg and g— = >° 2 jcgligc, <oy Hg. Then g = g1 +g-. We
will show that g, € L?™(R,~), and in the same way one can prove that g_ € L*M(R,~).
Using Proposition 3.1, we can write

£ = fim (o)

o0

- 3 (Maten) ¥

q15---,920 =0 BeD, H1<J<k<2MBJk

where D, is the set of nonnegative integers B]k, 1< j <k <2M, satisfying ¢; = Zj or ki Bk
i=1,...,2M. Clearly, this implies that E (¢2) < E (A(g)*") < <. O

The next lemma provides a criterion for a function g to satisfy A(g) € DM () for integers
(>0, M >3

Lemma 3.3. Fiz integers { > 0 and M > 3. Let g be a function in g € DY*(R,~), with
Hermite expansion g = Y v cqHy. Then, A(g) € DM (R,~) if

(3.4) Z leqla? 5/l (M — 1) < .
Proof. We have
N
DFAM(g) = Tleglalq— 1)+ (g — £+ 1) Hy

Applying the estimate (see, for instance, [7])
1 Hyll o gy = (M)q™ /g (M = 1)E(1 + O(¢7Y)),
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we obtain

N
1D AN (g)[ v ) < (M) (ICzI S lealala = 1) (g —L+1)(g— )71
(¢— DM —1)"T (1+0(¢~ )))

N
(M, ) (!w + 3 legla i VAl = 1) (1+ 0((11))) :

q={
Therefore, taking into account that AXV)(g) converges in L2(Q) to A(g) as N tends to infinity,
we conclude that E(|D*A(g)|M) < oo if (3.4) holds. O

4. PROOF OF THEOREM 1.1

Proof. Consider a centered stationary Gaussian family of random variables X = {X,,,n > 0}
with unit variance and covariance p(k) = E(X¢X}y) for £ > 0. We put p(—k) = p(k) for k < 0.
Suppose that $ is a Hilbert space and e; € §, ¢ > 0, are elements such that, for each 7,7 > 0,
we have (e;,e;)s = p(i — j). In this situation, if {W(¢) : ¢ € H} is an isonormal Gaussian
process, then the sequence X = {X,,,n > 0} has the same law as {W (e,),n > 0} and we can
assume, without any loss of generality, that X,, = Wi(ey).

Consider the sequence Fj, f > j=19(X;) introduced in (1.5), where g € L?(R,~) has
Hermite rank d > 2 and let 02 = E(F2). Under condition (1.2), it is well known that as
n — 00, 02 — o2, where 02 has been defined in (1.4). Set Y, = % Notice that ¢ > 0
implies that o, is bounded below for n large enough. Taking into account (2.5), we have the
representation Y, = 6 (éun), where

(4.1) Uy = \/»Zgl i)es,

and g; is the shifted function introduced in (2.4).
As a consequence of Proposition 2.1, we have the estimate

v (%2, 2) < 2 [Var((DY,, L))

On

(4.2) < C\/Var((DFE,, up)g).

Then, we can write

n

> g (X (X;)pli — 5).

1,j=1

<DFn, un>y) =

The random variable ¢'(X;)g1(X;) belongs to L?(£2), but we do not know its chaos expansion.
For this reason, we need to use a limit argument. We have

(DFy,up)s = lim &, y,
N—o0
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where the convergence holds in L'(§) and

1 & o
q)n,N:EZ > g1 Hy 1(Xi)Hyy 1(X5)p(i — ).

1,3=1 q1,q2=d
Therefore, by Fatou’s lemma
Var ((DF,, up)g) = E ((DE,, un)3) — (E((DFp, up)g))?
< liminf (E(®2 y) — (E(2,,n))?)
N—o0 ’

= lim inf Var(®, n).
N—oo
We can write
1 n N
Var(®p,N) 2 Z Z 4143Cq, Cgy CqsCqu P11 — 12)p(i3 — ia)
11,12,13,54=1 q1,92,93,q4=d
(4'3) X COV(qu—l(Xil)HlI2—1(Xi2)v Hq3—1<Xi3)HQ4—1(Xi4))'

The next step is to compute the covariance appearing in the previous formula. To do this
we will write the Hermite polynomials in terms of stochastic integrals and apply Lemma 3.1.
That is,

Cov(Hg,—1(X4, ) Hgy—1(Xiy), Hgy—1(Xiy) Hgy—1(Xi,))
= Cov(Igy 1 (e, "N Ipa (e ™), Iy (e ™) gy (e, 7))
= (]qu(e%(ql—l))Iqu(e®(q2—1))1q371(e®(q3—1))1q471(e®(q4—1)))

) 12 13 i4

(L1 (5 ) L1 (7)) E (g1 (el gy (571

12 i3 i4

and using Lemma 3.1,

12 i3 14

(4.4) = Cus [ rli—in),

BeD, 1<j<k<4

- (Iqu(eg(ql_l)ﬂqgfl(6®(q2_1))Iq3,1(e®(q3—1))1q471(e®(q4—1)))

where

C ITjoie - 1)
B H1§j<k§4 ﬁjk!
and D, is the set of nonnegative integers 3;;, satisfying

(4.5) g —1= Z Bjk, for 1<0<4.
jork=/{

Cqﬁ

)

On the other hand,

E (I‘h—l(e%(ql_l))Iq2_1(e%(q2_1))> E (Iq3—1(€§(q3_1))fq4_1(e®(Q4_1))>

7 14

(4.6) — (g1 — D)@z — D" (in — i2)p® (i3 — i),
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if ¢ = g2 and g3 = q4, and zero otherwise. Notice that (4.6) is precisely the term in the sum
(4.4) with B1o = q1 — 1, B34 = g3 — 1 and P13 = P14 = P23 = P24 = 0. As a consequence, we
obtain

(4.7) Cov(Hgy1(Xi,) Hyp1(Xiy), Hyy 1 (Xi)Hoy1(Xi)) = > Cop [ pliy —in),
BeD, 1<j<k<4

where D(’I is the set of elements (31, ..., Bs), where the S;’s are nonnegative integers satisfying
(4.5) and

B13 + B1a + [z + Bog > 1.
Substituting (4.7) into (4.3) yields

N
1 n
Var(®n,N) =2 Z Z Z Cq.89143Cq1 Cg2€q5Cqs
11,12,13,14=1 q1,q2,q3,q4=d BE€Dy
% p512+1(i1 _ ig)pﬁm (iy — ig)pﬁm (i1 — i4)p523 (ig — ,L'3)pﬁ24 (ig — i4)p’834+1(i3 — iy).
Replacing 812 + 1 and 34 + 1 by S12 and (34, the above equality can be rewritten as

1 n N
Var(®p n) = w2 E E § , Kq,8C41€q2Cq5Cqs H p(ij — ik)ﬁjka
11,12,13,i4=1 q1,q92,93,q4=d BEEy 1<j<k<4

where
Ko q1!(g2 — 1)!gs!(gs — 1)!
P (Bra — 1)1813!B14! P51 Baa (B3a — 1)!
and &, is the set of nonnegative integers (i, 1 < j < k < 4, satisfying S13+ P14+ 823+ P24 > 1,
Bz > 1, B34 > 1 and

Q= Z Bjk, for 1<4<4.
jork=/{

This leads to the estimate

N
Var(®,, n) < sup A, 3 Z Z K4 8|Cq1Cq5Cq5Cqal,
p q1,42,93,q4=d BE€Eq

1 = N
Anp = 5 > I oG — i),

i1,i2,i3,i4=1 1<j<k<4
and the supremum is taken over all sets of nonnegative integers 31, 1 < j < k < 4, satisfying
P13+ B1a+ Baz+ Poa =1, B12 21, B34 > 1, Bjp < dfor 1 <j <k <4 and

d< Bik, for 1</0<4.
j

where

jork=/{
To complete the proof we need to show the following claims:
(a) We have
o
(4.8) Z Z Kq,81¢4,Cq5Cq5Cqu| < 00

q1,92,93,94=d BEE,

(b) If d = 2, then supg A,, g is bounded by a constant times the right-hand side of (1.7).
(c) If d > 3, then supg A, 5 is bounded by a constant times the right-hand side of (1.8).
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Proof of (4.8): The main idea here is to identify the sum in (4.8) as the variance of a truncated
function composed with a fixed random variable X;. From our previous computations it
follows that

N N
E : E : Kq,ﬁ|cqlcqch3%4| = E q193]Cqy €y CgsCq|
41,92,93,94=d BEE, q1,92,93,94=d

x Cov(Hg,—1(X1)Hgy,—1(X1), Hgg—1(X1)Hgy—1(X1))
= Var(A(¢) ™M (X1) A(g1) ™ (X1)),

where for each integer N > d, we denote by A(g)™) and A(g1)N) the truncated expansions
of A(g') and A(g;), respectively, introduced in (3.2). By Proposition 3.1, (A(g")™))? and
(A(g1)N))? are convergent in L(R,7) to A(g')? and A(gy)?, respectively. Therefore,

S S Kyslencacacal = Var(A(g)(X1)A(g1) (X1)) < oo.
41,92,93,94=d BE€Eq

Proof of (b): We will use ideas from graph theory to show the bound in the first part of
Theorem 1. Recall the supremum is taken over all sets of nonnegative integers Sz, 1 < j <
k < 4, satisfying B13 + B1a + Bag + P24 > 1, f12 > 1, Baa > 1, Bj, <2 for 1 < j <k <4 and

(4.9) 2< ) Bip, for 1<0<4
jork=/{

The exponents (3 induce an unordered simple graph on the set of vertices V' = {1,2, 3,4} by
putting an edge between j and k if 83, # 0. There are edges connecting the pairs of vertices
(1,2) and (3,4) and condition Bi3 + 14 + B23 + P24 > 1 means that the graph is connected.
Without any loss of generality, we can assume that there is an edge between the vertices 2
and 3. Then, condition (4.9) implies that the degree of each vertex is at least two. The worse
case is when the number of edges is minimal and the corresponding nonzero coefficients 3,
are equal to one. So far we have edges in (1,2), (3,4) and (2,3). There must be more edges
because each vertex must have at least degree two. There are two possible cases:

(i) f1a = 1. In this case we have

n

Mg <~ ST Iplin — ia)liz — is)plis — ia)plia — in)].

11,12,13,i4=1
After making the change of variables i1 = i1, k1 = i1 —i2, ko = i3 —i3 and kg = i3 — iy
and using the inequality (2.9) with M =3 and v = (1,1, 1), we obtain
3

C 4
D lotkop(k2)p(ks)p(ks + k2 + k)| < — | 3 |o(k)[3
|| <n,i=1,2,3 |k|<n

An,ﬁ <

S

(ii) Suppose that we add two more edges to the graph formed by the edges (1,2), (2,3)
and (3,4). In this case, we obtain

1 o
Anp < —5 > Iplin —i2)plia — is)plis — ia)pliay — i, )plias — i) -

11,82,13,14=1
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Making the change of variables i1 = i1, k1 = i1 — 12, ko = 19 — i3 and kg = i3 — i4, we

obtain
App < > lplk)plk)plks)p(k - v)p(k - w)l

|ki|<n,i=1,2,3

S|

where v and w are two linearly independent vectors in Z% and k = (ky, k2, k3). Using
(2.11), we obtain

C
4 < S o),
|k|<n
which completes the proof of (b).

Proof of (c): This estimate can be obtained by exactly the same arguments as in the proof
of Theorem 4.5 in [17]. We omit the details. O

Remark 4.1. We can show that both bounds in (1.7) are not comparable. In the particular
case |p(k)| ~ |k|= as |k| = oo, with o > L, we obtain:

Cnl—2 if % <a< %,

Cn™ 2 if % <a<l,
dry(Yn, Z) < C’n_%(log n)% if a=1,

Cn™2 if o> 1.

5. PROOF OF THEOREM 1.2

Proof. As in the proof of Theorem 1.1, we can assume that X,, = W (e,,), where ¢; € 9,7 >0
are elements in a Hilbert space §) such that, for each i,j > 0, we have (e;, e;)s = p(i — j) and
W ={W(¢): ¢ € H} is an isonormal Gaussian process.

Consider the sequence F,, := ﬁ > j=19(X;) introduced in (1.5), where g € L?(R,v) has
Hermite rank d = 2 and let 02 = E(F?2). Set Y, = 5—: Taking into account (2.5), we have
the representation Y,, = 62(évn), where

1 n
(5.1) v =—= > g2(Xj)ej ®ej.
\/ﬁ; 3)€5 & €

Under condition (1.2), it is well known that as n — oo, 02 — o2, where o2 has been defined
n (1.4). As a consequence of Proposition 2.3, we have the estimate

(5.2) dw (Ya, Z) < Cy/Var ((D2F,, v,)52) + CE (|(DF, ® DEy, vy} ges)

Therefore, we need to estimate the quantities Var((D?F,, v, ) ge2) and E (|(DF,, ® DF,, v,)ge2|).

(i) Estimation of Var((D*F,,v,)ge2). We will follow similar arguments as in the proof of
Theorem 1.2. First, we write

1 .

(D?Fo,vn)gez = — > 9" (Xi)ga(X;)p% (i = ).

Using a limit argument, we obtain

(D*F,, Vi) ge2 = lim @, v,
N—oo
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where the convergence holds in L'(§) and

1 & o
q)n,N = ﬁ Z Z Cq1cq2q1(q1 - 1)HQ1—2(Xi)HQ2—2(Xj)p2(7’ _])‘
i,7=1q1,q2=2

Therefore, by Fatous’s lemma

Var((D?F,,, vp)ge2) < liminf Var(®,, v).

N—oo

We can write

1 al e
Var(®nn) =5 > > alqr — 1)as(gs — 1)cg qr 50,07 (i1 — i2)p” (i3 — ia)
11,12,13,4=1 q1,92,93,q4=2
(5'3) X COV(HQ1—2(Xi1)HQ2—2(X1'2)7 HQ3—2(Xi3)HlI4—2(Xi4))-

With a very similar calculation as in the proof of Theorem 1.1, we have

(5.4) Cov(Hgy1(Xi,) Hyp1(Xiy), Hyy 1 (Xig)Hoy1(Xi)) = > Cap [ 0lis —in),
BeED, 1<j<k<d

where D’q is the set of nonnegative integers 3;,, 1 < j < k < 4, satisfying
(5.5) q—2= Z Bk, for 1<4<4.

jork={
and

P13 + Bia + Pz + Boa > 1.
Substituting (5.4) into (5.3) yields

N
1 n
Vi =— - —
ar(®n, ) nZ Z Z Z Cg5q1(q1 — 1)g3(g3 — 1)Cqy €y Ca5Cq,
11,02,13,84=1 q1,42,43,94=2 BED;
% p512+2(i1 _ i2)p513 (’il _ ig)pﬁl‘l (il _ Z'4)p/823 (iQ _ i3)p’824 (ig _ i4)p’834+2(i3 _ i4).
Replacing B12 + 2 and B34 + 2 by (12 and (34, the above equality can be rewritten as

n N
Var(®,,x) = % Z Z Z Kq.5¢41C42Ca5Can H plij — i),
i1i2,i3,04=1 q1,q2,q3,41=2 BEE, 1<j<k<4
where
a1!(g2 — 2)!gs!(ga — 2)!
(B2 — 2)!813! 814! 823! B24! (B34 — 2)!
and &, is the set of nonnegative integers (i, 1 < j < k < 4, satisfying 13+ P14+ 823+ P24 > 1,
P12 > 2, B34 > 2 and

Kq,ﬁ =

Q= Z Bjk, for 1<4<4.
jork={

We can write

N
Var(®p n) < sup 4,3 Z Z Kq,81¢41€q2Cq5Caul,
A q1,92,93,94=2 BE&,
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where

1 .

o= > TT Ielig il
11,12,13,14= 11§]<k§4
and the supremum is taken over all sets of nonnegative integers 31, 1 < j < k < 4, satisfying
Bis+ Bra+ Baz+ Paa > 1, f12 > 2, B3a > 2, for 1 <j <k <4 and
2< ) Bip, for 1<0<4
jork=/{

Then, in this case we have

n

Anp < 5 > |plin = i2)?pliag — ias)p(is —i)?|

11,12,13,54=1

where o € {1,2} and ay € {3,4}. After making the change i1 = i1, k1 = i1 —i2, k2 = ia; —lay
and k3 = i3 — i4, we obtain

1
An,ﬁgﬁ Z |p(k1)?p(k2)p(ks) }<*Z\P
ki <mji=1,2,3 k|<n

Now, it is left to show that

N
(5'6) E : E : Kq,5|CQ1CQ2CQ3CQ4’ < 00.
q1,92,93,94=2 BEE,
‘We have
N N
E : E : Ky plcg gyCqsCas] = E q1(q1 — 1)g3(g3 — 1)|cqy CqpCq5Cqu
q1,92,93,94=2 BEE, q1,92,93,94=2

x B (Hgy—2(X1)Hgy—2(X1) Hgg—2(X1) Hgy—2(X1))
= E((4lg")™M)2(A(g2)™)2).
By Holder’s inequality, we obtain
N
1 yl/2 (N)1/2
Yo Y Kasleacacacol < 1AGN N i 1402 N1 g -
q1,92,93,94=2 BEE,

From the hypothesis and the Proposition 3.1, (A(g"”)™))2 and (A(g2)™))? converge to A(g")?
and A(go)? in L?(R, v) respectively. Hence, (5.6) holds.

(i1) Estimation of E(|(DF, ® DF,,vn)ge2|). We can write

N

> g(X)g (X))g2(Xk)p(i — k)p(j — k).
i,5,k=1

<DFn ® DF,, Un>55®2 =n

We have, in the L(Q) sense,
(DFy,up)s = lim ¥, N,
N—o00
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where
5 n N
Uy Ny =n"2 Z Z 6(11CQ2Cq3QIQZHtI1*1(Xi)HtD*l(XJ)HQS*2(XI€)P(Z. —k)p(j — k).
1,5,k=1q1,92,93=2

Therefore, by Fatou’s lemma

E((DF ® DF,v)}2) < lim inf (U2 n) -
—00

We can write

n N 6
E(@y)=n" > > (H qu> 11020405

11,.506=1q1,...,q6=2 \i=1

X [E(th*l(Xil)HQ2*1(Xiz)HqS*Q(Xis)HQ4*1(XZ'4)H(I5*1(Xi5)H%*?(Xie))
(5.7) X p(iy — i3)p(iz — i3)p(is — i6)p(is — i6)-
Using Lemma 3.1, we obtain

[E(ch—l(Xil)HQQ—l(Xi2)HQS—Q(Xis)H%—l(Xi4)HfI5—1(Xi5)HII6—2(Xi6))
(5.8) =Y Cus I rliy—in),

BeD, 1<j<k<6

where

(g3 — 2)!(gs — 2)! H?=1,2,4,5(Qj - 1!
H1§j<k§6 5jk!

and D, is the set of nonnegative integers S5, 1 < j < k < 6, satisfying

@w—1= Z /Bjk‘a for £:17274757

Cqﬁ:

)

jork={

-2= > B
jork=3

(5.9) w6—2= > Bk
jork=6

Replacing (5.8) into (5.7) yields

6
[E(\I’ Z Z Z Co.8 (H qu> 41429495
11,506 =1q1,...,¢6=2 BEDy
6
x p(iy — i3)p(iz — i3)p(is — i6)p(i5 — i6) H p(is — ir)%".
g k=1,j<k
Substituting S13 + 1, B2z + 1, B4 + 1 and Bs6 + 1 by Si13, bos, Bag and [sg, respectively, we
can write
6

E(U) Z Z > Kup <H qu) agauss [ el — i),

i1,0506=1q1,...,q6=2 BEE, Jk=1,5<k
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where \
B13B23Ba6B56(a3 — 2)1 (g6 — 2)! ;1 24 5(q5 — 1!
qvﬁ = 6
Hj,k:l,j<k: 5jk!

and &; is the set of nonnegative integers §j;, 1 < j < k < 6, satisfying

Z Bjkh for 621776

jork={(

We can write

E(w2 N) < supAng Z Z Kyp (H [ ) 41929495,

- q6= 256511
where
tp=n 3T bl
”Ll, ,Z6 11S]<k§6
and the supremum is taken over all sets of nonnegative integers B;x, j,k = 1,...,6, j < k,
satisfying Bi13 > 1, Bag > 1, Bas > 1, B56 > 1 and
(5.10) 2< Y B, for £=1,...,6.

jork={(

As in the proof of Theorem 1.1, we can show that

(5.11) Z Z K, 3 (H |cq, | ) q192q4qs < 00.

qi,---,96=2 €&,
In fact,
N

Z > Ko (H lqil ) Y (H lqil ) 01429445

q1,---,96=2 BEE, q1,---,96=2
x E [qu—l(Xl)qu—l(Xl)Hq3—2(X1)Hq4—l(Xl)HQs—l(Xl)qu—Z(Xl)]
= E[(A(g) M) (X1) (A(g2) ™M) (X)),

where, as before, A(g")™) and A(go)™ are the truncated expansions of A(g’) and A(gs),
respectively. By Holder inequality, we can write

(V)13 (V)3
Z > Kop H|cql 01920105 < [|AG) M1 1402) M5 .-

q1,--,96=2 BEE,

From our hypothesis and in view of Proposition 3.1, (A(g")™)3 and (A(g2)™)? converge in
L?(R,v) to A(g') and A(gz), respectively. Thus, (5.11) holds true.
To complete the proof, it remains to show that,
4

l\J\Cu

sup A, 5 < Cn~* Z |p(k)
B

|k|<n

As in the proof of Theorem 1.1, in order to show this estimate we will make use of some
ideas from graph theory. The exponents 3;; induce an unordered simple graph on the set of
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vertices V = {1,2,3,4,5,6} by putting an edge between j and k whenever 3, # 0. Because
Bis > 1, Bag > 1, Bag > 1 and Pz > 1, there are edges connecting the pairs of vertices (1, 3),
(2,3), (4,6) and (5,6). Condition (5.10) means that the degree of each vertex is at least 2.
Then we consider two cases, depending whether graph is connected or not.

Case 1: Suppose that the graph is not connected. This implies that 12 > 1, B45 > 1 and
there is no edge between the sets V; = {1,2,3} and Vo = {4,5,6}. The worse case is when
B12 = B13 = Bag = Bas = Bag = P56 = 1 and all the other exponents are zero. In this case we

have the estimate
2

Apg <n™! Z |p(k1)p(k2)p(k1 — k2)|

[k1],|k2|<n

Using (2.9), we obtain

Ans < Cn [ ST |p(k))2

[k|<n

Case 2: Suppose that the graph is connected. This means that there is an edge connecting
the sets V1 and V5. Suppose that 54,5, > 1, where ag € {1,2,3} and 6y € {4,5,6}. We have
then 5 nonzero coefficients 3: (13, B23, Bas, B56 and By,s,- Because all the edges have at least
degree 2, there must be at least two more nonzero coefficient 5. Let us denote them by 4,5,
and Buys, -

Then, the worse case will be when B13 = B23 = Bas = B56 = Bagso = Bars; = Baws, = 1 and
all the other coefficients are zero. Consider the change of variables i1 — i3 = k1, 19 — i3 = ko,
i4 — i6 = k‘3, i5 — iﬁ = k‘4, iao — i50 = k’5. Then, ial — ’i(sl =k v and ia2 — ’i52 =k- W, where
k = (k1,...,ks) and v, w are 5-dimensional linearly independent vectors whose components
are 0, 1 or —1. Then, we can write, using (2.11) and Holder’s iinequalty,

3
5
Anp<n? 30 TTlek)lp(k-v)p(k-w)| < Cn 2 | Y [p(k)|
ki <m,2<i<5 i=2 |k|<n
4
<On | 3 Io(k)l2
|k|<n

g

Remark 5.1. In the case g(z) = x® — 1, the term Var((D?F,,v,)ge2) is zero because

(D?F,,,vp) g2 is deterministic, and for the second term we get the estimate (1.11).

Remark 5.2. We can show that both bounds in (1.10) are not comparable. In the particular
case |p(k)| ~ |k|= as |k| = oo, with o > L, we obtain:

COn3 3« if % <a< %,

Cn™2 if <a<l
dw (Yn, Z) < 5 -
w(tn, 2) < Cnfé(logn)% it a=1,

Cn~3 if a>1.
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6. PROOF OF THEOREM 1.3

Proof. With the notation used in the proof of Theorem 1.1 and using Proposition 2.2, we can
write

(6.1) drv (Yo, Z) < (8 + V32m)Var((DYy,, un/om)s) + V27 |E(Y)| + VB2rE(|D2 , Yal?)
+4rE(|D} . Yal)

< C (Var((DFn, un)g + [E(FS)| + E(ID2, Ful?) + /E(D3, Ful2))

Now, we want to estimate each of these terms separately.

Step 1. From Theorem 1.1 we know that
(6.2) Var((DFp, un)s < Cnt 37 Jp(k)| +Cnt [ S [p(k)[3
k|<n [k|<n

Step 2. We claim that

(6.3) EE) < [ 3 o3

We can write

Truncating the Wiener chaos expansion of the random variables g(X;), as in the proof of
Theorem 1.1, we obtain

where the convergence holds in L?(Q) due to Proposmo 3.1 because g € L%(R, ). Therefore,
E(F3) = lim E(U3 ).
N—o0 ’

We can write

[E(‘I’i n3/2 Z Z Cq1Cqa cqa Q1 (X )H‘D (XiZ )Hq3 (Xi?’ ))

i1,i2,3=1q1,92,93=2

® ® ®qs
(6.4) ng/g Z Z Cq1CqrCos b (IQ1( ql)IQQ (eing)‘[% (613q3)> .
11,12,43=1q1,92,93=2

Using Lemma 3.1, we obtain

(6.5) E (T (5™ (™) 0a(e2%)) = > o [T lis — i),
BEDy 1<j<k<3
where X
Cop = IT-1 a5
q) -

H1§j<k§3 fBjk!
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and D, is the set of nonnegative integers 3;,, 1 < j < k < 3, satisfying

(6.6) @= Y Bjg for 1<<3
jork=/{

Then,

N
‘[E(\IJ?L,N” < Slép Anp Z Z Cy,81¢q1€q2Cq5];

q1,92,93=2 BEE,

nﬁ—i Z H _Zk ‘Bjk’

i1,i2,i3=1 1<]<k<3

where

and the supremum is taken over all sets of nonnegative integers f;z, 1 < j < k < 3, satisfying
Bir <2for 1 <j<k<3and

2< > B, for 1<0<3.
jork=/{
It is easy to see that to satisfy the above conditions, ;i > 1 for all 1 < j < k < 3. Hence,

we have
n

Anp < —75 > Iplis —d)pliy — ig)plia — i3)].
i iia=1
After making the change of variables i1 = i1, k1 = i1 — 42, ko = i1 — i3 and using inequality
(2.9) with M =2 and v = (—1,1), we obtain
2

Njw

> lok)

lk|<n

1
Anp < Ve Z \p(k1)p(k2)p(ke — k1) <

[k1],]k2|<n

Bl

To complete the proof of (6.3), we need to show that:

0o
Z Z C‘Z»B|Cq1cqch3| < 00.

q1,92,93=2 BE€Dq
In fact,

hm Z Z Coq.8Cq1CqCe5| = hm [E( (9)™)?) = E((A(9))%) < o,

> 41,42,43=2 BED,
taking into account Proposition 3.1 and the fact that A(g) € L5(R,~).
Step 3. We proceed now with the estimation of E(|DZ F,|*). We can write

n

Dy, Fyy = (DEy, un)g = % > g (X)g1(X;)pli — 5)
i,7=1

and

D((DFy,un)5) =
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Therefore,
DgnFn = (un, D((DFy, “n>ﬁ)>.ﬁ
6.7 = # D (" (X)g1 (X)) g1 (Xe)p(i — k) + ¢ (Xi) g1 (X;) 91 (Xk)p(G — K))pli — 7).
ijk=1

Because the random variables ¢”(X;), ¢1(X;), g1(Xk), ¢'(X;) and ¢} (X;) appearing in the
above expression belong to L?(Q), their truncated Wiener chaos expansions convergence in
L?(2), and, as a consequence, DgnFn = A}im ®,, v in probability, where

— 00

1 n N
Pn N = 32 Z Z Cq1CaaCasq1(q1 — 1) Hgy—2( Xy ) Hay—1 (X ) Hgy—1(Xiiy )

11,22,i3=1 q1,92,93=2
x plir —iz)p(ir — i3)
+ Cq1CqxCq3q1(a2 — 1) Ho, -1 (Xiy ) Hgy—2(Xiy ) Hgy —1 (X ) p(in — i2)p(iz — i3).

Making the change of variables (qi1,q92) — (g2,¢1) and (i1,i2) — (i2,71) in the second sum
allows us to put the two terms together and we obtain

1 n N
TN = D D CoCarta(q+a2)(an — DHyo(Xi) Hoyor (Xiy) Hyy 1 (X))

11,22,13=1 q1,92,43=2
x plir —iz)p(ir — i3).
Therefore, by Fatou’s Lemma,
E(|D: F,*) < lim inf £ (122 n1) -
Then,

1 n N
|(I)TL,N’2 = n3 Z Z Cqu*Q(Xil)HQ2*1(X2'2)H43*1(X13)

i1yeri6=1q1,...,g6=2
X Hg,—o(Xiy ) Hgs—1(Xis ) Hge—1(Xig)p(in — i2)p(ir — i3)p(ia — i5)p(is — i6),
where
Cq = Cq1Cq5Cq5Ca1CasCas (@1 + G2)(q1 — 1)(qs + ¢5)(qa — 1).
Using the product formula for multiple integrals (see Lemma 3.1), we get

n N
E(eanP) = S S S K| [I stie—a)

i1,..,06=1q1,...,q6 =2 BED, 1<k<I<6
x p(i1 —i2)p(i1 — i3)p(ia — i5)p(ia — i6),
where
(¢1 +q2)(gs + g5) H?Zl cq; (g — 1)!
[Ti<k<i<e B!

Kqﬁ =

and

Dy = {(Brh<kai<s : Y, Bu=gqj—1for j=2,356and » B =q—2forj=14}
k orl=j k orl=j
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Replacing ﬁjk +1 by Bjk for (]a k) € {(17 2)a (17 3)7 (4a 5)7 (4a 6)}7 yields

E (Ithn,n]?) Z Z S Les | TI elix— i)

11,56 =1 q1,...,g6 =2 BEC, 1<k<i<6
where

L= (g1 + q2)(qa + g5) [Ty cqi(qi — 1)!
e (/812 + 1)!(513 + 1)!/814!615!Bl6lﬁ23!624!B25!526!534!535!B36!(645 + 1)!(/846 + 1)!656!

and

Co ={(Bu)iskai<s : Y Bu=g;for j=1,...,6 and Pz, B1s, Bus. Bas > 1}.
k orl=j

Then, we can write

E ([tn,n)]?) < Sup Ans Z > 1Lgsl,

q1,---,96=2 B€Cq
where
1 .
An,ﬁ = ﬁ Z H _ Zk‘ ’5]’6
11,12,13,i4=1 1§]<k§6
and the supremum is taken over all sets of nonnegative integers f;z, 1 < j < k < 6, satisfying
B2, P13, Pas, Bas > 1, Bjr <2 for 1 < j <k <6 and
2< > B, for 1<0<6.

jork=/{

Then, the estimation follows as in the proof of the last part of Theorem 1.2.
Now, we need to show that

o0
(6.8) . D> Mgsl <o
q1,---,.96=2 B€Cy

In fact,

N 6
Z > Lgsl= > (H ’%’) (@1 +a2)(1 — 1)(g3 + qa)(qa — 1)

-q6=2 BeCq q1,-,q6=2 \i=1
xE (HQ1_2(X1)H‘12_1(Xl)Hq3—1(Xl)Hq4—2(X1>Hq5_1(X1)Hq6_1(X1))

(V)2 (N)y4 NETE: (N)|3
:[E(A(g Y2 (A(gr) V) ) <AW" N s ) 14000 1 6 g 1)

Since A(g) € D39, (A(g")N))3 and (A(g1)™))3 converge to A(g") and A(gy), respectively, in
L?(R,~) by (3.1). Then, (6.8) is true.
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Step 4.  We proceed to the estimation of \/E(|D] Fy,[?). Taking the derivative in (6.7),
yields

D(D; F, 3/2 Z " Xj)g1(Xk)p(i — j)p(i — k)e;
i,5,k=1

+9"(Xi) g1 (X;)g1(Xi)p(i — §)p(i — k)ej + 9" (Xi)g1(X;) 91 (Xk)p(i — 5)p(i — k)ex
+ 9" (X9 (X)) g1(Xe)p(i — 5)p(G — k)ei + ¢'(Xa) gy (X) g1 (X)p(i — §)p(j — k)e;
+ 9/ (Xi) g1 (X;) g1 (Xi)p(i — 5)p(5 — k)ex

This implies

(un, D(D Fn)g = % > ¢ (Xi)g1(Xiy)g1 (Xig) g1 (X, )p(in — i2)p(in — is)p(in — ia)
11,12,13,14=1
+ 9" (Xiy) 91 (Xiy) 91(Xi3) 91 (X3, p(in — i2)p(in — i3)p(ia — ia)
+ 9" (Xiy)91(Xi) 91 (Xig) g1 (Xiy ) pin — i) plin — i3)p(iz — i)
+ 9" (Xiy) 91 (Xiy) 91(Xig )91 (X, ) plin — i2) p(ia — i3)p(i1 — ia)

Notice that the second, third and fourth term are identical. This allows us to write

n

1 . . . . . .
D, Fn= 2 > ¢ (Xi)gr(Xiy) g1 (Xiy) g1 (X, )p(in — iz)p(in — is)p(in — ia)

$1,82,13,t4=1
+ 39" (Xi,)91(Xi)91(Xi3 ) g1 (Xiy ) p(in — i2)p(in — i3)p(ia — 44)
+ 9'(Xi1) 97 (Xiy)91(Xi3) 91( Xy ) p(in — i2)plia — i3)p(iz — ia)
+ ¢ (X)) 91 (Xiy) 91 (X3 ) 91(Xi, ) plin — i2)p(iz — i3)p(iz — ia).
Then, we have

3 T
DunFn = J\}E)I})o q)n,Na

where the convergence holds in probability and

1 n
¢, N = ) Z Z Cél)HQ1*3(Xi1)HQQ*1(XiQ)HQSfl(Xi3)HQ4*1(Xi4)

i1,12,13,74=1 q1,92,93,q4=2
x plin — d2)p(in — i3)p(ir — ia)
+CP Hyy —o(Xiy ) Hyy—2(Xiy) Hoy 1 (Xiy) Hy, -1 (Xa,)p(in — i) p(in — ig)plia — ia)
C( )th 1(X4, )qu 3( %2)HQ3 l(Xig)Hq4—1<Xi4)P(il —ig)p(iz — i3)p(iz — 14)
+Cz§4)qul(X VH g, —2(Xiy ) Hyy—2(Xiy ) Hey—1(Xiy)p(is — d2)p(iz — i3)p(i1 — i4)
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with
C(gl) = Cq1Cq»Cq5Cquq1(q1 — 1)(q1 — 2),
Cq(2) = 3q1 s Cq 01 (@1 — 1)(q2 — 1),
CB) = ¢4, Car05¢qiqn (a2 — 1) (g2 — 2),
Cq(4) = Cq1 CapCa5Cqs 91 (g2 — 1) (g3 — 1)

We can combine the first and third terms with the change of variables (q1, ¢2) — (g2,¢1) and
(i1,42) — (i2,41). In this way we obtain

n N
Pny = % > Y OV Hy5(Xi ) Hep 1 (Xip) Hyg 1 (Xig) Hyy-1(Xi,)
i1,12,i3,i4=1 q1,92,93,q4=2
x p(i1 —i2)p(i1 — i3)p(i1 — ia)
+ CP Hyy—2(Xiy) Hyy-2(Xiy) Hyy -1 (Xiy ) Hoy—1 (X, ) p(in — i2)p(in — i3)pli — i)
+ C¥ Hy, 1(Xi,) Hoy—2(Xiy) Hyy2(Xiy) Hoy 1(Xi, ) p(in — ia)plia — i3)p(ir — ia)
), 4 82, 4 30,
with

551) = Cq1Cg2Ca3Cqs (1 + @2)(1 — 1) (@1 — 2),
552) = Cqy CqzCqsCaa3q1(q1 — 1) (g2 — 1),
5’(53) = Cqy CqrCqsCasq1 (g2 — 1) (g3 — 1).

Then, by Fatou’s lemma,
3 2\ < Tim 2
E(|D; Fnl?) < I%O%f[E (|Pnn|%) -

We are going to treat each term @S)N, 1 =1,2,3, separately.

Case i = 1. Let us first estimate E <\®SB\,]2) We have

n N
1
E(@N?) =— > D MVE(Hy-s(Xi) Hyp1 (Xi) Hyy 1 (Xi) Hyg 1 (Xi,)
i1y =1 1y g8=2
Xqu— (X )HQG—l(XiG)HQ7—1(Xi7)HQ8—1(Xi8))
x p(iy — i2)p(ir — ig)p(ir — ia)p(is — ig)p(is — i7)p(is — is),

where
8

MM =[] cw | @+ @)@ —1)(a —2)(gs + a6)(gs — 1) (g5 — 2).
j=1

This yields

() = > S 5 &G T bt

i1,..,88=14q1,...g8= 2569511) 1<k<I<8

X |p(ix —i2)p(ir — i3)p(ir — ia)p(is — i6)p(is — i7)p(is — is)],
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where g
(1 + a2)(g5 + a6) [ Tj=1 leg;|(a; — 1)

K(l) _ :
H1§k<l§8 B!

q,8

and

DY = {(Bu)i<hass: D, Bu=gq;—1forj=2,3,4,6,78
k orl=j

and Y PBu=q; —3forj=15}
k orl=j

Changing the exponents 3;, + 1 in to 8 for (j,k) € {(1,2),(1,3),(1,4),(5,6),(5,7),(5,8)},
we can write

n N
1) 1 1 . .
E((@0N?) < > 3 5 | L et
i1,0.88=1q1,. qg:gﬁeCél) 1<k<I<8

where

O _ (@1 + a)(g5 + g6) TT5—y Icg, | (q; — 1)!
o8 (Bry — DI(Biz — DN Bra — D)!(Bse — 1)!(Bs7 — 1) (58 — 1)! e Bl
with & = {(k,1): 1 <k <1<8,(k,1) # (1,2),(1,3), (1,4), (5,6), (5, 7), (5,8)} and

CV ={(Brkaiss >, B =q; for j=1,...,8 and i, Bi3, Bua, Bz, Bs7, Bss > 1.
k orl=j

Then, we obtain

N
1) \2 1 1
(@) < s A S S il
Bect(lll) q1,--,q8=2 ﬁectgl)
where
(1) 1 - . T
Ans =1 S I Ieti— i)l
i1yeyig=11<j<k<8
and the supremum is taken over all sets of nonnegative integers 31, 1 < j < k < 8, satisfying
5127 B137 514755675577558 > 17 Bjk‘ < 2for1 < .] <k < 8 and

2< ) Bip, for 1<0<8.

jork={
We need to estimate AS% and to show that
69) YT e
-,48= QﬁGC(l)
Estimation of Afll)ﬁ: We claim that
4
1 _ 3
(6.10) s%pAgL’)ﬂ <Cn! Z Ip(k)|2

k| <n
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As in the proof of Theorem 1.2, we will make use of ideas from graph theory. The exponents
Bjr induce an unordered simple graph on the set of vertices V' = {1,2,3,4, 5,8} by putting an
edge between j and k whenever 3, # 0. Because B2, 813 > 1, B14 > 1, 56 > 1,857 > 1 and
Bss > 1, the there are edges connecting the pairs vertices (1,2), (1,3), (1,4), (5,6) (5,7) and
(5,8). Condition (5.10) means that the degree of each vertex is at least 2. Then we consider
to cases, depending whether graph is connected or not.

Case 1: Suppose that the graph is not connected. This means that 3;, = 0if j € {1,2,3,4}
and k € {5,6,7,8} and there is no edge between the sets V; = {1,2,3,4} and V5 = {5,6,7, 8}.
Therefore,
1) (0) \2
Anp < (A5 8)%
where
1 n
0 NS
A=z > I Ieti—ior
i1,ia =1 1<j<k<d4
and the nonnegative integers B, 1 < j < k < 4, satisfy B2, 13, f1a = 1, B < 2 for
1<j<k<4and
2< ) B, for 1<0<4
jork=/{

As a consequence, 823 + Bog4 > 1, Bo3 + (34 > 1 and PBoyg + B34 > 1. This means that at least
two of the indices 93, F24 and P34 is larger or equal to 1. Considering the worst case, we can
assume that 593 = 1 and P34 = 1. This leads to

(6.11) AV <o ST ok p(ka)plks) p(ka — K )plks — k).
k1, k2], k3| <n

Using (2.11) and Holder’s inequality we obtain

W

_ _2 3
AV <ot S Jpk)l < onE S [p(k)]3

kl<n [kI<n

Case 2: Suppose that the graph is connected. This means that there is an edge between
connecting the sets Vi and V. Suppose that 5,5, > 1, where ag € {1,2,3,4} and §p €
{5,6,7,8}. We have then 7 nonzero coefficients 5: f13, 13, B14, Bs6, B57, Bss and Bags,-
Because all the edges have at least degree 2, there must be another nonzero coefficient 5.
Assume it is 84,5, Then, the worse case will be when 12 = 13 = 14 = Bs56 = 57 = B58 =
Baoss = Bays, = 1 and all the other coefficients are zero. Consider the change of variables
iy — 12 = k1, i1 — 13 = ko, 11 — 14 = k3, 15 — 16 = ku, i5 —ir = k5, 15 — is = ke, tag — 5, = k7.
Then, it is easy to show that in, —is, = k- v, where k = (k1,...,ks) and v is a 7-dimensional
vector whose components are 0, 1 or —1. Applying (2.10) and Holder’s inequality yields

6 4

_ — 3
Ay <on [ 3 otk | < Cn 3 [p(k)?

lkl<n kl<n

This completes the proof of (6.10).
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Proof of (6.9):  We have

[e.e]

>3 1= (| ™)) Ae) )

q1,.--,9q8=2 ﬁecél)

HA) M) X)) () Al W )7 )

Applying Holder’s inequality, yields

> 1
S ST L <Al ™ sy 1A NSk 5
q1,---,98=2 560(1)
q

+ 2||A(9/)(N) ||%8(|R,’y) ||A(9”)(N) H%S([R;y) ||A(91)(N) ”%B(R,'y)‘
By Proposition 3.2 and our hypothesis, taking the limit as IV tends to infinity, it follows that

(1)
Z > L <20 A" s o 1A 5w )

.,q8=2 BEC(I)

+ 2/l A9 s @) 1A TR [ A(90) 78Ry < 00

Case i =2. For [E[]<I>fl2gv|2] we have

n N
1
E <((p’51,2,3\7)2) = nA Z Z Mq(Q)[E(HQ1—2(Xi1)HQ2—2(Xi2)HQ3—1(Xi3)HQ4—1(Xi4)

i1yees08=1q1,...,q8=2

XH%—?(Xis)HQG—Q(XiG)Hw—l(Xi7)HQ8—1(Xi8))
x pli1 —i2)p(i1 — i3)p(iz — i4)p(is — i6)p(is — i7)p(ic — is),

where

=1

8
Mq(z) = (H Cq]) 9q1(q1 — 1)(g2 — 1)g5(g5 — 1)(g6 — 1)).

This yields

1 2 o
E(@2)?) < — S S w8 I et
i1,0.508=1q1,...8= QBGDSIQ) 1<k<I<8
X |p(ix — 12)p(ix — i3)p(ia — ia) p(is — i6)p(is — i7)p(ic — i),
where .
99145 Hj:l |cq;|(q; — 1!

K(2) _
H1§k<l§8 B!

q,8

and

DY ={(Bu)ichaics: Y Bu=qj—1forj=34738
k orl=j

and Y PBu=q; —2forj=1,2,5,6}.
k orl=j



30 S. KUZGUN AND D. NUALART

Changing the exponents 3;, + 1 in to 8 for (j,k) € {(1,2),(1,3),(2,4),(5,6),(5,7),(6,8)},
we can write

n

SO ERND SIS DD 7Y U I

i5ens18=1q1,0-08=2 g () 1<k<I<8

where

@ _ 99145 H§:1 |cq;1(g; — 1)! |
w0 (Brz = 1N (Bis = 1)H(Baa = D (Bss — 1)!(Bs7 = 1)(Bes = D! pyee B

with & = {(k,1) : 1 < k <1 <8, (k.1) £ (1,2), (1,3), (2,4), (5,6, (5,7), (6,8)} and
052) = {(Bri)1<k<i<s : Z Bri = gqj for j =1,...,8 and B2, Si3, P24, P56, P57, Be,g > 1}.

k orl=j
Then7 we haVe
N
[E(‘ng) ) < sup A() Z Z |L(2)
pec® =2 e

where
2 )
I VI | g eI
1] 4.eyl8= 11<]<k<8

and the supremum is taken over all sets of nonnegative integers Sz, 1 < j < k < 8, satisfying
P12, B13, Bo4, Bs6, Bs7, Bes > 1, Bjp <2 for 1 < j <k <8 and

2< ) Bip, for 1<0<8.
jork={

We need to estimate Agg and to show that

(6.12) i S L8 <.

q1,---,98=2 /8601(12>

Estimation of Ag% : We claim that

sup AL <O Y o))
g Ik <n

As in the proof of Theorem 1.2, we will make use of ideas from graph theory. The exponents
Bk induce an unordered simple graph on the set of vertices V' = {1, 2, 3,4, 5,8} by putting an
edge between j and k whenever 3, # 0. Because 12 > 1, f13 > 1, Boa > 1, 856 > 1,857 > 1
and fBgg > 1, the there are edges connecting the pairs of vertices (1,2), (1,3), (2,4), (5,6)
(5,7) and (6,8). Condition (5.10) means that the degree of each vertex is at least 2. Then
we consider two cases, depending whether graph is connected or not.
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Case 1: Suppose that the graph is not connected. This means that 3;, = 0if j € {1,2,3,4}
and k € {5,6,7,8} and there is no edge between the sets V; = {1,2,3,4} and V5 = {5,6,7, 8}.
Therefore,
AZL < (AD)2,

where

0 .

I VI |

i1,..504=1 1§J§/€§4
and the nonnegative integers B, 1 < j < k < 4, satisfy B2, £13, foa > 1, B < 2 for
1<j<k<4and
2< > B, for 1<i<4.
jork=/{

As a consequence, (23 + 834 > 1 and (14 + B34 > 1. This means (834 > 1 or both Fo3 and 14
are larger or equal than one. There are two possible cases:

(i) Suppose P34 > 1, Considering the worst case, we can assume that 34 = 1. Then,
applying (2.9) and Hoélder’s inequality, we obtain

AC <ot ST p(kn)p(k)p(ks)p(ks + ks — k) < n 7t [ [p(R)[s

k1] |k2|,|k3|<n |k|<n

By Holder’s inequality, we can show that

Nl

(AO)? <on [ 3 Ip(k)

|k|<n
(ii) Suppose P23 > 1 and f14 > 1. Then,

Agpsn™ 30 k) p(k)p(ks)p(ky + ka)p(ki — k)],
‘k‘1|7‘k2|7‘k3|§n

and this case can be treated as (6.11).

Case 2: Suppose that the graph is connected. This means that there is an edge between
connecting the sets Vi and Va. Suppose that S,.s, > 1, where ap € {1,2,3,4} and &y €
{5,6,7,8}. We have then 7 nonzero coefficients 5: [i2, 513, B24, P56, Bs57, Pes and Sags,-
Because all the edges have at least degree 2, there must be another nonzero coefficient 5.
Assume it is B4,5,. Then, the worse case will be when (12 = 13 = B4 = Bs56 = B57 = [es =
Baosy = Bays, = 1 and all the other coefficients are zero. Consider the change of variables
i1 —i9 = ki, 91 — i3 = ko, 1o — ia = k3, i5 — i = kua, i5 — i1 = ks, i — i3 = K¢, lay — 5, = k7.
Then, it is easy to show that io, —is, = k- v, where k = (k1,...,ks) and v is a 7-dimensional
vector whose components are 0, 1 or —1. Then, using (2.10) and Holder’s inequality, we

obtain
6 4

Al <o [ 3 o) | <cn? |3 Ip(k)

|k|<n |k|<n

(SIS
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Proof of (6.12):  We have

>3 £ - (Jaw e auh cnat x| )

q1,..-,q8=2 ﬁGCéz)

< 9”14(9//)(1\[)H%S([R;y)HA(Q/I)(N)||2L8([R,'y)||A(gl)(N)”4L8([R;y)’

which converges as N — oo to

QHA(QII)”%S([R,V)||A(91)H%8([R,7)HA(Ql)HAis(R,w < 0o.
Case i = 3. The term E[|<I>7(133V]2] can be handled in a similar way and we omit the details. [J
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