
Rate of convergence for the weighted Hermite variations
of the fractional Brownian motion

Nicholas Ma ∗and David Nualart †‡

Department of Mathematics
The University of Kansas

Lawrence, Kansas 66045, USA

Abstract

In this paper we obtain a rate of convergence in the central limit theorem for high
order weighted Hermite variations of the fractional Brownian motion. The proof is
based on the techniques of Malliavin calculus and the quantitative stable limit theo-
rems proved by Nourdin, Nualart and Peccati in [15].
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1 Introduction

The fractional Brownian motion B � �Bt, t � 0� is characterized by being a zero-mean
Gaussian self-similar process with stationary increments and variance E�B2

t � � t2H . The self-
similarity index H � �0, 1� is called the Hurst parameter. The fractional Brownian motion
was first introduced by Kolmogorov in 1940. However, the landmark paper by Mandelbrot
and Van Ness [9] gave fractional Brownian motion its name and inspired much of the modern
literature on the subject.

The study of single path behavior of stochastic processes often uses their power variations.
In particular, the fractional Brownian motion is known to have a 1�H-variation on any finite
time interval equal to the length of the interval multiplied by the constant κH � E��Z1
H ��,
where Z is a N�0, 1� random variable. That means, if we consider the uniform partition of the
interval �0, 1� into n � 1 intervals and for 0 � k � n� 1 we denote ∆Bk
n � B�k�1�
n�Bk
n,
we have

lim
n��

n�1�
k�0

�∆Bk
n�1
H � κH ,
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where the convergence holds almost surely and in Lp�Ω� for any p � 2. A central limit
theorem associated with this approximation can be obtained by expanding the function �x�1
H
into Hermite polynomials. In particular, as a consequence of the Breuer-Major theorem [5],
for each integer q � 2 such that H � 1� 1

2q
, we have the convergence in law

lim
n��

n�1�
k�0

1�
n
Hq�nH∆Bk
n� L� N�0, σ2

H,q�,

where Hq is the qth Hermite polynomial and

σ2
H,q � q!

�
k�Z

ρH�k�q. (1.1)

Here

ρH�k� � 1

2
��k � 1�2H � �k � 1�2H � 2�k�2H�, k � Z (1.2)

denotes the covariance of the stationary sequence �Bk�1 �Bk, k � 0�.
There has been intensive research on the asymptotic behavior of the weighted Hermite

variations of the fractional Brownian motion B, defined by

Fn � 1�
n

n�1�
k�0

f�Bk
n�Hq�nH∆Bk
n�, (1.3)

where f is a given function. The analysis of the asymptotic behavior of these quantities
is motivated, for instance, by the study of the exact rates of convergence of some approxi-
mation schemes of scalar stochastic differential equations driven by the fractional Brownian
motion (see, for instance, [6, 11]), in addition to the traditional applications of q-variations
to parameter estimation problems. Additionally, as discovered in [12], new phenomena arise
in the presence of weights. These phenomena were more fully studied in [16] and [18].

It was shown by Nourdin, Nualart, and Tudor in [16] that, when 1
2q
� H � 1 � 1

2q
, the

sequence Fn defined in (1.3) converges in law to a mixture of Gaussian distributions. More
precisely, the following stable convergence holds as n tends to infinity

�B,Fn� L�
�
B, σH,q

� 1

0

f�Bs�dWs

�
, (1.4)

whereW � �Wt, t � �0, 1�� is a standard Brownian motion independent of B, and σH,q is given
by (1.1). ForH outside the interval � 1

2q
, 1� 1

2q
� different phenomena occur. Specifically, it was

shown in [14] that when 0 � H � 1
2q
, nqH�1
2Fn converges in L2�Ω� to ��2��q

�1
0
f �q��Bs� ds,

and when 1 � 1
2q
� H � 1, nq�1�H��1
2Fn converges in L2�Ω� to �1

0
f�Bs� dZ�q�

s where Zq is

the Hermite process. In the critical case H � 1
2q
, there is convergence in law to a linear

combination of the H � 1
2q

and 1
2q
� H � 1 � 1

2q
cases, and in the critical case H � 1 � 1

2q

there is convergence in law with an additional logarithmic factor (see [14]).
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We recall the assumption 1
2q
� H � 1� 1

2q
, under which convergence of the sequence Fn

was shown in [16]. A natural question is to study the rate of the convergence in law of the

sequence Fn to σH,q

�1
0
f�Bs�dWs stated in (1.4). When f � 1, Stein’s method, combined

with Malliavin calculus, allows one to derive upper bounds for the rate of convergence of the
total variation distance (see the monograph by Nourdin and Peccati [17] and the references
therein). The series of papers [3, 12, 14, 15, 16, 18, 19] have greatly contributed to the
development of the Mallavin-stein approach, which has become a powerful and general tool to
study limit theorems for functionals of Gaussian processes. In the case of weighted variations,
this methodology is no longer applicable. In [15], Noudin, Nualart, and Peccati developed
a new approach based on the interpolation method that provides quantitative rates for the
convergence of multiple Skorohod integrals to a mixture of Gaussian laws. A basic result in
this direction is Proposition 2.7 below. In [15], the authors apply this approach to deduce a
rate of convergence for Fn in the case q � 2 and 1

4
� H � 3

4
.

The main purpose of this paper is to apply the technique introduced in [15] to weighted
Hermite variations of any order q � 2, extending the results proved for weighted quadratic
variations. We will show that the rate of convergence is bounded, up to a constant, by nΦ�H�,
where the exponent φ�H� is defined by

φ�H� �
�7777H � 1

2

7777� 1

2

�
�
�
q

7777H � 1

2

7777� q � 1

2

�
. (1.5)

That is,

φ�H� �
'
��H� � ��qH � 1

2
� if H � 1

2
,

�H � 1� � �q�H � 1� � 1
2
� if H � 1

2
.

Notice that φ�H� � 0 when H is equal to one of the end points of the interval � 1
2q
, 1 � 1

2q
�

and it is symmetric with respect to the middle point 1
2
. Moreover, there are unexpected

transition phases when H � 1
2q�2

and when H � 1� 1
2q�2

.

In order to state our main result, we need some notation and definitions. We say that a
function f : R � R has moderate growth if there exist positive constants A, B, and α � 2
such that for all x � R, �f�x�� � A exp�B�x�α�.

Given a measurable function f : R � R, an integer N � 0 and a real number p � 1, we
define the semi-norm


f
N,p �
N�
i�0

sup
0
t
1


f �i�
Lp�R,γt� (1.6)

where γt is the normal distribution N�0, t�.
We can now state the main result of this paper. This result extends the work done in

[16] that proves stable convergence for any q, and the work done in [15] that provides a
quantitative bound in the q � 2 case.

Theorem 1.1. Let q � N, q � 2. Assume that the Hurst index H of the fractional Brownian

motion B belongs to
�

1
2q
, 1� 1

2q

:
. Consider a function f : R � R of class C2q such that f
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and its first 2q derivatives have moderate growth. Suppose in addition that

E

��� 1

0

f 2�Bs� ds
��1�q�α

 
� �

for some α � 1. Consider the sequence of random variables Fn defined by (1.3). Set S �>
σ2
H,q

�1
0
f 2�Bs� ds, where σH,q is given in (1.1). Then, for any function ϕ : R� R of class

C2q�1 with 
ϕ�k�
� � � for each k � 0, . . . , 2q � 1, we have

�E�ϕ�Fn�� � E�ϕ�Sη��� � CH,f,q sup
1
i
2q�1


ϕ�i�
�nφ�H�, (1.7)

where η is a standard normal variable independent of B. The constant CH,f,q has the form

CH,f,q � CH,q max
%

f
2q,2, E�S�2�2q�α�1
α
f
2q�1

2q,�2q�2�β

-
,

and 1�α � 1�β � 1.

The paper is organized as follows. Section 2 contains some preliminaries on the fractional
Brownian motion and its associated Malliavin calculus. The basic rate of convergence result
for multiple Skorohod integrals, Proposition 2.7, is also stated in this section. Section 3 is
devoted to the proof of Theorem 1.1. The proof intensively uses the techniques of Malliavin
calculus and detailed estimates for the sums of powers of the covariance function ρH obtained
in Section 2 (see Lemma 2.4). We have included an example at the end of Section 3 that
explains why the phase of transition in the rate of convergence occurs. A technical lemma
is proved in the Appendix.

2 Preliminaries

In this section we first present some definitions and basic results on the factional Brownian
motion and the associated Malliavin calculus. The reader is referred to the monographs
[20] and [17] for a detailed account on these topics. We also recall an upper bound for the
approximation of multiple Skorohod integrals by a mixture of Gaussian laws that will play
a fundamental role in the proof of the main result.

2.1 Fractional Brownian motion

Consider a fractional Brownian motion B � �Bt, t � �0, 1�� with Hurst parameter H � �0, 1�
defined in a probability space �Ω,F , P �. That means, B is a zero mean Gaussian process
with covariance

E�BtBs� � 1

2
�t2H � s2H � �t� s�2H�, s, t � �0, 1�.

Let E be the space of step functions on �0, 1� and consider the Hilbert space defined as the
closure of E under the inner product 	��0,t�,��0,s�
H � E�BtBs� for s, t � �0, 1�. Then the
mapping ��0,t� � Bt can be extended to a linear isometry between H and the Gaussian space
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generated by B. We denote by B�h� the image of h � H by this isometry. With this notation,
�B�h�, h � H� is an isonormal Gaussian process associated with the Hilbert space H. We
refer the reader to the references [13, 20] for a detailed study of this process.

For any integer q � 1, we denote by H�q and H�q, respectively, the qth tensor product
and the qth symmetric tensor product of H.

From now on, we assume that F is the P -completion of the σ-field generated by B. For
every integer q � 1, we let Hq be the qth Wiener chaos of B, that is, the closed linear
subspace of L2�Ω� generated by the random variables �Hq�B�h��, h � H, 
h
H � 1�, where
Hq is the qth Hermite polynomial defined by

Hq�x� � ��1�qex2
2 dq

dxq

�
e�x2
2

9
.

We denote by H0 the space of constant random variables. For any q � 1, the mapping
Iq�h�q� � Hq�B�h�� provides a linear isometry between H�q (equipped with the modified
norm

�
q! 
�
H�q) and Hq (equipped with the L2�Ω� norm). For q � 0, we set by convention

H0 � R and I0 equal to the identity map.
It is well-known (Wiener chaos expansion) that L2�Ω� can be decomposed into the infinite

orthogonal sum of the spaces Hq, that is: any square integrable random variable F � L2�Ω�
admits the following chaotic expansion:

F �
��
q�0

Iq�fq�, (2.1)

where f0 � E�F �, and the fq � H�q, q � 1, are uniquely determined by F .
Let �ek, k � 1� be a complete orthonormal system in H. Given f � H�p, g � H�q and

r � �0, . . . , p� q�, the rth contraction of f and g is the element of H��p�q�2r� defined by

f  r g �
��

i1,...,ir�1

	f, ei1  . . . eir
H�r  	g, ei1  . . . eir
H�r . (2.2)

Notice that f  r g is not necessarily symmetric. We denote its symmetrization by f 	 rg �
H��p�q�2r�. Moreover, f  0 g � f  g equals the tensor product of f and g while, for p � q,
f  q g � 	f, g
H�q . Contraction operators appear in the following formula for products of
multiple Wiener-Itô integrals (see, for instance, [20] Proposition 1.1.3) :

Ip�f�Iq�g� �
p�q�
r�0

r!

�
p

r

��
q

r

�
Ip�q�2r�f 	 rg�, (2.3)

for any f � H�p and g � H�q.

We consider the uniform partition of the interval �0, 1�, and, for n � 1 and k � 0, 1, . . . , n�
1, let δk
n � ��k
n,�k�1�
n� and εk,n � ��0,k
n�. We will make use of the notation

αk,t � 	δk
n,��0,t�
H (2.4)

and
βj,k � 	δj
n, δk
n
H (2.5)
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for any t � �0, 1� and j, k � 1, . . . , n� 1. Notice that

βj,k � n�2HρH�j � k�

where ρH has been defined in (1.2).
For the proof of Theorem 1.1 we need several technical estimates on the quantities αk,t

and βj,k. We first reproduce a useful technical lemma from [15].

Lemma 2.1. Let 0 � H � 1 and n � 1. We have, for some constant CH that depends on
H,

(a) �αk,t� � n��2H�1� for any t � �0, 1� and k � 0, . . . , n� 1.

(b) supt��0,1�

�n�1
k�0 �αk,t� � CH .

The next lemma estimates the sum of powers of the terms βj,k.

Lemma 2.2.

(a) For a � 1 and 0 � i � n� 1 and some constant CH that depends on H,

n�1�
j�0

�βj,i�a � CHn
�1�2a����2aH�.

(b) For a � 1 and for some constant CH that depends on H,

n�1�
j,k�0

�βj,k�a � CHn
�2�2a���1�2aH�. (2.6)

Proof. Using (1.2), we have

n�1�
j�0

�βj,i�a � n�2aH
n�1�
j�0

�ρH�j � i��a.

Taking into account that �ρH�j � i��a converges to zero as j tends to infinity at the rate
ja�2H�2�, when a�2H�2� � �1 the above sum is bounded by a constant. When a�2H�2� �
�1, it diverges at the rate na�2H�2��1. This gives the estimate in part (a). For (b), we make
the change of indices �j, k� � �j, h�, where h � j � k, we estimate the sum in j by n and
apply (a) for the sum in h.

We recall a version for infinite sums of the rank-one Brascamp-Lieb inequality that will
be used to estimate sums of products of the terms βj,k. The statement is reproduced from
[21, Proposition 2.4], which is taken from the works [1, 2] and [4]:

Proposition 2.3 (Brascamp-Lieb inequality). Let 2 � M � N be fixed integers. Consider
nonnegative measurable functions fj : R� R�, 1 � j � N , and fix nonzero vectors vj � RM .
Fix positive numbers pj, 1 � j � N , verifying the following conditions:
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(i)
�N

j�1 pj �M .

(ii) For any subset I � �1, . . . , N�, we have
�

j�I pj � dim�Span�vj, j � I��.
Then, there exists a finite constant C, depending on N,M and the pj’s such that

�
k�ZM

N�
j�1

fj�k � vj� � C
N�
j�1

#�
k�Z

fj�k�1
pj
�pj

. (2.7)

We will use the Brascamp-Lieb inequality to prove the following lemma.

Lemma 2.4. For a � 1, b � 1, � � 1, . . . , n� 1, and for some constant CH ,

n�1�
j,j��0

�βj,��a�βj�,��a�βj,j� �b � CHn
��2H�2a�b����2�2�2a�b��.

Proof. We have

n�1�
j,j��0

�βj,��a�βj�,��a�βj,j� �b � n�2H�2a�b�
n�1�
j,j��0

�ρH��� j�ρH��� j���a �ρH�j � j���b . (2.8)

Making the substitutions k1 � �� j and k2 � �� j�, we can write the above sum as

��
k1,k2���n�1

�ρH�k1�ρH�k2��a �ρH�k1 � k2��b . (2.9)

Let N � 3, M � 2,
f1�x� � f2�x� � �ρH�x��a1���n
x
�	

and
f3�x� � �ρH�x��b1��x�
n�1	.

Consider the vectors v1 � �1, 0�, v2 � �0, 1�, and v3 � �1,�1�. Applying Proposition 2.3,
we have

��
k1,k2���n�1

�ρH�k1�ρH�k2��a �ρH�k1 � k2��b

� C

#�
k�Z

f1�k�1
p1
�p1 #�

k�Z

f2�k�1
p2
�p2 #�

k�Z

f3�k�1
p3
�p3

� C

#
��

k���n�1

�ρH�k��a
p1
�p1# ��

k���n�1

�ρH�k��a
p2
�p2

,0 n�1�
k���n�1�

�ρH�k��b
p3

�p3

.

The choices p1 � p2 � 2a��2a� b� and p3 � 2b��2a� b� satisfy the conditions of Proposition
2.3. Note that p1 � p2 � p3 � 2 and a�p1 � a�p2 � b�p3 � �2a � b��2. In this way, we can
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write

��
k1,k2���n�1

�ρH�k1�ρH�k2��a �ρH�k1 � k2��b � C

,0 �
�k�
2n

�ρH�k���2a�b�
2


�2

� Cn2��2H�2��2a�b�
2�1���,

which implies the desired estimate.

2.2 Malliavin calculus

Let us now introduce some elements of the Malliavin calculus with respect to the fractional
Brownian motion B. Let S be the set of all smooth and cylindrical random variables of the
form

F � g �B�φ1�, . . . , B�φn�� , (2.10)

where n � 1, g : Rn � R is an infinitely differentiable function with compact support, and
φi � H. The derivative of F with respect to B is the element of L2�Ω;H� defined as

DF �
n�

i�1

�g
�xi

�B�φ1�, . . . , B�φn��φi.

By iteration, one can define the qth derivative DqF for every integer q � 2, with DqF �
L2�Ω;H�q�. For integers q � 1 and real numbers p � 1, the Sobolev space Dq,p is defined as
the closure of S with respect to the norm 
 � 
Dq,p , defined by the relation


F 
pDq,p � E ��F �p� �
q�

i�1

E
�
DiF 
p

H�i

9
.

The derivative operator D verifies the following chain rule. If ϕ : Rn � R is continuously
differentiable with bounded partial derivatives and if F � �F1, . . . , Fn� is a vector of elements
of D1,2, then ϕ�F � � D1,2 and

D�ϕ�F �� �
n�

i�1

�ϕ
�xi

�F �DFi.

We denote by δ the adjoint of the operator D, also called the divergence operator or
Skorohod integral (see, e.g., [20, Section 1.3.2] for an explanation of this terminology). A
random element u � L2�Ω;H� belongs to the domain of δ, denoted by Domδ, if and only if
it verifies 77E�	DF, u
H

977 � cu
=
E�F 2�

for any F � D1,2, where cu is a constant depending only on u. If u � Domδ, then the random
variable δ�u� is defined by the duality relationship (called ‘integration by parts formula’):

E�Fδ�u�� � E
�	DF, u
H

9
, (2.11)
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which holds for every F � D1,2. Formula (2.11) extends to the multiple Skorohod integral
δq, and we have

E �Fδq�u�� � E
�	DqF, u
H�q

9
, (2.12)

for any element u in the domain of δq and any random variable F � Dq,2. Moreover, δq�h� �
Iq�h� for any h � H�q.

The following statement will be used in the paper, and is proved in [14].

Lemma 2.5. Let q � 1 be an integer. Suppose that F � Dq,2, and let u be a symmetric
element in Domδq. Assume that, for any 0 � r � j � q, 	DrF, δj�u�
H�r � L2�Ω;H�q�r�j�.
Then, for any r � 0, . . . , q � 1, 	DrF, u
H�r belongs to the domain of δq�r and we have

Fδq�u� �
q�

r�0

�
q

r

�
δq�r

�	DrF, u
H�r

9
, (2.13)

with the convention that δ0�v� � v, v � L2�Ω�, and D0F � F , F � L2�Ω�.
For any Hilbert space V , we denote by Dk,p�V � the corresponding Sobolev space of V -

valued random variables (see [20, page 31]). The operator δq is continuous from Dk,p�H�q�
to Dk�q,p, for any p � 1 and any integers k � q � 1, that is, we have


δq�u�
Dk�q,p � ck,p 
u
Dk,p�H�q� , (2.14)

for all u � Dk,p�H�q�, and for some constant ck,p � 0. These estimates are consequences of
Meyer inequalities (see [20, Proposition 1.5.7]). In particular, these estimates imply that
Dq,2�H�q� � Domδq for any integer q � 1.

The following commutation relationship between the Malliavin derivative and the Skoro-
hod integral (see [20, Proposition 1.3.2]) is also useful:

Dδ�u� � u� δ�Du�, (2.15)

for any u � D2,2�H�. By induction we can show the following formula for any symmetric
element u in Dj�k,2�H�j�

Dkδj�u� �
j�k�
i�0

�
k

i

��
j

i

�
i!δj�i�Dk�iu�. (2.16)

In particular, when j � k, making the substitution i� k � i, we obtain

Dkδk�u� �
k�

i�0

�
k

i

�2

�k � i�!δi�Diu�. (2.17)

We will also use the following formula for the multiple Skorohod integral.

Lemma 2.6. If ϕ is a q times continuously differentiable function on R such that ϕ�q� has
moderate growth and g, h � H, then

δq�ϕ�B�g��h�q� �
q�

r�0

�
q

r

�
ϕ�r��B�g��	h, g
rHIq�r�h�q�r���1�r.
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Proof. We will prove this formula by induction. By linearity, it suffices to assume that

h
H � 1. When q � 1, this formula reduces to

δ�ϕ�B�g��h� � ϕ�B�g��δ�h� � ϕ��B�g��	h, g
H,
which is a particular case of (2.13) with q � 1. Suppose it holds for q. Using the recurrence
formula Hn�1�x� � xHn�x� � nHn�1�x� for Hermite polynomials and the relation between
Hermite polynomials and multiple stochastic integrals, we can write

Iq�h�q� � Hq�δ�h��
� δ�h�Hq�1�δ�h�� � �q � 1�Hq�2�δ�h��
� δ�h�Iq�1�hq�1� � �q � 1�Iq�2�h�q�2�.

(2.18)

Applying the inductive hypothesis, we have

δq�1�ϕ�B�g��h�q�1� � δ�δq�ϕ�B�g��h�q�h�

�
q�

r�0

�
q

r

�
δ
�
ϕ�r��B�g��	h, g
rHIq�r�h�q�r�h9 ��1�r

�
q�

r�0

�
q

r

�
��1�r�δ�h�Iq�r�h�q�r�ϕ�r��B�g��	h, g
rH

� 	D�ϕ�r��B�g��	h, g
rδq�r�h�q�r��, h
H�. (2.19)

Computing the derivative in the last term, we have

	D�ϕ�r��B�g��	h, g
rIq�r�h�q�r��, h
H
� ϕ�r�1��B�g��	h, g
r�1

H Iq�r�h�q�r�
� ϕ�r��B�g��	h, g
rH�q � r�Iq�r�1�h�q�r�1�,

(2.20)

Substituting (2.20) into (2.19) and using (2.13), yields

δq�1�φ�B�g��h�q�1� �
q�

r�0

�
q

r

�
��1�r�δ�h�Iq�r�h�q�r�ϕ�r��B�g��	h, g
rH

� ϕ�r�1��B�g��	h, g
r�1
H Iq�r�h�q�r�

� ϕ�r��B�g��	h, g
rH�q � r�Iq�r�1�h�q�r�1��

�
q�

r�0

�
q

r

�
��1�rϕ�r��B�g��	h, g
rHIq�r�1�h�q�r�1�

�
q�1�
r�1

�
q

r � 1

�
��1�rϕ�r��B�g��	h, g
rHIq�r�1�h�q�r�1�.

Taking into account that
�
q
r

9� �
q

r�1

9 � �
q�1
r

9
, we finally obtain

δq�1�φ�B�g��h�q�1� �
q�1�
r�0

�
q � 1

r

�
��1�rϕ�r��B�g��	h, g
rHI�q�1��r�h���q�1��r��

and the induction is complete.

10



2.3 Rate of convergence to a mixture of Gaussian laws

In this subsection we state Theorem 5.2 from [15] here, that will play a basic role in the
proof of our main theorem.

Proposition 2.7. Suppose that u � D2q,4q�Hq� is symmetric. Let F � δq�u�. Let S �
Dq,4q, and let η � N�0, 1� indicate a standard Gaussian random variable, independent of the
fractional Brownian motion B. Assume that ϕ : R � R is C2q�1 with 
ϕ�k�
� � � for any
k � 0, . . . , 2q � 1. Then77E�ϕ�F �� � E�ϕ�Sη��77 � 1

2

ϕ�
�E

��	u,DqF 
H�q � S2��
�

�
�b,b���Q

��b��
2��
j�0

cq,b,b�,j




ϕ�1��b��2�b���2j�




�

�E
�
S�b���2j

7773u, �DF ��b1  � � �  �
Dq�1F

9�bq�1  �DS��b�1  � � �  �DqS��b�q
6
H�q

777� ,
where Q is the set of all pairs of vectors b � �b1, b2, . . . bq�1� and b� � �b�1, . . . , b�q� of nonneg-
ative integers satisfying the constraints b1 � 2b2 � � � � � �q � 1�bq�1 � b�1 � 2b�2 � � � � qb�q � q.
The constants cq,b,b�,j are given by

cq,b,b�,j � 1

2
B��b��2� 1�2, �b���2� 1�

q�
i�1

�
ci
bi

�
� �b��!

2j��b�� � 2j�!j! �
q!�q

i�1 i!
cici!

,

where c � b� b� and B denotes the Beta function.

3 Proof of Theorem 1.1

Along the proof C will denote a generic constant that might depend on q and H. Before
starting the proof let us make some remarks on the exponent φ�H� defined in (1.5). Notice
that H � 1��2q � 2� if and only if �H � �qH � 1

2
and H � 1 � 1��2q � 2� if and only if

1�H � q�H � 1� � 1
2
. As a consequence, we have

φ�H� �

(+++*+++)
�qH � 1

2
1�2q � H � 1��2q � 2�,

�H 1��2q � 2� � H � 1�2,
H � 1 1�2 � H � 1� 1��2q � 2�,
q�H � 1� � 1

2
1� 1��2q � 2� � H � 1� 1�2q.

This implies that

φ�H� � max

&
�H,H � 1,�qH � 1

2
, q�H � 1� � 1

2

.
. (3.1)

The proof will be done in several steps. Consider the element u � D2q,� :� �p�1D2q,p

given by

un � nqH�1
2
n�1�
k�0

f�Bk
n�δ�q
k
n,

11



where we recall that δk
n � ��k
n,�k�1�
n�. Note first that the random variable Fn does not
coincide with δq�un�, except in the case H � 1�2. For this reason, we define Gn � δq�un�
and first estimate the difference Fn �Gn.

Step1. We claim that
E��Fn �Gn�� � C
f
2q�1,2n

φ�H�. (3.2)

To show (3.2), we apply Lemma 2.6 and obtain

δq�un� � nqH�1
2
n�1�
k�0

δq�f�Bk
n�δ�q
k
n�

� nqH�1
2
n�1�
k�0

q�
r�0

��1�r
�
q

r

�
f �r��Bk
n�αr

k,k
nIq�r�δ�q�r
k
n �.

Note that the r � 0 term corresponds to Fn, so

Fn �Gn � nqH�1
2
n�1�
k�0

q�
r�1

��1�r�1

�
q

r

�
f �r��Bk
n�αr

k,k
nIq�r�δ�q�r
k
n �.

Let

Kn,r � nqH�1
2
n�1�
k�0

��1�r�1

�
q

r

�
f �r��Bk
n�αr

k,k
nIq�r�δ�q�r
k
n �

so that Fn �Gn �
�q

r�1 Kn,r.
Applying the product formula of multiple stochastic integrals (2.3), we can write

E�K2
n,r� � n2qH�1

n�1�
j,k�0

�
q

r

�2

E
�
f �r��Bj,n�f �r��Bk
n�Iq�r�δ�q�r

j
n �Iq�r�δ�q�r
k
n �

�
αr
j,j
nα

r
k,k
n

� n2qH�1
n�1�
j,k�0

q�r�
s�0

�
q

r

�2�
q � r

s

�2

s!

� E
�
f �r��Bj,n�f �r��Bk
n�I2q�2r�2s�δ�q�r�s

j
n
	 δ�q�r�s

k
n �
�
βs
j,kα

r
j,j
nα

r
k,k
n. (3.3)

Using the duality formula between multiple stochastic integrals and the derivative operator
(2.12), we obtain

E
�
f �r��Bj,n�f �r��Bk
n�I2q�2r�2s�δ�q�r�s

j
n
	 δ�q�r�s

k
n �
�

� E
�
	D2q�2r�2s�f �r��Bj,n�f �r��Bk
n��, δ�q�r�s

j
n
	 δ�q�r�s

k
n 
H�2q�2r�2s

�
.

Finally, applying the Leibniz rule, we can write

E
�
f �r��Bj,n�f �r��Bk
n�I2q�2r�2s�δ�q�r�s

j
n
	 δ�q�r�s

k
n �
�

�
2q�2r�2s�

m�0

�
2q � 2r � 2s

m

�
E
�
f �r�m��Bj,n�f �2q�r�2s�m��Bk,n�

�
� 	��m

�0,j
n�  �
��2q�r�2s�m�
�0,k
n� , δ�q�r�s

j
n
	 δ�q�r�s

k
n 
H�2q�2r�2s . (3.4)

12



Substituting (3.4) into (3.3), yields

E�K2
n,r� � C
f
22q�1,2n

2qH�1
n�1�
j,k�0

q�r�
s�0

�βj,k�s�αj,j
n�r�αk,k
n�r

�
2q�2r�2s�

m�0

�
0
i
m

i��m�i�
q�r�s

�αj,j
n�i�αj,k
n�q�r�s�i�αk,j
n�m�i�αk,k
n�q�r�s�m�i

� C
f
22q�1,2n
2qH�1

n�1�
j,k�0

q�r�
s�0

�βj,k�s

�
2q�2r�2s�

m�0

�
0
i
m

i��m�i�
q�r�s

�αj,j
n�i�r�αj,k
n�q�r�s�i�αk,j
n�m�i�αk,k
n�q�s�m�i.

Then, decomposing the summation in s into the cases s � 0 and s � 1, we obtain

E�K2
n,r� � C
f
22q�1,2n

2qH�1

�

,10 n�1�
j,k�0

2q�2r�
m�0

�
0
i
m

i��m�i�
q�r

�αj,j
n�i�r�αj,k
n�q�r�i�αk,j
n�m�i�αk,k
n�q�m�i

�
n�1�
j,k�0

q�r�
s�1

�βj,k�s
2q�2r�2s�

m�0

�
0
i
m

i��m�i�
q�r�s

�αj,j
n�i�r�αj,k
n�q�r�s�i�αk,j
n�m�i�αk,k
n�q�s�m�i


��.

In the s � 0 case, we replace the summation of j and k with a factor of n2 and estimate the
α’s with Lemma 2.6(a). For s � 1, we apply Lemma 2.2(b) and bound each α with Lemma
2.6(a), so that

E�K2
n,r� � C
f
22q�1,2n

2qH�1

#
n�2q�2H�1��2 �

q�r�
s�1

n�1�2sH���2�2s�n��2H�1��2q�2s�

�
.

The s � 0 term yields the contribution n2qH�1n�2q�2H�1��2 � n�2q�H��1�H���1. Note that
��H � �1�H��q � 1

2
� φ�H�. Let us consider the terms

As :� C
f
22q�1,2n
2qH�1n�1�2sH���2�2s�n��2H�1��2q�2s�,

s � 1, 2, . . . , q � r. We consider three different cases:
Case 1. Suppose that 1 � 2sH � 2 � 2s. In this case, H � 1 � 1��2s� � 1�2 and s �
1��2�1�H��. Therefore, we obtain

As � C
f
22q�1,2n
2qH�1n2�2q � C
f
22q�1,2n

1�2q�H�1�.

13



Case 2. Suppose that 1� 2sH � 2� 2s and H � 1�2. In this case, 1�2 � H � 1� 1��2s� �
1� 1��2�q � 1�� and 1��2�H � 1�� � s � q � 1. So, we can write

As � C
f
22q�1,2n
2qH�1n1�2q�2s�1�H�

� C
f
22q�1,2n
2qH�1n1�2q�2�q�1��1�H�

� C
f
22q�1,2n
2H�2.

Case 3. Suppose that 1� 2sH � 2� 2s and H � 1�2. We have

As � C
f
22q�1,2n
2qH�1n2sH�4qH�1

� C
f
22q�1,2n
2qH�1n2�q�1�H�4qH�1

� C
f
22q�1,2n
�2H .

Combining the bound for s � 0 and the bounds for As, applying Cauchy-Schwarz’s
inequality and taking into account the definition of φ�H� and (3.1), we obtain

E��Fn �Gn�� �
q�

r�1

E��Kn,r�� �
q�

r�1

>
E�K2

n,r� � C
f
2q�1,2n
φ�H�, (3.5)

thus proving (3.2).

Step 2. Now that we have a bound for E��Fn � Gn��, we will establish a bound for
�E�ϕ�Gn�� � E�ϕ�Sη��� using Proposition 2.7. First, however, we need a result to convert
derivatives of S into derivatives of S2. By the Faa di Bruno formula (see [10] Theorem 2.1),
with h�x� � �x, we have

DkS � Dk
�
S2 �

�
m1�2m2�����kmk�n

Cm1,m2,...,mk
h�m1�����mk��S2�  k

j�1 �DjS2��mj

�
�

m1�2m2�����kmk�k

C �
m1,m2,...,mk

S1�2�m1�����mk�  k
j�1 �DjS2��mj , (3.6)

where the mj represent the powers of DjS2, Cm1,...,mk
� k!

m1!1!m1...mk!k!
mk

is a combinatorial
constant that depends on m1, . . . ,mk and

C �
m1,...,mk

� Cm1,...,mk

m1�����mk�1�
��0

�
1

2
� �

�
.

Applying this result to each derivative of S in Proposition 2.7 and combining the terms, we
obtain

�E�ϕ�Gn�� � E�ϕ�Sη��� � 1

2

ϕ�
�E

�77	u,DqGn
H�q � S2
77�
�C

�
�b,b���Q

��b��
2��
j�0


ϕ�1��b��2�b���2j�
�

�
�

m1,m2,...,mq

E

�
S2�b���2j�2

�q
k�1 �mk�b

�
k

�
77777
4
un,

q�1�
��1

�D�Gn��b� � 
q�

���1

�D��S2���b�1m1�������b�qmq�� �

8
H�q

77777
 
, (3.7)
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where Q is the set of all vectors b � �b1, . . . , bq�1� and b� � �b�1, . . . , b�q� of nonnegative integers
such that b1� 2b2�� � �� �q� 1�bq�1� b�1� 2b�2�� � �� qb�q � q. Also, we will use the notation
mk � �mkj�j�1,...,q, �mk� � mk1 � � � � �mkq, where the mk satisfy

mi1 � 2mi2 � � � � � qmiq � i. (3.8)

for each i � 1, . . . , q. We include the combinatorial coefficient from the Faa di Bruno formula
in the constant C.

Let d�� � b�1m1�� � � � � b�qmq�� . Using (3.8), we obtain

d1 � 2d2 � � � � � qdq �
q�

���1

���b�1m1�� � � � � � b�qmq��� � b�1 � 2b�2 � � � � � qb�q.

Therefore,
b1 � 2b2 � � � � � �q � 1�bq�1 � d1 � 2d2 � � � � � qdq � q. (3.9)

Note that
�d� � b�1�m1� � � � � � b�q�mq�.

The exponent of S in (3.6) is a negative number, denoted by a, such that, if �b�� is even,

a � 2�b�� � 2j � 2
q�

k�1

�mk�b�k

� 2�b�� � 2��b���2�� 2
q�

k�1

�mk�b�k

� �b�� � 2
q�

k�1

�mk�b�k.

Noting that �mk� � k, this implies

a �
q�

k�1

�1� 2k�b�k.

Similarly, if �b�� is odd,
a � 1�

q�
k�1

�1� 2k�b�k.

The lowest possible value of a is obtained when mq1 � q, b�q � 1, b�1 � b�2 � � � � � b�q�1 � 0, so

a � 2� 2q.

For any a � �0,�1, , . . . , 2� 2q�, define

Ja,b,d :� E

�
Sa

77777
4
un,

q�1�
��1

�D�Gn��b�  
q�

���1

�D��S2��d��

8
H�q

77777
 

� nqH�1
2E

�
Sa

77777n�1�
j�0

f�Bj
n�
q�1�
��1

	δ��
j
n, D

�Gn
b�H��

q�
���1

	δ���

j
n , D
��S2
d��

H���

77777
 
,

(3.10)
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where
b1 � 2b2 � � � � � �q � 1�bq�1 � d1 � 2d2 � � � � � qdq � q. (3.11)

Notice also that
1� �b� � 2�b�� � 2j � 1� �b� � 2�b�� � 2q � 1.

Then, from (3.7) we conclude that

�E�ϕ�Gn�� � E�ϕ�Sη��� � 1

2

ϕ�
�E

�77	u,DqGn
H�q � S2
77�
�C sup

1
i
2q�1

ϕ�i�
� sup

�b,d��Q
sup

2�2q
a
0
Ja,b,d. (3.12)

Step 3. We next show that

E
�77	un, D

qGn
 � S2
779 � C
f
22q,2nφ�H�. (3.13)

Recall that Gn � δn�un�. We have, applying (2.17),

E
�77	un, D

qGn
 � S2
779 � E

�
q!
77
un
2H�q � S2

779� q�
i�1

�
q

i

�2

�q � i�!E �
q!
77	un, δ

i�Diun�
H�q

779 .
(3.14)

Let An :� 77q!
un
2H�q � S2
77 and Bn,i :� �	un, δ

i�Diun�
H�q �, so that we can write

E
�77	un, D

qGn
 � S2
779 � E�An� � C

q�
i�1

E�Bn,i�.

First, we will show that

E�An� � E
�
q!
77
un
2H�q � S2

77� � C
f
21,2nφ�H�.

We have

q!
un
2H�q � q!n2qH�1
n�1�
j,j��0

f�Bj
n�f�Bj�
n�βq
j,j�

� q!n�1
n�1�
j,j��0

f�Bj
n�f�Bj�
n�ρH�k � j�q

� q!
1

n

n�1�
p��n�1

�n�1���n�1�p��
j�0��p

f�Bj
n�f�B�j�p�
n�ρH�p�q

: � Pn �Qn,

where

Pn :� q!

n

n�1�
p��n�1

�n�1���n�1�p��
j�0��p

f�Bj
n��f�B�j�p�
n� � f�Bj
n��ρH�p�q
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and

Qn :� q!

n

n�1�
p��n�1

�n�1���n�1�p��
j�0��p

f�Bj
n�2ρH�p�q.

Using E��f�B�j�p�
n� � f�Bj
n��2�1
2 � C
f
1,2n�H and the fact that
��

p��� �ρH�p��q � �,
we have

E��Pn�� � C
f
21,2n�H . (3.15)

Next, taking into account that
�

�p��n �ρH�p��q converges to zero at the rate nq�2H�2��1 as
n��, we can write

E
�77Qn � S2

77� � C
f
20,2nq�2H�2��1

�q!
��

k���

ρH�k�qE
�77777 1n

n�1�
j�0

f 2�Bj
n� �
� 1

0

f 2�Bs� ds
77777
 

� C
f
20,2nq�2H�2��1

�q!
��

k���

ρH�k�qE
�77777n�1�

j�0

� �j�1�
n

j
n

f 2�Bj
n� � f 2�Bs� ds
77777
 

Using E��f 2�Bj
n� � f 2�Bs��� � C
f
21,2n�H for s � �j�n, �j � 1��n�, we obtain

E��Qn � S2�� � C
f
20,2nq�2H�2��1 � C
f
21,2n�H . (3.16)

Because E�An� � E��Pn�� � E��Qn � S2��, we have from (3.15) and (3.16) that

E �An� � C�
f
21,2n�H � 
f
20,2nq�2H�2��1�
� C
f
21,2nφ�H�.

Next, we estimate the terms E�Bn,i� for i � 1, . . . , q. Taking into account the definition
of un, we obtain

E�Bn,i� � E
�7772un, δ

i�Diun�
5
H�q

777�
� nqH�1
2

n�1�
j�0

E
�777f�Bj
n�	δ�q

j
n, δ
i�Diun�
H�q

777�

� nqH�1
2
n�1�
j�0

E

��777777f�Bj
n�δi�Dj
n � � �Dj
n���������������
i times

�un  q�i δ
�q�i
j
n ��

777777
!" ,

where here we made use of the the notation

Dj
nF � 	DF, δj
n
H. (3.17)
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Applying Hölder’s and Meyer’s inequalities (2.14), we have

E�Bn,i� � nqH�1
2
f
0,2
n�1�
j�0

E

��777777δi�Dj
n � � �Dj
n���������������
i times

�un  q�i δ
�q�i
j
n ��

777777
2!"1
2

� CnqH�1
2
f
0,2
n�1�
j�0







Dj
n � � �Dj
n���������������
i times

�un  q�i δ
�q�i
j
n �








i,2

.

We consider several cases and apply Lemma 4.1 with M � i, a � i, b � q � i, c � q � i,
and p � 2 to control the Sobolev norm 
 � 
i,2.
Case 1. Suppose that H � 1�2, i � q. We have

E�Bn,i� � CnqH�1
2
f
22i,2
n�1�
j�0

n�1
2�H�q�i�

� CnqH�1
2
f
22i,2n1
2�H�q�i�

� C
f
22i,2n�H

� C
f
22q,2nφ�H�.

Case 2. Suppose that H � 1�2, i � q. We have

E�Bn,i� � CnqH�1
2
f
22i,2n � n�1
2�i���H�q�i����q�H�1��1�q�i�

� C
f
22i,2n�i�H�1����2q�H�1��1�

� C
f
22i,2n�H�1���2q�H�1��1�

� C
f
22q,2nφ�H�,

Case 3. Suppose that i � q. Note that a � q, b � 0, and c � 0. Thus,

E�Bn,i� � E�Bn,q� � CnqH�1
2
f
22q,2n � n�q�2H�1�

� C
f
22q,2n�q�H��1�H���1
2

� C
f
22q,2n��qH�1
2���q�1�H��1
2�

� C
f
22q,2nφ�H�.

This completes the proof of (3.13).

Step 4. Next, we will show that Ja,b,d � C
f
2q�1
2q,�2q�2�βE�S�2�2q�α�1
αnφ�H�. Using Hölder’s

inequality with 1�α � 1�β � 1, r :� �b� � �d� � 1 � q � 1, we can write

Ja,b,d � CnqH�1
2
f
0,rβE�Saα�1
α
n�1�
k�0

q�1�
��1

E

�777	δ��
k
n, D

�Gn
H��

777rβ�b�
rβ
�

q�
���1

E

�777	δ���

k
n, D
��S2
H���

777rβ�d��
rβ .
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Let

Kk,� :� E

�777	δ��
k
n, D

�Gn
H��

777rβ�1
rβ
and

Lk,�� :� E

�777	δ���

k
n, D
��S2
H���

777rβ�1
rβ ,
so that

Ja,b,d � CnqH�1
2
f
0,rβE�Saα�1
α
n�1�
k�0

q�1�
��1

Kb�
k,�

q�
���1

L
d��
k,�� . (3.18)

We will now find estimates for Kk,� and Lk,�� . First, applying (2.16) and using the notation
(3.17), we can write

3
δ��
k
n, D

�Gn

6
H��

�
��

i�0

�
�

i

�2

i!
3
δ��
k
n, δ

q�i�D��iun�
6
H��

�
��

i�0

�
�

i

�2

i!δq�i

,10Dk
n � � �Dk
n���������������
��i times

�un  i δ
�i
k
n�


��,

so by Minkowski’s and Meyer’s inequalities (2.14),

Kk,� � C
��

i�0








Dk
n � � �Dk
n���������������
��i times

�un  i δ
�i
k
n�









q�i,rβ

. (3.19)

Let

Mk,�,i :�








Dk
n � � �Dk
n���������������
��i times

�un  i δ
�i
k
n�









q�i,rβ

,

so that (3.19) becomes Kk,� � C
��

i�0 Mk,�,i. We now apply Lemma 4.1 with M � q � i,
a � �� i, b � i, c � i, p � rβ and consider three cases.

Case 1. Suppose that 0 � i � �,H � 1�2. We have

Mk,�,i � C
f
q���2i,rβn
�1
2�H�2��i� � C
f
q���2i,rβn

�1
2�H�2����

� C
f
q���2���1�,rβn
�1
2�H�

� C
f
q���2���1�,rβn
��1
2�H�������2H�1�� (3.20)

Case 2. Suppose that 0 � i � �,H � 1�2. We have

Mk,�,i � C
f
q���2i,rβn
�1
2���i���Hi���q�H�1��1�i�

� C
f
q���2i,rβn
�i�1�H����1
2���q�H�1��1
2���.
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Because
i�1�H� � �� 1�2 � ��1�H� � �� 1�2 � �1�2�H�

and
q�H � 1� � 1�2� � � φ�H� � � � ��,

we have, recalling H � 1�2,
Mk,�,i � C
f
q���2i,rβn

��1
2�H������� � C
f
q���2i,rβn
��1
2�H�������2H�1��. (3.21)

Case 3. Suppose that i � 0. Because i � 0, we have M � q, a � �, b � 0, and c � 0. Thus,

Mk,�,i �Mk,�,0 � C
f
q��,rβn
���2H�1� � C
f
q��,rβn

��1
2�H�������2H�1��. (3.22)

Combining (3.20), (3.21), and (3.22), we have

Kk,� � C
f
q��,rβn
��1
2�H�������2H�1�� � C
f
q��,rβn

���2H�1����1
2���H��1�H���� . (3.23)

Let 1 � �0�H� � q � 1 be chosen such that when � � �0�H�,
�1�2� ��H � �1�H�� � 0

and when � � �0�H�,
�1�2� ��H � �1�H�� � 0.

Observe that

�0�H� � min

&
q � 1,

;
1

2�H � �1�H��
<.

.

When � � �0�H�,
Kk,� � C
f
q��,rβn

���2H�1�

and when � � �0�H�,
Kk,� � C
f
q��,rβn

���2H�1����1
2���H��1�H���.

Thus,
q�1�
��1

Kb�
k,� � C
f
�b�2q�1,rβn

κ1�H�, (3.24)

where

κ1�H� :� ��2H � 1�
q�1�
��1

�b� �
q�1�

���0�H��1

b� ��1�2� ��H � �1�H��� . (3.25)

Next, we will estimate Lk,�� . Let g�x� � f 2�x�. Then, applying Lemma 2.1(a), the
semi-norm norm (1.6), and using Minkowski’s inequality, we can write

Lk,�� � σ2
H,q





� 1

0

g��
���Bs�α��

k,s ds






βr

� Cn����2H�1� 
g
��,βr .
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Noting that for k � 1, g�k��x� � �k
z�1 Czf

�z��x�f �k�z��x�, for some combinatoric numbers
Cz, we have

Lk,�� � Cn����2H�1�
f
2��,2βr. (3.26)

Taking the product over �� and applying (3.26), we obtain

q�
���1

L
d��
k,�� � C
f
2�d�q,2βrn

κ2�H�, (3.27)

where

κ2�H� :� ��2H � 1�
q�

���1

��d�� . (3.28)

Applying (3.24) and (3.27), we have, recalling (3.18) and replacing the summation in k
with the factor n,

Ja,b,d � CnqH�1
2
f
1��b��2�d�
2q,2rβ E�Saα�1
αn � nκ1�H��κ2�H�

� C
f
1��b��2�d�
2q,2rβ E�Saα�1
αnqH� 1

2
�κ1�H��κ2�H�

� C
f
1��b��2�d�
2q,2rβ E�Saα�1
αnκ�H�,

(3.29)

where

κ�H� :� qH � 1

2
� κ1�H� � κ2�H�.

Recalling (3.25), (3.28), and (3.11), we have

κ�H� � qH � 1

2
� �2H � 1�

#
q�1�
��1

�b� �
q�

���1

��d��

�
�

q�1�
���0�H��1

b� ��1�2� ��H � �1�H���

� �q�H � �1�H�� � 1

2
�

q�1�
���0�H��1

b� ��1�2� ��H � �1�H��� . (3.30)

We will now show that
κ�H� � φ�H�. (3.31)

We consider three cases depending on the value of
�q�1

���0�H��1 b�.

Case 1. Suppose that
�q�1

���0�H��1 b� � 0. Then

κ�H� � ��H � �1�H��q � 1

2
�
�
�qH � 1

2

�
�
�
q�H � 1� � 1

2

�
� φ�H�.

Case 2. Suppose that
�q�1

���0�H��1 b� � 1. We conclude that all of b�0�H��1, � � � , bq�1 are zero
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except for one, say bm � 1, �0�H� � 1 � m � q � 1. Because m � q � 1, we have

κ�H� � ��H � �1�H��q � 1

2
�

q�1�
���0�H��1

b� ��1�2� ��H � �1�H���

� �q�H � �1�H�� � 1

2
�1� bm� �mbm�H � �1�H��

� �m� q��H � �1�H��
� ��H � �1�H�� � ��H� � �H � 1� � φ�H�.

Case 3. Suppose that
�q�1

���0�H��1 b� � 2. We have

κ�H� � �q�H � �1�H�� � 1

2
�

q�1�
���0�H��1

b� ��1�2� ��H � �1�H���

� �q�H � �1�H�� � 1

2

,01�
q�1�

���0�H��1

b�


�� �H � �1�H��
q�1�

���0�H��1

�b�

� �q�H � �1�H�� � 1

2
� �H � �1�H��q � �1

2
� φ�H�,

completing the proof of (3.31). Thus, we have, recalling (3.29),

Ja,b,d � C
f
1��b��2�d�
2q,2rβ E�Saα�1
αnφ�H�

� C
f
2q�1
2q,�2q�2�βE�S�2�2q�α�1
αnφ�H�. (3.32)

Combining (3.5), (3.12), (3.13), and (3.32), the proof of Theorem 1.1 is complete.

Remark. In order to understand the phase transition in the rate of convergence when
H � 1�2, let us discuss a particular example. Suppose that q � 3 and f�x� � x and
H � 1�2. Then

Fn � n3H�1
2
n�1�
k�0

Bk
nI3�δ�3
k
n�.

The random variable Fn can be decomposed as follows: Fn � Gn �Rn, where

Gn � n3H�1
2
n�1�
k�0

I4

�
��0,k
n�  δ�3

k
n

:
and

Rn � 3n3H�1
2
n�1�
k�0

	��0,k
n�, δk
n
HI2�δ�2
k
n�.

Let us find out the rate of convergence in L2 of the residual term Rn. We can write

E�R2
n� �

9

4
n�2H�1

n�1�
j,k�1

��k � 1�2H � k2H � 1���j � 1�2H � j2H � 1�ρ2H�j � k�.
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Then, if H � 3
4
, the series

��
h�1 ρ

2
H�h� is divergent and the expectation E�R2

n� behaves, as
n6H�5 when n � �. On the other hand, if H � 3

4
, the series

��
h�1 ρ

2
H�h� is convergent

and E�R2
n� behaves, as n2H�2 when n � �. We see that the phase transition occurs at

H � 3
4
. For a general q � 3, and assuming H � 1�2, the phase transition occurs for

values of q and H such that the series
��

h�1 �ρq�1
H �h�� changes its convergence, that is, when

�2H � 2��q � 1� � �1. One can show that the expectation E�G2
n� converges to a constant,

and the rate of convergence is worse than that of the residual term.

4 Appendix

Here we prove a result we need in the proof of Theorem 1.1. Recall the notation Dk
nF �
	DF, δk
n
H where δk
n � ��k
n,�k�1�
n�.

Lemma 4.1. For any integers �,M, a, b, c such that M � 0, 0 � c � q, 0 � a � q � c,
0 � b � c and any real number p � 1,there exists a constant C depending on q, M , p, and
the Hurst parameter H such that





Dk
n � � �Dk
n���������������

a times

�
un  b δ

�c
k
n

:






M,p

� C
f
M�a,pn
κ�a,b,c,H�,

where

κ�a, b, c,H� :�

(+*+)
�1�2�H�2a� c� b � 0, H � 1�2
�1�2� a�H�c� b� � ��Hb� � �q�H � 1� � 1� b� b � 0, H � 1�2
�a�2H � 1� �Hc b � 0

.

Proof. For 0 � m �M , let

Am :� E

���






Dm

,0Dk
n � � �Dk
n���������������
a times

�
un  b δ

�c
k
n

:
�






p

H��m�q�2b�c�

!$"
1
p

� nqH�1
2E

��




n�1�
j�0

f �m�a��Bj
n�αa
k,j
nβ

b
j,kδ

��c�b�
k
n δ

��q�b�
j
n  ε�m

j
n







p

H��m�q�2b�c�

!"1
p

.

Taking the norm in Hm�q�2b�c, we have

Am � CnqH�1
2
f
m�a,p

'
n�1�
j,j��0

�αk,j
n�a�αk,j�
n�a�βj,k�b�βj�,k�bn�2H�c�b��βj,j� �q�b

/1
2

.

We consider three different cases:
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Case 1. Suppose that 0 � b � q. Applying Lemma 2.4 to
�n�1

j,j��0 �βj,k�b�βj�,k�b�βj,j� �q�b and
Lemma 2.1(a) to each of the α terms, we have

Am � CnqH�1
2
f
m�a,p

�
n�2a�2H�1�n�2H�c�b�n��2H�q�b����2�2�q�b��

91
2
� CnqH�1
2
f
m�a,pn

�a�2H�1�n�H�c�b�n��H�q�b����1��q�b��.

When H � 1�2, q � b � 2 � 1��1�H�, so �H�q � b� � 1� �q � b�, and we have

Am � CnqH�1
2
f
m�a,pn
�H�q�2a�c�.

When H � 1�2,
Am � CnqH�1
2
f
m�a,pn

�an�H�c�b�n��H�q�b����1��q�b��

� CnqH�1
2
f
m�a,pn
�a�H�c�b�n��H�q�b����1��q�b��

� C
f
m�a,pn
�a�1
2�H�c�b�n��Hb���q�H�1��1�b�.

Case 2. Suppose that b � q. In this case, c � q and a � 0 and, applying Lemma 2.2(a),

Am � CnqH�1
2
f
m,p

�
n�1�
j,j��0

�βj,k�q�βj�,k�q
 1
2

� CnqH�1
2
f
m,p

n�1�
j�0

�βj,k�q

� C
f
m,pn
qH�1
2n��2qH���1�2q�.

Note that �2qH � ��2qH� � �1 � 2q�. Thus, this estimate coincides with the estimate in
case 1 when b � c � q and a � 0.

Case 3. Suppose that b � 0. Applying Lemma 2.2(b) to
�n�1

j,j��0 �βj,j� �q and Lemma 2.1(a) to
each of the α terms,

Am � CnqH�1
2
f
m�a,pn
�a�2H�1�n�Hcn�1
2�qH���1�q�

� CnqH�1
2
f
m�a,pn
�a�2H�1�n�Hcn1
2�qH

� C
f
m�a,pn
�a�2H�1��Hc.

This concludes the proof of the lemma.
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