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Abstract
In this paper we obtain a rate of convergence in the central limit theorem for high
order weighted Hermite variations of the fractional Brownian motion. The proof is
based on the techniques of Malliavin calculus and the quantitative stable limit theo-
rems proved by Nourdin, Nualart and Peccati in [15].
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1 Introduction

The fractional Brownian motion B = {B;,t > 0} is characterized by being a zero-mean
Gaussian self-similar process with stationary increments and variance F(B?) = t*#. The self-
similarity index H € (0, 1) is called the Hurst parameter. The fractional Brownian motion
was first introduced by Kolmogorov in 1940. However, the landmark paper by Mandelbrot
and Van Ness [9] gave fractional Brownian motion its name and inspired much of the modern
literature on the subject.

The study of single path behavior of stochastic processes often uses their power variations.
In particular, the fractional Brownian motion is known to have a 1/H-variation on any finite
time interval equal to the length of the interval multiplied by the constant rz = E[|ZY|],
where Z is a N(0, 1) random variable. That means, if we consider the uniform partition of the
interval [0, 1] into n > 1 intervals and for 0 < k < n —1 we denote ABy/, = B(iy1)/n — Bi/n,
we have

n—aco

n—1
lim Z |ABk/n|1/H — K,
k=0
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where the convergence holds almost surely and in LP(Q2) for any p = 2. A central limit
theorem associated with this approximation can be obtained by expanding the function |x|"/*
into Hermite polynomials. In particular, as a consequence of the Breuer-Major theorem [5],
for each integer ¢ > 2 such that H < 1 — o=, we have the convergence in law

n—1
) 1 c
tiny 3] <0 5B S N (0.0

where H, is the ¢gth Hermite polynomial and

ote = a' Y, pu (k)" (1.1)
keZ
Here 1
pu(k) = §(|k3+1\2H+|k:—1|2H—2\k|2H), keZ (1.2)

denotes the covariance of the stationary sequence {By.1 — By, k = 0}.

There has been intensive research on the asymptotic behavior of the weighted Hermite
variations of the fractional Brownian motion B, defined by

F, 2 F(Biyn) Hy(n" ABy), (1.3)

where f is a given function. The analysis of the asymptotic behavior of these quantities
is motivated, for instance, by the study of the exact rates of convergence of some approxi-
mation schemes of scalar stochastic differential equations driven by the fractional Brownian
motion (see, for instance, [0, [I1]), in addition to the traditional applications of g-variations
to parameter estimation problems. Additionally, as discovered in [12], new phenomena arise
in the presence of weights. These phenomena were more fully studied in [16] and [18].

It was shown by Nourdin, Nualart, and Tudor in [I6] that, when 2%1 <H<1- 2—1(1, the

sequence F), defined in ((1.3)) converges in law to a mixture of Gaussian distributions. More
precisely, the following stable convergence holds as n tends to infinity

(B,F,) 5 (B o—HqJ £(B dW) (1.4)

where W = {W,,t € [0, 1]} is a standard Brownian motion independent of B, and oy , is given
by . For H outside the interval ( 1——) different phenomena occur. Spemﬁcally, it was

shown in [I4] that when 0 < H < &, n?#=1/2F, converges in L?() ¢ - So
and when 1 — 2iq < H < 1, na1- H) 12F, converges in L?*(Q) to So dZ (@ Where Zq is
the Hermite process. In the critical case H = 1 , there is convergence in law to a linear

combination of the H < iq and 2 3 < H<1- Z; cases and in the critical case H =1 — %

there is convergence in law with an additional logarithmic factor (see [14]).
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2q?
was shown in [I6]. A natural question is to sqtudy the rate of the convergence in law of the
sequence [, to op, Sé f(Bs)dWy stated in . When f = 1, Stein’s method, combined
with Malliavin calculus, allows one to derive upper bounds for the rate of convergence of the
total variation distance (see the monograph by Nourdin and Peccati [17] and the references
therein). The series of papers [3, 12, 14, 15, 16, I8 19] have greatly contributed to the
development of the Mallavin-stein approach, which has become a powerful and general tool to
study limit theorems for functionals of Gaussian processes. In the case of weighted variations,
this methodology is no longer applicable. In [15], Noudin, Nualart, and Peccati developed
a new approach based on the interpolation method that provides quantitative rates for the
convergence of multiple Skorohod integrals to a mixture of Gaussian laws. A basic result in
this direction is Proposition below. In [I5], the authors apply this approach to deduce a
rate of convergence for F), in the case ¢ = 2 and % < H < %.

We recall the assumption i < H <1 — 5, under which convergence of the sequence F;,

The main purpose of this paper is to apply the technique introduced in [15] to weighted
Hermite variations of any order ¢ > 2, extending the results proved for weighted quadratic
variations. We will show that the rate of convergence is bounded, up to a constant, by n®)
where the exponent ¢(H) is defined by

n-(o-4-2)r-

(—H) v (—qH + 3) if H<1t
(H-1)v(g(H-1)+1) if H>41

?

qg—1
— T) . (1.5)
That is,
- |

Notice that ¢(H) = 0 when H is equal to one of the end points of the interval (%,1 = %)

and it is symmetric with respect to the middle point % Moreover, there are unexpected

transition phases when H = Qqu and when H =1 — _2q172.

In order to state our main result, we need some notation and definitions. We say that a

function f : R — R has moderate growth if there exist positive constants A, B, and a < 2
such that for all z € R, |f(x)|] < Aexp(B|z|%).

Given a measurable function f : R — R, an integer N > 0 and a real number p > 1, we

define the semi-norm
N

Np =D Sup |F Ol o) (1.6)

o 0<t<

| /]

where v; is the normal distribution N(0,¢).

We can now state the main result of this paper. This result extends the work done in
[16] that proves stable convergence for any ¢, and the work done in [I5] that provides a
quantitative bound in the ¢ = 2 case.

Theorem 1.1. Let g€ N, g = 2. Assume that the Hurst index H of the fractional Brownian
motion B belongs to (%}, 1—- 2iq> . Consider a function f: R — R of class C*® such that f



and its first 2q deriwatives have moderate growth. Suppose in addition that

(Ll fQ(BS)ds>(1_q)a] <

for some a > 1. Consider the sequence of random variables F,, defined by (1.3]). Set S =

\/J%JJ S(l) f2(Bs) ds, where o, is given in . Then, for any function ¢ : R — R of class
C%+ 1 with ™|y < o for each k =0,...,2q+ 1, we have

Elo(F)] = Elp(Sn]l < Cupg sup [0 on™), (1.7)

1<i<2q+1

where 1 is a standard normal variable independent of B. The constant Cpy s4 has the form

Ch.tq = Cugmax {Hf|\2q,2a E[s¢20) ]l/aHf||§Z+21q+2)5}

and 1/a+1/5 = 1.

The paper is organized as follows. Section 2 contains some preliminaries on the fractional
Brownian motion and its associated Malliavin calculus. The basic rate of convergence result
for multiple Skorohod integrals, Proposition [2.7] is also stated in this section. Section 3 is
devoted to the proof of Theorem The proof intensively uses the techniques of Malliavin
calculus and detailed estimates for the sums of powers of the covariance function py obtained
in Section 2 (see Lemma [2.4). We have included an example at the end of Section 3 that
explains why the phase of transition in the rate of convergence occurs. A technical lemma
is proved in the Appendix.

2 Preliminaries

In this section we first present some definitions and basic results on the factional Brownian
motion and the associated Malliavin calculus. The reader is referred to the monographs
[20] and [I7] for a detailed account on these topics. We also recall an upper bound for the
approximation of multiple Skorohod integrals by a mixture of Gaussian laws that will play
a fundamental role in the proof of the main result.

2.1 Fractional Brownian motion

Consider a fractional Brownian motion B = {By,t € [0, 1]} with Hurst parameter H € (0, 1)
defined in a probability space (2, F, P). That means, B is a zero mean Gaussian process
with covariance

1
E(B,B,) = 5(t”f + 2 |t —s|?H), s,te0,1].

Let &€ be the space of step functions on [0, 1] and consider the Hilbert space defined as the
closure of £ under the inner product (Lo, Ljo,s))s = E(B:Bs) for s,t € [0,1]. Then the
mapping ljpy — B; can be extended to a linear isometry between §) and the Gaussian space

4



generated by B. We denote by B(h) the image of h € $ by this isometry. With this notation,
{B(h),h € $} is an isonormal Gaussian process associated with the Hilbert space $. We
refer the reader to the references [13] 20] for a detailed study of this process.

For any integer ¢ = 1, we denote by %7 and $H, respectively, the gth tensor product
and the gth symmetric tensor product of §).

From now on, we assume that F is the P-completion of the o-field generated by B. For
every integer ¢ > 1, we let H, be the gth Wiener chaos of B, that is, the closed linear
subspace of L*(Q2) generated by the random variables {Hy(B(h)),h € $,|h[; = 1}, where
H, is the gth Hermite polynomial defined by

q
() = (-1 (o)
We denote by Hy the space of constant random variables. For any ¢ > 1, the mapping
I,(h®1) = H,(B(h)) provides a linear isometry between $®? (equipped with the modified
norm /¢! ||| ge,) and H, (equipped with the L*(€2) norm). For ¢ = 0, we set by convention
Ho = R and [ equal to the identity map.

It is well-known (Wiener chaos expansion) that L?(€2) can be decomposed into the infinite
orthogonal sum of the spaces H,, that is: any square integrable random variable F' € L?()
admits the following chaotic expansion:

F = I(f), (2.1)

where fy = E[F], and the f, € %7, ¢ > 1, are uniquely determined by F.
Let {ex, k = 1} be a complete orthonormal system in §). Given f € H®P, g € H7 and
re{0,...,p A q}, the rth contraction of f and g is the element of $®P+4=2") defined by

0

[ 9= Y (fren®...0c 50 0,00 .06, yor. (2:2)
3 1

T1yeeey ip=

Notice that f ®, ¢ is not necessarily symmetric. We denote its symmetrization by f&®,g €
HO@+a=2r)  Moreover, f Qo g = f ® g equals the tensor product of f and ¢ while, for p = ¢,
f®,9 = {f g)sea. Contraction operators appear in the following formula for products of
multiple Wiener-It6 integrals (see, for instance, [20] Proposition 1.1.3) :

L010) = 3 () (1) o 2 7800), 23

r=0 r
for any f € HP and g € HOU
We consider the uniform partition of the interval [0, 1], and, forn > land k = 0,1,... ,n—
L, let Og/m = L/m,(k+1)/n) a0d €xpn = Ljorm). We will make use of the notation
it = Ok, Lo (2.4)
and
/Bj,k = <5j/n7 5k/n>ﬁ (2'5)
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for any t € [0,1] and j,k = 1,...,n — 1. Notice that

Birn=n""pu(j—k)

where pg has been defined in (1.2)).
For the proof of Theorem we need several technical estimates on the quantities oy,
and ;. We first reproduce a useful technical lemma from [15].

Lemma 2.1. Let 0 < H <1 andn = 1. We have, for some constant C'y that depends on
H,

(a) lag: <n CH) for any t € [0,1] and k = 0, . —1.

—1
(b) SUP¢e(0,1] ZZ:O lagt| < Cr.
The next lemma estimates the sum of powers of the terms ;.

Lemma 2.2.

(a) Fora>=1 and 0 <i<n—1 and some constant Cy that depends on H,
n—1
Z 854" < Cpyn1—20)v(=2aH)
j=0

(b) For a =1 and for some constant Cy that depends on H,

Z ‘6jk| C’Hn2 2a)v(1-2aH) (2.6)

7,k=0

Proof. Using (1.2)), we have

n—1
1Bl
j=0

Taking into account that |pg(j — ¢)|* converges to zero as j tends to infinity at the rate
§92H=2) when a(2H —2) < —1 the above sum is bounded by a constant. When a(2H —2) >
—1, it diverges at the rate n®2#=2+1_ This gives the estimate in part (a). For (b), we make
the change of indices (j,k) — (j,h), where h = j — k, we estimate the sum in j by n and
apply (a) for the sum in h. O

n—1
= Y o (G — )
7=0

We recall a version for infinite sums of the rank-one Brascamp-Lieb inequality that will
be used to estimate sums of products of the terms 3;;. The statement is reproduced from
[21], Proposition 2.4], which is taken from the works [I} 2] and [4]:

Proposition 2.3 (Brascamp-Lieb inequality). Let 2 < M < N be fized integers. Consider
nonnegative measurable functions f; : R > Ry, 1 < j < N, and fiz nonzero vectors vy € RM.
Fiz positive numbers p;, 1 < j < N, verifying the following conditions:

6



(i) 25\;1 pj =M.
(it) For any subset I < {1,..., N}, we have 3 ;; p; < dim(Span{vj, j € I}).
Then, there ezists a finite constant C, depending on N, M and the p;’s such that
N N Pj
Y llhHk-vy)<cC (2 fj(/f)l/pj> : (2.7)
kezZM j=1 j=1 \keZ
We will use the Brascamp-Lieb inequality to prove the following lemma.

Lemma 2.4. Fora>1,b>1,¢=1,...,n—1, and for some constant Cy,

n—1
Z |ﬁj€‘a|ﬁj’ E|a|ﬁj p |b < CHn(72H(2a+b))v(272(2a+b))'

3,4’ =0
Proof. We have
n—1 n—1
a a — a . AN . -y 1D
D 1Bl By el 18" = nPHCE N o (€= f)pu (€= G oG = ). (2.8)
3:3'=0 4.4'=0

Making the substitutions k; = ¢ — j and ko = £ — j', we can write the above sum as

D Apu (k) pu (k)| o (kr — ko). (2.9)

ki ka=—n+1
Let N =3, M =2,
fi@) = f2(x) = |pu ()| Li—n<e<n
and
f3(x) = 1o (@) " Lijzj<n-13-
Consider the vectors vi = (1,0), vo = (0,1), and v3 = (1,—1). Applying Proposition [2.3]
we have

¢
Do lpu (k) pu (k)| o (ky — k2)|”

k1 ko =f—n+1

<C(Z}z}”l(/-ﬂ)l/’Jl) <Zfz(k‘)”p2> (Zf:s(k)l/m)
=C< Z|pH(k)“/”1> ( Z|pH(k)a/pz> |

n—
k=0—n+1 k=0—n+1

—(n—

p3

pi ()|
1)

The choices p; = ps = 2a/(2a + b) and p3 = 2b/(2a + b) satisfy the conditions of Proposition
2.3] Note that p1 + ps + p3s = 2 and a/p1 = a/ps = b/ps = (2a + b)/2. In this way, we can



write

l
Z s (k) i (k)| prr (B — ko) < C© Z |par (k) |2 +0)/2

k1,ko=0—n+1 |k“<2n
< CnQ[(2H72)(2a+b)/2+1)+]

)

which implies the desired estimate. O

2.2 Malliavin calculus

Let us now introduce some elements of the Malliavin calculus with respect to the fractional
Brownian motion B. Let S be the set of all smooth and cylindrical random variables of the
form

F:g(B(le):""B(an))’ (2'10)

where n > 1, g : R” — R is an infinitely differentiable function with compact support, and
¢; € 9. The derivative of F' with respect to B is the element of L?*(£2;$)) defined as

DF =3 jj (B(61),.... B(6,)) 6.

By iteration, one can define the gth derivative DYF for every integer ¢ = 2, with DF €
L2(2; 9®9). For integers ¢ > 1 and real numbers p > 1, the Sobolev space D9? is defined as
the closure of S with respect to the norm | - ||per, defined by the relation

q
|Flgan = ENEP]+ 3 E(ID'Flie:) -

=1

The derivative operator D verifies the following chain rule. If ¢ : R® — R is continuously
differentiable with bounded partial derivatives and if F' = (Fy, ..., F},) is a vector of elements
of DY2 then p(F) € D? and

Dp(F) =Y 2“” (F)DF,.

We denote by ¢ the adjoint of the operator D, also called the divergence operator or
Skorohod integral (see, e.g., [20, Section 1.3.2] for an explanation of this terminology). A
random element u € L?*(£2; $)) belongs to the domain of §, denoted by Domd, if and only if
it verifies

|[E((DF,u)ys)| < curn/E(F?)

for any I € D'2, where ¢, is a constant depending only on u. If v € Domd, then the random
variable §(u) is defined by the duality relationship (called ‘integration by parts formula’):

E(F§(u)) = E((DF,u)s), (2.11)



which holds for every F' € DY?. Formula (2.11)) extends to the multiple Skorohod integral
09, and we have

E(Fé'(u))=F (<DqF, u>ﬁ®q) , (2.12)
for any element u in the domain of §¢ and any random variable ' € D%2. Moreover, §9(h) =
I,(h) for any h e H1.

The following statement will be used in the paper, and is proved in [14].

Lemma 2.5. Let ¢ = 1 be an integer. Suppose that F € D42, and let u be a symmetric
element in Domd?. Assume that, for any 0 <r+ j <q, (D"F,§(u))geo, € L*(Q; H®"77).
Then, for anyr =0,...,q— 1, (D"F, u>ﬁ®r belongs to the domain of 09" and we have

F§(u Zi: ( )5q "(D"F,u)ger) (2.13)

with the convention that §°(v) = v, ve L*(Q), and D°F = F, F € L*(Q).

For any Hilbert space V, we denote by D*P(V) the corresponding Sobolev space of V-
valued random variables (see [20, page 31]). The operator §? is continuous from D ($%9)
to D97 for any p > 1 and any integers k > ¢ > 1, that is, we have

169 (@)t < chp lulpro(sen - (2.14)

for all u € DFP(H®7), and for some constant ¢y, > 0. These estimates are consequences of
Meyer inequalities (see [20, Proposition 1.5.7]). In particular, these estimates imply that
D?%2($H%7) = Domd? for any integer q > 1.

The following commutation relationship between the Malliavin derivative and the Skoro-
hod integral (see [20, Proposition 1.3.2]) is also useful:

Dé(u) = u + §(Du), (2.15)

for any u € D??($)). By induction we can show the following formula for any symmetric
element v in DI+F2(H)

D¢ (u) = jﬁf <f) <‘Z >z‘!5ji(D“u). (2.16)

=0

In particular, when j = k, making the substitution ¢ — k — i, we obtain

DF6*(u) = (’:) (k —i)16' (D). (2.17)

i=0
We will also use the following formula for the multiple Skorohod integral.

Lemma 2.6. If ¢ is a q times continuously differentiable function on R such that 09 has
moderate growth and g,h € $, then

q

MBI = 3 (1) BN DT (B )1

r=0
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Proof. We will prove this formula by induction. By linearity, it suffices to assume that
|h|s = 1. When g = 1, this formula reduces to

3(p(B(g))h) = ¢(B(9))d(h) — ' (B(9)){h; 9,

which is a particular case of (2.13]) with ¢ = 1. Suppose it holds for ¢q. Using the recurrence
formula H,.(z) = xH,(z) — nH,_1(x) for Hermite polynomials and the relation between

Hermite polynomials and multiple stochastic integrals, we can write
I,(h®?) = Hy(d(h))
= 6(h)Hg1(0(h)) — (¢ — 1) Hg—2(0(h)) (2.18)
= 0(M g1 (h*™) = (g = )12 (h®*72).

Applying the inductive hypothesis, we have

SR (B)HET) = 667 (p(Blg)hEh)
= 32 (18 (U BNA 10 ) (-1
= 3 (1) 0B 0 B o
— (DL (B(g))h, g 5 (hE )], Iy (219

Computing the derivative in the last term, we have

(D[(B(9))<h, )" Ly (BT 1)), By
= ¢"(B(9)h, 95 g (B®17) (2.20)
+ o (B(9)h, 95(a = 1) Lgmrma (B,

Substituting ([2.20)) into (2.19) and using (2.13), yields
( I B

=" (B(9))h, 90 Iy (R
— " (B(9))<h, 9)5(q = 1) Ig—ra (R¥T 7 1))

(B
- Z (i) (_1)7’90(T)(B(9))<h, g>g[q7r+1(h®q7r+1)
q

5q+1(¢( h®q+1

ﬁMQ

+ (7’ - 1> (_1)T90(T)(B(g))<h, g>g]q_r+1(h®Q—r+1).
)

Taking into account that (?«) + (r = (qjl), we finally obtain

g+1
Q+1 r (r
o) = X () e B b e (1)
r=0
and the induction is complete. 0

10



2.3 Rate of convergence to a mixture of Gaussian laws

In this subsection we state Theorem 5.2 from [I5] here, that will play a basic role in the
proof of our main theorem.

Proposition 2.7. Suppose that u € D*4(H9) is symmetric. Let F = §%(u). Let S €
D% and let n ~ N(0,1) indicate a standard Gaussian random variable, independent of the
fractional Brownian motion B. Assume that o : R — R is C?*1 with |||, < oo for any
k=0,...,2¢+ 1. Then

|E[o(F)] = Elp(Sn)]| < %s@”oo E[Ku, D'F)ge. — 5%

[1v']/2]
b +2[b|—2;
(bb)eQ  j=0 @

< E [SW‘*% ‘<U> (DF)®b1 Q--® (qulF)®bq71 ® (DS)®b'1 R R (DqS)®bfz>

|

where Q is the set of all pairs of vectors b = (b1, by,...by—1) and V' = (b}, ...,b,) of nonneg-
ative integers satisfying the constraints by + 2by + -+ + (g — 1)bg_y + b} + 20 + - - - gb}, = q.
The constants cqpy ;j are given by

H®q

1 , e |b']! q!
Capyg = o BUBL2 + 172, [W]/2 + 1)H (b> S =2 T2, iteic;!”

where ¢ = b+ b and B denotes the Beta function.

3 Proof of Theorem 1.1

Along the proof C' will denote a generic constant that might depend on ¢ and H. Before
starting the proof let us make some remarks on the exponent ¢(H) defined in . Notice
that H < 1/(2¢ — 2) if and only if —H < —qH + % and H > 1 1/(2q — 2) if and only if
1-H<q(H—-1)+ % As a consequence, we have

—qH + 3 1/2g < H < 1/(2q - 2),
_H 1/(2¢—2) < H <1/2,
s~ /2-2) < H<1/
H-1 1/2<H<1-1/(2¢—2),
gH-1)+43 1-1/(2¢-2)<H<1-1/2q.
This implies that
1 1
S(H) —maX{H,Hl,qH+§,q(H1)+§}. (3.1)
The proof will be done in several steps. Consider the element u € D*® := n,.,;D?*®?
given by
n—1
Uy = nQHfl/Q Z f(Bk‘/n)(;](?/zla
k=0

11



where we recall that 0y, = Ljg/n,k+1)m)- Note first that the random variable F), does not

coincide with §9(u,), except in the case H = 1/2. For this reason, we define G,, = 0%(u,)
and first estimate the difference F,, — G,,.

Stepl.  We claim that
E[|F, — Gal] < C|lf]ag-1,20°"". (3.2)
To show (3.2), we apply Lemma 2.6 and obtain

6% (uy,) = ndH=1/2 Z §U(f Bk/n k/n)

= paH-1/2 Z Z < ) (Bk/n)ak k:/n q- 7”(61?/31 ")

k=0 r=0

Note that the » = 0 term corresponds to F},, so

n—1 gq
F, -G, = ndH=1/2 Z Z(—l)rﬂ( )f(r (Bk/n)O‘k k/n q- r((sl(?/% ")

k=0r=1
Let

n—1
Kn,r _ nQH—l/Z Z(l)r+1( )f(T (Bk/n)a/k k/n . r(él(?/zl r)
k=0

so that F,, — G, = X7 K,
Applying the product formula of multiple stochastic integrals (2.3), we can write

n—1

2
q T T T r r
E[K],] =n*"1 ) <T> E[f( Y(Bin) I (B Ly (850 V(O )] O i /n ks ko

7,k=0

SRR

x B [f D(Bjn) £ (Brjm) g -ar—2s(050 "~ S®5k®/3frfs)] 1 i Ol o (3.3)

Using the duality formula between multiple stochastic integrals and the derivative operator

(2.12)), we obtain
B OB [ (Bugn) g 2058 @050 )|

— B [(D2 2 (10 (By) [0 (Byga), 0580 T ysren |

Finally, applying the Leibniz rule, we can write

[f(r( )f )(Bk/n)IQq oy 25(6®q r— s®5®q r— 5):|

j/n k/n
2q—2r—2s
2q — 2r — 2s
_ Z ( q ) E [f(r’-i-m) (Bj7n)f(2q—7"—25—m) (Bk:,n)]
m=0 m
®Xm ®(2g—r—25—m) r—8 r—s§
< [0,5/n] ® 1 [0 k:?n ) 5]®/(711 ®5k®/31 >ﬁ®2q72r725' (34)

12



Substituting (3.4) into (3.3)), yields
n—1 qg—r

E[K?L,T] < CHfH%qflﬂanH_l Z Z |B]7k’

7,k=05=0

| T

*la il "tk

2q—2r—2s

% 2 2 |ajvj/”|i‘aj7k/n|qirisii|ak‘,j/n|m7i|ak;,k‘/n|qirisim+i

m=0 0<i<m
iv(m—i)<g—r—s

n—1 g—r

= C’HfH%quZanH_l Z Z |Bj.k

7,k=05=0

s

2q—2r—2s

% Z Z|04j,j/n|i+T|Oéj,k/n\q7r*s*i|ak7j/n|m*i\akyk/n|qfsfm+il

m=0 0<i<m
iv(m—i)<g—r—s

Then, decomposing the summation in s into the cases s = 0 and s > 1, we obtain

BIK; 1 < Clf 34—y 2n*"

n—1 2q—2r

X Z Z Z |0(j7j/n|i+7“|aj7k/n‘Q*T*Z’|ak7j/n‘m7i|ak7k/n‘q,m+i

Jj,k=0 m=0 0<i<m
iv(m—i)<g—r

n-1 q-r 2¢—2r—2s
* Z Z |Bj’k|s Z Z |Oéjaj/”‘HT|O‘J’J€/n|q*Tisil|Oélc,j/n|miz|04lc,/€/n|qisjmJrz
j,k=0s=1 m=0 0<i<m

iv(m—i)<q—r—s

In the s = 0 case, we replace the summation of j and k with a factor of n? and estimate the
o’s with Lemma [2.6[a). For s > 1, we apply Lemma [2.2(b) and bound each a with Lemma

2.6(a), so that

q—r
E[thr] < CHf||§q71,2n2qH71 <n2q(2H/\l)+2 + Z n(l25H)v(22s)n(2HA1)(2q23)> .

s=1

The s = 0 term yields the contribution n2d#~1p=20CHAN+2 — 4 =20(HA(I=H))+*1  Note that
—(H A (1—H))q+ 3 < ¢(H). Let us consider the terms

As e C”ng . 2TLQquln(lstH)\/(272s)n7(2H/\1)(2q72s)
: q—1, ’
s=1,2,...,q —r. We consider three different cases:

Case 1. Suppose that 1 —2sH < 2 — 2s. In this case, H > 1 —1/(2s) > 1/2 and s <
1/(2(1 — H)). Therefore, we obtain

Ay = Ol Iy g™~ 0272 = O f[3, -y gn 2057,

13



Case 2. Suppose that 1 —2sH > 2 —2s and H > 1/2. In this case, 1/2 < H < 1—-1/(2s) <
1-1/(2(¢—1)) and 1/(2(H — 1)) < s < g — 1. So, we can write

As = CHfHzq_172n2qH_1n1—2q+25(1_H)
< O|f|3, 1 gn*aH—tnt—2a+2a=D0-1)
< CIfIZ, 1?2,
Case 3. Suppose that 1 —2sH > 2 — 2s and H < 1/2. We have
A = C”fH§q7172n2qH*1n2sH—4qH+1
< C”fHgqf172n2qH71n2(q*1)H*4qH+1

= C”f”%qu”_QH-

Combining the bound for s = 0 and the bounds for Ay, applying Cauchy-Schwarz’s
inequality and taking into account the definition of ¢p(H) and ( m we obtain

El|F, — G,[] < 2 [ K] Z A/ Kgr Cl fl2g— 2” (3.5)

r=1
thus proving (i3.2)).
Step 2. Now that we have a bound for E[|F, — G,|], we will establish a bound for
|E[¢(G,)] — El¢(Sn)]| using Proposition First, however, we need a result to convert
derivatives of S into derivatives of S%. By the Faa di Bruno formula (see [10] Theorem 2.1),
with h(x) = y/z, we have

DkS == Dk V S2 - Z le,mg ..... mkh(mlererk)(‘SQ) ®§:1 (Dj52)®mj
m1+2ma+---+kmg=n
= ) otz oy S 2T @Fy (DISHE™, (3.6
mi+2ma+---+kmy==k
where the m; represent the powers of Dis?, Crng ooy = m!llmlk—m is a combinatorial
constant that depends on mq,...,m; and
mi+-+mp—1 1
Orlnl ,,,,, me le ----- my 1_[ <§ - E) .

=0
Applying this result to each derivative of S in Proposition and combining the terms, we
obtain

Elp(Gn)] = Elp(Sn)]] < lllw”llooE [[(u, DIGypg00 — S]]

LIv']/2]
+C Z Z ||¢ (1+|b]+2|b'|—27) ”
(bp)eQ j=0

B §2W1-2-250_, lmalv)

], (3.7)

q—1 q
tn, QDGR x @ ®(Df’52)®<b’lmw+---+b;qu/>>
H®q

l=1 =1
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where Q is the set of all vectors b = (b1, ...,b,-1) and 0" = (b}, ..., b)) of nonnegative integers
such that by +2by + - -+ (g — 1)bg—1 + b + 205 + - - - + gb), = q. Also, we will use the notation
my = (Myj)j=1...q» |Mk| = Mg1 + - - - + my,, where the my, satisty

m;1 + Qmig + -4 qmiq = 1. (38)

foreachi =1,...,q. We include the combinatorial coefficient from the Faa di Bruno formula
in the constant C.
Let dp = bymyp + - - - bymgp. Using (3.8)), we obtain

q
di+2ds+ -+ qdg = Y. COmup + -+ Bimge) = by + 265 + -+ qbl.
=1

Therefore,
by +2by+ -+ (q— )by +dy +2dy+ - + qdy = q. (3.9)

Note that
|d| = Vy|ma| + -+ b my|.

The exponent of S in (3.6)) is a negative number, denoted by a, such that, if |b'| is even,

q
a =21 =25 —2 > |myb,
k=1

q
> 2b'| - 2(b'1/2] =2 ) [ty

q
> (] =2 ) it
k=1

Noting that |my| < k, this implies

a= ) (1- 2k

k=
Similarly, if |V/| is odd,

1
q
L+ > (1= 2k)by.
k=1

The lowest possible value of a is obtained when mg, = ¢, b, = 1,0} =by =---=b,_; =0, s0
a>2-—2q.
For any a € {0,—1,,...,2 — 2q}, define
q—1 q
Japd = E Un, Q(DGL)®" @ ®(D£,Sz)®d”> ]
- L R (3.10)
=B LS F(Bim) | [0, DG ﬂ<6]®/i’ DI ] :
=0 =1
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where
by +2by+ -+ (q—1)byo1 +dy +2dy+ - + qdy = q. (3.11)

Notice also that
L4+ |b| +20] —2) <1+ +20] <2¢+ 1.

Then, from (3.7 we conclude that

|Elp(Gn)] = Elp(S)]] < %s@”looE [[<u, DIG1 g0 — S7)/]

+C sup @9 sup  sup  Jopa (3.12)
1<i<2q+1 (b,d)eQ 2—2g<a<0
Step 3. We next show that
E ([Cun, DGy = %) < C| f[3,2n". (3.13)

Recall that G,, = 0"(u,). We have, applying (2.17)),

q

B (DG = 57) < B ot ol = 5%) + 22 (%) 0 = D1E ot o 0D ]

i=1

(3.14)

Let A, := ‘q!||unH%®q — 52| and B,,; := [{uy, 0'(D'uy)Yged|, so that we can write

E (|{un, DG,y — S?|) < E[A,] + Czq] E(B,,).

i=1
First, we will show that
B[A,] = E[q!]|un]2es — S?[] < C|If]3 502D

We have

n—1

QMunlZes = ¢n® 0 YT F(Bim) f(Bym)B,

3,3"=0

n—1
=gt Y F(Bim) f(Bym)pu(k — )
3:3'=0

1 n—1 (n—1)A(n—1-p)

=q= ) Y FBim)f(Biipym)on(p)®

p=—n+1 j=0v—p

where

Pt Y Y BB — S By )oup)
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and
n—1 (n—1)A(n—1—p)

Q=T % N B

p=—n+1 j=0v—p

Using E[(f(B(spm) = f(Bim))*1"? < Clf|12n~" and the fact that 3,7 [pr(p)|* < oo,

we have

E[|P] < C|fian™". (3.15)
Next, taking into account that >3 ., |pm(p)|? converges to zero at the rate ndZH=2)+1 a9
n — o0, we can write
ElQ.— %] < O|flgene®2+
© [ 1 n—1 1
vl Y pn0E || 3 P — [ B
oo R 0
= C|fJgan®® 21!
0 el (+1)n
vl 3 oI E || [ B - (B ds
k=—a0 [ |j=0i/n
Using E[|f*(Bjn) — f2(B)ll < C|[f[i 0" for s € [j/n, (j + 1)/n], we obtain
E[|Qn = S?[] < | f[5n" 2 4+ C| fT o ™. (3.16)
Because E[A,] < E[|P,|] + E[|Q. — S?[], we have from (3.15) and (3.16) that
E[A) < C(flfan ™ + | f52n®™ 21
< CHfH%,zn(ﬁ(H)-
Next, we estimate the terms E[B, ;] for i = 1,...,q. Taking into account the definition
of u,,, we obtain
E[Bn,z] =F H<un7 5i(Diun)>ﬁ®q ]
n—1
< V2N B (B 058 6 (D) |
=0
n—1 A ‘
= n®2 N B F(Bym)8 (D -+ Diptin ®@qi 655 )| |
=0 7 times
where here we made use of the the notation
DjjnF = (DF,6jm)s- (3.17)

17



Applying Hélder’s and Meyer’s inequalities ([2.14)), we have

n—1

E[Byn] < 2| flos Y E | |6"(Djjn-

—0
J i times

n—1

< On 2 floa 33 | Dy Dijutn @y 8551

i/n
Jj=0 L
7 times

We consider several cases and apply Lemma with M =1, a
and p = 2 to control the Sobolev norm | - |; 2

Case 1. Suppose that H < 1/2, i < q. We l{ave

n—1
E[By] < Cn® 12| fI5, Y n 2 HlerD
§=0
— quH_1/2Hngz‘,in/z_H(qH)

< C”f”%zzniH
< C| |52
Case 2. Suppose that H > 1/2,i < q. We have

E[Bn,i] < quH_l/QHfH%i,Qn . n—1/2—¢+(_H(

_ |, it D Gati D)
OHngiQn(Hfl)V(QQ(H71)+1)
O], D)

Case 3. Suppose that ¢ = q. Note that a = ¢, b =0, and ¢ = 0. Thus

<
<

E[Bn;] = BE[B,,] < Cnt=12| f|2 yn - n~1HD
= O f |3, 0=+

= OHngq,Q ( qH+1/2)\/(q(17H)+1/2)

< O f15g2n™ ™.

This completes the proof of (3.13)).

Step 4. Next, we will show that J, ;4 < C| 327,

n—1q—1

Ja,b,d < quH71/2||fHO,r Saa 1/« Z HE

k=0 ¢=1

q
T [t 00

=1

l<6k/n’ DZGn%@‘

18

2 D1t @i
—_

j/n

)

2011 | E[SC-2a] ot
inequality with 1/a+1/8 =1, r:==[b| + |d| + 1 < g + 1, we can write

rﬁ:| be/TB
TB‘| dy/rB

3,2

2 1/2

5)

:i7b:q_i7czq_i7

q—i))v(g(H—1)+1—q+i)

. Using Holder’s



Let

e AL
K;%g =F [<5§/€1, DG n>ﬁ®z
and
, , rﬂ_ 1/rB
Lk,@’ =F |:‘<5k:®/€1’ DZ S2>ﬁ®e’ )
so that
n—1q—1
Joa < Cn=12 flo s BSeTV N T K7 H L. (3.18)
k=0 ¢=1

We will now find estimates for Ky, and Ly . First, applying - ) and using the notation

(3.17), we can write

(0,

Zj]() zi<5k®/i,5q i(D* iy )>ﬁ®£

¢ 2

AN i
Z () 1109 Dy -+ Dy (un, ®; 5k®/n) )
i—o \! —

{—1 times
so by Minkowski’s and Meyer’s inequalities (2.14)),
¢
Kpy < Z kfn -+ Diyn (i ®; 6F)) . (3.19)
i=0 | ——~"
£—i times q—irB

Let
My = || D~ - Diojn(tn ®; 5k®/2;1) ;
—_—
{—1 times q—irB
so that (| - becomes Ky, < C’Zf o M. We now apply Lemma with M = g — 1,
a="F0—1i,b=1,c=1,p=rp and consider three cases.

Case 1. Suppose that 0 <i < ¢, H < 1/2. We have

My < CHfH‘JM*QZ}T,B”*UZ*H(%%) < C’HfHq+£—2z’,rﬁn*1/2*H(2@*f)
- CHf||q+472(€71)7r/8n*1/2*H£

< CH f”q+é—2(£—1),rﬁn(71/2iHZ) v(—£(2H A1)) (320)

Case 2. Suppose that 0 < i < ¢, H > 1/2. We have

Miei < C| fllgre—2i rﬁnfl/zfu”(’m)V(‘I(H*UH*Z')

= C| fllg+e-2 rﬁn(i(lfH)*Zfl/@ v(g(H-1)+1/2-¢)
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Because

i(1—H)—(—1/2<0(1—H)—(—1/2=—1/2 — H{

and
g H—-1)+12—0( < p(H) -1 < =4,

we have, recalling H > 1/2,

My < C| fllgre—2irant > HOYED = C| f[lgug-gipgn /2 HOVLEHAD), (3.21)

Case 3. Suppose that ¢ = 0. Because i = 0, we have M = ¢, a ={, b= 0, and ¢ = 0. Thus,

Misti = Mypo < O flosersn™ I < O fllguapon™ 21O R, (3.22)

Combining (3.20]), (3.21)), and (3.22)), we have

Kké C”f”q—i—ﬁrﬁn( 1/2—H)v(—£(2H 1)) _ CHqu+€ rﬁn—E(QH/\l)-‘r(—l/Q-l-f(HA(1—H)))+' (323)
Let 1 < ¢o(H) < g — 1 be chosen such that when ¢ < ¢4(H),
12+ ((H A (1—H)) <0

and when ¢ > (o(H),
“1/2+ 0(H A (1 - H)) > 0.

lo(H) = min {q L [2(}[ A (11 —H))J}'

Kio < C| flgrerpn P

Observe that

When ¢ < {y(H),

and when ¢ > (4(H),

K]gg CHf||q+£ M €(2H/\1)+(71/2+K(H/\(17H)))'

Thus,
HKZ@ C £y ™, (3.24)
where
q—1 q—1
pi(H) = —(2H A1) Y b+ Y. be(—1/2+0(H A (1 H))). (3.25)
=1 b=0o(H)+1

Next, we will estimate Lyp. Let g(z) = f?(z). Then, applying Lemma [2.1|a), the
semi-norm norm (|1.6)), and using Minkowski’s inequality, we can write

1
0

< On~ @I g|, 5,

2
Lie = oy,
Br
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Noting that for k > 1, g™ (z) = 3*_, C.f®(z) f*2)(z), for some combinatoric numbers
C,, we have

Ly < Cn~ G| FIG o5, (3.26)

Taking the product over ¢ and applying (3.26]), we obtain
Tod 2d|
[ [ L < ClFlsmm =t (3.27)

where

/{Q(H) = —(2H A 1) qu ﬁldg/. (328)
.

Applying ([3.24) and (3.27)), we have, recalling (3.18) and replacing the summation in &
with the factor n,

Jupa < Ot 1P| Loy S B[S ] o e (1D

_ CHfH;;—\QbT!;QW‘E[saa]l/aan+ 5+r1(H)+r2(H) (329)

1+]b|+2|d aall/o, K
= C|f g g B[S onUD),

where .
KJ(H) =qH + 5 + K,l(H) + K)Q(H).

Recalling (3.25)), (3.28)), and (3.11), we have
1 fy
H(H) = qH + 5 — 2H A 1 (Z gb@ + 2 gdgl> é e;) (—1/2 —i—g(H A (1 - H)))
0
= —q(H A (L= H)) + 5 L, Z be(—1/2 4 ¢(H A (1 — H))). (3.30)
t=Lto(H
We will now show that
k(H) < ¢(H). (3.31)

We consider three cases depending on the value of ZZ;;O( )41 by.

Case 1. Suppose that Zz to(ty+1 be = 0. Then
1 1
k(H)=—(H A (1—H))q+ 5= (—qH—I— 5) v <q(H— 1) + —) < ¢(H).

Case 2. Suppose that ZZ;;O(H)H by = 1. We conclude that all of by (gys1,- -, 041 are zero
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except for one, say b,, = 1, lo(H) + 1 < m < ¢ — 1. Because m < ¢ — 1, we have

k(H)=—(H A (1-H q—i-;—i- 2 be(—1/2 + €(H A (1— H)))
L=lo(H)+1
—q(HA(1-H))+ 1(1 — b)) + mb,,(H A (1 — H))

2
=(m—q)(H A (1-H))
(HA(—H)=(—H)v (H—1) < 6(H).

Case 3. Suppose that ZZ;}O(H)H by = 2. We have

K(H) = —q(H A (1 — H)) + = + 2 b (—1/2+ 0(H » (1 — H)))
L=Lo(H)+
—q(HA(l—H))—I—% 1 - (IZ be | +(H A (1—H)) (IZ 1y
l=Lo(H)+1 0=Lo(H)+1
~a(H A (1= H)) = 3+ (H A (L= H))g = —3 < o(H),

completing the proof of (3.31)). Thus, we have, recalling ([3.29),

1+|b]+2|d acl/a
Japa < O\ f|sr st plgec]ens(i)
< C|fIEL )5 ELSE 200 Yapdlih, (3.32)

Combining (3.5)), (3.12), (3.13)), and (3.32), the proof of Theorem is complete. O

Remark. In order to understand the phase transition in the rate of convergence when
H > 1/2, let us discuss a particular example. Suppose that ¢ = 3 and f(z) = x and
H > 1/2. Then

n—1

Ey =02 Bnls(555,).
k=0

The random variable F,, can be decomposed as follows: F,, = G,, + R,,, where

n—1
G, = n*-1/2 Z Iy (1[0*/”] ® 5’f®/§t)
k=0

and
n—1

Rn = 37/1,3H71/2 Z<1[O,k/n]7 6k/n>f)[2(5k®/2n)

k=0

Let us find out the rate of convergence in L? of the residual term R,,. We can write

BR) = Tn Y (b 1R+ DM P Dkl k),

J,k=1
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Then, if H > 2, the series Y, p%/(h) is divergent and the expectation E[R2] behaves, as
n91=3 when n — 0. On the other hand, if H < 3, the series ;" , p%/(h) is convergent
and E[R?] behaves, as n*’72 when n — oo. We see that the phase transition occurs at
H = %. For a general ¢ > 3, and assuming H > 1/2, the phase transition occurs for
values of ¢ and H such that the series Y7 [p% ()| changes its convergence, that is, when
(2H — 2)(q — 1) = —1. One can show that the expectation E[G?] converges to a constant,

and the rate of convergence is worse than that of the residual term.

4 Appendix

Here we prove a result we need in the proof of Theorem 1.1. Recall the notation Dy, F =
(DF,0pmys where dp/n = Lig/m,(k+1)/n]-

Lemma 4.1. For any integers £, M,a,b,c such that M > 0, 0 < ¢ < q,0<a < q—c,
0 < b < ¢ and any real number p > 1,there exists a constant C depending on q, M, p, and
the Hurst parameter H such that

Do Digy (0 @005, )| < Clllareagn @7,
R

a times M,p
where
—1/2 — H(2a + ¢) b>0H<1/2
k(a,b,c,H):=< —1/2—a—H(c—b)+(—Hb) v (¢(H—-1)+1-b) b>0,H>1/2.
—a(2H A1) — Hce b=0

Proof. For 0 <m < M, let

P 1/p
Ay = B [ |D™ | Dy Dig (100 @, 055,
—_—
a times H®(m+q—2b+c)

- 1
P /p

(m+a) ®(c—b) ®(q—b)
Z " J/n ak,]/n sz(sk/(n (5 - ®

_ ,qH-1/2
=n FE i/

J/n

= 57J®(m+r172b+c)

Taking the norm in H™+7-2+¢ we have

n—1 1/2
A,, < CHQH_1/2fm+a,p{ Z |ak7j/n|a|akvj//n|a|/8j7k|b|ﬁj’,k|bn_2H(c_b)|5j7j’|q_b} _

3:3'=0

We consider three different cases:
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Case 1. Suppose that 0 < b < ¢q. Applying Lemma to Z?;}:o 8.6 °1B5 x1°1 35,5717 and
Lemma [2.1f(a) to each of the o terms, we have

A, < quHfl/QHmeM,p (n72a(2H/\1)n72H(cfb)n(72H(q+b))v(272(q+b)))1/2
- Cn(IHfl/2Hf”era’pnfa(QH/\1)an(cfb)n(fH(q+b))v(lf(qub)).
When H <1/2,¢q+b>2>1/(1—H),s0 —H(qg+b) > 1—(q¢+), and we have
Am < quHfl/ZHmeJra’pan(quQaJrc)'
When H > 1/2,

Am < quH71/2Hf||m+a pnianiH(Cib)n(fH(q‘i‘b))v(lf(q“rb))
— O ), H D H D) 0G0

- CHme+a pniail/ziH(cib)n(be)V(Q(H*1)+lfb) )

Case 2. Suppose that b = ¢. In this case, ¢ = ¢ and a = 0 and, applying Lemma (a),

n—1 1/2
m,p[ Z |B5.61%1B5 q]

3,4'=0

n—1
m,p Z wak
j=0

H-1/2, (~2qH)v(1-2
mpn? 12y (—2aH)v(1-2q)

A < Ot ]

q

= Cn?1=12| f]

< C|/f]

Note that —2¢qH = (—2qH) v (1 — 2¢q). Thus, this estimate coincides with the estimate in
case 1 when b =c¢ = ¢ and a = 0.

Case 3. Suppose that b = 0. Applying Lemma [2.2(b) to 27;1:0 |8;77] and Lemma [2.1|(a) to
each of the a terms,

Ay < O 2| fllapn “CHA Dy Hep(1/2-aH) v (1)

_ quH71/2HfHm+a’pn7a(2H/\l)ancnl/quH

< C”me_'_a’pnfa(QHAl)ch'

This concludes the proof of the lemma. O
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