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Abstract. In this paper, we develop the theory of nonlinear rough paths. Fol-
lowing the ideas of Lyons and Gubinelli, we define the nonlinear rough integral
/. st W (dr,Y,), where W and Y are only a-Hélder continuous in time with o € (%, 1
Also, we study the Kunita-type equation Y; = £ + [Ot W (dr,Ys), obtaining the local
and global existence and uniqueness of the solution under suitable sufficient condi-
tions. As an application, we study transport equations with rough vector fields and
observe that the classical solution formula for smooth and Young’s cases does not
provide a solution to the rough equation. Indeed this formula satisfies a transport
equation with additional compensator terms (see (1.7)).

1. Introduction

Nonlinear integrals in the sense of Young have been studied in recent years (see

e.g. Catellier and Gubinelli, 2016, Chouk and Gubinelli, 2015, 2014 and Hu and Leg,
2017). In these papers, the authors consider the following nonlinear integral
t
T, = f W(dr,Y,), (1.1)
S

where W is a function on [0, T]xR¢ with values in R?, that is 7-Holder continuous in
time and A-Holder continuous in space, and Y : [0,7] - R? is y-Holder continuous.
Under the assumption 7+ Ay > 1, the nonlinear integral (1.1) is well-defined in the
sense of Young (see Young, 1936). That is, Z,; is the limit of the following linear
approximations as || - 0

Z Wtk—l;tk (}/tk—l) = Z [W(tk’ }/tk—l) - W(tk—h }/tk—l )]7
k=1 k=1
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where m = (s = tp < t1 < -+ < t, = t) is a partition of the interval [s,t] and
|7| = maxicken [tk — tk-1]- As an example, one can define a pathwise nonlinear
integral of the form (1.1), where W is a fractional Brownian sheet with Hurst
parameters Hy € (%, 1) in time and H; = --- = Hy = H in space, such that H0+%H > 1,
and Y is a d-dimensional standard Brownian motion. By applying this theory
of nonlinear Young’s integrals, Hu and Lé (2017) studied the following transport
equation with distributional vector field (see also Catellier and Gubinelli, 2016;
Flandoli et al., 2010):

u(t x) + Dul(t, ac) W(t z) =0, (1.2)

where D denotes the spatlal derivative operator. The existence and uniqueness of
the solution to (1.2) with ClloJrcA“ (R%; R)-valued initial condition were proved in this
paper assuming that (1 + A\g)7 > 1. They also provided a formula for the solution:

u(t,z) = h(Zy(x)), (1.3)

where h is the initial condition, Z; is the inverse of Y;, and Y is the solution to the
following nonlinear differential equation:

Yi(z) :x+/OtW(ds,Ys(m)). (1.4)

On the other hand, applying the theory of nonlinear integrals to the stochastic heat
equation, Hu and Lé also gave a pathwise proof of the Feynman-Kac formula which
provides an alternative method to study this topic (see e.g. Hu et al., 2012, 201
for a probabilistic approach).

The purpose of this paper is to extend the theory of nonlinear integrals to the
case when the functions W and Y are rougher, that is 7+ Ay < 1. In this situation,
Young’s approach fails. The following example, inspired by the lecture notes from
Zanco (see Example 3.6 of Zanco, 2016), provides a non-standard nonlinear rough
path behavior in R. For any n€Z,, t € [0,T] and z,y € R, we define

w1 ny 1 .
F(x,y)=¢€", Xt( ) = - cos(2mn?t) and Yt( ) = - sin(27n’t).

Then F (Xt("), y) converges to 1 and Yt(n) converges to 0 uniformly on compact sets
as n — oo. On the other hand, however, the following integral

4w
f F(dX(") Y(") 4[ sm(n s))ds—> -,
0

by dominated convergence theorem, as n — oo.

In the linear situation, a useful tool to deal with the integration of rough functions
is the theory of rough paths. This theory has been developed from the pioneering
work of Lyons since the early nineties (see e.g. Lyons, 1994, 1998) to study d-
dimensional dynamical systems of the form

dY;: = f(Y:f)dXta te [O’T]7

where the driven signal X; is a-Ho6lder continuous and « € (0, 1] The main idea of

the rough path analysis is as follows. Let p = [ |, and let T®) be a p-step truncated
tensor algebra given by the expression

T7® =R (RY) @ (R)®? @ - @ (RY)®P.
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The rough path associated to X is a lifting of X to a T(")-valued function on
[0,77]?, denoted by S (X), in such a way that when X is piecewise differentiable,

the function S(g? = (1, X}, X2;,...,X!,), and each component X!, is the ith

iterated integral of X on the time interval s,t] c [0,7]. Suppose that f is a smooth
function, then the integral of f(X) against X on [s,t] can be approximated by

ft FX)dX, » f(X)Xo,+ (X)X ++ f(p_l)(Xs)th, (1.5)

with an error of order O(Jt - s|(®**1). Because (p+1)a > 1, the error term vanishes
in the limit, which explains the choice p = [i] This allows us to define the integral
by passing the limit as || = 0 of the following expression

n
2,
k=1

where m=(s=1t1 <+ <t, =t).

Suppose that « € (%, 11, Gubinelli (2004) generalized the integration of “1-forms”,
which means the integrand is a function f(X;) of the driving signal, to a class of
rough functions called “controlled rough paths”. A controlled rough path (by X),
is a function Y : [0,7] - R¢ whose increment on an interval [s,¢] can be written in

the following way: Y, =Y, X, +RZ¢, for some R?®@R%valued a-Holder continuous

hS|

f(iil) (th—l )Xtik,l R
=0

function Y’ and some R%valued 2a-Holder continuous function RY . In this case,
the approximation of the integral is the following

t
f YdX, ~ Y, X1, + Y/X2,.

For a more detailed account on this topic, we refer the readers to the books Friz
and Hairer (2014) and Lyons and Qian (2002). An alternative approach to deal
with the integration of “non-1-forms" based on fractional calculus was developed in
Besalti and Nualart (2011); Hu and Nualart (2009).
In the present paper, we will extend the nonlinear Young’s integral to the rough
case by using Gubinelli’s approach, and assuming a Hélder regularity of order « €
%, %] The paper is organized in the following way. In Section 2 we give brief
review of the preliminaries about (linear) rough paths. In Section 3 we introduce
a nonlinear variant of rough paths. By definition a nonlinear rough path is a pair
(W, W) such that W (¢, ) is a function of two variables, (¢,z) € [0,T] xV, where V
is Banach space. The component W, ;(x,y) should be interpreted as the integral

t
Ws,t(xay) = [ DW(dray)Wr,s(x)7

for any 0 < s <t < T, where DW(r,y) denotes the Fréchet derivative of W with
respect to the spatial argument y. We also assume that (W, W) satisfies certain
properties, including a-Hoélder continuity and a version of Chen’s relation. Then, a
nonlinear rough integral can be approximated in the following way:

t .
[ W) 2 WedY) + WV, Vo),

where Y is the Gubinelli derivative of ¥ in the context of nonlinear rough paths.
We prove that the nonlinear rough integral is a nonlinear controlled rough path
and we establish some properties of nonlinear rough integrals.
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In Section 4, we consider the following rough differential equation (RDE):

Vi=g+ [y, (L6)

where (W, W) is an a-Holder nonlinear rough path. Local and global existence and
uniqueness of the solution to the RDE (1.6) are proved in this section. We also
obtain some estimates for the solution to this equation. This type of RDEs was
previously studied by Bailleul and his collaborators (see e.g. Bailleul and Catellier,
2017; Bailleul et al., 2017; Bailleul and Riedel, 2019) under some boundedness
assumption of W. Here, we study this equation via a different approach, and
improve their results removing boundedness conditions.

Another approach to equation (1.6) was introduced in the papers Brault and
Lejay (2019a, 2018, 2019b). The authors introduced the almost flow ¢, (x). In
comparison with our setting, ¢, .(x) is equivalent to Wy, (z) + Wy (z,2) + z .
Then without the analysis of the rough integrals, a solution to equation (1.6) can
be constructed as the limit of the following iterations over partitions 7w = (0 = tg <
by <. <ty =t)

Pty tn © 0 Dty 10 (E), as |m| 0.

In Section 5, we study nonlinear rough paths as function space-valued linear
rough paths. Then, we prove that under some assumptions, these two approaches
are equivalent. Despite this, we still prefer to keep the analysis in Sections 3
and 4. Firstly, the approach to define nonlinear rough paths in Section 3 is more
intuitive than the latter method based on abstract spaces. Additionally, in order
to interpret nonlinear rough paths as function space-valued linear rough paths,
a stronger assumption is required, namely, the existence of the integral W, , =
fst Ws.r ® dW,., whereas, in Sections 3 and 4, we only need to define the integral
Ws,t(xa y) = fst DW(dT‘, y)Wr,s(y)

Section 6 contains some applications of nonlinear rough paths. In Section 6.1,
we provide a generalized Itd-type formula for (nonlinear) controlled rough paths.
In Section 6.2 we analyze the gradient flow of the following equation with spatial
parameter,

Yi(z) =z + fotW(dr,Yr(m’)),

where z € R? and W : [0,T] x RY - R? is a nonlinear rough path. We will prove
that under some assumptions, Y;(x) is differentiable in z. In addition for every
(t,z) € [0,T] x RY, the gradient DY;(z) is an invertible matrix. Thus, for any
fixed ¢ € [0,T], by the Inverse Function Theorem in R%, there exists Z; : R? - R?
such that Z,(Y;(z)) = Yi(Zi(z)) = x for all z € R%. Assume that h e C}_(R%R).
Because the structure of W here is rougher than in Young’s case, it turns out that
h(Z:(x)) does not satisfies the transport equation (1.2). In Section 6.3 we will
prove that h(Z;(x)) is indeed the solution to the following transport equation with
compensators

B oW (t,x) 1 IDW (z), W (z))o
&u(t, x) + Du(t, JJ)T = §Du(t, x) ot
+ %Du(m) a«wm,;mx)»w N %DQU(t, x)%. (1.7)

Furthermore, the solution is unique in the space ClO;’cg([O,T] x R%:R). A similar
transport equation with rough vector field was also studied in Catellier (2016).
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2. Preliminaries

Fix a time interval [0,7]. Assume that o € (3,%]. Let V and K be Banach
spaces. We follow the construction of Friz and Hairer (2014, Chapters 2, 4) to
introduce the basic framework of the theory of (linear) rough paths.

Definition 2.1. (i) C*([0,T]; V) is the space of functions on [0, T] taking values
in V such that the following a-Hdélder seminorm is finite
19t v

[®fa = sup T, (2.1)
s#t€[0,T] |t—8|

where @ ; := &, — .
(ii) C$([0,T]?; K) is the space of functions on [0, T]? taking values in K and such
that the following a-Ho6lder seminorm is finite

K

v
”\IJHa = sup H s,t

. (2.2)
s=te[0,T] |t — 8]

A V-valued rough path, introduced below, is defined as a pair of a rough function
and a double integral term.

Definition 2.2. The space of rough paths € ([0,7'];V) is the collection of pairs
X = (X, X) satisfying the following properties:

(i) X eCo([0,T];V).

(i) X € C32([0,T]%}V ® V), where V ® V is the tensor product space equipped

with the projective norm.
(iii) (X,X) satisfies Chen’s relation: for all (s,u,t) € [0,7]3,

Xs,t - Xs,u - Xu,t = Xs,u ® Xu,t' (23)

Here X has to be interpreted as a version of the following double integral:

t t T
[ Xeoaxo= [ [Tax,edx, =%,

Let X € C*([0,T];V). We define rough paths controlled by X as follows:

Definition 2.3 (Definition 4.6 of Friz and Hairer, 2014). Let X € C*([0,T]; V).
An element Y € C*([0,T]; K) is said to be controlled by X, if there exist functions
Y eCY([0,T]; £L(V; K)) and RY € C2%([0,T]?% K), such that

Vi =Y/(X,0) + RY,

for any s,t € [0,T]. Here L(V; K) denotes the space of continuous linear operators
from V to K equipped with the operator norm. The function Y’ is called the
Gubinelli derivative of Y.

Denote by 2%*(K) the space of such pairs (Y,Y’). With an abuse of notations,
we sometimes write Y € 23 (K) instead of (Y,Y’) € 22%(K).

Suppose that X € C*([0,T];V) and (Y,Y’) € 232(L(V;K)). Then, Y’ takes
values in £(V;L(V;K)), which can be identified with £(V ® V;K). The next
theorem defines a version of the (linear) rough integral.
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Theorem 2.4 (Theorem 4.10 (a) of Friz and Hairer, 2014). Let X = (X,X) «
€*([0,T); V). Suppose that (Y,Y') e 23*(L(V;K)). Then the following “compen-
sated Riemann-Stieltjes sum”

Z Etkytk—l = Z [Ytk—l (th—htk) + Y;t,k,l (th—lvtk )]’ (24)
k=1 k=1

converges as || > 0, where m = (s =t] <ty <---<t, =1t) and |7| = maxjcp<n |tx —
ti-1]. Denote by T ((E) the limit of (2.4). Then, Js.(Z2) is additive, that is
Tst(Z) = Tsu(B) + Tui(E) for any 0 < s <u <t <T. Moreover, the following
estimate is satisfied for all 0 <s<t<T,

|76t () = Eat| o < ka(IX [l RY 20 + [X]2a Y o)t = s**, (2.5)

where kg, = (1-2173%)71 By definition, the rough integral of Y against X = (X, X)
is defined as follows, for all0<s<t<T,

[S YdX, = Jui(2). (2.6)

Similarly we can define the rough integral fst Y, ®dX, e V1 ® Vy , for any X =
(X,X) € €*([0,T];V1) and (Y,Y') € 23*(V2). Theorem 2.4 can be proved by
using the following Sewing Lemma. In this case, v = 3a > 1 and k, comes from
inequality (2.7) below. The Sewing Lemma is cited from Lemma 2.1 of Feyel and
de La Pradelle (2006), see also Gubinelli (2004). It will also be used later in the
theory of nonlinear rough paths.

Lemma 2.5 (Sewing Lemma). Let 8 € (0,1], and let = € C5 ([0, T]% K). Suppose
there exist C' >0 and v > 1 such that the following inequality holds:
16Z(s,u, )| ) = |1Es,t = Es,u = Bt < CJt = 5[,

for any 0 < s<u<t<T. Then there exists a unique (up to an additive constant)
function J(Z) e CP([0,T); V), such that the following inequality holds

|754(E) = Estllx = IF(E) = Ts(E) ~Eslx < (1-2"7)7'Clt — 5. (2.7)

Moreover, J, +(E) can be represented as follows,

n
js,t(E) = lim Z Etk_l,tk; (28)

Iml~0 ;23
where m = (s =ty <ty < <t, =t) and the limit is independent of the choice of m.
The next proposition shows that the rough integral is controlled by X.
Proposition 2.6 (Theorem 4.10 (b) of Friz and Hairer, 2014). Suppose that (X,X)
e ¢*([0,T);V) and (Y,Y') e 223(L(V;K)). Let
t
Zi= [ YidX..
0

Then, Z is an a-Hélder continuous function taking values in K. Moreover Z is
controlled by X with Y as a Gubinelli derivative.

In the next proposition, we define the integration of two controlled rough paths.

Proposition 2.7. Let V, K; and Ky be Banach spaces. Suppose that X = (X,X) €
¢*([0,T);V) and (Y,Y') € D32 (K1).
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(i) [Remark 4.11 of Friz and Hairer, 201/] Suppose that (Z,Z') € 23*(Ks). The
following limit exists

n

|11|H10 Z [Ztk—l ® }/tk—latk + (ng,l ® Y;flk,l )(th—htk)]’ (29)
T |—> k=1

where m= (s =1ty <ty <--<t, =t) and defines the integral f; Z,®dY,.
(ii) [Proposition 7.1 of Friz and Hairer, 201/] Let Y : [0,T]?> - K1 ® K1 be given
by

t
Yo = f Y, ®dY, -Y,® Y, (2.10)

and the integral in (2.10) is defined by (2.9). Then, Y := (Y,Y) is a rough
path. Suppose that (Z,7') € P2 (Kz). Let Z} = Z|Y/ for all t € [0,T]. Then,
(Z2,Z") € 23(K3). In addition, the following equality holds

t t
f Z,.®dYr:f Z, ®dY,, (2.11)

where the integral on the left-hand side is in the sense of Theorem 2./, and
the integral on the right -hand side is in the sense of (2.9).

Remark 2.8. Assume the conditions of Proposition 2.7 (i) where Ky = L(K7; K).
Then,

t n
ZydY, = |h‘m0 Z [Ztk—l (Ytk—latk) + (ng,liltlk,l )th—lytk]’ (212)
S w[-0.7
and
t n
[z = i S e )+ (2 Y0 )%0 ) (219)
=Y k=1

are well-defined, where m = (s =tg <t; <= <t, =t), (Z}Y/): VeV —> K is given
by

(ZiY))(x,y) = Z;()[Y{ (v)]-
and * denotes the transpose operator on the tensor product space V ® V, namely,

(zr®y)* =y®x.

Next, we define the “quadratic compensator” as follows (see e.g. (2.7) of Keller
and Zhang, 2016 for an equivalent definition in finite dimensions). It will be used
in Section 6.

Definition 2.9. Let X = (X,X) € *([0,T]; V). Suppose that (Y,Y’) € 22*(K)
and (Z,2") € 23(K>).

(i) The quadratic compensator (X) is a function on [0,7]* with values in V @ V
given by

(X)S,t = Xs,t®Xs,t_2Xs,t~ (214)

(ii) The quadratic compensator (Z,Y):[0,7]*> - K, ® K, is given by

t
(Z,Y )4 = Zs,tcayw—zf Zy, ®dY,. (2.15)
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Remark 2.10. (i) Similar as the quadratic variation of It processes, the following
equality holds:

(V2= [ ¥ ® Z1d(X).. (2.16)
(ii) Particularly, if Ky = L(K; K), W; write
(2Y Vo= Zo¥or 2 [ Zosa, (217)
and ’
(Y, Z)st= Zs4Ysp —2 fst dZ,(Ysr). (2.18)

(iii) It is easy to verify that (X) e C3*([0,T];V ® V). Similarly, (Y, Z), (Z,Y),
(Y, Z) and (Z,Y)) are also 2a-Holder continuous in corresponding spaces.

Finally, we finish this section by introducing the following Taylor’s theorem (see
e.g. Theorem 4.C of Zeidler, 1995) for Banach space valued functions. It will be
used frequently in estimating residuals.

Theorem 2.11 (Taylor’s Theorem). Let V and K be Banach spaces. Assume that
the map ¢ : V. — K is C™ in the sense of Fréchet differentiability. Then for any
v,h eV, the following generalized Taylor formula holds

n—-1 1
p(v+h)=d(v)+ > —~D*G(v)h® + R
= k!
where the residual R, satisfies the following inequality

1 ,
| Ry x < — sup HDkqb(u +Th)h®"| .
n. o<r<1

3. Nonlinear rough integrals

3.1. Definitions. Fix a time interval [0,T]. Suppose that « € (%, %] In this section,
we aim to define the following nonlinear integral:

fst W (dr,Y;).

Here W is a-Holder continuous in time, and differentiable in space, and Y is a-
Holder continuous. The idea is as follows. Assume that Y is controlled by W, that
is Yy, = Wg7t(Yg) +O(|t - 5|**). Then, we approximate the nonlinear integral by
the following expression:

t t t
[ warvy s [ wny)+ [ owan vy,
t t .
mf W(dnYS)+f DW (dr, Y)W, . (Yy)
S S

t
W. (Y. f DW (dr,y)W, . ’
s,t( S) + s ( " y) ‘S7T(x)‘(x,y)=(ys’ys)

with the error of order O(Jt - s>**). This allows us to pass to the limit as |r| — 0 in
the following expression

T
Z [Wtk Lotk Y;fk 1) + f DW(dr,y)WtH’T.(x)

. b
tr-1 (I,y)=(Ytk_1thk_1):|
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where 7 = (s =tg <t1 <+ <t, =t). The limit is the desired nonlinear integral.

To this end, we need to introduce the following definitions. Let n be any non-
negative integer. We denote by Z, the set of all multi-indexes 8,, of length n + 1.
That is, 8, = (Bo,--.,0n), where By, ..., [, are nonnegative real numbers. These
multi-indexes will be used to characterize the growth of a function and its spatial
derivatives.

Definition 3.1. (i) C*#»([0,T] x V; K) is the space of functions such that the
following seminorm is finite:

n DF®, (2)| e, (v

[0log, = 3 sup Lm0
k=0 s#te[0,T] |t_5| (1"'H$HV) k
zeV

(3.1)

where DF is the k-th Fréchet derivative operator, and £ (V; K) is the corre-
sponding space of linear operators. That is, £o(V;K) = K and £,(V;K) =
L(V;Lx1(V;K)) for all k=1,2,...,n.
1 2
(ii) (',';"'fz"’ﬂ"’([O,T]2 x V2;K) is the space of functions such that the following
seminorm is finite:

S ID* W ¢ () |2 (veii)

”\I’H 7131 7,32 = sup s
oo kgo setef0.1] [t = 8|1+ |z v )% (1 + 2]y )

x=(z1,x2)eV

where £4(V?; K) are the corresponding linear spaces of derivatives and the

product space V2 is treated as a Banach space equipped with the norm | x|y =
[z1]v + 2]y

For any positive integer m < n, we write 8, —m = (8o,...,8n-m). Then, by

definition, it is easy to verify that C*#([0,T] x V;K) c C*B»=™([0,T] x V; K).

Let ﬁn,ﬁn €Z,, we write B, < Bn if B, < Bi forall k =0,...,n. Then, P ([0,T] x

V;K) c CQ’E"V([QT] x V;K) if B, < B,,. The space (3;“"3;"33([O,T]2 x V% K) also
has a similar property. Given a multi-index B,, where n > 1, we make use of the
following notations:

Br-1= (8o, Bna) and Bi7 = (657, -, 8,71), (3-3)

where 5} :=max{fo,..., Bk} and B;* :=max{f1,...,Bk+1} forall 0<k<n-1.
Given multi-indexes B2, 87 and 7, let ® € C*P2([0,T] x V; K) and let ¥ €

C;’m’ﬁ’?([O,T]2 x V2, K). We make use of the following notations: % : [0,7T] x
V2 - K and 2Y:[0,T]?> x V* - K are given by

Ry (2,y) = i(y) - ©4(x) - Dy(z)(y - @), w,y eV (3.4)
and
@;‘I,It(x’y) = \Ijs,t(Y) - ‘Ils,t(x), X,y € V2~ (35)

The following lemma provides the estimates for 2%, ¥ and their derivatives. It
will be used in the proof of the stability of nonlinear rough integrals.

Lemma 3.2. Suppose that Z* and 2 are given as in (3./) and (3.5), respectively.
Then, for any x,y €V, and x = (x1,22),y = (y1,y2) € V2, the following inequalities
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are satisfied:
D 1 B2 2 «
1254 (2, ) |1 <51 ®lap. (U + Iz v +ylv) ™y - 2lv]t - sI% (3.6)
1 2
122, )i <9 pr g2 (14 [ v + [ lv) ™ (L 2]y + g2l )™
x [y = x[vlt - 5% (3.7)

If furthermore ® € C*P3([0,T]x V; K) and ¥ € (Z;’lgé’ﬁg([O,T]2 x V% K), then, for
all 2,22 € V2, the following inequalities are satisfied:

| D23, (2, 9) (21, 22) [ 16 <@g (1 [y + )=

<[ly=z|¥lz2lv + ly —zl|v]e - z2|v]it-s|*  (3.8)

and

1 1
|02, (x,¥) (2", 2%) [ < [¥ay,83(L+ |zillv + [ya o)™ (3.9)

2 2
< (1+ |zallv + Jy2v) Y% ly = xlv 22 ve + |2 - 2] v2 ][t - s
Proof: Inequality (3.6) is a consequence of Taylor’s Theorem 2.11 and the linearity
of D:
1
|%3(2.9) | i <5 sup [D*@y(rz+(1-7)y)(y—2,y-2)|x
2 0<7<1

|O¢

1
<51 ®lapa (1 + v + lyllv)? |y - |1t - s

For inequality (3.8), we assume that ® € C*#3([0,T] x V;K). Then, by differ-
entiating %;Ijt on the spatial argument, for any (z,v), (21, 22) € V2, we have
DA (2,y)(21,22) = = DBy 1(2)(21) = D*®y 4 (2) (21,9 = ) + DDy () (21)
+ D, 4 (y)(22) = DPs 4 (2)(22)
=D®; 1 (y)(22) = DPs 1(2)(22) = D* Py () (21,4 — @)
=D®, 1 (y)(22) = DPs 1(2)(22) = D*®y () (22,4 — @)
+ D*®, () (22 — 21,y — ).
By Taylor’s Theorem 2.11 again, we can deduce that

|D®t(y)(22) = DPs1(2)(22) = D* Pt (2) (22,9 - 2) |

1
<5 sup |D*®, (12 + (1= 7)y) (22,4 — 2,y — ) | k-

0<7<1

Thus inequality (3.8) is a consequence of above two inequalities. Inequalities (3.7)
and (3.9) can be proved similarly. O

In the rest of this paper, we focus on the case when K = V. A nonlinear rough
path is defined as follows.

Definition 3.3. Assume that n > 1. An a-Hdélder nonlinear rough path W on the
space CPn([0,T] x V; V) is defined as a pair (W, W) that satisfies the following
properties:

(i) WeC*P([0,T]xV;V).

(il) We 0220"'3:“1"3;?‘1([O,T]2 x V2 V), where B7_; and B;*, are defined in (3.3).
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(iii) (W, W) satisfies Chen’s relation:
Wet(@,9) = Wau(@,y) - Wi (2,y) = DWae () (We,u(2)), (3.10)
for all (z,y) € V2 and s,u,t € [0,7].
The collection of such rough paths is denoted by €= ([0,T] x V; V).

Remark 3.4. (i) In the smooth case, W can be interpreted as the following inte-
gral

[ DW ) Ware)) = [T DW () (Wi ()i = W, ().

*

This explains the choice of the multi-indexes 8 _; and B*; in point (ii) of
Definition 3.3. For example, assume that W is twice differentiable with growth
index B3. Then, one can bound the growth of Wy ; as follows

Wi (z,y)[vev
(L+[zlv)Pe 1+ ]ylv)s
. Z,Z:l |%DW(tk—17y)(WS,tk71 (x))“tk B tk’—1|
<limsup 3 3
|0 A+ [zlv)Pe(1+]ylv)s

By taking the derivative of W,;, one can deduce that the growth of
DW, ;(z,y) is bounded by Sy v 81 and 81 v B2 in = and y,respectively.

(if) By definition, we can deduce that €*#»([0,T] x V;V) ¢ €*#n-m([0,T] x
V;V) for all m € {0,...,n} and BL < B2.

(iii) Assume that W (t,a) = W;(x) where W; € L(V; V). Then the nonlinear rough
path degenerates to the linear rough path. In this case, DWy(z) = W; and
thus

<IWIi g, It = sl-

W, (z,y) = / W (dr) (W (2).

Let W = (W, W) € C*#~([0,T] x V; V). We make use of the notation
W, = Wlap, + IWlapg:_ g - (3.11)

Notice that €*#»([0,T] x V;V) is not a linear space with the usual addition and
scalar product. Thus |- |, is not a seminorm in the usual sense. We introduce the
pseudometric on €A~ ([0,T] x V;V) given by

0oy (W W) = [W=Wlap, +|W=W|sag: g . (3.12)

Consider the following equivalent relation: W ~ W if and only if there exists
feCP(V;V) such that W (t,z) - W (t,z) = f(z) for all (t,x) € [0,T] x V. Then,
0u.p,, is really a metric on the quotient space C*Pn ([0, T]x V;V)/ ~.

Let W e C*Bn([0,T] x V; V). Like in the linear case, we also define the space of
nonlinear rough paths controlled by W.

Definition 3.5. The space of basic nonlinear rough paths controlled by W, denoted
by &2, is the collection of pairs (Y,Y) € C*([0,T]; V) x C*([0,T]; V') (see (2.1))
such that, for all s, € [0,T],

Vi =Weu(Ys) +RY (3.13)

s,t)

where RY € C3%([0,T]%; V) (see (2.2)). The function Y above is called the Gubinelli
derivative of Y with respect to W.
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Remark 3.6. (i) In the linear case, the set of controlled rough paths is a linear
space. However, in the nonlinear case, the set 51,2[," does not need to be a
linear space with the usual addition and scalar product, because it may be
not closed under these operations.

(ii) Assume that V' = R and W (¢, x) = W,, then the controlled rough path satisfies
the following equality
Yor=YiWei+RY

s,t)

which coincides with the classical definition (see Definition 2.3) in the linear

case.
(iii) With an abuse of notations, we sometimes write Y € &2¢ instead of (Y,Y) €
pery

Suppose that W, W e A ([0, T]xV; V). Let (Y,Y) € & and (Y, }7) € éagvf‘ A

“distance” between (V,Y) and (Y,Y) is defined as follows (see e.g. Friz and Hairer,
2014, Section 4.4 for the linear case):

dywiw((V.Y), (V. Y)) = Y =¥ a+ R - R |a. (3.14)

Notice that the definition of d,, y, 7 does not include the term [Y" - Y |o. Indeed,

this term can be estimated in terms of d,, 7 ((Y, Y), (Y, 17)) as it is shown in the

next lemma. On the other hand, one will see in the next lemma, that |Y - Y,
depends also on |W — W, g, without a factor T“. If we include |W - W |, g,

in de’W((Y, Y), (}77}7)), the absence of this factor T% will cause difficulties in
the proof of the existence of solutions to RDEs in Section 4. For this reason,

the term |W — W |q4.g, is not included in de’W((Y, Y),(Y,Y)), and it is treated
independently.

Lemma 3.7. Let W,W € C*P1([0,T] x V;V). Suppose that (Y,Y) € & and
(Y,Y)e é’%‘l Then the following estimate holds:

[Y =¥ la <@+ [V o)™ W = Wag, (3.15)
W gy (1 [V oo + [V )™ ¥ = Vollv
£ T (L [ W)L+ [V oo + ¥ ) do g (V). (7).
Proof: Since Y and Y are controlled by W and w respectively, then we have
Vo= Fallv < Waa(V) = Woa O], + W () = Waa V) |, + | R, = B |-
Notice that by Taylor’s Theorem 2.11,

[ () = Waa (Vo) < sup DT (7Y + (1-1)¥) (Ve - T,

W as, (14 1Y oo + 1V o) Vs = ol
On the other hand, for any Y € C*([0,T]; V') we have
IYsllv < [Yollv + Vs = Yolv < [Yolv + [Y]as®.
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As a consequence, we can write

Ve = Yalv <IW = Wap, (1+ Y floo) ™[t = 5|

# [ g, (1 1V oo + 1V o)™ (195 = Folly + 57 ¥ = Pt = 5|
+|RY = RY ||, [t - s>
This proves inequality (3.15). O
Applying Lemma 3.7, the supremum norm of Y — Y can be estimated as follows:
IY =V eo < [Yo - Yolv + T*[Y =V (3.16)
ST+ Y [oo)® [W = W as,
F AT [T ag) (3 1V e+ 1F 1) (1Yo - Follv + 195 - Folv)
FT2 L+ [Wa )L+ [V oo + 1V o),y i (VY. (V7))

Both inequalities (3.15) and (3.16) represent how the difference between ¥ and Y
depends on |[W = W|a., [Yo - Yo|v and da’W’W((Y,Y),(?,?)). As we stated
before, the factors 7% and T2“ in each inequality are critical for the existence of

the solution to equation (4.1) in Section 4.
Remark 3.8. d, v, defined in a subspace of C*([0,T]; V) xC*([0,T]; V) is not a
metric, because the values of Yy, Yy or Yo, ?0 may differ even if
by i (V.Y (7)) 0.
For any y = (y1,y2) € V2, let
&y = {(Y) e &, (Yo, Y0) = (y1,92) }-
Then do,w = do,w,w is really a metric on é‘}?vf‘y.
The next lemma shows that c?&vay is complete under the metric dqo w.

Lemma 3.9. Suppose that W € C*P1([0,T] x V;V). Lety = (y1,12) € V2. Then
(51/2[?y,da,w) s a complete metric space.

Proof: Suppose that {(Y",Y™)} 51 C éOVQVD‘y is a Cauchy sequence under the metric
do.w. We first show that {(Y", Y™ RY")},s1 converges to (Y,Y, RY) in the prod-
uct space C*([0,T]; V) x C*([0,T]; V) x C3%([0,T]? V) equipped with the Holder
seminorms. Notice that the space C*([0,T]; V) is complete with the norm
1Y llca(o,r3vy = 1Yollv + Y [a-

Thus there exists Y € C*([0,T]; V), such that Y™ — Y as n — oo pointwise and in
C*([0,T]; V). Next, we will show the convergence of {RY " },.51. Fix (s,t) € [0,T]>.
Then, for and n,m > 1, we have

|RY, =R v <[t = PR = RY" o

Therefore, {R};:}nzl is a Cauchy sequence in V', and thus has a limit denoted by
RZt. On the other hand, we can show that

n m n
i HRZt - sz,t HV . . HRZt - R}:,t HV
imsup sup ————————< lim lim sup —a
n—oco  sxte[0,T] |t — s 00 M= 421e[0,T] |t — s

=0.
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This implies that, as a sequence of functions, {Ryn}nzl is also convergent in the
space C3%([0,T]% V). To prove the convergence of {Y"},51, it suffices to show
that {Y"},»1 is Cauchy in C*([0,T]; V) with the a-Holder seminorm. Notice that
for any n,m > 1, Y" and Y™ are both controlled by W, then, as a consequence of
Lemma 3.7, we have

Y™ = Y™ <T(1+ [W g, )L+ [V oo + Y™ [o)?
xd, (YY), (Y™, Y™)). (3.17)

Observe that
SUP [V o < 92 + T2 sUp [0 = C < c0.
nx1 nx1
Therefore, {Y"},,»1 converges to a function Y in C*([0,7]; V).
Finally, notice that for any s,¢ € [0,7T],
Yoo = lim Y7 = lim [We (Y)") + Ry ] = Weo(Ye) + R, (3.18)

Thus (Y,Y) € ggvay with the remainder RY . O

In the next theorem, we define the nonlinear rough integral of a basic controlled
rough path against a nonlinear rough path.

Theorem 3.10. Suppose that W = (W, W) € €*B2([0,T] x V;V). Let (Y,Y) €
2. We define = € C$([0,T1% V) as follows:

Es,t = Ws7t(Ys) +Ws,t(}év}/;)'

Then the following limit exists

Tet(2) = lim Y=y, (3.19)
|7|—0 k1

where ™= (s =1ty <ty <---<t, =t). Moreover,

[706(2) ~Zael, < Crlt - s, (3.20)

where

C1 = ka[Wie, (1+2Y o) ™Y1 (1 4+ 2] o) 2 (Y o+ Y2 + 1Y o + | RY [120),
(3.21)

and ko, is defined in (2.5)."
Proof: For any 0<s<u<t<T, we write
0% u,t =t — Zs,u — St (3.22)
= = [Wae(Ya) = Waa (Vo) ]+ [Wi (e, Yo) = Wau (Y5, Vo) = W (Y, Vo)1

According to Lemma 2.5, to prove (3.19) and (3.20), it suffices to show that
1625wt is of order O(Jt - s[3*). Recall notations (3.4) and (3.5). Since Y is
controlled by W, we can write

VVu,t(Yu) - Wu,t(Y;) = DVVu,t(Ys)(Ye,u) +%E7/75(Y95 Yu)
=DWot(Ys) (Wi (Ys)) + DWo (Vo) (RY,) + 20 (Ys, Yo). (3.23)

Lwe keep the track of the constituents of C; and all the constants appearing later for their use
in the stability analysis of integrals and equations.
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On the other hand, by Chen’s relation (3.10), we have
Wao (Y, ¥o) =W (Y, Ya) = W (Var, Ya)
= DWo i (Vo) (Weu(Y2)) = Zoo (Ve Ye), (Y, Ya))- (3.24)
Notice that, by definition, W e 2?11 ([0,T]2 x V2, V) where B% = (8o, Bo v 1)

and B7* = (B1, 51V PB2). Combining (3.22) - (3.24), with (3.6) and (3.7) and recalling
(3.11), we obtain the following inequality

16Zs u,t v (3.25)

< DWoa(Ys) ey vivy IBY |

1 (o3
v+ 5[ Wihas. (1 +2]Y o) [V 21 - s

I Waap,87 (1 +20Y oo) ™ (14 2]V o) (JY o + [V )l = s>
< Wi, (1+20Y o) Y (142]Y o) 22 (Y ot Y [a+ 1Y [t [ BY (20 It = s>
Thus we complete the proof by applying Lemma 2.5. (Il

Notice that Js (=) in Theorem 3.10 can be expressed as the limit of sums over
a sequence of partitions 7™ as |7"| - 0. As a consequence of this fact, one can

show that J; +(Z) is additive. Therefore, we can define the nonlinear integral of ¥
against W on any time interval [s,¢] c [0,T] by Js.(E), that is

fStW(dr,m = T704(2). (3.26)

By definition, we can easily verify that = in Theorem 3.10 is also a-Holder
continuous. Recall that 87 = (80,50 Vv 1) and B7* = (B1, 51 V B2). Thus we have
the following estimate,

v <IWe o (Vo)lv + [We o (Y5, Vo) v
<IW g (1 + 1Y [0) [t = 5|
+ | Wza,g1,857 (1 + [ Y o)™ (1 + [V oa) [t = 5. (3.27)

1M1

—_
—

—'s7t|

The following estimates follow from (3.20) and (3.27):

Je

o <Zsellv + [ Tst(Z) = Es el v
<Cslt - s|*, (3.28)
where
Co = C1T** + [ W a,p, (1 + [V [00)™ + T [W]aq, g2 g (14 [V ][o0) (1 + [ V][ o0) "

Remark 3.11. To define a nonlinear rough integral, the growth condition on (W, W)
is not necessary. In fact, let (fli‘f([O,T] x V; V) be the collection of pairs (W, W)
such that W:[0,T] xV =V is a-Hélder in time, and twice differentiable in space
with locally bounded spatial derivatives, W : [0,7]? x V — V is 2a-Hélder contin-
uous in time, and differentiable in space with locally bounded spatial derivative,
and Chen’s relation (3.10) holds. For any W = (W, W) € €22([0,7] x V;V), and
(Y,Y) € &2, the expression (3.19) is still a well-defined nonlinear rough integral.
However, the growth condition is really needed to consider the global existence of

RDEs (see Section 4.2).
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3.2. Properties of nonlinear rough integrals. In this section, we present some prop-
erties of nonlinear rough integrals. The next proposition shows that the nonlinear
rough integral is a basic nonlinear controlled rough path (see Proposition 2.6 for
the linear result).

Proposition 3.12. Let W = (W, W) € €#2([0,T] x V;V). Suppose that (Y,Y) €
51/2‘,0‘. Let Z :[0,T] = V be the nonlinear rough integral of Y against W in the sense
of (3.26):

¢
Z, = / W (dr,Y,). (3.29)
0
Then, Z is controlled by W: (Z,Z) = (Z,Y) e £22.
Proof: Let Rit = Zs 1 — W1 (Ys). Then by (3.20), we can write

t
|72, =] [ war v -wa.m

S”J@,)‘,(E) - Es,t |V + HWs,t(Ys‘a YS)HV
<Ot = 8P + [Waa,83,85 (1 + [V o)™ (1+ Y o) [t = 5%,

where C is the constant appearing in (3.21). It follows that
|RZ 20 <ka| W e (1+2]Y o)™ (1+2]Y o)V

)LD (1Y + Y2+ [V Lo+ B [2a)] (3.30)

As a consequence, Z is controlled by W with the Gubinelli derivative Z=Y. O
In the next proposition, we consider the stability of nonlinear rough integrals.
Proposition 3.13. Let W, W € ¢83([0,T] x V;V). Suppose that (Y,Y) € &2
and (Y,Y) € £22. Define
Zy = AtW(dr,K) and Z; = [Ot’Wv(dr,?T).

Then (Z,Y) € &3 and (Z,Y) e 5’1/2‘1/9 by Proposition 3.12. In addition, the following
inequality holds:

do iy i7((Z.Y).(Z,7)) €C300,8,(W, W) + Cu(IYo - Follv + Yo - Yollv)
+Csdy i (V.Y), (V7). (3.31)
where
C =2k (1+ T2 (14 [W a2, ) (1+2]Y o +2] P o0) " (1+2] o +2] V] o) %3700 51
) [L4 Yo+ 1Y N+ 0¥ 0+ Ve + (1Y Ta + 1¥0)? + R 2a],
Ci =5k (14T (|W e, + [ W12, (1420 Y oo 42V lo0) 2 (120 o +2] ¥ o) 5
(14 [Vla+ 1V ]+ 1F 0+ [Va + (1Y ]a + 1F]0)? + |RY |2a]
Cs =6ka T (1+T%) (1+ | W5, ) 2 (142 Y oo 427 o0) ™ (142]Y oo +2] ¥ o) %1
x [T (Y Jat IV o 17 0+ 1¥ 1)+ T2 (Y o+ 1T )2+ T RY 120 ],
B3 =max{fo,B1, 2} and B5* = max{fi, 2, Bs}.
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Proof: Due to Lemma 3.7, it suffices to estimate |RZ - RZ |2 Let Z and Z be the
approximations of Z and Z respectively. That is,

Es,t = Ws,t(Y;‘) + Ws,t(}./& Yé) and Es,t = ’W’s,t(i) + Ws,t(ivi)'
Set A =E—-Z. Then by Proposition 3.12, we know that
|RZ: = RE v <11 Zot = Zow = Dsallv + [Weu (Y, V) = W o (Yo, Vo) v (3.32)

Due to the Sewing Lemma 2.5, to estimate the first term on the right-hand side of
(3.32), it suffices to estimate |dAly. Taking into account formulas (3.22) - (3.24),
we can write

“6Aq <[ DWo (V) (RY,) - DW, (Vo) (RY )] + [2V, (Yo, Vo) - 2T (Y, V)]
+ [@Xi}t((ysvyvs)v (Yuvyu)) - -@ﬁz((?sa?’s)v (?uvyu))]
=J1+Jo + J37 (333)

where 2V, %W, 2V and 2 are defined as in (3.4) and (3.5), respectively.
Estimates for J;: Triangular inequality implies that

| llv <[ DWW (Yo (RY,) = DWau (YO (RE) |,
+ [ DWo i (Yo)(RY,) - DWu . (Yo)(RY)|,,
+ [ DWu(V)(RY,) - DW. o (V)(RL)],
W =W o, (1+ [V o) [RY [2alt - s
Wl (L 1Y oo + [V 00) 2 | Ve = Vi v | RY 20t - s

+ [ Waps (1 + 1Y o)™ |RY = RY [aalt - s> (3.34)

Plugging (3.16) into (3.34), we have

[ Aly <{@+ 7)1+ |W|
< IRY 20| W = W]a,p,
F AT (W lagy + IW1%5,) (1 + [V oo + [T lo0) 2
(L4 [V oo # [V o) IR 2o (1Yo - Yolv + 1Yo - Yolv)

08 ) L+ [V oo + ¥ [0) Y72 (14 [V ] o0) ™

+ (IW o + IWI2 ) (L 1Y oo + [V o) 72 (14 Y oo + ¥ o)™

X (1+ T2 RY |a0)d, i (VY. (V. 9)) It - s (3.35)

Estimates for .J,: In order to bound Jo, we decompose Jo as follows
o =AY (Va, Vo) + [0 (Ve Ya) = R (Ve V)] = T3 + 3.
By (3.6), we can write

|ov.galt = 82 (3.36)

1 —
|21y <51+ 2Y o)=Y [51W - W
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Thus, using Taylor’s Theorem 2.11 and inequality (3.8), we have

12v < sup |DAY,(rYs+ (1-7) T, 7Y+ (1- 1)) (Vs - Vi, Yo - V),
7€[0,1]

<[t =8 [W a0 (1 + 2]Y floo + 2] ¥ [[o0)

*[[7Ysu+ Q=) YoulF1Ye = Yullv + 17¥5u + (L= Ysulv [(Y = ¥)sulv]
< W apa (1 +2Y oo + 2[¥ floo) 7

DY la + [T 1a)* Y = ¥lloo + (1Y o + [T 1) Y = ¥ [la ]It - s>

Applying (3.15) and (3.16), and putting together the terms with |[W — W |, g.,
(1Yo - Yolv + Yo - ?OHV) and de’W((Y,Y), ()7,37)), respectively, we have
173 1v S[Fl X [W = Wa,g, + F2 x (Yo - Yolv + Yo - Yollv) (3.37)
F By xd, (V) (V7)) ]t - s,
where

Fy =W gy (14 2]Y floo + 2[¥ floo) 7 (14 [V [[o0) ™
(I la+ 1Y la) + T (1Y [0 + 1Y 10)?),

Fy =(1+T*)(IW g, + W2 5,) (1 +20Y oo + 20F o) % (14 Y oo + ¥ ] )™
(Y o+ 1Y) + (1Y o + 1Y 0)?)

and

F3 =(|Wlaps + [W2,5,) (14 2]Y floo + 2¥ [o0) ™ (14 Y oo + | o0)™
X (T(IY o+ 1Y o) + T**(JY o + 1Y [2)?)-

Estimates for J3: Similarly, we decompose J3 as follows

T =20 T (Ve Ya), (Va, Ya)) + [ 27 (Ve Yo), (Vas Ya)) = 20 (Vi Vo), (e, Vo))

::J§ + Jg.
The estimate for J3 can by obtained by inequality (3.7), that is

5 v <1+ 2 o) Y (1 + 20V o0) 22 (Y [ + [V )
X HW—WHQQ’[;; ;*|t—8|3a. (338)

To bound J3, we apply Taylor’s Theorem 2.11 and get

1y < sup [DZT(ED) (Y~ Ve =T Y= Vi Y =T



On Nonlinear Rough Paths 563

where £(7) = 7(Ys, Y, Yo, Vo) + (1 - 7) (Y5, Yy, Vo, Y,,). Therefore, using inequalities
(3.9), (3.15) and (3.16), we can show that

[T 1v <[ (L4 T) [T 20,5 37 (1 + 20Y oo + 2/ Jo0) " (14 2]V o + 2] Vo) 250

< ([V o+ [V o+ ¥+ 1F ) [W = T 0,5

+3(1+ T*) ([Whe, + [WIE) (Y o + 1V o + ¥ 0 + 1¥]0)
X (142 oo +2[F00)® (1 + 2]V oo + 2] ¥[o0) B+
< (1Yo - Yolv + 1Yo - Yallv)

221+ T)([Weg, + [WIZ) (1 + T (Y o+ [V + [T+ [V ]a))
X (14 2]V oo +2[F00) (14 2]V oo + 2] ¥ [o0) 5+
x dy e (V1) (F,9)) 1 - s (3.39)

Therefore, combining (3.33) and (3.35) - (3.39), we have

NS
[T A+ [W ) (14 20V o + 2T o0) (14 2]V e + 27 )

<[IYla + ¥ la+ 1¥ 10+ 1¥ a0+ (Yo + 1Y a)* + IR |20] 00,6, (W, W)
AL+ T) (W, + IW5,) (1 + 2] oo + 2V o0) ™ (14 2]Y oo + 2] ¥ o)

<[[V]a + 1Y+ 1¥la+1¥la+ (Y o+ [Y]a)* + 1B 2]

< (Yo - Yolv + Yo - Yollv)
AL T ([W ey + [W2,) (14 2]V oo + 27 o) (14 2V o + 2] 7o) %7
(L4 T Y o+ [V [T e+ 17 10) + T2 (Y o+ [T 0)? + T2 RY 2a]
x do e (¥, V), (F,9) e - s, (3.40)
On the other hand, by (3.7) and (3.16), we can show that
[Wa o (Ve Ya) = Wt (Y, V) v = | (W = W) (e, Vo) - 20 (Y, Vo), (Vi Vo) |,
LA +T)A+ Wi )1+ [V oo + [Fo0) 22V (14 [V o+ [F o)
X Qa8 (W, W)
+2(1+T) ([W ey +[WZ,) (14 oo+ [V o0) 52202 (1Y o # [0 ) 52
< (1Yo - Yolv + 1o - Yalv)
F 2T (L + TV (Wl + [W2,) (14 [V oo + ¥ o) V5145
X (1+ [V oo + [P o)™ P2d (V). (7, 7))t - 52 (3.41)

Recall inequality (3.32). Inequality (3.31) follows from (3.15), (3.40), (3.41) and
the Sewing Lemma. This completes the proof of the proposition. O
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4. Rough Differential Equations

Let a e (%,%], Bs = (Bo,---,83) where 8, >0, k=0,...,3, and let W = (W, W) ¢
€*Ps([0,T]xV;V). That is, W is a-Holder in time, and three times differentiable
in space with growth multi-index 83, W is 2a-Hélder in time and twice differentiable
in space with growth multi-indexes 85 = (5o, 8oV 51,80V 51V B2) and B5* = (B1, 1V
Ba2,81 v B2 v B3), and (W, W) satisfies Chen’s relation (3.10). In this section, we
study the following nonlinear RDE:

Y, :§+f0tW(dr,YT). (4.1)

Definition 4.1. An a-Hélder continuous function Y is said to be a solution to (4.1),
if (YY)e gvzva(g ¢y» and equality (4.1) holds for all ¢ € [0,T] where the integral on
the right-hand side is a nonlinear rough integral in the sense of Theorem 3.10.

4.1. Local existence. In this section, we establish the (local) existence of a solution
for equation (4.1) using Picard iteration method. To this end, we introduce the
following notation. Let ® € C*([0,T];V). For any 0 < s <t < T, we write
[®ullv

H(I)”a,[s,t] ‘= sup La'

u#ve[s,t] |U - U|

We also define dyy,,,[4,¢] in a similar way, where we recall Remark 3.8 for the defi-
nition of dw 4.

Theorem 4.2. For any £ €V, there exist a positive number h, such that the RDE
(4.1) has a solution Y on [0,h] with initial condition Yy = €. In addition, the
following inequality holds on [0, h]:

1Y laofo,n) <57 ka1 + W

@) (L+[€]v)™, (4.2)
where y1 = Po Vv 1+ P11V Ba.
Proof: Choose h € (0,1]. Let

(V) = (€4 Wo(€),€),  te[0,h).

Then (Y°,Y0) € ggv?(g,g) with the remainder RE/S =0 for all (s,t) € [0,h]?. Due to

Proposition 3.12, for any n > 1, we can recursively define an element (Y",Y”) €
éafv‘”‘(g 6 given by

t
Yt””:§+/ W (dr,Y"), tel0,h].
0

By (3.30), the following inequality holds for all n > 1

n+1 o n
IR (20, 0,n) < Kl W e, (1+2]€]v) 7 [1+ 20 (Y™,
< [L+ 2 (1Y ™ |aro,ny + 1Y

n-— 71
[0,n] + 1Y 1| a,[O,h])]
ct0n 1Y afony + 1R Jzafon))]- (43)

By iteration, we know that (Y"1, Y") e gvzva,(g,g)7 which implies that

Y™ o0 € W gy L+ [€Dv +BENY ™ o o)™ + AR [aa o) (44)
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Choose hy = [572ko (1 + [W],)(1 +2|¢]v)™ ] =. We claim that for any h €
[0,h1] € [0,1], Y|4 0,n] and |R"|24,[0,n] are bounded uniformly in n. To prove
this claim, for any h € [0,hy], let fr,gn : Ry x Ry - R, be given by

Fn(@,y) = ko |[W g, (1+2]€)v)7 (1+4R%y) " [1+h¥(2y +y* + 2)]
and

gn(,y) = [Wags (L + [€]v + hy)™ + ha.

Then it is easy to see that f and g are both increasing in each argument h, x and
y. Let
HW s -2« HW €3 -
r1=———-——h and Yy = ———— .
2(1+ |Wle) ' L+ [We, '
It follows that for any h € [0,h1] ¢ [0,1], z € [0,21] and y € [0,y1], the following
inequalities hold

fh(xvy) < fhl (x17y1)

2| W« W%, he W |, hi®
=ko |[Wlle, (1+2]&]lv)" 5™ (1 + 34 3 + 2
’ ( 1+ [Wleg,  (1+[W]eg)? 201+ HWH%))
- W 2
<ko|W e (1+2|€]v) 57 A = —— 2 _p %<y
H ” 3( ” HV) 1 5(]—"’HWH<§3) 1 1

and
Wi h7*
21+ [Wl%,)

From inequalities (4.3) and (4.4) we can show, by a recursive argument, that
max{[|Y" |, 0.1} < gn (21,41) =57 ko |W e, (1+ 2] [v)™

<5 ko [We, (1+ €]v)™ (4.5)

s (L4 €)™ +

gn(x,y) < gn, (x1,91) <2|W

and
2v1+4

2

<52 W

provided that [Y|4 10,1, g
nition, we know that V0] a 041 = [ R |2.[0.4] = 0, and

1Y o 0,07 < [W s (1 + [€]v) < w1

As a consequence, we conclude that Y| [0,n] and | R"||24,[0,n] are bounded uni-
formly in n for h € (0,h1]. This also yields that

W],
1+ HWHCI%

By (4.5), (4.7), Proposition 3.13 and the fact that 0 < h < hy = [57 "2k, (1 +
W, )(1+2]€]v)" ] <1, we get the following estimate

da,W,[O,h] ((Y”+1, Yn)’ (Yn7 Yn—l)) < C5da,W,[0,h]((Yn7 }/n—l)7 (Yn—l,Yn—Q)),

kol W, (1+ [We,) (1+2]¢]v)*"

w)(L+ [Elv)™,  (4.6)

n 5
rﬁ?éc{”RY l2a,[0,n]} < @1 =

(53(1 + HW

a,[0,n] £ Y1 and HRYO l2a,[0,n] < 1. Indeed, by defi-

max{[|Y" oo [0, } < +Elv <1+ €]y (4.7)
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where
C5 =6k h®(1+ h*)(1+ [Wligy)*(1+ 2]V oo 0,01 *+ 21V oo f0,01) "

X (1+2[Y" oo fo.0] + 21V "> o0, 0,0)
x [1 + R 2y

lfon] + 1Y " laso,n] + 1Y lafo.n))

+ 2" o) + 1Y |afo,n1)? + B>

R aa o]
<120 x 5% PR, (14 [ Wiy ) (1 + [€]v) % 7200,

Let 72 = 85" + B3 + 81 = max{fo, B1,f2} + max{f, B2, B3} + 1, and let C = 120 x
572k,. Then, we have

dow o (YY), (Y™, Y™ H))
<Cs(1+ [Wlg,)2(1+ [€]v) 2 h¥dg,won (Y Y™, (YY), (4.8)

Choose hy = [2C5(1 + [W]4,)2(1+ [€]v)2]™% < hy <1, and let h € (0,hy]. Then
by (4.8), we have the following inequality

1
da,W((Yn+1a Yn)v (Yna Yn_l)) < ida,W((Yn7 Yn_1)7 (Yn_la Yn_2))'
This yields that

Z da7W,[0,h]((Yn+laYn)a (Yn’Yn—l)) < 0o.

n=1
Due to Lemma 3.9, we can conclude that (Y™, Y™ 1) - (Y,Y) ¢ é‘}?va(g ¢) AS N —> oo
By Lemma 3.7 and Proposition 3.13, we have for any 0 < s <t < h,

t t t
\Y;Tl—fs W (dr,Y,) :Hf W(dr,YT")—fg W(dr. )|

<Clg,w, o (YY), (YV,Y))[t - %,
for some constant C' > 0 uniformly in n. This implies that equation (4.1) holds for
all t € [0, h]. Finally, inequality (4.2) follows from (4.5) and the fact that (Y,Y") is

the limit of (Y™, Y™™ !) in @ﬁ’vz)va@ 3% -

v

4.2. Uniqueness and global existence. In this section, we prove the uniqueness of a
solution for equation (4.1). We also present some hypotheses that imply the global
existence of a solution for this equation.

Theorem 4.3. For any time interval [0,T] and initial value § € V. There exists
at most one solution to equation (/.1).

Proof: Suppose that ¥ and Y are two solutions to (4.1) with initial condition &
on [0,T]. By Proposition 3.13, the following inequality holds on [0,h] c [0,T],
assuming h < 1.

doz,W,[O,h] ((Ya Y)7 (}77 }7)) < C5do¢,W,[O,h] ((Y? Y)a ()77 }7))’ (49)
where

Cs =12kah® (1 + [Wle ) (14 2]Y oo + 2[¥ o)™ (1 +2]Y o0 + 2V o)
<[L+ (Y o+ [V + 1Y [+ [¥]0) + (Y o+ [V ]a)* + 1B |20 ]
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Choosing h small enough, (4.9) yields that ¥ =Y on [0,h]. Notice that the choice
of h doesn’t dependent on the initial value. Therefore, by iteration, we can extend
the uniqueness to any time interval [0,7T]. O

As stated in Section 2, the linear growth of the vector field cannot guarantee the
global existence of a RDE driven by a linear rough path. This is also true in the
case of nonlinear rough paths. In order to obtain the global existence, we introduce
the following growth condition of W. Let W = (W, W) € €*#3([0,T] x V; V), let

Y1 = B0V B1+B1V B2, and let v = max{ By, B1, B2} + max{fi, Ba, B3} + Bi.
Hypothesis 1. 22 —~y5 + v, < 1.

A similar condition in the linear situation can be seen, e.g., in Besaltii and Nualart
(2011); Davie (2008); Lejay (2009).

Theorem 4.4. Under Hypothesis 1, the RDE (4.1) has a solution on any time
interval [0,T]. By Theorem /.53, this solution is unique.

Proof: Let e; = [2C6(1 + [W ], )2(1 + [€]v)2] = where Cs = 120 x 572k, is the
constant appearing in (4.8). Then, by Theorem 4.2, the RDE has a solution ¥ (")
on [0, €1] with initial condition Yo(l) = £. We denote by & = Ye(ll) the terminal value

of Y. In order to extend the solution to the entire interval [0,7], we consider the
following RDE

t t
Yt:Ys+f W(dr,Y,.)+f (dr,Y,). (4.10)

By Theorem 4.2 again, equation (4.10) has a solution Y@ on [ey, €; +€5] with initial
condition Y, = £, where ez = [2Cs(1 + [W ||, )2 (1 + & |v)*2]"=. By iteration,
we have a sequence {€,}n»1 with values in (0,1), such that the equation (4.10)
has a solution Y™ on [n,,mu1] = [Zie, ek,zzzll €n+1] with initial condition
Y = 6, = Vi and e = [206(1+ [We)?(1+ [€av)2?] 5. By (4.2) we
have the following inequality

Insillv < YV <[€nllv + €2, [Y Do
5271+2 A « )
H : 2(14'H§n“v)’y1 "2,
2C6(1+ W)

Recall the assumption %2 — 2 +71 < 1. By the mean value theorem for real valued
functions, there exist 7 € [0, 1], such that

<énllv +

o3

S| W e,
2C6(1+ |Wl,)?

=(1+[&alv) ™ + [522(2C6) (1 + [€nlv) 2]
29

><%[1+anuv+T5271+2(2C6)_1(1+anﬂv)%_'w]a . (4.11)

2 —
(L+ [nsallv) e <[ 1+ [€nlv + (L+[&nfv)

By definition we know that «; < 5. This implies

2

[1+[€nlv +7527*2(2C6) ™ (1 + [l€n ) 2]

(1 ) F a1 L+ 520220

ov(22-

[1+5772206) ™ T (14 e ) E (4.12)
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As a consequence of inequalities (4.11) and (4.12) , under the assumption 1, we can
write

L+ Jenn ) = <+ [€ullv) & + 2[1+5772(2C6)" ] 1+ [y E

2v1

<(1+|&nllv) = + [1+52%+2(20)] . (4.13)

QHQH

It follows that
-1

1 a2 _1122v1
ener 2[206(1+ [W 4, )*T = [(1+ [€nav) # + 2 (145707 (205) ] ]
B 1 22yl
et + (206(1+ [W)?) " 21452772 (205) ]
=6, + Ko) ™ (4.14)

Observe that the constant K is independent of n. Thus by iteration, the following
inequality holds

n;e 261 +nK0 = oo. (4.15)

In other words, we can extend the solution to any time interval [0,T]. g

Assume that the derivatives of W are all bounded, that is 83 = (8o, 0,0,0). Then,
Hypothesis 1 is equivalent to By < a and it coincides with Besalt and Nualart’s
condition for global existence (see Theorem 4.1 of Besali and Nualart, 2011).

4.3. Properties of the solutions. Assume Hypothesis 1. In this section, we prove
some properties of the solution to the RDE (4.1). The first proposition below
provides an estimate for the Holder norm of the solution to (4.1). Before stating
the proposition, we first prove the following lemma.

Lemma 4.5. Suppose that X e C*([0,T];V). Let m=(0=tg <ty <ta<...,tn,=T)
be a partition. Then,

1- 1-
[ X o <™ max X o, -t 01 < (Tl max [ X o, 17

Proof: For any 0 < s <t <T. There exists 0 < k1 < ko <n such that s <ky < ks <t.
1
Then by Jensen’s inequality for convex function f(x) = |z|=, we have

1 Xselv Xt Iv + 1 Xe, e lv + o+ [ Xy, ey
<
|t —sl* |t — 5|

sl 4t
<11£1ka<x HX”a tk tk—l] X - |t—5|a 2

l-« &
n' "t - s|
<1I£1ka<x HX”a [te—tr-1] % W

The lemma is then proved. ([l

Proposition 4.6. Assume Hypothesis 1. Let Y be the solution to the RDE (}.1)
with initial condition € € V. Then the following estimate holds:

1+lzan, (ZLil-a)KoT
1Y o < ] W gy (1 + €] y) 72 572G o) Ko (4.16)
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for some ¢ depending on « and B3, where
Ly qEv
Ko = (2C6(1+ [ W)?) " =2[1+572(2Co) ]
and Cg =120 x 57k, are the same as in (4.14) and (4.8), respectively.

Proof: Let e = [2Cs(1+|W |, )2(1+]¢]v)™] = . Theorems 4.2 and 4.3 imply that
there exists a unique solution to (4.1) with initial condition Y; = € on [0, €;]. Denote
the solution by Y. Then, proceeding with a similar argument as in Theorem 4.4,
we obtain a sequence {Y ("D} ., where Y("*1) is the unique solution to RDE
(4.10) on [, Tne1] = [0y € it L €] with initial condition ¥;™") = ¢, = v,
and €41 = [206(1+ |[W |4, )2 (1 + I€. 1) 2] =. By inequalities (4.2), (4.13) and an
iteration argument, we have the following estimate:

a1

n 2 (n+l _112viy
I D o <5 2k [ W {1+ ) % + P20 522 a0y H)
(4.17)

In order to obtain (4.16), we consider the following two cases. Firstly, if T < ¢y,
then (4.16) holds by taking n = 0 in (4.17). On the other hand, for any 7" > ¢,
there exists a positive integer N, such that ny < T < ny41. Notice that by (4.15),
we have

N N
1
T>Y 6,2 (e +Kon)™" > ?(log(ezl + KoN) -log(erh)).
0

Recall that €, = [2C6(1+ [W]g,)2(1 + |€]v)72]* and
1 122v1
Ko = (206(1+ [Wile,)?) " 21+ 5702 (205) 1]
It follows that

1 _
N g (fOTHRED - 1) = K (0T - 1)[205(1+ [W
0

@) (1+[¢]v)2]=

“ L1+ 522020) T (1 ey ) F (T - 1), (4.18)
Y2

Let Y be the solution to (4.1) on [0,7] with initial condition . Then, combining
Lemma 4.5, (4.17) and (4.18), we have

Vo< N7 max Yo < (14 ey) e = mmel S im0l
1<n<N+1

for some ¢ depending on « and B3. This completes the proof of the proposition. [

The next proposition provides the dependency of the solution to (4.1) on the
initial condition under Hypothesis 1.

Proposition 4.7. Assume that W = (W, W) satisfies the conditions in Theo-
rem 4./. Let'Y and Y be the solutions to the RDE (/.1) with initial conditions
& and &, respectively. Then the following estimate holds

da,W((KY)’(?v?)) SCT(Tl_aV1)|‘£_a‘V7 (4'19)

where ¢ is a constant depending on «, B3, |W e, & and E.
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Proof: By Propositions 3.13 and 4.6, and the fact that Y and Y are solutions to
(4.1), we can write for any h € [0,1],

doz,W,[O,h] ((Ya Y)7 (?a }7)) < HE - EHV + CQhad(x,W,[O,h] ((Y? Y)a (?7 i7))]’ (420)

where ¢, co are constants depending on |[W|«,, a, B3 and &, € Lete= (201)’% A
(2¢2)"= A 1. Tt follows that

dow 0, (V.Y), (Y. Y)) <2¢1[€ - E]v (4.21)
on [0,¢]. By iteration, we have that for any n > 1,
o w,fne,(n1)e] (YY), (Y, V) <201 [Vie - Yaue| v,
and
|Yne = Yaellv <[ Yon-1ye = Yo nyellv + €Y = Y f(n-1)ene]

SHYv(n—l)e - }A}(n—l)eHV + Eada,Wy[(n—l)Eyne]((YV? Y)a (?7 ?))
<2 Yin-1ye = Yon-nyellv-

Thus we can write

da,W,[ne,(n+1)e] ((Y’ Y)v (?a S;—)) < 2n+lcl ”E - g”V

In order to obtain the global distance, we proceed as follows. If T < ¢, then (4.19)
is a direct consequence of (4.21). It suffices to consider the case when T > €. Let
N be the positive integer such that Ne < T' < (N + 1)e. Due to Lemma 4.5, the
following inequality holds

da,W((Y7 Y)a (?v ?)) S(T/E)lia 02}?;}](\] {da,W,[ne,(’rHl)e] ((K Y)v (?7 ?))}
<" =€,

for some ¢ > 0 depending on «, B3, |[W|%, £ and €. This completes the proof of
the proposition. O

Due to Propositions 4.6 and 4.7, we can deduce the following corollary.

Corollary 4.8. Assume Hypothesis 1. Write Y (&) for the solution to the RDE
(4.1) with initial condition § € V.. Let K be any positive constant. Then,

(i) 1Y (€)]a is uniformly bounded in the space {&,|&|v < K}.
(i1) The constant c in (4.19) is fized in the space {(£,€),|€]lv + |€]v < K}

Remark 4.9. As a consequence of Proposition 4.7, we have the following estimates
Y =Y ]a <(T* v 1) €= E]v,

and

sup [V = Yiflv < [1+(Tv1)]E~E]v
te[0,T]

for some constants ¢ depending on «, 83, |[W|¢, £ and c.
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5. A functional approach to nonlinear rough paths

Let V be a Banach space. In this section, we consider the nonlinear rough path
defined in Section 3 as a CP»(V;V)-valued linear rough path. We will show that
the two approaches are equivalent under some assumptions.

We start this section by defining the space C8»(V;V):

Definition 5.1. Let 8, = (fo,...,3,) be a multi-index, where 8 > 0 for all k €
{0,1,...,n}. The space CP»(V;V) is the collection of continuously differentiable
functions on V' with values in V, equipped with the norm:

n DR e, v
[ls. = Y sup L
Soeev (14 ]zl )Pe

It is easy to see that (CA» (V;V), ||, ) is a Banach space. In the next lemma, we
show the equivalence of the spaces C*([0,T];CP»(V;V)) and C*P~([0,T] x V; V)
defined in Definition 3.1.

Lemma 5.2. (i) Let ® ¢ C¥Pn([0,T] x V;V) be defined by (3.1) with ®q €
CP~(V; V). Then, ®eC*([0,T];CP~(V;V)).
(ii) Conversely, if ® € C*([0,T];CP»(V;V)), then ® € C¥Pn([0,T] x V; V).

Proof: (i) Fix t € [0,T]. We can show that

[@:ls, < 1@0llg, + [Potlap, < [Polls, + T¥[Plap, < oo
Similarly for any 0 < s <t < T, we have
|@s.clg,. < |®]ap, It -5
It follows that as a CP~ (V;V)-valued function, |®[, < [®]a.p, < co.
(i) We estimate |®], g, as follows:
- | D*®se(2) v |9st]8,
|@]ap, =Y, sup e o= sup il o),
(20 s=tefo,7 |t = 8|*(L+ 2] v)Pr  sarerory [t s
xeV

As a consequence, ® € C*A([0,T] x V; V). O

Let n > 1, and let (W, W) € €°([0,T];CP"(V;V)) be a CP~(V;V)-valued linear
rough path in the sense of Definition 2.2. Then, W e C3%([0,T]%;CP"(V;V)®2).
We define W : [0,T]% x V? —» V as follows:

Ws,t(x7y) = D(2)Ws,t(‘r7y)7 (51)
where D®) : CB~(V; V) @ CPr(V; V) —» CPr-1Bu1(V x V; V) with the multi-indexes
B:_, and B}*, defined in (3.3), is given by

D (¢!,6%)(2,y) = D (y) (¢ (2)),
for all (¢*,¢?) € CP»(V;V)? and (x,y) € V2. One should notice that the opera-

tor D) can be extended continuously to the tensor product space C(V;V) ®
Cﬁ”(V; V'), and it is a linear operator on this space. We can also define

DI (¢, 6%)(2,y) = D' (2)(4*(z)) (5.2)

for all (¢!, $?) € CP»(V;V)?, and continuously extend it to CB»(V;V)®CA(V; V).
In the next proposition, we show that (W, W) e €A ([0,T]x V;V).
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Proposition 5.3. Let W = (W, W) € €“([0,T];CP~(V;V)), and let W : [0,T]? x
V2 5V be given by (5.1). Then (W, W) e €%~ ([0,T]x V;V).

Proof: According to Lemma 5.2, we know that W e C*#»([0,T] x V;V) and thus
W e Cga’ﬂ:"l"ﬂ:"h([O,T]2 x V2:V). It suffices to verify Chen’s relation (3.10). Re-
call that (W, W) e €“([0,T]);CP~(V;V)) satisfies Chen’s relation (2.3), and the
operator D) is linear on CA»(V; V) ® CP~(V; V). It follows that

Ws,t(x7 il/) - Ws,u(x7 y) - Wu,t(x7 y) = D(Q)(Ws,t - Ws,u - Wu,t)(x7 y)
:D(Q)(W&u ® Wu,t)(zvy) = DWu,t(y)(WS,u(x))~
As a consequence, (W, W) ¢ B~ ([0,T] x V; V). O

Remark 5.4. Proposition 5.3 shows that W can be constructed from W. However,
generally we are not able to recover W from W satisfying Chen’s relation (3.10). In
other words, the nonlinear integral [Ot W (dr,Y,) and the nonlinear RDE (4.1) can
be studied using the approach of Section 3 even if VW does not exist.

Let W = (W, W) € €*([0,T];CP~(V;V)). In the theory of linear rough paths,
under the assumption that Y € 22%(L(CP(V;V);V)), the rough integral of V
against W is well-defined. The nonlinear rough integral defined in Section 3 can
be also interpreted as this type of linear rough integral. In this case, the controlled
rough path Y belongs to a proper subset of .@%ﬁ“(ﬁ(cﬂ" (V;V);V)), that is equiv-
alent to é”‘?va in the sense of Definition 3.5. To describe this subset, we introduce
the following special class of operators in £(CP(V;V);V). For any = € V, let
T:CP(V;V) -V be given by

z(¢) = ¢(x). (5.3)
Then 7 € £(CP~(V;V); V) with operator norm bounded by (1 + |z|y)?. Let n > 1
and let W e C*([0,T];CP(V;V)). We introduce the space of basic controlled rough
paths of a CP»(V;V)-valued rough path as a subspace of Z2%(L(CP(V;V);V)),
where the space 22%(L(CP~(V;V);V)) is defined as in Definition 2.3. Here, the
state space of W is CP(V;V). Let (V,)') € 22%(L(CP+(V;V);V)). Then the
state spaces of Y and Y’ are L(CP(V;V); V) and L(CP~(V;V); L(CP(V;V); V),
respectively.
Definition 5.5. A pair of functions (¥,)") € 222 (L(CP»(V;V);V)) is called a ba-
sic rough path controlled by W, if there exists a pair of functions (Y Y) eCH(V;V)x
C*(V; V), such that for all t € [0, 7], V; = Y; and for all (¢1,¢o) € CP~(V;V)?

Vi(61,02) = Y} (61, 02) 1= DD (g1, 62) (V2, V) = Do (V) (61(Y2)). (5.4)
We write ggv“ for the collection of such pairs.
The next proposition provides the equivalence between the spaces éa~v2va and 51,2[}"

Proposition 5.6. Let n > 1 and let W e C*([0,T];CP(V;V)). Then by
Lemma 5.2, W € C*P»([0,T] x V;V) as well. In addition, the following properties
hold:
(i) Let (Y,Y) € &2 in the sense of Definition 3.5. Then, (Y,Y') € 2% in
the sense of Definition 5.5, where Y, and Y are given by (5.3) and (5.4)
respectively, for all t € [0,T].
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(ii) Conversely, let (Y,Y") € 22 with associated pair (Y,Y) € C*(V; V)2, Then

(Y,Y) e &2
Proof: (i) By assumption Y € C*([0,7]; V). It follows that
- Y, . Y.) - 6(Y,
IP]a= sup 1Y el cicen (vivyivy - sup sup lo(Y2) — ¢(Ys)|v
s#te[0,T] |t - 5|0‘ s#te[0,T] 0£6eCBn (V;V) |t _ S‘O‘ H¢ 8,

<L+ Y o0) Y o

This implies that ¥ e C*([0,T]; £(CP(V;V);V)).  Similarly, since Y e
C*([0,T];V), we can deduce the following inequality:

17" < (14 [V ]o0) 2 (14 [ ¥ o) [V o+ (1 + 1Y o)™ (1 #+ Y floo) ™ [¥ -

It suffices to estimate the reminder term. Recall that Y’ is defined as in (5.4).
Then, for any ¢ € C#»(V; V), the remainder th(qb) can be written as follows,

R 1(0) = 6(Y2) = 6(Y:) = Do(Ya) W (Vo).
Due to Taylor’s Theorem 2.11 and the fact that (Y,Y) € &2, we have

IRY () v <|DS(Ya)Ya — DS(Ya)Wst(Va) v

1
+ 5 Sup |D*¢(7Y; + (1= 7)Ye) (Ve Yar) v

0<7<1

=|Dp(Y:)[We e (Ys) + RY,] - Do(Ys) Wit (Ys) v

1
+ 5 sup [D2o(7Ye + (1= 7)) (Ve Yoo lv
2 0<r<1

1
<U8llga| 5L+ 1Y o)=Y+ (14 [V o) [RY [ 20 |[£ = 5.
2

This implies RY ¢ C2%([0,T); £L(CP~(V;V);V)). As a consequence, we conclude
that (V,Y") e &22.

(ii) To prove the converse result, it suffices to show that RY e C3%([0,7];V),
where

RSY’t = Yg,t - Ws7t(Ys)-

Let K be the closed convex hull of the set {Y;,¢ € [0,7]}, and let K is a compact
set in V' whose interior contains K. Choose a function ¢ : V' — V that is infinitely
differentiable and satisfies the following properties:
a) ¢(x) = for all x € K. That implies D¢(x) = I and D?¢(x) = 0 for all € K,

where I denotes the identity operator in L(V; V).
b) ¢p(z)=zoeV forall ¢ K.
¢) ¢ and all its derivatives are bounded.
Then, it is easy to check that ¢ € CA»(V; V) for any multi-index B,. In addition,
we can show that

| RS,

v =[¢(Ye) = ¢(Ys) = Dp(Ys) [Ws e (05)]v
=IR; (D)lv < IR |2al¢llg, 1t - s
In other words, RY € C2*([0,T];V), and thus (Y,Y) € &2¢. O

In the next theorem, we will show the equivalence of two rough integrals.
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Theorem 5.7. Let W = (W, W) e €“([0,T]);CP2(V;V)). Due to Proposition 5.5,
we can construct (W, W) e €*P2([0,T] x V;V). Assume that (Y,Y") € 2% with
associated pair (Y7Y) € éavzva by Proposition 5.6. Then, the following two rough
integrals coincide,

t t
[ W(dr,m):f V.dW,., (5.5)

where the integral on the left-hand side is in the sense of (3.26), and the integral
on the right-hand side is in the sense of Theorem 2./.

Proof: Let =5 and fEVS,t be the approximations of the integral on the left and
right-hand side, respectively. That is,

Es,t = Ws,t()/s) + Ws,t(}./s:Ys) and Es,t = )’}sWs,t + Z’Ws,t~

Here 375' acting on W;; is a continuous extension of formula (5.4) to the tensor
product space CP2(V;V)®2. By definition of W and (Y,Y”), we have

ViWei + Y Wa i = We i (Ye) =DOW, (Ye, Ya) = We i (V) + W (Y, Ya).
This implies the equality (5.5). |

At the end of this section, we provide an alternative approach to study the
nonlinear RDE introduced in Section 4. Let W = (W, W) € €*([0,T];CP*(V:V)).
Then, the RDE (4.1) can be also understood as the following equation:

Y=+ fot 5(Y;)dW,, (5.6)

where & denotes the Dirac delta operator, that is 6 : V — £(CP#(V;V); V) is given
by §(x) = T. A function Y € C*([0,T];V) is said to be a solution to (5.6), if
(Y,8(Y)) € 2%(V) and the equality holds. On the other hand, suppose that Y’
is a solution to (5.6). Then, (V,Y’) € &2* with associated pair (Y,Y) e &22.
Therefore, Y is a solution to the equation (4.1) in the sense of Definition 4.1.

On the other hand, notice that as an £(CP3(V;V);V)-valued operator, § is
three times differentiable. More precisely, the derivatives of § can be written as
follows D*§(x)(¢) = D*¢(x) for k = 1,2,3. Thus |D*s(x)| < (1 + |z|v )P for
all k = 0,1,2,3. Then the (global) existence and uniqueness of equation (4.1)
can be derived by the theory of linear rough paths (see e.g. Lejay, 2009). For
other conditions that implies global existence, we refer the reader to the papers
Lejay (2009, 2012). We did not consider Lejay’s condition for global existence in
Section 4, because we doubt whether it is applicable in our setting. Under the
basic assumptions in Section 4, there may not exists W such that W = D@W. In
this case, the result of linear rough path cannot be directly applied without any
changes.

6. Some applications of nonlinear rough paths

6.1. An Ito-type formula for controlled rough paths. In this section, we follow the
idea of Section 5 to consider the nonlinear rough path as a C8» (V; V)-valued rough
path. Then, we aim to generalize the Ito-type formula (3.12) in Hu and Lé (2017)
proved in the nonlinear Young’s case.
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Theorem 6.1. Let W = (W, W) € C*([0,T];CP*(V;V)). Assume that (Y,Y') ¢
D2V and (Z2,2") e 233(L(V;K)). Then, the following Ito-type formula holds

t t t
f ZrdW(r,l/T):[ ZTW(dr,Yr)+[ 7, DW (r,Y,)dY,
S

fZD2W(rY)d deXY deYX . (6.1)
where

Xt = [ DW(d’I’ Y, ) - hm [‘DWtk htk(}/—tk 1) (D(2)) tk 1Wtk 1,%] (62)

(DY (f1,¢2) 1= D2 (Y/$1) € LV V).
The first three integrals in (6.1) are rough integrals in the sense of Proposition 2.7
(i), while the last three integrals on the second line are Young’s integral. In the
above expressions, (Y), (X,Y) and (Y, X)) are 2a-continuous functions defined in
Definition 2.9 and Remark 2.10.

Formula (6.1) provides the total differential dW (¢,Y:) of W(¢,Y:), that means,
heuristically, dW (t,Y;) = %W(t,Y})dt. Comparing with the classical It6 lemma,
the function W in Theorem 6.1 is not differentiable, but only a-Ho6lder continuous in
time. In this case, the assumption that Y is controlled by W ensures that W (dt, Y?)
is well-defined as the differential of the rough path G; = fo W(dr,Y,) controlled by
w.

In order to prove Theorem 6.1, we should make each integral in (6.1) to be
well-defined. The first lemma below shows that Fy = W(t,Y;) is controlled by W.

Lemma 6.2. Let W € C*([0,T];CP2(V;V)), and let (Y,Y') € Z2%(V). Denote
F,=W(t,Y;). Then, F e 23(V).

Proof: By Taylor’s Theorem 2.11 and the fact that (Y,Y”) e Z23%(V), we get
Fy i =Fy = Fy = W, 1 (Ys) + [Wi 1 (Yy) = Wt (Yo) ]+ Wi (Ye) - Wi(Y5)

=YW + DW(Y,)[Y, Wy, + R ]+ O(|Ys,

This yields that (F, F") € 222(V), where F' :=Y + DW (Y)Y’ € L(CP>; V). 0

Suppose that W = (W,W) e €%([0,T];:CP*(V;V)). As a consequence of
Lemma 6.2, the integral fst Z.dW(r,Y,) = [St Z,dF, is well-defined as the inte-
gral of two controlled rough paths in the sense of (2.12). Additionally, by Taylor’s
Theorem 2.11, we can approximate this integral in the following way:

t
f Z,dW (1, Y,) = ZyFy + Z/F' W, 1 + O(|t - s**)
S

=Z Wi (Ys) + ZsDW, ((Ys)Ys 1t + Zs DWs (Y)Yt + Z D*W, (Ys)(Yer, Ys )
+Z;Y9Ws,t +Z;DW(‘S’}/S))/5,W8¢ +O(|t_3|3a)v (63)

where
ZY(p1,¢2) = Z(¢1)[02(Ys)],
and
ZDW (5,Ys)Y{ (b1, ¢2) = Zo(d1)[DW (5, Y5) (Y (#2))],
for all (¢1,¢2) € CP(V; V)2
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The next lemma provides a generalized version of Theorem 3.10. The proof is
similar and we omit it.

Lemma 6.3. Let (W, W) € C*([0,T];CP2(V;V)), and let (Y,Y") € 222 (V). Then,
the following limit exists and defines an additive function:

n

t —
/ W(d’l", YT) = |h\m0 Z I:Wtk—lvtk (Yg) + Yt,k,l Ytk—ID(2)Wtk—17tk]7
s =V k=1

where Y/T, D) (61, 62) = Dea(Y)[Y/ (61)] for any (1, 62) € CP2(V; V).

For all t € [0,T], let Gy := fot W(dr,Y;). Then, a similar argument as in Propo-
sition 3.12 implies that (G,Y) € &2 or equivalently (G,Y) € 222 (V). Therefore,
the integral fst Z.W(dr,Y,) = f: Z,.dG,, defined as in (2.12), can be approximated
in the following way,

t —
f Z,W(dr,Yy) =Z,Gs + Z.TWss + Ot - s°%)
=ZWai(Y) + ZY Y DOW, , + ZIV Way + O(t - sY). (6.4)

Assume that (W, W) € €*([0,T];CP*(V;V)). Let H, = Z,DW (t,Y;) € L(V;V)
for all ¢ € [0,T]. By a similar argument as in Lemma 6.2, we can show that

Hyy = Z\Wo :DW (8,Ys) + ZY.DWy ; + ZsD*W (s, Y)Y Wy, + O([t - s|**).

In other words, H is controlled by W. This allows us to define f: Z. DW(r,Y,)dY, =
fst H,.dY, by (2.12). In addition, we can approximate this integral as follows,

fst Z,DW (r,Y,)dY, =Z;DW (5,Ys)Ys+ + Z.DW (5,Ys) Y, Wy ¢ (6.5)
+ ZY, DY W, + Z,D*W (5, Y)YV W, + O(|t - ),
where D) is defined as in (5.2),
Z.DW (8, Y)Y (¢1,92) = Z,(¢1)[DW (5, Y5) (Y (¢2))],

ZS?SD(l)YS/(QSla ¢2) = Zs [D¢1(Y5)Y:9,(¢2)]3
and
Z,D*W (5, Y5)YJY (41, 02) = Zs[D*W (5, Ys) (Y (1), Y, (62))],
for all (¢1,p2) € CB3(V; V).

By a similar argument as in Theorem 3.10 and the Sewing Lemma, we can
show that the limit in (6.2) uniquely exists. It allows us to define X; to be the
limit. In addition, we can verify that X € 22*(L(V;V)). Thus the three quadratic
compensator terms on the second line of (6.1) are all well-defined, and according
to Remark 2.10 (iii), (V) € C2%([0,T]; V@ V) and (X, Y ), (Y, X)) € C3([0,T]; V).
Therefore, the integrals on the second line of (6.1) can be interpreted as Young’s
integrals. We can approximate them as follows:

t P
f Zo(X,Y )y = Z.DWe 1 (Ya)Yau - 2ZY.DOY W, + O(|t - s[**), (6.6

t —
f Z(Y, X ) = ZDW 1 (Ys) Ve =22V, Y.DEW,  + O(lt - s*),  (6.7)
S
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and
t
f Z,D*W (r,Y,)d(Y), = Z,D*W (5,Ys) + O(|t - s[°®).
S
Notice that, by definition,

(V)or =Var ®Yop =2V, = Yep® Yo -2 fst Y, ®dY, -Y,@Vs,)
Yo ® Yy - 2(Ye ® Var + VY Woy - Yo @Yey) + O(Jt - s**).
This allows us to write
fst Zy = Z.D*W (s, Y)[Yar ® Yoy - 2V YW, ]+ O(1t - s[**)  (6.8)

As we approximated all the integrals in (6.1), the proof of Theorem 6.1 is straight-
forward.

Proof of Theorem 6.1: Denote by LHS and RHS the left and right-hand side of
equation (6.1) respectively. Recall equality (6.3), that is,

1
LHS :ZsWs,t(Y;) + ZSDWs,t(Y;)Ys,t + ZSDWS(YS)YS,t + §ZSD2WS(YS)(YS,t7 sz,t)
+ Z'Y Wi + ZDW, (Y)Y W, i + O(It - s[>*).
On the other hand, combining (6.4) - (6.8), we have

1
RHS :Z8W97t(Y€) + ZSDWS,t(}/s)YS,t + ZSDW‘;(YG)YS,t + §ZSD2WS’(}/S)(YS¢7 Ys,t)
+ ZY Wai + ZDW, (Y)Y W, i + O(|t - s[>*),

as well. Since a € (%, 11, it follows that equality (6.1) holds for all 0< s <t <T. O
6.2. RDEs with spatial parameters. Let (W, W) € €*([0,T];CP (R%;R%)), and let
W be given by (5.1). Assume Hypothesis 1. Then, due to Theorem 4.4, for any

fixed € R%, the following equation

Yi(z) =+ [OtW(dnYr(x)), (6.9)

has a unique solution Y (z) on [0,7]. In this section, by studying the gradient in
x of Yi(x), we will show that Y;(z) is invertible in x, and the inverse is controlled
by W as well.

In the next theorem, we follow the idea of Hu and Lé (2017) to show that Yi(z)
is differentiable in z. Before presenting the theorem, we introduce some notations.
Let M be a dxd matrix. We define the operators ML, MM : (RI@R%)®? » RI@R?
as follows, for any (A, B) € (R ® R%)2,

MY*(A®B)=M-A-Band MM(A®B)=A-M".B. (6.10)
For any d x d matrices My, My, we define the operator { My, M>} : R @ R? —» R by
(M, M} A=Y MPF2M5Fs AR2Rs for all A eR? @ RY. (6.11)

k1,k2,k3

These operators appear when we approximate matrix-valued rough integrals.
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Theorem 6.4. Let (W, W) € €°([0,T];CP*(R%R?)). Assume Hypothesis 1. Let
Y = {Yi(z),t € [0,T],z € R} be the unique solution to (6.9). Then for any t €
[0,T], Y; is differentiable, and the gradient DY; satisfies the following equation:

DY,(x) =1+ fotdFr(x)DYr(x), (6.12)

where I denotes the dxd identity matriz and F(x) is a dxd matriz-valued function
given by
t
Fy(z) = [O DW (dr, Y, (z))

that is defined in the sense of (6.2). Moreover, for every t € [0,T] and x € RY,
DY;(x) is invertible, and its inverse (DY;(x))™' =1 My(x) satisfies the following
equation:

My(z) =1 - /OtMT(:v)dFr(x) " /Ot[Mr(x)]Ld(F(m))r. (6.13)

where (F(x)), is the quadratic compensator of F(x), which is an (RT®@R?)®%-valued
2a-Hélder continuous function on [0,t], and [M,.(z)]": (R?@ R%)®? - R @ R? s
defined as in (6.10).

Proof: Fix z € R%. Let e be a unit vector in R?. For any h € (0,1), we write

1
= Vil + he) - (@)
We claim that as h | 0, 7' converges to the solution to the following equation
t t
n=e+ f dF.(z)n. = e+ f DW (dr,Y,(x))n,. (6.14)
0 0

Firstly, we show that (6.14) has a unique solution. Notice that F(z) is defined as
a nonlinear rough integral. Then, by Proposition 3.12, F'(x) is controlled by DW
and thus by W. That is,

Fy () = DWy (Ys(@)) + O(|t = s**) := (Ys(2) D)Wy, + O(It = 5[**),

where ?(m)D is considered as an a-Hoélder continuous function on [0,7] taking
values in £(CP*(R%RY); L(R%:RY)). Here Y is defined in (5.3). We can also
directly define the operator Y,(z)D by the former expression. DW, ;(Y(z)) is just
an approximation of the integral without the double integral term, thus the error
is O(|t - s|**). By Proposition 2.7 (ii), F(x) can be interpreted as a linear rough
path. Thus, equation (6.14) is a linear RDE. According to the theory of linear RDE
(see e.g. Theorem 2 of Lejay, 2009), this equation has a unique solution.

On the other hand, by Corollary 4.8, |||, is uniformly bounded in h € (0,1). As
a consequence of the Arzela-Ascoli theorem, there exists a sequence {hy, },>1, such
that, as n — oo, h,, | 0, and nf" converges to some function 7, in Ca'([O, T1;R%) for
any fixed o’ € (0,«). In addition, by the Sewing Lemma, n"" satisfies the following
estimate

1y = DWe o (Yo(@))nlm + DWs o (Yo(), Ye(@)) (i, 15m) + Ot = s[**) + O(ha),
(6.15)

forall 0 < s<t<T. Let n > oo. The estimate (6.15) implies that 7; satisfies the
RDE (6.14). Therefore, DY;(x) exists and is the unique solution to (6.12).
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To prove the invertibility of DY;(z), we follow Stroock’s idea (see Chapter 8 of
Stroock, 1983). Let M(x) be the unique solution to the linear RDE (6.13). By
(2.16) and Itd’s formula for linear rough paths (see e.g. Theorem 3.4 of Keller and
Zhang, 2016), we can deduce the following equation:

DYi(2)My(z) =I + ftdFr(m)DYr(x)MT(x) - ftDYT(:v)MT(x)dFT(x)
0 0
0
where [DY,.(z)M,(x)]* is a linear operator on (R? ® R?)®? defined as in (6.10).

Notice that DY;(z)M;(x) = I solves this equation. Thus the uniqueness of linear
RDEs implies that M; = (DY;)™*. O

v [ IDY, () My (@) d(F (), - [Ot[DmmMT(x)]Md(F(x)»,

Remark 6.5. By taking further spatial derivatives on both sides of (6.12) and (6.13),
we can show that DY; and M; are both twice spatial differentiable with locally
bounded derivatives. On the other hand, since Theorem 6.4 shows that DY;(z)
is invertible in z for all (¢,2) € [0,7] x R%, by the implicit function theorem, we
deduce that for any fixed ¢t € [0,7], Y; has an inverse Z; such that Z;(Yi(z)) =
Yi(Zi () = .

In the next lemma, we prove that fix z e R%, Z(xz) is controlled by W.

Lemma 6.6. Let Y(z) = {Yi(x),t € [0,T]} be the solution to the RDE (6.9), and
let Z; = Y, 1 be the inverse of Y;. Fiz x € R%. Then Z(x) is controlled by W .

Proof: Recall that for any ¢ € [0,T], Z; is the inverse of Y; and DY;M; = I. There-
fore, we can deduce that

I=Dx=DY(Z/(2)) = DY (Z(x))DZ(x).
This yields that

Fix (t,2) € (0,T] x R%. Let y = Z;(x). Then x = Y;(y). Notice that a similar argu-
ment as in Theorem 6.4 implies that M;(x) is differentiable in 2 and the derivative
is locally bounded. Thus by Taylor’s Theorem 2.11, the following equality holds for
all s € [0,1)

Zsa(w) =Zs(Ys(y)) - Zs(Yi(y))

= = DZ,(Yy(1))Yau () + O(Jt - 5)

- - My(Zo(2)Yar(Zs(2)) + O(ft - 522,
On the other hand, by Proposition 3.12, we have

Yo(2) = Wia(Ys(2)) + O(It - sI%).
Combining above two inequalities, we can write
Zao(5) = ~My(Zo(2)) W () + O(Jt - [2°). (6.17)
Let Z'(x) = {Z/(x),t € [0,T]} where Z/(x):CP*(R% R?) - R? is given by
Z}(2)® = ~My(Z(2)) ().

Then it is easy to check that Z!(x) e £(CP*(R%;RY);R?), and thus (Z(x), Z'(x)) €
P23 (RY). O
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Remark 6.7. (i) One may find that Z;(x) = —DZ;(x). But they are totally differ-
ent objects. Z{(x) is the Gubinelli derivative that represents the proportional
changing rate to W of Z;(x) with respect to the time argument, while DZ;(x)
is the spatial derivative of Z; for fixed t.

(ii) By taking derivative on both sides of (6.16), we have

D*Z,(x) = DM(Z(x))My(Z,(x)).
Recall that Y is the solution to RDE (6.9), thus
V(@) = Wee(Ya(2)) + We o (Ya(2), Ys(2)) + O(|t = s*).

This allow us to deduce an estimate, which is more precise than (6.17) and
will be used in Section 6.3 below. We start with the following equation

Zs1(w) = = Ms(Ze(2))Ys 1 (Z1(2)) - %DMs(Zt(ﬂv))Ms(Zt(ﬁﬂ))Ys,t(Zt(af))(’z’2
+O(Jt - s[**)
== My (Ze(2)) Wit (Ys(Ze(2))) = Ms(Ze(2) )Wyt (Yo (Zi(2)), Y (Ze()))
- %DMS(Zt(J?))Ms(Zt(x))Ys,t(Zt(ﬂ«“))®2 +O(Jt - sI*). (6.18)
Notice that

M, (Ze(2))Ws,t(Yo(Zi()), Ys(Ze(2))) = Ms(Zs(2)) Wyt (2, ) = O(Jt = s]**)

(6.19)
and
M (Ze(2))Ws,e(Ys(Ze(2))) = Ms(Zs(2)) Wi, (Ys(Zs(2)))
=DM(Zs(2))Zs 1 (2)Ws t(Ys(Zi(2))) (6.20)

+ Mo(Zs(2)) DWe i (Yeo(Z(2))) DYo(Zs(2)) Zou (2) + O(Jt = s]*)

== DM (Zs(2)) Mo(Zs ()W 1 ()
- My(Z4(2))DW, 1 (2) DY, (Zs(2)) M (Zs(2)) Wi a(z) + O(t - s|**),  (6.21)
where for all 1 =1,2,...,d,

[DM.(Z,(2) M Z:(2) W, (2)2]
_ Zd: w(zs(x))Mjl’fs(Zs(x))Wfi (2)W).
k1 ka2 ka=1 8xk1 ) 3

Therefore, combining formulas (6.18) - (6.20), we have
Zs,t(m) :%DMS(ZS(x))MS(ZS(Z‘))WS7t(.%‘)®2 + MS(ZS(x))DWS,t(m)WS,t(m)
~ M(Zo(2)) Wit (2) = Mo(Zs(2))W, (2, 2) + O(Jt — s**). (6.22)

6.3. Rough partial differential equations. Let C?OC(Rd;R) be the space of func-
tions that are locally bounded and have locally bounded first, second and third
derivatives. Suppose that h € C} (R%R). In this section, we will show that
u = {u(t,r) = h(Z(z)), (t,x) € [0,T] x R?}, where Z;(x) is defined in Section 6.1,

is a solution to equation (1.7). Moreover, the solution is unique if h € C;} .(R%;R)).
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Definition 6.8. Let (W, W) € €([0,T];CP3 (R%;R?)), let W : [0, T]?x (R%)? — R?
be given by (5.1), and let h be a real-valued function on R%. A function u =
{u(t,z), (t,z) € [0,T] x R} is called a solution to equation (1.7) with initial condi-
tion h, if the following properties are satisfied:

(i) u(0,z) = h(zx) for all z € RY.

(ii) w is twice spatially differentiable everywhere, and Du(:,x) is controlled by W

for all z e RY.

(iii) The following equality is true for all (t,z) € [0,T] x R?

u(t,z) =h(z) - [0 tDu(r,z)W(dr,x)+% fo " Dur,2)d(DW (), W (2)).

+%[OtDu(r,x)d«W(:E),DW(:E)»r+%/OtDQU(r,x)d(W(:v))r, (6.23)

where the first integral is defined as follows,

t t
[ Du(r,z)W(dr,z) = f Du(r,m)dWr(f)L ,
0 0 =x
the quadratic compensators
<<DW($), W(x)»s,t = <<DVV7 W>>S,t(€1762)|(51,52):(w,1)’

(W (@), DW (@) = (W DW ) t(€1. )|, )0y
and
<W(m))s,t = <W>3,t(§1a€Q)|(51752)=(I’x)
are defined by (2.15), (2.17) and (2.18) respectively, D?u(r,z) is considered
as a linear operator from R? ® R? — R, that is

d O%u(t .

Dzu(tw)M = Z M]\/[U7
i,j=1 8.137]81/‘]

for any dxd matrix M = (J\Jij)gj:17 and the last three integrals are in Young’s

sense.

In the next theorem, we will show that h(Z;), where Z; is defined as in
Lemma 6.6, is a solution to equation (1.7).

Theorem 6.9. Let (W, W) € €*([0,T];CP*(R%R?)), and let W be given by (5.1).
Assume Hypothesis 1. Let Y be the solution to the equation (6.9), and let Zy = Y,
for all t € [0,T]. Suppose that h € C} (R%R). Then, u(t,r) = h(Zi(x)) is a
solution to (1.7) in the sense of Definition 0.8.

Proof: We prove this theorem by checking every property in Definition 6.8. By
assumption, we know that w(0,2) = h(Zp(x)) = h(x). In addition, since h e
C3 . (R%:R) and Z;(w) is twice spatial differentiable, we can show that

D[M(Zi(x))] = (Dh)(Z:(2)) Mi(Zi(x)) (6.24)
and
D*[W(Zy(2))] = (D*h)(Zi(2)) Me(Zi(2))* + (Dh)(Ze(2)) DMi(Zy(2)),
where (Dh)(Z¢(x))DM,(z) is a d x d matrix with components
d 9

[(DR)(Z@)DMUZ (D] = 3 o h(Zu(2)) o MY (Z0(2)).
k=1 9Tk Lj
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Recall that M;(x) is the solution to the linear RDE (6.13). Then we can write
M, () = ~M(x)Fy 1 (z) + O(|t - 5|**) = =M (2) DW, 1 (Yo (x)) + O(|t - s*¥).
Combining this fact with (6.17), we can deduce that

Mt(Zt(m))—Ms(Zs(a?))=Mt(Zt(w))—Ms(Zt(w))+Ms(Zt($))—Ms(Zs($))( )
6.25

=M, (Z(x)) = DMs(Zs(2)) Zs 1 () + O(|t - s]**)
=M 1(Zs(x)) + [Ms 1 (Zi(x)) = Ms 1 (Zs())]
- DM (Zs(2)) Ms(Zs(2) )W 1 () + O([t - s**)
= =~ My(Z(2)) DW; 1(x) = DM(Zs(2)) Ms(Z(2))Ws () + O(Jt = s]**).
Let M/(Z,(x)):CP3(R%:R?Y) - R? @ RY be given by
M](Z(2))® := =My (Z,(x)) D® () = DM(Zy () My (Zy ()P (x), (6.26)

where

[DM,(Ze(2)) Mi(Ze(2))@(2)]7 = 3 38
k1,key YLk1

for any (t,z) € [0,T] x R%. We can show that
M'(Z(z)) e C*([0,T]; £(CP*(R%; R?Y); RY @ RY)). (6.27)
Thus formulas (6.25) - (6.27) imply that
(M(Z(2)), M'(Z(2))) € 732 (£(CP (R RY); R? 9 RY)),
In a similar way, recalling (6.24) and (6.25), we can also deduce that
DIR(Zi(2))] = DIR(Zs(2))] = (DR)(Zi(2) Mi(Zi(2)) - (Dh)(Zy () Mi(Z4()
~(DR)(Zu(2)) M Zo()) - My (Za(2))] + [(DR)(Zo(2)) - Dh(Zo(2)) 1Mo Z4(2))
=(Dh)(Zs(2))[ - Ms(Zs(2))DW; 4 (x) = DM(Zs(2)) M (Zs(2))Ws o (2) ]
= D*h(Zs(0)) Mo(Zs(2))Wa(2) Ma(Zs () + O(It = ).

My (Zy(2)) M (Zy(2)) 2" ()

As a consequence, D(h(Z(z))) € 23%(R?) where the Gubinelli derivative
[Dh(Z(x))]': CP*(R%RT) - R,
is given by
[D(W(Z(2)))]'® == (Dh)(Zi(x)) DM (Ze(2)) Mi(Zi(2)) @ ()
- (Dh)(Zi(2)) My (Zi(x)) D ()
~ (D?h)(Zi(2)) Mi(Z,(2)) @ () My (Zi()).- (6.28)

As a consequence, properties (i) and (ii) of Definition 6.8 are satisfied.

In the next step, we will prove equality (6.23) by a similar argument as in
Theorem 6.1. For any 0 < s <t <T, as a consequence of Taylor’s Theorem 2.11, we
can write

M Zy(2))-h(Zs(x)) =(Dh)(Zs(x))Zs,t(x)+%(DQh)(Zs(x))Zs7t(w)®2+O(lt - s>
=1 + I + O(|t - 5]*). (6.29)
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By (6.22), we have
Iy == (D) (Z4(2)) Mo (26 ()W () = (DI)(Zy () Mo(Z,(2)) W ()
+ 5 (D) (Z(2)) DM, (Z: () M (25 () Wi (2)°2
+ (DB)(Za(2)) My(Z:(2)) DW, o)W () + (1t = ), (6.30)
and
1 =5 [(D*R)(Za(2)) My (Ze))Wa )] [ Mo (2 ()W (2)] + O(lt 5,
(6.31)
where
(Dh)(Zs(2)) DMy (Zs(2)) M (Za(2)) W ()

4 on QML
Zs -
I AR

ki,..., ka=1 axkl

(Zs(2)) M4 (Z(2)) W35 (@)W (2).

Recall that D[h(Z(x))] is controlled by W with Gubinelli derivative given by (6.28).
Due to Theorem 2.4, the integral fst D[h(Z(x))]W (dr,z) is well-defined and it can
be approximated as follows

/;t DW(Zy(x))IW (dr, ) = (Dh)(Zs(2)) Ms(Zs(2))Ws.i (2)

- {(Dzh)(ZS(x))MS(ZS(x))vMS(ZS(f))}WS,t(xvm)
= (Dh)(Zs(2))Ms(Zs(2))W (2, )
- (Dh)(Zs(x))DM(Zs(2))Ms(Zs(2))Ws 1 (z,2) + O(Jt - s[3),  (6.32)

where {(DQh)(Zs(x))Ms(Zs(as)LMS(ZS(x))} is defined as in (6.11),

t
W (2, 2) = f DW, ., ()W (dr,z) = DOW, , (z,z)
and

(Dh)(Zs(x))DMS(ZS(m))MS(ZS(x))WS,t(x, )

d kiks
- Y Sz

ki,...,ka=1 Oz,

3 (Zs(2)) M= (Zs () )WL (2, )
«Tkz

Taking into account Definition 2.9 and Remark 2.10, we can write

(W(x))s,e = Wsa(x) @ W 1 (x) - 2W, i (2, ),

(DW (), W(z))s = DWs (@)W () - 2W (2, 2)
and

(W(z),DW (x))st = DWs ()W () - 2W, (z, x).
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Therefore, combining (6.29) - (6.32), we have
WZ() ~h(Zi(@)) + [ DIBZ @)W (dr,2)
L (DR (Zu ()Mo Zu () [(DW (2), W (@) + (W (2), DI (2),. ]
# {220 M(Z0(2), Mo Zs () W ()

+ %(Dh)(Zs(x))DMs(Zs(x))Ms(Zs(l"))(W(fC))s,t +O(Jt - s[).

On the other hand, by the theory of Young’s integral, we can show that

[ DIZNIUDW (@), W (@), + [ DINZ DI (@), DW ().

o [ DAz ) (),
=(Dh)(Zs(2))Ms(Zs(2)) [(DW (), W (@) )50 + (W (), DW (2) )5,¢]
(D) (Z:(2)) M (Zs(2)), Mo(Zs (2)) HWV () s
+ (Dh)(Zs(2)) DM, (Zs () My (Zs (2) (W (2)) 5,0 + O([t = 5**).
It follows that (6.23) holds if u(t,z) = h(Z;(x)) for all (t,z) € [0,T] x R% O

In the next theorem, we will show that the solution is unique in the space
C3([0,T] x RY) provided that (W,W) e C%([0,T];CP*(R%:RY)) and h e

Cho(RE:R).
Theorem 6.10. Let (W,W) e €([0,T];CP*(R%RY)), and let W be given by

(5.1). Assume Hypothesis 1. Let h e C} _(R%R). The solution to the RPDE (1.7)
exists and is unique in the space C2>([0,T] x R%;R).

loc

Proof: Firstly, we show the existence of the equation (1.7) in the space Cgf’([o, T]x

R%;R). Due to Theorem 6.9, it suffice to show that h(Z) € Cf;f’([(),T] x R4 R).
Notice that DZ;(z) = My(Zi(x)), D?*Zi(x) = DMy(Z(x))M(Z:(x)), and
D*Z(Zi(x)) =D* My(Zy(2)) My (Ze(2)) My (Zi ()
+DMt(Zt(SC))DMt(Zt(fE))Mt(Zt(l'))
for all (t,x) € [0,T] x R%. Fix x € R%, the functions M;(z), DM;(x), D>*M;(x)
and D3M;(z) are all solutions to corresponding linear RDEs driven by a-Hélder
linear rough paths. Thus M;(z), DM;(x), D*M;(x) and D3Mry(x) are all a-
Holder in time and locally bounded in space. Recall that h € Cit (R%R). As a
consequence h(Z(x)), D[h(Zi(z))], D*[M(Z:(x))] and D3[h(Z:(x))] are all a-
Hoélder in time and locally bounded in space. In other words, we can conclude that
h(Z)eC:>([0,T] x R R).
In the next step, we will prove the uniqueness of the RPDE (1.7). Suppose that

u € C3([0,T] x R%: R) is a solution to (1.7). Let Y be the solution to the RDE
(6.9). Then, by Taylor’s Theorem 2.11, we can write

u(t, Yy(x)) = u(s, Ys(2)) =51 (Ys(2)) + Dus o (Ys(2))Yer + Dus (Ye(2))Ys 1 ()

+ %D?uS(YS(:c))Ys,t(gc)®2 +O(Jt - s[>). (6.33)
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Notice that as a solution to (1.7), u satisfies the following equality for all 2 € RY,
s ¢ () = ~Dug(2) Wy ¢ (z) + O(|t - 5|**).

It follows that fix = € RY, u(x) is controlled by W(z). As a consequence, Du(x)
is also controlled by W (x) with the Gubinelli derivative —D?u,(x). Therefore, the
following estimate holds

us ¢ (Ys(2)) = =Du(s, Yy(2)) Wit (Ya(@)) + D?u(s, Ye(2))Ws o (Ys(2), Ys (@)
+ %DU(S, D)[(DW (Ye(2)), W (Ye(@)) st + (W (Ye(@)), DW (Ye(2)) )s.¢]

1
+ §D2u(s,x)(DW(Ys(x))>s,t +O(|t - s[**). (6.34)
In addition, recall that Y is the solution to (6.9). Then, (6.34) implies that
Dus,t(Ye(z))}/s,t(x) == D2U(S, YS(I))Ws,t(ye(z))Ws,t(Ye(x))

= Du(s, Yy(2)) DWs 1(Yy(2)) Wy 1 (Ys () + O(Jt = s>*).
(6.35)

Also, we have the following estimates
Dus(Ys(2)) Y5 ¢ (2) =Dus (Ye(2) ) Wi (Ys(2))
+ Dug (Y (2)) Wt (Ye(2), Y (2)) + O(t = s**),  (6.36)

and

D?uy(Ys(2))Ys,t(2)®? = D?us (Ys(2)) Wi e (Y (2)) 2% + O(Jt - s[>*). (6.37)
Combining (6.33) - (6.37), we have

u(t, Yi(2)) - u(s, Ys(2)) = O(|t - s[*).

Because a € (£, 1], it follows that u(t, Y;(2)) = u(0,Yo(x)) = h(x). In other words,

303
u(t,z) = u(t,Yi(Zi(x))) = h(Zs(x)) for all (t,z) € [0,T] x R%. This completes the
proof of the theorem. O
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