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Figure 1: Online gain in temporal, multimodal, and multivariate prediction uncertainty between prior and posterior. Each cell
can be assumed to have a combination of discrete travel time distributions (i.e., 2, 5, 10, 30min) with different weights.

ABSTRACT

We introduce temporal multimodal multivariate learning, a new
family of decision making models that can indirectly learn and
transfer online information from simultaneous observations of a
probability distribution with more than one peak or more than one
outcome variable from one time stage to another. We approximate
the posterior by sequentially removing additional uncertainties
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1 INTRODUCTION

In recent years, deep reinforcement learning (RL) models have im-
proved the solution quality of online combinatorial optimization
problems [1, 7], yet cannot match the real-world online systems
[14]. Consider a Mars autonomous navigation problem under uncer-
tainty where information sampled from aerial agents mapping large
areas and ground agents observing traversability can be transferred
to other agents for safe and efficient navigation [24]. For the poste-
rior approximation [3] (e.g., Markov decision process) with online
data assimilation [12], we need a new framework to actively sample
useful information. Traditional information metrics like Shannon
Entropy or Kullback-Leibler (KL) Divergence fail to incorporate
future uncertainty with more than one peak probability distribu-
tions [12]. Shannon Entropy [32] cannot distinguish distributions
with multiple weights (e.g., bimodal distributions) because it only
considers raw information gain, treating all information as equally
valuable. KL Divergence [20] introduces a bias toward only one
mode (e.g., Exclusive, Reverse) or toward the mean of the modes
(e.g. Inclusive, Forward) with non-symmetrical measures of infor-
mation gain. Recent computer vision models [9] cannot address
unobserved heterogeneity causing multimodal distributions since
representing the information gain using KL Divergence requires
comparison to an “ideal” distribution. This biases the model toward
searching only for some types of uncertain solutions while ignoring
other potentially more valuable solutions. When the probability
distribution is heavily weighted at either extreme, the system cost
either experience very high true savings or negative true savings.
Those combinations of probability distributions vary across time
and location and evolve as new observations become available.

Our main contribution is the development of a new family of on-
line predictive decision making models, Temporal Multimodal Mul-
tivariate Learning (TMML), that can indirectly learn and transfer
online information from multiple modes of probability distributions
and multiple variables between different time stages, which can be
applied to many routing problems under uncertainty such as Mars
exploration [12], Hurricane sensing [8], and urban routing [13].
Preliminary remedy [12] partially filled this gap by grouping simi-
lar types of locations based on their classified output (e.g., sandy or
rocky), used in optimizing vehicle routing to improve the prediction
uncertainty proven to be superior to partially observable Markov
decision processes. Locations with broad bimodal distributions of-
fered the greatest potential delta between the expected and true
savings. We expand this bimodal learning to multimodal learning
and the maximum information gain is accomplished by identifying
the time-dependent similarity between the probability distribution
of variables. With existing routing algorithms, opportunities for
data collection are commonly skipped or missed entirely. A technol-
ogy to collect more valuable observations while carefully spending
system resources will add significant value to the autonomous de-
cisions. The result will be an increased likelihood of encountering
unexpected scientific discoveries, creating new opportunities to
characterize uncertainties, reconciling the desire to explore further
with the desire to explore in-depth, and eliminating the dichotomy
between engineering limitations and scientific discovery.

Cells in the grid of Figure 1 with a similar combination of distri-
butions are clustered together based on the similarity between the
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combinations (e.g., 6 cells outlined in black). As users traverse the
map, exploration of a cell in a cluster will remove the travel time
uncertainty of other cells in the same cluster. In other words, ex-
ploring one cell of the cluster will identify which of the two travel
time distributions applies to that explored cell, and to all other
unexplored cells in the cluster. However, each cell has two travel
time distributions with peaks of different heights. Therefore, we
do not update all cells that share a single travel time distribution;
we update cells that have similar combinations of distributions.
This technique can be applied to several real-life applications. For
example, assume that each cell with heterogeneous users presents
a mixture of traffic conditions [25]. An online RL simplifies multi-
modality to a unimodal distribution X ~ A (35, 10?) resulting in a
lost opportunity to remove uncertainties in other locations.

Several techniques learn and transfer information gained from
multimodal distribution data in information theory [20, 32] for
global uncertainty removal: grouping similar combinations of distri-
butions, sampling from similar groups and updating posteriors, and
solving probabilistic optimization [1, 3] for online routing. Those
are necessary to optimize the probabilistic global routing problems
based on knowledge learned and transferred in a sequence, and data
is typically obtained from parts and not analyzed as a whole. While
previous research [8, 11, 12] addressed bimodal learning and full un-
certainty removal, we address multimodal learning integrated with
partial information gains from temporal and multivariate learning
applied to urban traffic and hurricane data.

2 MULTIMODAL LEARNING

Reduced uncertainty in bimodal travel time information can be
processed and transferred from one agent to another agent [12]. A
prototype of bimodal uncertainty removal in an 10x10 grid map is
extended to multimodality of each cell through clustering similar
probability distributions for multimodal learning (Figure 2). The
agent is allowed to move in four directions: up, down, left, and right.
Diagonal moves are not allowed. Cells in the grid are numbered row-
wise, starting with zero for the first cell. Grids are used because the
prior state of the map will be defined using image analysis, which
defines the state of a region using pixels of a fixed size. Those 2, 5,
10, and 30 minutes from Figure 1 bimodal is expressed as clusters.
The key statistics for travel time distribution in each cell are based
on lower and upper bounds, with probability P(T) represented as
real numbers between 0 and 1 in the model [12] in Figure 2 further
extended to incorporate multimodality.

In this study, multimodal learning enhances the scientific and en-
gineering value of autonomous vehicles by finding the best routes
based on the desired level of exploration, risk, and constraints.
In the proposed exploration framework, each grid cell (Figure 2)
contains a unique probabilistic distribution of travel time for for-
mulating the best options to travel with partial, sequential, and
mixture of information gain, with various probability distributions.
An example application is the Machine learning-based Analytics
for Rover Systems (MAARS) [24], where agents analyze images for
autonomous driving feature detection, and assist scientists by se-
lectively collecting data without interrupting drives. When agents
travel through a grid map, information can be gained by visiting
cells classified with uncertainty, observing the conditions in those
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Figure 2: Multimodal extensions to the proposed path
[12], compared against theoretically minimizing the ini-
tial expected travel time (ETT) or the highest probability
classification-based travel time the Max|P(T)|. The grid
shows each cell type by number (white) and filled color.

cells, and estimating the true state of other cells and observations
from other agents. Existing work on energy-optimal path planning
[33, 34, 36] assume that energy consumption and generation are
given or immediately derivable from an existing height map. How-
ever, without prediction of the agent’s energy consumption and
generation, these methods are myopic, simplified, and not a real-
istic optimization approach. An agent’s energy consumption and
generation depend on interrelated factors such as terramechanics,
the agent’s dynamics and kinematics, and terrain topography.

3 MULTIVARIATE MULTIMODAL LEARNING

Traditional machine learning frameworks overlook simultaneous
observations of more than one outcome variable in different loca-
tions and times without lowering the prediction errors. Real-life
data, behaviors, and problems (referring to objects, values, and
attributes) are non-independent and non-identically distributed,
whereas most analytical methods assume independent and iden-
tically distributed (IID) random variables. Unfortunately, the in-
terdependent event relationship has been overlooked and future
posterior events have been assumed independent from other events
and systems. The dynamic impact area of a prior event could pre-
dict the probability of posterior events [28, 29]. However, when
frequent minor events are occurring in a sequence, due to high
uncertainty, the literature could not reliably predict the dynamic
spatiotemporal evolution of a mutual relationship between events
[27]. Machine learning with rule extraction [30] partially allevi-
ates Black box issues, but without an effort to reduce uncertainty
by observing a ground truth, the routing solutions are still unreli-
able and intractable. In this paper, those dependencies are partially
addressed by clustering multidimensional correlation data from
multiple variables through deep clustering and when one cluster is
updated, other variable data from the same cluster are also updated.
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In our case study, the multivariate clustering applied on hurri-
cane Small Unmanned Aerial Systems (sUAS) observation includes
four variables in each cell: wind speed, temperature, relative hu-
midity, and pressure observed from the boundary layer. Each cell
represents a specific location in the hurricane. Utilizing data manip-
ulation techniques, we transform each variable to a single vector
and combine each of the four vectors to create a multidimensional
data matrix. By aggregating all cells in the map and grouping sim-
ilar types of probability distributions of multiple variables, when
we observe those variables at one location, uncertainties of other
correlated variables at other locations are realized in this study.

4 ONLINE LEARNING FRAMEWORK

Temporal learning addresses the time-dependent realization of un-
certainties of other correlated variables at other locations at other
time stages, when we observe variables at one-time stage. The
online learning framework updates sequential information based
on the rapidly exploring random tree star (RRT*) algorithm. The
RRT™ algorithm finds an initial path solution based on an originally
developed utility map of the environment conditioned on some
constraint. As the agent follows this path of connected way-points
(nodes) and makes new observations, the utility map is sequen-
tially updated, generating recourse actions to accommodate the
new information. Specifically, in each time stage, the utilities of
the cells in the map are updated based on observations made at the
agent’s current location (node). At the first successor node from the
agent’s current location, the updated utility map is used to find a
new node in a defined search region centered at the agent’s current
location. The search regions’ radius is equal to the length of the
edge connecting the current location and the first successor node.

Considering the nodes in this region, we evaluate their utilities
and select the node with the highest utility, replacing the initial
first successor node from the current location. After pruning the
previous edge connection, we then rewire the current location
node to the new node. The new node is also rewired to the current
location’s second successor node. We repeat pruning and rewiring
as the agent moves through the nodes and receives new information
(updated utilities) until it reaches the target location.

Algorithm 1 :TMML-RRT* with Online Recourse

T « InitializeTree()
T « InsertNode(0,zjpiz,T)
for i=0 to i=N do
Zrand < Sample(i)
Znearest < NearestTMML(T,z,44)
(Znews Unew) < Steer(znearests Zrand)
if NoExceed(zney) then
Znear < Near(T, znew, |V)
Zmax < ChooseParentTMML(znear, Znearests Znew)
T « InsertNode(zmax, Znews T)
T « Rewire(T, Znears Zmaxs Znew)
end if
end for
OptPath < OnlineRecourse(T, ns, ng)
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The path search in Algorithm 1 shows the Nearest function in
TMML-RRT* (NearestTMML) considering the utility at the nearest
node. The NoExceed conditional statement implements constraints.
The ChooseParent function considers the node with maximum
utility within a defined region. The Rewire reevaluates previous
connections from the agent’s start location and extends the new
node to the node that can be accessed through the maximum utility.
This process in Algorithm 1 is repeated until we find the target
location. As shown in the pseudocode (Algorithm 2) in Appendix
C, after the initial path solution (based on the originally developed
utility map) is found, the OnlineRecourse function is applied to find
alternative waypoints (nodes) as the agent follows this path.

As the vehicle traverses its planned path, observations are made
of the environment. Variational Bayesian inference generates a pos-
terior belief given the prior belief of cell type distributions within
each of the clusters. To measure how well variational multino-
mial posterior distribution g, (z|x) approximates the true posterior
p(z]x), the KL divergence KL(q, (z|x)||p(z|x)) estimates the infor-
mation lost minimized with optimal variational parameters A. The
belief about the properties of different cell type clusters will be up-
dated en route to improve the travel. Clustering will be performed
using an expectation maximization algorithm on multinomial mix-
ture models of the cells to identify cells with similar probability
distributions. The likelihood of observing the dataset P(Y|e, f) for
data Y and Dirichlet parameters a, f is the sum of apP(x;|fx) as
observations i goes from 1 to N and clusters k goes from 1 to K. Us-
ing Expectation Maximization, the optimal distribution of the data
over K clusters will be determined by maximizing the lower bound
of the log of the likelihood. The optimal cluster index minimizes the
Bayesian Information Criterion as the difference between D In (N)
and 21n (f) where D is the number of parameters, N is the total
number of observations, and L is the likelihood of the model.

Dk quantifies the information gained by revising belief from
the prior probability distribution Q to the posterior probability dis-
tribution #. The mutual information I(X; Y) between two discrete
random variables X and Y is I(X;Y) = Dkr(P(x,y)l|Px ® Py)
where Py, y) is the joint probability mass function and Py and Py
are the marginal probability mass functions of the random varaibles
X and Y.If X and Y are independent, then the joint distribution
P(x.y) will be identical to the product of the marginal distributions,
implying that the mutual information is zero in given equation (1).

Pxy)(xy) )

oy

IX:Y)= >0 pixy) (x,y)log(

yelY xeX

This provides a measure of how much uncertainty is reduced
for one random variable by knowing information about the other.
Mutual information can also be formulated as an expectation value
of the KL Divergence, as shown in equation (2).

I(X;Y) =By [Dgr(px|yllpx)] ()

5 TEMPORAL MULTIMODAL LEARNING

5.1 Learning urban traffic

Daily commutes can be unexpectedly protracted by road closures,
accidents, and inclement weather. These delays, which can exceed
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users’ planned commuting time, can cause missed meetings, can-
celed appointments, and child care fees, accumulating costs. The
majority of users react similarly to the unforeseen traffic delays and
may unknowingly, collectively transfer congestion from one route
to another [2]. Current navigation systems (e.g., Google Maps) are
not customized to users’ tolerance for unexpected delays therefore
they cannot predict optimal routes [21]. Because the network is
dynamic, the route suggestion users receive at the outset of their
commute may not be optimal when they are on the road [6]. In
the literature, other traffic sensing technologies commonly fail to
provide network-scale predictions under unexpected conditions.
For example, current dynamic route choice models [15] consider
that the link travel time realization is only based on nearby links.
The multimodal multivariate uncertainty caused by unobserved
varying traffic patterns through the day has not been considered.

To accommodate this, recent Google Deep-mind research has
been using many factors and real-time updates of traffic data for
more accurate prediction of travel time. Anticipatory routing guid-
ance [22] is effective in knowledge transfer, however, ignores the
potential information gain from probability density functions with
more than one peak. Consider a network with a grid laid on top in
Figure 1, where each cell represents a small geographical region. To
find an optimal route from an origin cell to a destination, forecast-
ing the condition of intermediate cells is critical. Routing literature
did not use a location’s observed data to forecast conditions at
distant non-contiguous locations’ unobserved data. We aggregate
the data from all cells in the grid and cluster cells that have simi-
lar combinations of probability distributions. When one cell of a
cluster is explored, the information gained from the explored cell
can partially remove uncertainty about the conditions in distant
non-contiguous unexplored cells of the same cluster.

Multimodal traffic learning. Assume we know a freeway link
A historically takes 2-minutes without congestion but it may take 8-
minutes due to an unexpected event (e.g., incidents). We can cluster
A and A’ in the same correlated group assuming the bimodal travel
distributions for both links are similar. Literature ignores three
benefits of sending a platoon of vehicles to A instead of B shown
at the bottom in Figure 3: For a scenario that turned out to be 2-
minutes due to the fast clearance of the incident, 1) we can update
the predicted travel time on this link A so other drivers can switch
either their departure time or route to take this 2-minutes shortcut,
2) we can update travel time on other links (e.g., A") having the
same type of probability distributions. By knowing that the total
travel time of a route is 4-minutes, we can send more vehicles
to this route and relieve other route congestion that turned out
to be 8-minutes due to the long clearance of the incident, 3) we
update travel time on other links (e.g., A”) having the same type of
probability distributions. By knowing that the total travel time of a
route AA’ is 16-minutes, we can inform fewer vehicles to use this
route, redistribute traffic to other routes (i.e., BC) having shorter
travel times. While the current routing literature realize only nearby
links, the realization of multimodal travel time distributions that
are derived from real-world data have not been studied.

However, recent studies [16, 37] have shown that travel time dis-
tributions on freeways have two or more modes as distinct peaks in
the probability density function due to the mixes of driving patterns
and vehicle types. This multimodal (or bimodal) distribution exists
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Figure 3: Temporal Multimodal Learning (TML) from corre-
lation of time-varying bimodal distributions between links.

on arterial roads, where a vehicle passing a signal at the end of the
green would experience quite different travel time than the vehicle
following behind it that must make a stop at the red, although they
traveled next to each other. Without knowing the future traffic with
confidence, the traditional choice theory considers the bounded
rationality [10, 17-19] of the majority of agents taking a detour to
link B, which causes congestion on B and nearby roads.

Temporal multimodal traffic learning. In Figure 3, A has a
bimodal distribution with a mode at 8 and 2 between time stages
1 to 5, switching to a bimodal distribution with a mode at 6 and 4
at time stage 6. For departing at time stage 1, the time-invariant
method adds travel time together either the high or low modes of
link and route AA’ travel time to be either 8+8 or 2+2. The time-
variant method accounts for the time needed to traverse A either
8 or 2 minutes and re-evaluates the travel time at A’ based on the
time of entering A’, may encourage a detour to Link C in case of 8
minutes of realization. We assume that the state change is given
based on event models [27].

The previous examples assume that the primary factor contribut-
ing to travel time variation on a given link is the time of day. The
focus of this study is to use travel time correlation information to
remove uncertainty in within-day travel. Travel time may depend
on other factors such as day-of-week, weather patterns during the
day, and special events in the region like post-game-day traffic near
a sports stadium. If data on these other variables are made available,
the same temporal learning process can be extended (see Section 6
for temporal learning under the presence of multiple variables of
interest).
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5.2 Improving KF prediction

Prediction uncertainty in travel time is improved by considering
TML on real-world traffic data. Let C be the set of all links, traffic
message channels (TMCs), across the network and T be a finite set
of discrete-time intervals over the morning peak period [26, 27]. We
consider 39 TMCs (|C| = 39) on Interstate 540 in Raleigh, NC during
24 ten-minute time intervals from 8:00 am to 12 noon (|T| = 24).
Probe-vehicle-based speed for each TMC was obtained from the
National Performance Management Research Data Set (NPRMDS).

NPRMDS contains the travel time and speed information for
each TMC for each time interval across different days over the
course of eight months. Due to the day-to-day traffic randomness,
the traffic speed on TMC ¢ € C for time interval ¢t € T, denoted
by o, is a random variable. As argued in the literature [16, 25,
37], o! is likely to have a probability distribution with multiple
modes (multimodal distribution). We learn and predict o% within
day by analyzing the spatiotemporal correlations between random
variables o, for all (c,t) € C x T. By clustering all v, variables,
we identify spatiotemporal patterns and different combinations of
traffic speed distributions with following steps:

o Analyze the spatiotemporal probability distribution of vari-
ables v’ by aggregating variation of traffic speed for a spe-
cific time interval across eight months. For this case study,
we assume that the only factors influencing travel time are
the location of TMC (c) and time-of-day interval (¢).

o Clustering is performed across all C and T using minimum
message length criteria to identify TMC’s with similar prob-
ability distributions [35]. Clustering algorithm will auto-
matically discover the optimal number of clusters.

Kalman Filtering (KF) Prediction v.. We model the evolution
of random variable vX from one 10 minute interval to the next
interval within-day with and without information gain using KF.
The data of v acquired from TMCs have inherent noise due to
sensor errors. Employing KF can produce an accurate estimate
of v! using noisy measurements over the period (24 intervals of
time). In this paper, the traditional KF is expanded to consider the
information gain from the clustering step. We model evolution of
variable v’ from the first time interval t = 8 — 8 : 10am to the last
interval t = 11 : 50 — 12pm within a day. Figure 4 shows the KF
process which is formulated in the following equations.

Prediction step. Projection of the state at time ¢ using the
prediction at previous time ¢ — 1 is given by:

%7 = A%/ +Bu; (3)
where,
e %7, is the state vector of the process at time ¢ — 1. In
. . . speed
this case, state vector considered is b . , where,
acceleration

acceleration is defined as the rate of change of speed of
TMC with respect to previous time period.
e Matrix A is the state transition matrix of the process from
the state at ¢ — 1 to state at ¢ and is assumed stationary over
1 dt
0 1
e dt =1 according to definition of acceleration defined above.
e Matrix B is a matrix of all zeros as there is no known exter-
nal control input factor that affects speed measurement.

time. That is, A =
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Rich Context Granular Multimodal Data for Each Cell

Clustering by Multinomial Mixture Expectation Maximization
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Figure 4: Two steps in KF-TML: In the predict step, a model
is employed to predict the chosen state variable at next time
interval t + 1 using measurement from previous time interval
(k). In the update step, the predicted state is corrected using
the noisy measurements at ¢ + 1.

e P is the error covariance matrix. It is interpreted as the
error in estimation according to filter.

0.04 0
e () is the process noise defined as Q = 0 .
e We assumed the speed with a variance of 0.04 in prediction
step.
Projection of error covariance of state
Py =P AT +Q “

Correction step. In this step, we determine the Kalman Gain at
time t (denoted by K;) which can be interpreted as,

Uncertainty in prediction

®)

Kalman gain =

Uncertainty in prediction + measurements’

We can write,
K; = Py H  (HP;HT +R)™* (6)

where, H is the connection matrix between the state vector and
the measurement vector and R is the data precision matrix. In our
case, H = [1 0] .

In the next step of KF, speed prediction is updated using obser-
vations Z;. In case of KF-no TML, Z; are the speed observations on
a given day while in case of KF-TML, Z; are mean and variance of

historical speed data.
xf = %7 +Ke(Zy - HE) ™

Error covariance matrix is also updated in this step using the
Kalman gain.
{ = (- KH)P; ®
KF-TML has an additional step as the speed prediction update
with data Z; obtained from information gain of correlated links.

X =%7 +K{(Zf - HX) ©

Park, et al.

This step also updates the error covariance matrix.
Pf* = (I1-K/H)P} (10)

The hat operator means an estimate of a variable. The super-
scripts -, + and ++ denote predicted (prior),updated 1 (posterior 1)
and updated 2 (posterior 2) estimates, respectively. The posterior 1
will be the final prediction in KF-no TML while posterior 2 will be
final outcome in KF-TML.

During the update step, observations available from the corre-
lated links from previous time intervals are considered. The mean
and variance of speeds of all correlated links are used as the new
observation in the update step. Therefore, traditional KF has only
one update step but in this paper, the algorithm is modified to have
two updates, one with mean and variance of historical data of 8
months and the other with mean and variance of correlated speed
data obtained from the clustering step.

The (1, 1) element in matrix P denotes the variance in estimation
of speed. Percentage change in P(1,1) with information gain with
respect to P(1, 1) without information gain is calculated.

_ P(1, Dwithout info gain — P(1, Dwith info gain

%k
P(1, without information gain 100 )
Results. The performance of KF with TML is compared against
the benchmark. Traditional KF without TML ignores the correlation
information where the observation is simply the observed speed
from the sensor on a given day, and KF with TML is modified to
include the mean observation of speed from other TMCs and previ-
ous time-periods that are within the same cluster as the given TMC
and time-period. Figure 5 shows that the KF prediction with TML
has fewer errors compared to the KF prediction without TML. Fig-
ure 10 in Appendix B shows the percentage change in uncertainty
of predictions when TML is considered. A significant reduction
in uncertainty indicates more confidence in the predictions with
TML. In KF without TML, the update step uses measurements with
noise at time ¢ to get accurate predictions at time step ¢. In KF
with TML, we improve the prediction performance of traditional
KF by using the correlated observations from previous periods and
it helps to achieve the estimation of speed at ¢ on the previous time
step, ¢t — 1. This improved method is useful in getting more accurate
predictions ahead of time.
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Figure 5: Speed predictions with and without TML and corre-
sponding observations
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6 TEMPORAL MULTIVARIATE MULTIMODAL
LEARNING

6.1 Learning storm atmosphere

With observations from sUAS, NOAA’s National Hurricane Center
can better measure critical variables and parameters in the bound-
ary layers of hurricanes [5]. The accuracy of the data collected by
the SUAS agreed well with that of the manned measurement, with
the sUAS sometimes capturing more variability than the manned
measurement [4]. However, the predefined navigation procedures
do not necessarily consider how data gathered from a flight path im-
proves the hurricane forecasting. The criteria for location selection
was “difficult to observe in sufficient detail by remote sensing”. We find
the “optimal routes considering importance of observations” gained
from the data in a precise target location among high-dimensional
spaces. We analyze how online updating from sUAS collected mete-
orological data would benefit hurricane intensity forecasting con-
sidering the temporal variation in the uncertainty of hurricane
prediction. The temporal multivariate learning and in-situ data
collections can significantly improve understanding of hurricane
movement, relevant dynamics, and track prediction with the same
effort and less risk.

TMML in hurricane forecasting. To generate the uncertainty
distribution for Hurricane Harvey, conventional in situ observations
(e.g., Dropsondes) and all-sky satellite radiance from GOES-16 were
assimilated in a state-of-the-art data assimilation system (ensemble
KF) and built around the Advanced Weather Research and Fore-
casting Model (WRF-ARW) and the Community Radiative Transfer
Model (CRTM) to provide hourly temporal resolution forecast of
Hurricanes [23]. Indirect learning will overcome possible limita-
tions in observing only one reliable sample variable in a cell out
of many sensor payloads [31]. The temporal multivariate cluster
groups cells with a similar combination of distribution of multi-
ple variables in each cell: e.g., temperature (T), pressure (P), wind
speed(W), relative humidity (RH) (Figure 6). Once we have an ob-
servation of one variable, we update posterior of other variables
at the same location/other locations at the same time/other time
stages with the same cluster as the observed location.

values
I 0.8
06
0.4

i

Cluster

HPTWHPTWHPTWHPTWHPTWHPTW
t=1 t=2 t=3 t=4 t=5 t=6

Figure 6: The clustered temporal multivariate distribution of
four variables across all time stages (4 X 12 dimensional). For
example, one observation of temperature within cluster 1 at
time stage 1 are used in removing prediction uncertainties
of humidity in cluster 2 at time stage 3.
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6.2 Improving sUAS routing

Once the first SUAS is launched from a tube attached to a P-3
hurricane hunter aircraft and controlled remotely from the airplane
to be deployed to the lower layer, the benefit of the online update
of the information presents an increase in accuracy relative to the
initial hurricane prediction (Figure 7). The overall improvement in
prediction uncertainty after observations are made along a path
is computed as the difference between the sum of measurement
variances before and after observations.
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Maximum improvement in cyclone forecasting
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Figure 7: Active sUAS In-situ Sensing

The utility map for the agent-guided observations of the hurri-
cane environment is constituted from the standard deviation and
multivariate cluster entropy between the four state variables: pres-
sure, temperature, wind speed, and relative humidity. These compo-
nents are normalized to ensure a consistent scale. First, the normal-
ized standard deviation 6, ;) of the measurement for these state
variables x € X are linearly combined as }xex 6y, ) to quantify
the overall standard deviation o) in each cell of the hurricane
space. Second, the entropy H(x, nype) for each multivariate cluster
distribution is computed as

T K
H(x, ntype) = - Z Z P(x, neype(k), t) log, P (x, neype (k) t)
=1 =1
(12)
where P (x, nsype(k), t) is probability of category k € K in cell j
of cluster n;yp, at time t and x is an N dimensional vector of the
state variables. For illustration, in a 12-hour forecast window for
Hurricane Harvey, cells with similar characteristics were grouped
into 14 clusters as different combinations with multiple variables,
where the optimal number of clusters and distribution parameters
in each cluster were estimated to maximize posterior probability
(Figure 8). The size of the box in the plot represents the probability
of the cluster being in the column’s classification after updating
the posterior belief. Variational Bayesian inference approximates
the true posterior based on the KL divergence minimizing the
information lost with optimal variational parameters. In Appendix
A, the estimation of expected observation and posterior estimate of
the variances after observations by the sUAS is presented.
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Figure 9: Safe and efficient sUAS path solution by TMML-
RRT* and MDM on centered horizontal cross-sections for
Hurricane Harvey at a 1.1-km level.

Results. Although unobserved non-contiguous cells may not
share any inherent correlation with locally observed cells, classifi-
cation errors are found be correlated with certain features found
in different locations. By clustering cells with similar distributions
(e.g., predicted wind speed) and correcting those errors as more
evidence becomes available from sUAS observations, the reliability
of the prediction was greatly improved (Figure 9). Anticipatory
sUAS routing lowered the overall energy usage, and maximized
the reduction of forecasting error by exploring and sampling unob-
served cells along the path to a target location. This new method
significantly improved the combined quality of observations (pres-
sure, temperature, and wind speed) against the Minimum Distance

Method (MDM) in Hurricane Harvey [8]. In this paper, the multi-
stage online decisions are made by combining the benefits of direct
sensing through the sensitivity map and the additional benefits
from indirect learning through the correlation structure consider-
ing three components: 1) temporal learning, 2) multimodal learning
from one observed geographical location to other similar locations,
3) deep multivariate learning by grouping similar covariance of
all four variables rather than estimating correlation of each pair.
Compared against unimodal univariate learning, the combination
of all three components presents a larger reduction in prediction
uncertainty.

Table 1: Improvement in Prediction Uncertainty

Non temporal

MDM = 2.36% Temp.
Unimodal Multimodal
Correlation Univariate 2.66% 4.34% -
Multivariate 3.28% 6.25% 11.26%
Deep multivariate - 7.37% 13.45%

The average improvement in predicted multimodal measurement
was significantly higher when TMML were considered. MDM (8]
ignores those two properties by averaging to reduce the dimension
of the data, but these results show that while the dimension may
have increased, uncertainty reduction in temporal correlation may
have reduced the size of the deterministic problem.

7 CONCLUSION

With the Temporal Multimodal Multivariate Learning (TMML), we
have introduced a new family of RL models that can indirectly
learn and transfer information from multiple modes of probabil-
ity distributions of multiple data variables in different time stages.
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These models can solve challenging tasks where the uncertainty
is revealed in a sequence by grouping samples within similar dis-
tribution types and inferring the posterior based on expected ob-
servations. The effectiveness of TMML has been demonstrated on
real-world autonomous navigation in urban transportation and Hur-
ricane. TMML opens appealing research opportunities in the study
of information-theoretic decision making that exhibit nontrivial
indirect learning from spatiotemporal correlation.
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A POSTERIOR APPROXIMATION

We combine observations and prior data with the importance of
information. The sequence of observations are assimilated with the
prior predicted measurements to provide the best estimate (pos-
terior) of the measurements. The multivariate measurements are
represented as grid-point values with background prior information
at location i:

2

MPred(x,i) + aPred(x,i)’ (13)
and after observation at location i:
2

Mobs(x,i) + T0bs(x,i)’ (14)

where Mpreq(x,i) is the mean predicted measurement at location
i, 62 . is the variance of predicted measurement at location i,
Pred(x,i)

Mops(x,i) is the SUAS observation at location i, o?

Obs(x,i)
of SUAS observation at location i. The variance o ., represents
Obs(x,i)

the imperfections of observations made by sUAS sensors. Our model
assumes that this variance is known apriori based on the type of
sensors used. The best estimate of the measurement of variable x
at location i is written as:

variance

Mpest estimate(x,i) — (1- ﬂ)MPred(x,i) + BMObs(X,i)- (15)
B is the weight between the predicted measurements and obser-
vation. The best estimate of weight considers the variance of the
predicted measurement and observation, written as:

2
O-Pred(x,i)

OPred(x,i) T PObs(x.i)
The variance of the best estimate of measurement for variable x at

location i is less than that of either the prediction or the observation:

O-l%est estimate(x,i) = (1 - ﬁ)o—lgred(x,i)' (17)
To account for the effect of an influence region around each obser-
vation point, we introduce a weighting function w (i, j), to update
the best estimates of the variance at each grid locations j in the
vicinity of observation point i written as:

2 _d?.
— (18)
R +dj; )
where d; j is a measure of the distance between points i and j.
The weighting function w (i, j) equals to one if the grid point j is
collocated with observation i. It is a deceasing function of distance
which is zero if d;; > R. R (“the influence region or radius”) is
a user defined constant beyond which the observations have no
weight. The modified best estimate of the variance at each grid
point location j can now be written as:

w (i, j) = max (O,

(19)

Sequential learning updates a cells entropy and in extension the
utilities each time an observation is made in other cells belonging
to the same cluster. We introduce a weight w(x, op,,, pe) (decreasing
function of sample size oy,,,,,) that updates the entropy H(x, n¢ype)
as observation of cells belonging to the same cluster type are made.
Since there is high confidence in the measurement in cells belonging

2 _ _ .. 2
Opest estimate(x,j) — (1=px w(l’J))O-Pfed(XJ)‘
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to clusters with low entropy, we exploit those low entropy cluster
types through a few sampling of their member cells. A posterior
update will be applied to the variance of all similar type cells in
such scenarios.

Conversely, there is low confidence in the measurement in cells
belonging to clusters with high entropy. Therefore, we explore
the high entropy cluster types through a large sampling of their
member cells. With enough sampling of member cells, we can
reduce the entropy to a set threshold and apply a posterior update
to measurements in its member cells. The sequential learning in
environments learn the optimal sample size and update as more
observations are obtained. Online recourse in Algorithm 2 shows
the sequential update of the TMML-RRT* (Algorithm 1).

Algorithm 2 :OnlineRecourse

X — ng
for t=1to i=7 do
if X = ny then
break;
else
(Xnew> Unew) < max(X, RX,Xsuccessur)
if Upew > Ux, then

successor

Xsuccessor < Xnew

Rewire(X, Xsuccessor> Xsuccessor2)
end if
X« Xsuccessor

end if
end for

B TML IN KL PREDICTION

The main goal of the KF-TML is to use the information gain from
spatiotemporal correlation between TMCs to reduce uncertainty
in KF speed prediction. Figure 10 shows the significant percent
reduction in uncertainty of predictions when the KF-TML is em-
ployed. When speed observations with TML are close to historic
observations, the reduction in uncertainty is higher.
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Figure 10: Percent change in uncertainty of KF prediction
when TML is considered
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Temporal Multimodal Multivariate Learning

C TMML IN SUAS ROUTING

Using k-means clustering, the map is divided into regions of sim-
ilar cell types. Clusters are formed based on the entropy and the
expected value of each cell. The optimal number of clusters for
the dataset was calculated using a Gap function, demonstrated in
Figure 11. Because of differences in scale, k-means clustering per-
forms better when entropy is expressed as a percentage rather than
a decimal value.
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Figure 11: Based on sum of squares of hurricane prediction
output uncertainty, optimal cluster of 12 is used. We cluster
the four factors across 12 time stages using 12 clusters to
create a heap map to highlight the different clusters.
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Figure 12 shows principle components of those 12 clusters for
each variables across 12 hours in hurricane case study. As long as
any observation is within the same cluster, based on the correlation
measure, prediction uncertainty of multiple variables are updated.
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Figure 12: The result of multimodal multivariate cluster-
ing and temporal multimodal multivariate is described by
transforming four variables and time dimensions to three
principle components in a three-dimensional graph with cu-
mulative variation proportion of 90%.
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