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Orbital controls on eastern African 
hydroclimate in the Pleistocene
Rachel L. Lupien1,2*, James M. Russell1, Emma J. Pearson3, Isla S. Castañeda4, 
Asfawossen Asrat5,6, Verena Foerster7, Henry F. Lamb8,9, Helen M. Roberts8, Frank Schäbitz7, 
Martin H. Trauth10, Catherine C. Beck11, Craig S. Feibel12 & Andrew S. Cohen13

Understanding eastern African paleoclimate is critical for contextualizing early human evolution, 
adaptation, and dispersal, yet Pleistocene climate of this region and its governing mechanisms 
remain poorly understood due to the lack of long, orbitally-resolved, terrestrial paleoclimate records. 
Here we present leaf wax hydrogen isotope records of rainfall from paleolake sediment cores from 
key time windows that resolve long-term trends, variations, and high-latitude effects on tropical 
African precipitation. Eastern African rainfall was dominantly controlled by variations in low-latitude 
summer insolation during most of the early and middle Pleistocene, with little evidence that glacial–
interglacial cycles impacted rainfall until the late Pleistocene. We observe the influence of high-
latitude-driven climate processes emerging from the last interglacial (Marine Isotope Stage 5) to the 
present, an interval when glacial–interglacial cycles were strong and insolation forcing was weak. 
Our results demonstrate a variable response of eastern African rainfall to low-latitude insolation 
forcing and high-latitude-driven climate change, likely related to the relative strengths of these 
forcings through time and a threshold in monsoon sensitivity. We observe little difference in mean 
rainfall between the early, middle, and late Pleistocene, which suggests that orbitally-driven climate 
variations likely played a more significant role than gradual change in the relationship between early 
humans and their environment.

Understanding changes in eastern African hydroclimate during the Pleistocene is central to investigations of 
how humans evolved in a variable environment1–8. Over the Pleistocene, eastern African rainfall is thought 
to have undergone both secular and periodic changes driven by global cooling, evolving tropical sea surface 
temperature (SST) gradients, low-latitude insolation forcing, and glacial–interglacial cycles3,9–17. Each of these 
forcings has specific implications for the nature and timing of eastern African rainfall changes, which in turn 
yield predictions for the environmental changes experienced by our hominin ancestors. However, a lack of long 
datasets capable of resolving orbital cycles (103–105 years) limits our understanding of the relative influences of 
global climate forcings on the Pleistocene evolution of tropical eastern African rainfall, as well as the effects of 
paleoenvironmental change on early humans.

Varying seasonal insolation, controlled by the Earth’s orbital precession and eccentricity, causes changes in 
the differential heating of the African continent and oceans, driving fluctuations in the East African Monsoon 
strength18,19. 21-kyr cycles in monsoonal rainfall that result from this process are well-documented in eastern 
African climate records9,11,20–26, and their varying amplitude has been argued to have played a pivotal role in 
human evolution6,7,27. Coupled changes in the Earth’s carbon cycle and atmospheric greenhouse gas concentra-
tions, global temperatures, and high-latitude glacial–interglacial cycles are also thought to play a critical role 
in eastern African climate evolution3,4,28, and long-term variations in these processes may have contributed to 
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the development of bipedalism and other traits29. For instance, soil carbonate isotope (δ18Osc) records indicate 
gradual drying in northern and tropical Africa30,31, attributed to global cooling and ice-volume growth through 
the Pleistocene. Records of dust from the eastern Atlantic and the Mediterranean and Arabian Seas suggest 
transitions from 21- to 41- to 100-kyr periodicity over the Plio-Pleistocene, with shifts toward drier conditions 
and increased variability starting between 3500 and 2500 ka (onset and gradual intensification of Northern 
Hemisphere glaciation) and at 1000 ka3,4 (mid-Pleistocene Transition, MPT), matching transitions in the marine 
oxygen isotopic record of global ice volume32. However, recent accumulation rate corrections33 and time series 
analyses12 suggest different timings of aridification and a stronger influence of low-latitude insolation. Further-
more, strengthening of zonal SST gradients in the tropical Pacific beginning at ~1700 ka34 is thought to have 
weakened convection over eastern Africa, contributing to regional drying16. To date, despite the paleoanthropo-
logical significance of eastern Africa, the relative importance of low- and high-latitude climate forcings on the 
region’s rainfall history remain poorly constrained.

The Hominin Sites and Paleolakes Drilling Project (HSPDP) recovered sediment drill-cores that record the 
environmental history of key hominin fossil locales in Ethiopia and Kenya35–37. The cores allow us to develop 
and compare multiple long, high-resolution records of regional hydroclimate within a set of key time windows 
to elucidate the forcings and mechanisms of climate change in the region. Here we present a new record of the 
hydrogen isotopic composition of precipitation (δDprecip) from compound-specific analyses of terrestrial leaf 
waxes—a novel and powerful proxy for processes related to rainfall38—preserved in middle to late Pleistocene 
sediments from the Chew Bahir Basin, Ethiopia. This is compared with an existing record of the early Pleistocene 
from the adjacent Omo-Turkana Basin24 to evaluate changing trends and rhythms in regional hydroclimate, as 
well as the relative influences of high- and low-latitude forcings during intervals of the early and middle to late 
Pleistocene.

The HSPDP core locations lie in the East African Rift System (Fig. 1a), host to many famous hominin fossil 
sites39–41. We generated a new hydroclimate record derived from the hydrogen isotopic composition of ter-
restrial leaf waxes (δDwax) preserved in paleolake deposits from Chew Bahir, southern Ethiopia (duplicate drill 
cores HSPDP-CHB14-2A and -2B merged to composite core42,43, hereafter CHB14-2). Coring site CHB14-2 
(4° 45′ 40″ N, 36° 46′ 00″ E) is located in the Chew Bahir Basin, just northeast of the Omo-Turkana Basin 
(Fig. 1b). Today, the southern part of the basin floor is mostly occupied by a saline mudflat. The composite core 
extends from ~620 ka to present with age constraints based on 40Ar/39Ar dating of tephra, optically stimulated 
luminescence (OSL), radiocarbon dating, and tephrostratigraphic correlations44. We analyzed waxes spanning 
the interval from ~250 ka to present-day and synthesized this new dataset with a published record from West 
Turkana, Kenya24,45 (1900–1400 ka; HSPDP-WTK13-1A, hereafter WTK13) located ~100 km from CHB14-2 
(4° 6′ 35″ N, 35° 52′ 18″ E). The age model for WTK13 is based on tephrochronology and magnetostratigraphy 
and includes very conservative tuning of δDprecip with no impact on the dominance of orbital precession in the 
spectral properties24 (Fig. S1). Our combined datasets provide a regional hydroclimate record that represents 
a total span of ~750 kyr during the period 1900 ka to present, with an average sampling resolution of ~3 kyr 
within each record (Fig. 2).

The combined WTK13 and CHB14-2 data record key intervals when our genus, Homo, was evolving, devel-
oping new technologies, and dispersing within and out of Africa46. The Omo-Turkana Basin contains over 100 

Figure 1.   (a) East African Rift System study area map, including HSPDP sites and major rift lakes, generated in 
Python 3.8; (b) Ethiopian and Kenyan locations of the two paleolake sediment drill cores, WTK13 and CHB14-
2, included in this study with Omo-Kibish and Nariokotome Boy hominin sites and the Kokiselei site of the first 
evidence for Acheulean hand axes48. Map generated in Google Earth Pro 7.3.3.
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archaeological sites and 500 fossil finds47, including the earliest and most complete skeletons of H. rudolfensis 
and H. erectus. The ~1900–1400 ka interval spanned by WTK13 witnessed the development of Acheulean stone 
tools (earliest evidence for advanced hand axes at ~1760 ka at Kokiselei48, Fig. 1b), the evolution of H. erectus 
(including the Nariokotome Boy skeleton at ~1600 ka49, Fig. 1b), and what is thought to be the earliest hominin 
dispersal out of Africa50. The first eastern African evidence of our species, H. sapiens, is dated to ~233 ka at Omo 
Kibish in the Omo-Turkana Basin51, 100 km northwest of Chew Bahir (Fig. 1b). The past ~250 kyr, recorded in 
CHB14-2, not only encapsulates human morphological changes, but also social, technological, linguistic, and 
cultural development, and the dispersal of modern H. sapiens out of Africa42,43,52. These new traits spread to the 
rest of the world during this interval, and thus, this Turkana-Chew Bahir region may have served as a critical 
landscape for the development of our ancestors over the Pleistocene. This study, situated within the broader 
context of the aims of HSPDP (Fig. 1a), provides crucial insight into the nature of environmental change and 
the potential effects on hominins and other large mammals on the landscape.

Many paleoenvironmental indicators are very sensitive to basin-scale geological processes, limiting the ability 
for inter-basin comparison. However, δDwax is primarily controlled by δDprecip

53, which, in tropical Africa, is dom-
inantly driven by regional atmospheric dynamics that govern rainfall amount54,55. A variety of observational55,56, 
modeling57, and paleoclimate14,24,58–60 studies have revealed δDprecip to be very sensitive to changes in eastern 
African paleohydrology on orbital timescales. Although we recognize that δDprecip can be influenced by a variety 
of other processes such as moisture source and transport, and a variety of convective processes including the 
location of convective cells61, we interpret δDprecip as a qualitative indicator of rainfall amount, consistent with 
previous studies in the region14,24,54,59,61,62. We directly compare δDprecip between different sedimentary archive 
sites and time intervals to understand large-scale climate processes.

C3 and C4 metabolic processes influence the apparent fractionation between δDwax and δDprecip, but carbon 
isotopic compositions of the same leaf wax compounds (δ13Cwax; Fig. S2) help estimate vegetation type and cor-
rect δDwax to δDprecip (Fig. S3 and S4). While uncertainties exist in the biosynthetic fractionation factor, this cor-
rection has minimal influence on the trends and patterns in the precipitation record because the isotopic range 
in δDprecip is vastly larger than the potential C3–C4 effect. We also correct for geographic differences in δDprecip 
between WTK13 and CHB14-2 using δDwax and δ13Cwax measurements from late Holocene sediment within each 

Figure 2.   δDprecip records corrected for vegetation, ice volume, and geographic effects (Fig. S4) from CHB14-2 
and WTK13 in the context of two million years of zonal mean 20° N June 21st insolation65 (red) and the benthic 
foraminifera δ18O stack32 (blue). Sampling gaps greater than half of a precession cycle (~10 kyr) are represented 
with dashed lines and analytical error on δDwax measurements in shading. Age constraints for CHB14-2 and 
WTK1324,45 with 1σ analytical error depicted along bottom with symbol indicating dating technique (green 
triangle = 14C; black circle = OSL; red star = 40Ar/39Ar; blue square = magnetostratigraphy).
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basin to estimate regional δDprecip (Fig. S4). We conduct a series of time series analyses to detect changes in the 
trends and rhythms of δDprecip and eastern African climate variability.

Results
Leaf wax biomarker record.  The hydrogen isotopic composition of long-chain leaf waxes (n-C26, n-C28, 
and n-C30 alkanoic acids) are strongly correlated in CHB14-2 (C28–C26: r2 = 0.72, n = 100, p << 0.01; C28–C30: 
r2 = 0.9, n = 117, p << 0.01) demonstrating these compounds were derived from a common source and record 
similar climate processes. Despite previous work that found that n-C28 may be produced in the lake water col-
umn in some lakes63, the strong correlation between long-chain compounds indicates that n-C28 is representative 
of terrestrial land plants in this basin. As n-C28 is the most abundant long chain n-acid, determined by Average 
Chain Length (ACL) calculation (28.4), resulting in lower analytical error, we use the hydrogen isotopic ratio of 
C28 n-acid for all analyses of climate variability for both sites. The Carbon Preference Index (CPI) is a measure-
ment of degradation of the organic compounds in the sediment, where a high even:odd chain length signifies 
good preservation of alkanoic acids, and a ratio of 1 signifies full degradation64. The CPI in CHB14-2 is accept-
able (mean: 2.8; minimum: 1.5), and to further demonstrate the lack of degradation effect on isotope analyses, 
we compare CPI and δDwax to find an insignificant correlation (r2 = 0.002, n = 125, p > 0.05). In CHB14-2, δDwax 
ranges from − 164.6 to − 68.7‰.

δ13Cwax averages − 23.8‰ in CHB14-2, and ranges from − 19.9 to − 30.8‰ with one outlier at − 16.8‰ (Fig. S2). 
The corrected δDprecip record, based on the δ13Cwax data, ranges from − 68.9 to 36.2‰ and closely tracks δDwax 
(Fig. S3 and S4).

Trend, variability, and spectral properties.  Neither of the δDprecip records show significant linear 
trends towards wetter or drier conditions within the time intervals they span individually or together, nor is 
there a large difference between the WTK13 and CHB14-2 study intervals (< 2‰ offset in δDprecip; Fig. 2).

Our δDprecip records contain high-amplitude oscillations of up to ~100‰. Lomb-Scargle periodogram analy-
sis demonstrates spectral density at ~21 kyr in the early and middle Pleistocene intervals (1900–1500 ka and 
250–130 ka) but no significant spectral properties in the late Pleistocene within the bounds of robust frequency 
detection (Fig. 3). Gaussian 21-kyr band-pass filtering of δDprecip in the two study intervals supports the spec-
tral analysis findings of strong precession influence in the early and middle Pleistocene, and reveals that this 
precession-band variation is greatly diminished in the late Pleistocene (Fig. 4). After applying a notch filter to 
remove variability associated with the ~21 kyr band, we observe gradual D-enrichment from Marine Isotope Stage 
(MIS) 5 (~125 ka) until the beginning of MIS 2 (~30 ka). This trend coincides with increasing benthic foraminif-
eral δ18O, suggesting that shifts in the late Pleistocene δDprecip covary with glacial–interglacial cycles (Fig. 4c,d).

Discussion
Our δDprecip records indicate eastern African rainfall experienced high-amplitude, orbitally-driven wet/dry cycles 
during long intervals of the early, middle, and late Pleistocene. Variability in the early Pleistocene 1900–1400 ka 
and middle Pleistocene (230–150 ka) intervals is dominated by orbital precession, with strong 21-kyr cycles 
in δDprecip (Figs. 3, 4), as well as 100-kyr eccentricity-band amplitude modulation (Fig. S5). Ice volume and 
associated global climate processes varied primarily at the 41-kyr period during the early Pleistocene and had a 
saw-tooth pattern and 100-kyr periodicity in the middle Pleistocene32, yet we see no robust signal of obliquity 
in the early Pleistocene (Fig. 3) nor visual similarity between δDprecip and ice volume through most of the record 

Figure 3.   Lomb-Scargle spectral analyses for unevenly sampled data of δDprecip from the early (1900–1500 ka), 
middle (250–130 ka), and late (130–0 ka) Pleistocene. Precession-band 19- and 23-kyr periodicities lie above the 
95% confidence line (dashed grey) in the early and middle Pleistocene. Frequency distribution is plotted from 
½× the Nyquist frequency as the high-frequency cutoff to 1/3 of the total length of interval as the low-frequency 
cutoff, thus the differing x-axes of the three windows depend on the resolution and length of the specific 
interval.
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(Fig. 2). Instead, eastern African rainfall varied primarily at a 21-kyr precession rhythm (Fig. 3) with modula-
tion of that variability by eccentricity into high- and low-amplitude packets (Fig. S5), in sync with low-latitude 
summer insolation forcing65 during the early to middle Pleistocene.

We observe no difference in mean values of δDprecip between the WTK13 and CHB14-2 records, suggesting 
remarkable long-term stability in eastern African rainfall during the Pleistocene. The similar lack of trend in 
the eastern Africa soil carbonate δ18O compilation31 suggests that the Omo-Turkana and Chew Bahir Basins, 
despite their aridity relative to surrounding basins, capture regional paleoclimate changes, especially because of 
the large-scale integrative nature of the leaf wax biomarker proxy. The long-term hydroclimate stability occurs 
despite evidence for regional C4 grassland expansion66–72, supporting recent work suggesting that declining 
atmospheric CO2, rather than hydroclimate, plays a dominant role in C4 grass expansion in Africa73,74.

Orbital-scale vegetation change, though, covaries with hydroclimate variations in intervals throughout the 
Quaternary24,59,75, and we observe substantial changes in the amplitude of orbital-scale variability within each of 
our records. Band-pass filtering of the precession signal in our δDprecip records isolates packets of high-amplitude 
variability that generally align with high orbital eccentricity and intervals with the strongest seasonal insolation 
forcing (Fig. 4 and S5). Although not every high eccentricity interval produces high-amplitude δDprecip oscilla-
tion (i.e., 1900–1800 ka), this result further suggests a dominant role for precession-driven seasonal insolation 
change in controlling eastern African rainfall during the early and middle Pleistocene.

Our findings are supported by records that indicate a dominant role for orbital precession in controlling 
African climate history, particularly in subtropical and northern Africa9,20,22–26,76. For instance, sapropel records 
from the Mediterranean indicate precessional insolation forcing has been a dominant driver of northeast Afri-
can rainfall throughout the Plio-Pleistocene9. Our results are also consistent with some paleoclimate model 
simulations17, though others predict a stronger role for atmospheric greenhouse gases in eastern equatorial 
Africa76 than suggested by our records. Synchronized pulses of deep lakes in multiple East African Rift basins 
have been suggested to occur during intervals of high eccentricity5. Our δDprecip records indicate that high 
eccentricity intervals were times of much wetter, as well as much drier, conditions (Fig. S5), and the alternation 

Figure 4.   Gaussian 21-kyr ± 5-kyr band-pass (b) and notch (c) filtering of the δDprecip study intervals truncated 
to 1870–1500 ka and 250–30 ka to omit low sampling resolution sections. June 21st zonal mean 20° N 
insolation65 (a) plotted and highlighted in light red demonstrate similarity with high- and low-amplitude 
variability packets in gaussian band-pass filtered δDprecip. Our selection of June 21st insolation at 20°N is based 
on observations from latest Pleistocene and Holocene records demonstrating the sensitivity of eastern African 
precipitation to this date and latitude14,61,84,88. We note that the chronologies for the CHB14-2 and WTK13 
records are too imprecise to determine the phase of the response of δDprecip to orbital forcing; however, the 
choice of latitude and season does not influence our spectral analyses nor other results. Benthic foraminifera 
δ18O stack32 (d) plotted with recent interglacial MIS’s and highlighted in light blue to demonstrate similarily 
with late Pleistocene notch-filtered (precession-band periodicities removed) δDprecip. Means were removed in 
both band-pass- and notch-filtered data to feature changes in variability.
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between extreme endmembers suggested by our data could drive selection for generalist or adaptable traits in 
early humans27,77,78.

Despite the dominant role of orbital precession in our records, our δDprecip suggests global climate conditions 
became increasingly influential on tropical African rainfall between the middle and late Pleistocene after the last 
interglacial at ~130 ka. After removing precessional periodicity from our data, we observe a trend toward drier 
conditions from MIS 5e (when ice volume levels were similar to the Pliocene32) until the Last Glacial Maximum 
(LGM; Fig. 4). Previous work has documented strong influences of ice volume on eastern African climate dur-
ing the latest Pleistocene, such as drying over most of the region during the LGM43,79. A ~210 kyr-long δDwax 
record from the Gulf of Aden also documents strong precession-band rainfall variations during MIS 5, 6, and 
7 superimposed on alternating humid and arid conditions that track ice volume14. This mixture of signals of 
insolation and ice volume in the Gulf of Aden potentially results from its more northern location or the larger 
area of leaf wax supply to this marine record. However, a dust record from the Mediterranean, which is thought 
to record Northeast African monsoon strength, also demonstrates precession-band fluctuations throughout the 
last 3000 kyr until a large, 100-kyr, sawtooth-shaped excursion begins in MIS 5e12,76.

Climate model simulations suggest strong atmospheric teleconnections between eastern African rainfall and 
the northern high latitudes80. One potential mechanism for the influence of late Pleistocene glacial–interglacial 
cycling in tropical Africa could be that cooling in the northern high latitudes is advected by the westerlies into 
Eurasia, which enhances the boreal winter Arabian anticyclone80. Northerly winds originating from this circula-
tion advect cool and dry air over eastern Africa, suppressing boreal fall and winter rainfall. These simulations rely 
on freshwater hosing to cool the northern high latitudes and are therefore not directly analogous to the North-
ern Hemisphere glaciation cycles. However, these simulations demonstrate an atmospheric mechanism linking 
eastern African rainfall and northern high latitude climate via Eurasia that could apply on longer timescales.

Our δDprecip data suggest that low-latitude insolation forcing controls much of the long-term variability in 
eastern African rainfall, including during the middle Pleistocene when ice volume changes were large. However, 
ice volume fluctuations leave distinct signals from 130 ka to the present (Fig. 4) and there is also a stark lack of 
similarity between δDprecip and precession (Fig. 3) and eccentricity modulation (Fig. S5) during this time. We 
suggest that this arises due in part to the relative strengths of high- and low-latitude forcings. High-amplitude 
seasonal insolation forcing under high orbital eccentricity causes strong, periodic changes in eastern African 
rainfall17. However, when ice volume fluctuations strengthen and insolation forcing weakens, such as occurred 
from ~130 ka to the present, ice volume changes can emerge as a strong influence on eastern African hydro-
climate. The shift from insolation-driven to ice volume-driven fluctuation at ~130 ka in our record suggests a 
nonlinear sensitivity of eastern African rainfall to seasonal insolation forcing and to high-latitude-driven climate 
change at this orbital time scale. This varying sensitivity to forcings of variable amplitude may reconcile the large 
number of records that document eastern African aridity during the LGM43,58,79,81–86, when ice volume changes 
were large and eccentricity was particularly low, against the longer Pleistocene records that show a dominant 
control of orbital precession on eastern African rainfall. This hypothesis may further explain the absence of 
41-kyr cycles in African rainfall during the early Pleistocene, as ice volume changes were generally small com-
pared to those during the late Pleistocene. Climate modeling experiments have suggested threshold responses 
of tropical climate to Northern Hemisphere ice volume changes, due to shifts in the position of westerly jets and 
their ability to perturb the tropical atmospheric circulation87. Additionally, threshold-like responses of African 
hydroclimate to insolation have been documented61,87 and attributed to various processes, including feedbacks 
involving vegetation, soil moisture, and SST43,58,88. The interaction of these nonlinear responses to high- and low-
latitude climate drivers may have triggered shifts in sensitivity, depending on the relative strengths of each forcing.

Both orbital-scale variability and secular trends in eastern African climate have been postulated as drivers 
of hominin evolution and dispersal3,7,42,43,77,89. Our proxy records indicate that orbital-scale variability (up to 
100‰ in a single precession cycle) is much larger than the long-term mean change occurring since ~2000 ka. 
Extremely high-amplitude fluctuations occurred in the region during critical times of early hominin evolution 
in eastern Africa and potentially promoted an environment that favored behavioral and morphological plasticity 
or adaptability in our ancestors8,27.

Methods
Geochemical analyses.  We analyzed the isotopic composition of terrestrial leaf wax biomarkers preserved 
in sediment from composite core HSPDP-CHB14-2 (hereafter termed CHB14-242) archived at the National 
Lacustrine Core Repository. Plants produce epicuticular waxes to shield leaf surfaces from evaporation and 
physical damage90. These waxes may be ablated and transported by eolian and fluvial processes to lakes, where 
they are preserved in sediment over geological time. The waxes include long-chain n-alkanoic acids, which we 
use to reconstruct water isotope compositions. Lipid extraction, purification, and isotopic analytical procedures91 
were performed at Brown University. Lipids were extracted from freeze-dried and homogenized sediment using 
a DIONEX Accelerated Solvent Extractor 350 with dichloromethane:methanol (9:1). The total lipid extract was 
separated into neutral and acid fractions via aminopropylsilyl gel column with dichloromethane:isopropanol 
(2:1) and ether:acetic acid (24:1). The acid fraction was then methylated using acidified methanol, and the result-
ing fatty acid methyl esters (FAMEs) were purified using a silica gel column. Relative concentrations of the 
FAME chain lengths were quantified using an Agilent 6890 gas chromatograph (GC) equipped with a HP1-MS 
column (30 m × 0.25 mm × 0.25 µm) and flame ionization detector (FID).

Hydrogen isotopes (δDwax) were measured using an Agilent 6890 GC, equipped with HP1-MS column 
(30 m × 0.32 mm × 0.25 µm), coupled to a Thermo Delta Plus XL isotope ratio mass spectrometer (IRMS) with 
a reactor temperature of 1445 °C, although some of the samples from the CHB14-2 core were analyzed with 
a Thermo Delta V Plus IRMS using the same conditions. On both instruments, D/H ratios were measured in 
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triplicate using H2 as an internal standard with He as the carrier gas, and corrected using a known FAMEs 
lab standard. Carbon isotopes (δ13Cwax) from CHB14-2 and the late Holocene analogues were measured at 
Brown University with these same procedures on the Thermo Delta V Plus GC-IRMS with a reactor tem-
perature of 1100 °C. Isotope ratios were corrected for the added methyl group (δDMeOH =  − 123.7‰ and 
δ13CMeOH =  − 36.62‰). We report δDwax relative to Vienna Standard Mean Ocean Water (VSMOW) and δ13Cwax 
relative to Pee Dee Belemnite (PDB) in per mil (‰) notation.

We successfully analyzed 125 samples (out of 143 samples) for δDwax and 92 samples for δ13Cwax from the 
CHB14-2 composite core. The sediment samples integrate up to 4 cm (~80 years44) and have a mean temporal 
resolution of ~1.75 kyr since 250 ka. Hydrogen isotopic analyses of the FAMEs standard had a standard devia-
tion (1σ) of 3.2‰ and the H3 factor was 1.76 ppm/nA. For hydrogen, 56 samples were run in triplicate (average 
1σ = 1.5), 20 in duplicate (average difference = 2.3‰), and 49 as single injections due to limited concentration. 
For carbon, all samples were measured in duplicate, with an average FAMEs standard 1σ of 0.25 and average 
intra-sample difference of 0.14‰. Five samples were removed from further analysis because they lie between 
two ages that constrain a potential sedimentary hiatus or dramatic reduction in sediment accumulation rate 
around the LGM from ~30–10.5 ka42–44.

Isotopic corrections.  A series of corrections to δDwax were performed to convert values to δDprecip (Fig. S4). 
Once all corrections were made, one outlier (outside 3 standard deviation units) was removed from the WTK13 
record.

Vegetation correction.  C3 trees and C4 grasses fractionate hydrogen to different degrees during leaf wax syn-
thesis due to differing metabolic pathways and plant physiologies. This causes different apparent fractionations 
between leaf waxes and precipitation (εwax-P), which can affect paleoclimate records based on δDwax if vegetation 
changes38. We calculated a ‘vegetation correction’ based upon δ13Cwax values (Fig. S2) to correct δDwax for these 
differences91. We use δ13Cwax endmember values for C3 and C4 plant types previously described from a Omo-
Turkana Basin outcrop92, in which the δ13C of n-C30 acids is − 32.9‰ for the C3 endmember and the δ13C of n-C30 
acid is − 19.0‰ for the C4 end member. We adjust these values to account for observed differences between n-C30 
and n-C28 acids93, thereby using − 32.15‰ and − 20.63‰ as the C3 and C4 endmembers. Samples with δ13Cwax 
values more enriched than this C4 endmember value were treated as 100% C4. After applying this C3/C4 mixing 
model to our δ13Cwax data, we then applied εwax-P values of − 112.8‰ and − 124.5‰ for C3 and C4 vegetation with 
a 25‰ correction for C27 n-alkane to C28 n-acid38,91,94 to correct for ‘vegetation effects’ on δDwax and estimate 
δDprecip (Fig. S3).

Because not all δDwax measurements have a corresponding δ13Cwax measurement, typically due to concentra-
tion limitations, we used AnalySeries95 to mathematically resample the δ13Cwax data to δDwax resolution to obtain 
a δDprecip record with the same resolution as δDwax. In Fig. S2 we demonstrate that this does not have a meaningful 
impact on our results as the corrections are much smaller than the hydroclimate signals in δDwax and δDprecip. We 
show the CHB14-2 δDprecip record with and without the additional resampled δ13Cwax corrections to demonstrate 
that the difference between the δDwax and the empirically derived δDprecip is negligible.

Ice volume correction.  We use the benthic δ18O stack32 to estimate past ocean water isotopes to correct the 
δDprecip for different source water δD91. Age uncertainty in our records and in the LR04 stack limits our ability 
to precisely align the two, so we average the stack δ18O in each study interval, anomalize that value to late Holo-
cene, and convert it to δD based on the meteoric water line. We then apply this anomaly to each study interval 
to obtain an ice volume-corrected signal of δDprecip (Fig. S4).

Geographic correction.  δDwax and δ13Cwax measurements of late Holocene analogue sediment (Table S1) lets 
us obtain δDprecip measurements from both sites. One sample from the Chew Bahir Basin96 and 12 averaged 
samples from the Omo-Turkana Basin85 were used to represent the late Holocene (last 5 kyr) leaf wax isotope 
signature of each region (Table S1). Our late Holocene analogue measurements of δDprecip are similar to modeled 
precipitation isotope data97, indicating that we have appropriately captured the differences between study sites. 
We anomalized the Chew Bahir measurements to Turkana δDprecip. This “geographic” correction (12‰) was 
then added to the mean of the CHB14-2 record (Fig. S4) to produce the fully corrected eastern African δDprecip 
Pleistocene record (Fig. 2).

Time series analyses.  We analyzed the linear trends within the WTK13 and CHB14-2 records, as well 
as throughout the entire 1900 kyr interval. Comparisons between δDprecip and insolation were performed 
using June 21st insolation at 20° N, which is based on observations from late Pleistocene and Holocene records 
demonstrating the sensitivity of eastern African precipitation to this date and latitude 14,60,83,87. We also per-
formed Lomb-Scargle analysis of δDprecip to study spectral density of unevenly spaced data with the plomb func-
tion in MATLAB98,99. This method was applied to the two study intervals, 1900–1500 ka and 250–30 ka, which 
exclude low-resolution intervals. We then used the frequency of the densest spectral peak from each interval 
(early Pleistocene, 22 kyr; middle to late Pleistocene, 25 kyr; each with bandwidth of ± 5 kyr) to inform gaussian 
band-pass and notch filtering exercises, which were performed using the time series analysis program Analy-
Series version 2.0.895.
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