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ABSTRACT

In this paper, we continue our study [B. Dodson, A. Soffer, and T. Spencer, J. Stat. Phys. 180, 910 (2020)] of the nonlinear Schrödinger
equation (NLS) with bounded initial data which do not vanish at infinity. Local well-posedness on R was proved for real analytic data. Here,
we prove global well-posedness for the 1D NLS with initial data lying in Lp for any 2 < p <∞, provided that the initial data are sufficiently
smooth. We do not use the complete integrability of the cubic NLS.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0042321

I. INTRODUCTION

In this article, we continue the study1 of the nonlinear Schrödinger equation (NLS) on the continuum,

iut + uxx ≙ ∣u∣2u, u(0, x) ≙ u0(x), u : R ×R→ C. (1.1)

Our analysis does not depend on the complete integrability of (1.1). A solution to (1.1) has a scaling symmetry. If u(t, x) is a solution to (1.1),
then for any λ > 0,

λu(λ2t, λx) (1.2)

is a solution to (1.1) with initial data λu0(λx). Direct computation of (1.2) implies that (1.1) is Ḣ−1/2-critical since for any s ∈ R,

∥λu0(λx)∥Ḣs(R) ≙ λ
s+ 1

2 ∥u0∥Ḣs(R), (1.3)

so when s ≙ − 1
2 , the norm of the initial data is invariant under the scaling.

Equation (1.3) also implies that (1.1) is L2-subcritical and is also Lp-subcritical for any p > 2. Using now standard arguments (see, for
example, Refs. 2±4) (1.1) is locally well-posed for initial data lying in L2. Combining L2 subcriticality of (1.1) with conservation of mass,
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M(u(t)) ≙ ∫ ∣u(t, x)∣2dx ≙ ∫ ∣u(0, x)∣2 ≙M(u(0)), (1.4)

gives the global well-posedness of (1.1) with initial data in L2.
For u0 ∈ L

p(R), p > 2, Hölder’s inequality also implies that u0 ∈ L
2 on any compact subset ofR. Therefore, the obstacle to well-posedness

for u0 ∈ L
p, 2 < p <∞, is that data which are initially spread out can move together. Finite propagation speed prevents this from happening

for the nonlinear wave equation; see Ref. 1. However, for the nonlinear Schrödinger equation, the velocity is controlled by the frequency, and
the nonlinearity may move the solution to higher frequencies. In Ref. 1, we studied (1.1) on a lattice or for a regularized nonlinearity on the
continuum, which prevented the nonlinearity from moving the solution up to high frequencies. Global well-posedness was proved using a
local energy argument. Local well-posedness was also established for (1.1) with bounded real analytic data.

In this paper, we prove global well-posedness for (1.1) with initial data u0 lying in a sufficiently regular Lp-based Sobolev space but which
may have infinite L2 norm and infinite energy (1.7).

Theorem 1. For any n ∈ Z, n ≥ 0, (1.1) is globally well-posed for initial data u0 satisfying

∥⟨∂x⟩2n+2u0∥L4n+2x (R) <∞. (1.5)

The norm (1.5) is defined below.

Definition 1. For any p ∈ ∥1,∞∥ and any positive integer n, define the norm

∥⟨∂x⟩n f ∥Lp(R) ≙ n

∑
j=0

∥∂ j
x f ∥Lp(R). (1.6)

Definition 2. The well-posedness definition is in the L2n+2x (R) space. That is, u ∈ C0
t (R : L2n+4x (R)) and the solution continuously depends

on the initial data.

Remark 1. For example, Theorem 1 implies that u0 ≙ ∥cos(x) + cos(√2x)∥(1 + ∣x∣2)−α is globally well posed for any α > 0. When α ≙ 0,
local existence was proved in Refs. 1 and 5; however, global existence is not known. In the Proof of Theorem 2 in Dodson, Soffer, Spencer, there
was a missing factor of (t − τ)−1/2 in the Duhamel term (3.43). This factor could potentially improve the result.

For the KdV equation, another one dimensional dispersive PDE6 (Partial Differential Equation) proved global well-posedness for almost
periodic data by exploiting the completely integrable structure of the KdV equation. See also Refs. 7 and 8 for global results for the NLS in a subset
of the almost periodic setting. It may be that the recent results of Ref. 9 could be useful in this direction.

To explain the method of proof, we first note that it is done by successively increasing the p norm and regularity of the initial data. First
observe that when n ≙ 0, we can take u0 ∈ L

2 only, and we do not need ∥⟨∂x⟩2u0∥L2 <∞.
When n ≙ 1, note that the choice for the Sobolev space is L6 and with enough regularity. Then, although the conserved quantities of

the equation are infinite, we note that u30 ∈ L
2. Hence, the zeroth order iteration of the equivalent integral equation has its Duhamel term

in L2. The exploitation of the fact that the Duhamel term may live in a better space goes back at least to the ideas of Ref. 10, as well as in
Ref. 11 in the context of random data. In Refs. 10 and 11, a better function spacemeans functions with improved differentiability. Here, a better
space means a Lebesgue space with a lower integrability index. For the cubic nonlinear Schrödinger equation on R, this idea was also used in
Ref. 12.

For larger n, one proves that under the linear flow, the Lp norms remain bounded if the data are sufficiently regular. The solution grows
with time in Lp but only polynomially, which allows us to prove that the Picard iterations are such that the Duhamel term is in L2 and in the
local in time Strichartz norm. We can obtain a local solution by making the ansatz

u(t) ≙ u0(t) + u1(t) + . . . + un−1(t) + v(t), where u
0(t) ≙ eit∂xxu0,

where ui(t) represents the ith Picard iterate and v is the remainder. The idea of using a higher order expansion and exploiting smoothing
properties of higher order iterates appear in recent works (Refs. 13 and 14) on random data dispersive PDE. It is convenient to first rescale so
that the initial data (1.5) are small. Then, by Picard iteration and stationary phase arguments, we prove the local well-posedness of (1.1) on∥−1, 1∥.

The next step is to observe that the equation is sub-critical in these Lp spaces, and therefore, it is possible to go from the local result to
global. The fact that one can control the Duhamel nonlinear part of the solution in L2 is a key fact that also allows us to use the conservation
laws for the nonlinear terms. Indeed, (1.1) with initial data v(1) ∈ H1 has a solution on ∥1,∞). We then prove that (1.1) with initial data u(1)
has a solution on ∥1,∞) by proving the global well-posedness of (1.1) with initial data v(1) and treating u(1) − v(1) as a perturbation. The
analysis uses the conservation of mass (1.4) and energy
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E(u(t)) ≙ 1

2 ∫ ∣ux(t, x)∣2dx +
1

4 ∫ ∣u(t, x)∣4dx
≙
1

2 ∫ ∣ux(0, x)∣2dx +
1

4 ∫ ∣u(0, x)∣4dx ≙ E(u(0)).
(1.7)

One can then control higher Lp norms by the previous case. This argument has some similarity to the argument in Ref. 15 for the nonlinear
wave equation with random initial data.

It should be pointed out that the decay at infinity of the initial data is crucial for the analysis. Hence, the case p ≙∞ is left open. This is
an indication that even though there is focusing that can produce large derivative and size locally, the decay of the solution at infinity allows
for some dispersion.

Remark 2. Theorem 1 is probably not sharp for any n > 0.

Remark 3. Local well-posedness would hold equally well in the focusing case. While conservation of mass (1.4) would guarantee global
well-posedness for both the focusing and defocusing problems in the case that u0 has finite mass, the fact that our proof of global well-posedness
relies on the conservation of energy means that the global result only holds in the defocusing case.

The local arguments would also work for

iut + uxx ≙ ∣u∣2ru (1.8)

for some integer r > 1. However, when r > 1, one cannot directly use the analog of (3.27) since the power of E(v) will be larger than 1 in that
case.

Remark 4. The study of nonlinear Schrödinger equations of the form (1.1) has mostly focused on initial data in L2-based Sobolev spaces.
Here, we study well-posedness questions for initial data in Lp-based Sobolev spaces with p > 2. See Refs. 16±18.

II. LOCAL RESULT

We begin by proving a local version of Theorem 1.

Theorem 2. For any n ∈ Z, n ≥ 1, there exists ϵ(n) > 0 such that if
∥⟨∂x⟩2n+1u0∥L4n+2(R) ≤ ϵ(n), (2.1)

then (1.1) has a local solution in L4n+2t,x (∥−1, 1∥ ×R) on ∥−1, 1∥.

Remark 5. Observe that the differentiablity assumption in Theorem 2 is weaker than condition (1.5) for the global result.

Proof. The case when n ≙ 0 is already well-known, so start with n ≙ 1.

Theorem 3. There exists ϵ > 0 such that if

∥⟨∂x⟩2u0∥L6(R) < ϵ, (2.2)

then (1.1) has a local solution in L6t,x(∥−1, 1∥ ×R) for ϵ > 0 sufficiently small.

Proof. We begin by proving an estimate on the operator eit∂xx .

Lemma 1. For any 2 ≤ p ≤∞,

∥eit∂xxu0∥Lp ≲ (1 + t3/2)(∥∂xxu0∥Lp + ∥∂xu0∥Lp + ∥u0∥Lp). (2.3)

Proof. Lemma 1 is proved by computing the stationary phase kernel

e
it∂xxu0(x) ≙ 1

Ct1/2 ∫ e
−i
(x−y)2

4t u0(y)dy. (2.4)
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Let χ be a smooth, compactly supported function, χ(y) ≙ 1 for ∣y∣ ≤ 1, and χ is supported on ∣y∣ ≤ 2. Integrating by parts,
1

Ct1/2 ∫ e
−i
(x−y)2

4t (1 − χ(x − y))u0(y)dy
≙

1

Ct1/2 ∫
2it

x − y

d

dy
(e−i (x−y)24t )(1 − χ(x − y))u0(y)dy

≙ Ct
1/2 ∫ d

dy
( 1

x − y
(1 − χ(x − y))) ⋅ e−i (x−y)24t u0(y)dy

+Ct
1/2 ∫ e

−i
(x−y)2

4t
1

x − y
(1 − χ(x − y))u′0(y)dy.

(2.5)

Since d
dy
( 1
x−y
(1 − χ(x − y))) ∈ L1(R), Young’s inequality implies that for any 1 ≤ p ≤∞,

∥Ct1/2 ∫ d

dy
( 1

x − y
(1 − χ(x − y))) ⋅ e−i (x−y)24t u0(y)dy∥Lp ≲ t1/2∥u0∥Lp . (2.6)

Making another integration by parts argument shows that the second term on the right hand side of (2.5) also has a bounded Lp norm,

∥Ct1/2 ∫ e
−i
(x−y)2

4t
1

x − y
(1 − χ(x − y))u′0(y)dy∥Lp ≲ t3/2∥∂xu0∥Lp + t3/2∥∂xxu0∥Lp . (2.7)

Now, by the fundamental theorem of calculus,

χ(x − y)u0(y) ≙ χ(x − y)u0(x) + χ(x − y)(u0(y) − u0(x))
≙ χ(x − y)u0(x) + χ(x − y)∫ y

x
u
′

0(s)ds. (2.8)

Since χ(y) is smooth and compactly supported, ∥χ(x − y)u0(x)∥H1 ≲ ∣u0(x)∣, and therefore, by the Sobolev embedding theorem and the fact
that eitΔ is a unitary operator for L2-based Sobolev spaces,

∥eit∂xx(χ(y)u0(x))∥L∞ ≲ ∣u0(x)∣. (2.9)

In particular, this implies

∣eit∂xx(χ(y)u0(x))∣(t, x) ≲ ∣u0(x)∣. (2.10)

Finally, as in (2.5),

1

Ct1/2 ∫ e
−i
(x−y)2

4t χ(x − y)(u0(y) − u0(x))dy
≙

1

Ct1/2 ∫
2it

x − y

d

dy
(e−i (x−y)24t )χ(x − y)(u0(y) − u0(x))dy

≙ Ct
1/2 ∫ d

dy
(e−i (x−y)24t )χ(y)∫ 1

0
u
′

0(x + sy)dsdy.
(2.11)

Integrating by parts in y then implies

∥Ct1/2 ∫ d

dy
(e−i (x−y)24t )χ(y)∫ 1

0
u
′

0(sy)dsdy∥L∞ ≲ t1/2∥∂xu0∥L∞ + t1/2∥∂xxu0∥L∞ . (2.12)
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Interpolating with the well-known unitary group bound ∥eit∂xxu0∥L2 ≙ ∥u0∥L2 proves that for any 2 ≤ p ≤∞,

∥eit∂xxu0∥Lp ≲ (1 + t3/2)(∥∂xxu0∥Lp + ∥∂xu0∥Lp + ∥u0∥Lp). (2.13)

◻

Theorem 3 then follows directly from (2.3) by Picard iteration. Define a set

X ≙ {v : ∥v∥L6t,x(∥0,1∥×R) ≲ ϵ3}, (2.14)

and define a sequence vn recursively, where v0 ≙ 0 and

vn+1 ≙ −i∫
t

0
e
i(t−τ)∂xx ∣eiτ∂xxu0 + vn∣2(eiτ∂xxu0 + vn)dτ. (2.15)

Recall the Strichartz estimates. See Refs. 4, 19, and 20 for more information.

Theorem 4. Let (p1, q1) and (p2, q2) be admissible pairs in one dimension such that

2

pi
≙
1

2
−

1

qi
, 4 ≤ pi ≤∞, i ≙ 1, 2. (2.16)

If

u(t, x) ≙ u0(t, x) − i∫ t

0
e
i(t−τ)∂xxF(τ, x)dτ, u

0(t, x) ≙ eit∂xxu0, u : I ×R→ C, (2.17)

I is an interval containing 0, then

∥u∥Lp1t L
q1
x (I×R)

≲ ∥u(0)∥L2 + ∥F∥
L
p′
2
t L

q′
2
x (I×R)

. (2.18)

Remark 6. p′ is the Lebesgue dual of p, 1
p′
+

1
p
≙ 1.

Plugging the Strichartz estimates into (2.15), with p1 ≙ q1 ≙ 6 and p
′

2 ≙ 1, q
′

2 ≙ 2, we have

∥vn+1∥L6t,x(∥−1,1∥×R) ≲ ∥eit∂xxu0∥3L6t,x(∥−1,1∥×R) + ∥vn∥3L6t,x(∥−1,1∥×R) ≲ ϵ3 + ∥vn∥3L6t,x(∥−1,1∥×R). (2.19)

Also by Strichartz estimates,

∥vn+1 − vn∥L6t,x ≲ ϵ2∥vn − vn−1∥L6t,x + (∥vn∥2L6t,x + ∥vn−1∥2L6t,x)∥vn − vn−1∥L6t,x . (2.20)

Then, by the contraction mapping principle, this proves that there is a unique v ∈ L6t,x such that

v ≙ −i∫
t

0
e
i(t−τ)∂xx ∣eiτ∂xxu0 + v∣2(eiτ∂xxu0 + v)dτ. (2.21)

This proves Theorem 3. ◻

Next, consider the case when n ≙ 2.

Theorem 5. There exists ϵ > 0 such that if

∥⟨∂x⟩5u0∥L10 < ϵ, (2.22)

then (1.1) has a local solution on ∥−1, 1∥.
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Proof. The solution u(t) is of the form
u(t) ≙ u0(t) + u1(t) + v(t), (2.23)

where

u
0(t) ≙ eit∂xxu0 (2.24)

and u1(t) is the next Picard iterate,

u
1(t) ≙ ∫ t

0
e
i(t−τ)∂xx ∣u0(τ)∣2u0(τ)dτ. (2.25)

By Lemma 1, for −1 ≤ t ≤ 1,

∥⟨∂x⟩3eit∂xxu0∥L10x ≲ ϵ, (2.26)

and using the product rule, for −1 ≤ t ≤ 1,

∥⟨∂x⟩u1(t)∥L10/3x
≲ ∥⟨∂x⟩∫ t

0
e
i(t−τ)∂xx ∣u0(τ)∣2u0(τ)dτ∥L10/3

≲ ∥⟨∂x⟩3∣u0∣2u0∥L1t L10/3x
≲ ∥⟨∂x⟩3u0∥3L∞t L10x

≲ ϵ
3.

(2.27)

Remark 7. Observe that by the Sobolev embedding theorem, u0,u1 ∈ L∞t,x .

Then, as in Theorem 4, obtain v(t) that solves
v(t) ≙ ∫ t

0
e
i(t−τ)∂xx ∣u∣2udτ − u1(t), (2.28)

where u satisfies (2.23). We substitute (2.23) into (2.28). Then, since it is not too important to distinguish between u and Åu,

∫
t

0
e
i(t−τ)∂xx ∣u∣2udτ ≙ ∫ t

0
e
i(t−τ)∂xx

v
3
dτ + 3∫

t

0
e
i(t−τ)∂xx

v
2(u0 + u1)dτ

+3∫
t

0
e
i(t−τ)∂xx

v(u0 + u1)2dτ +∫ t

0
e
i(t−τ)∂xx(u0 + u1)3dτ.

(2.29)

Then, by the Sobolev embedding theorem, (2.26), and (2.27),

∥u0∥L∞t,x + ∥u1∥L∞t,x ≲ ϵ + ϵ3. (2.30)

Let S0 be the Strichartz space, S0(∥−1, 1∥ ×R) ≙ L∞t L2x(∥−1, 1∥ ×R) ∩ L4t L∞x (∥−1, 1∥ ×R). By Theorem 4, we can bound the first three terms
on the right hand side of (2.29) by

∥∫ t

0
e
i(t−τ)∂xx

v
3
dτ∥S0(∥−1,1∥×R) + ∥∫ t

0
e
i(t−τ)∂xx

v
2(u0 + u1)dτ∥S0(∥−1,1∥×R)

+∥∫ t

0
e
i(t−τ)∂xx

v(u0 + u1)2dτ∥S0(∥−1,1∥×R) ≲ ∥v∥3S0(∥−1,1∥×R) + ϵ2∥v∥S0(∥−1,1∥×R). (2.31)

Next, the last term on the right hand side of (2.29) is bounded by

∫
t

0
e
i(t−τ)∂xx ∣u0 + u1∣2(u0 + u1)dτ − u1(t) ≙ ∫ t

0
e
i(t−τ)∂xx∥∣u0 + u1∣2(u0 + u1) − ∣u0∣2u0∥dτ. (2.32)
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Therefore,

∥∫ t

0
e
i(t−τ)∂xx ∣u0 + u1∣2(u0 + u1)dτ − u1(t)∥S0(∥−1,1∥×R)

≲ ∥u0∥2L∞t L10x
∥u1∥

L∞t L
10/3
x
+ ∥u0∥L∞t L10x

∥u1∥2L∞t L5x
+ ∥u1∥3L∞t L6x

≲ ϵ
5.

(2.33)

Therefore,

∥v∥S0(∥−1,1∥×R) ≲ ∥v∥3S0(∥−1,1∥×R) + ϵ5, (2.34)

which implies that ∥v∥S0(∥−1,1∥×R) ≲ ϵ5. As in the Proof of Theorem 4, we can prove Theorem 5 by a contraction mapping argument.

Remark 8. We can also take a derivative of v and make the same argument. Indeed, following (2.33),

∥⟨∂x⟩∫ t

0
e
i(t−τ)∂xx ∣u0 + u1∣2(u0 + u1)dτ − u1(t)∥S0(∥−1,1∥×R)

≲ ∥⟨∂x⟩u0∥2L∞t L10x
∥⟨∂x⟩u1∥L∞t L

10/3
x
+ ∥⟨∂x⟩u0∥L∞t L10x

∥⟨∂x⟩u1∥2L∞t L5x
+ ∥⟨∂x⟩u1∥3L∞t L6x

≲ ϵ
5. (2.35)

Therefore, by the Sobolev embedding theorem, v ∈ S1 ⊂ L6t,x ∩ L
∞

t,x ⊂ L
4n+2
t,x for any n ≥ 1. ◻

Now, to prove Theorem 2 for a general n, define the sequence of functions

u
0(t) ≙ eit∂xxu0,

u
1(t) ≙ ∫ t

0
e
i(t−τ)∂xx ∣u0∣2u0(τ)dτ,

u
j(t) ≙ ∫ t

0
e
i(t−τ)∂xx ∣j−1∑

k=0

u
k∣2⎛⎝

j−1

∑
k=0

u
k⎞⎠dτ −

j−1

∑
k=0

u
k(t) for any 2 ≤ j ≤ n − 1. (2.36)

Again by (2.5)±(2.12), for −1 ≤ t ≤ 1,

∥⟨∂x⟩2n−1eit∂xxu0∥L4n+2 ≲ ϵ, (2.37)

∥⟨∂x⟩2n−3u1(t)∥
L

4n+2
3

x

≲ ϵ
3, (2.38)

and arguing by induction, for any 0 ≤ j ≤ n − 1,

∥⟨∂x⟩2(n−1−j)+1uj(t)∥
L

4n+2
2j+1
x

≲ ϵ
2j+1. (2.39)

Remark 9. The implicit constants depend on n.

Then, let

v(t) ≙ ∫ t

0
e
i(t−τ)∂xx ∣u∣2udτ − n−1

∑
j=1

u
j(t). (2.40)

Following (2.29),

v(t) ≙ ∫ t

0
e
i(t−τ)∂xx ∣u∣2udτ − n−1

∑
j=1

u
j(t) ≙ ∫ t

0
e
i(t−τ)∂xx ∣v∣2vdτ

+3∫
t

0
e
i(t−τ)∂xx

v
2⎛⎝

n−1

∑
j=0

u
j⎞⎠dτ + 3∫

t

0
e
i(t−τ)∂xx

v
⎛
⎝
n−1

∑
j=0

u
j⎞⎠

2

dτ

+∫
t

0
e
i(t−τ)∂xx ∣n−1∑

j=0

u
j∣2⎛⎝

n−1

∑
j=0

u
j⎞⎠dτ −

n−1

∑
j=1

u
j(t).

(2.41)
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Again, by Strichartz estimates,

∥∫ t

0
e
i(t−τ)∂xx ∣v∣2vdτ∥S0(∥−1,1∥×R) ≲ ∥v∥3S0(∥−1,1∥×R). (2.42)

By the Sobolev embedding theorem and (2.39),

∥∫ t

0
e
i(t−τ)∂xx

v
2⎛⎝

n−1

∑
j=0

u
j⎞⎠dτ∥S0(∥−1,1∥×R) ≲ ϵ∥v∥2S0(∥−1,1∥×R) (2.43)

and

∥∫ t

0
e
i(t−τ)∂xx

v
⎛
⎝
n−1

∑
j=0

u
j⎞⎠

2

dτ∥S0(∥−1,1∥×R) ≲ ϵ2∥v∥S0(∥−1,1∥×R). (2.44)

Finally, compute

∫
t

0
e
i(t−τ)∂xx ∣n−1∑

j=0

u
j∣2⎛⎝

n−1

∑
j=0

u
j⎞⎠dτ −

n−1

∑
j=1

u
j(t)

≙ ∫
t

0
e
i(t−τ)∂xx

⎡⎢⎢⎢⎢⎣
∣n−1∑
j=0

u
j∣2⎛⎝

n−1

∑
j=0

u
j⎞⎠ − ∣

n−2

∑
j=0

u
j∣2⎛⎝

n−2

∑
j=0

u
j⎞⎠
⎤⎥⎥⎥⎥⎦
dτ.

(2.45)

Therefore,

∥∫ t

0
e
i(t−τ)∂xx

⎡⎢⎢⎢⎢⎣
∣n−1∑
j=0

u
j∣2⎛⎝

n−1

∑
j=0

u
j⎞⎠ − ∣

n−2

∑
j=0

u
j∣2⎛⎝

n−2

∑
j=0

u
j⎞⎠
⎤⎥⎥⎥⎥⎦
dτ∥S0(∥−1,1∥×R)

≲ ∥un−1∥
L∞t L

4n+2
2n−1
x

⎛
⎝
n−1

∑
j=0

∥uj∥L∞t L4n+2x

⎞
⎠
2

≲ ϵ
2n+1.

(2.46)

Therefore,

∥v∥S0(∥−1,1∥×R) ≲ ϵ2n+1 + ∥v∥3S0(∥−1,1∥×R), (2.47)

which proves Theorem 2 for a general n. ◻

III. A GLOBAL RESULT

The local results in Sec. II may be extended to global results for a slightly smaller subset of initial data. First, consider the case when n ≙ 1.

Theorem 6. Equation (1.1) is globally well-posed for

∥⟨∂x⟩4u0∥L6 <∞. (3.1)

Proof. Using the scaling symmetry,

u(t, x)↦ λu(λ2t, λx), (3.2)

it is possible to rescale the initial data so that (3.1) ≤ ϵ. Then, by Theorem 2, (1.1) has a solution on the interval ∥−1, 1∥, which is of the form

u(t) ≙ eit∂xxu0 − i∫
t

0
e
i(t−τ)∂xx ∣u(τ)∣2u(τ)dτ ≙ u0(t) + v(t), (3.3)

where ∥v(t)∥L2 ≲ ϵ3 for all t ∈ ∥−1, 1∥.
Furthermore, if (1.1) has a solution on the maximal interval ∥0,T), T <∞, then

lim
t↗T
∥v(t)∥L2 ≙ +∞. (3.4)
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Indeed, suppose that there exists t0 < T such that

∥v(t0)∥L2 <∞. (3.5)

Then, by Strichartz estimates, there exists some δ(∥v(t0)∥L2) > 0 such that

∥ei(t−t0)∂xx
v(t0)∥L3t L6x(∥t0 ,t0+δ∥×R) ≤ ϵ. (3.6)

In addition, by (2.5)±(2.13), for δ(T) > 0 sufficiently small,

∥eit∂xxu0∥L3t L6x(∥t0 ,t0+δ∥×R) ≤ ϵ. (3.7)

Following the Proof of Theorem 3, (1.1) is locally well-posed on the interval ∥t0, t0 + δ∥. Since δ is a function of ∥v(t0)∥L2 and T only, if there
exists a sequence tn ↗ T for which

lim
n→∞
∥v(tn)∥L2 <∞, (3.8)

then the solution of (1.1) can be continued past T.
Compute the energy and mass of v,

M(v) + E(v) ≙ 1

2 ∫ ∣v∣2 +
1

2 ∫ ∣∂xv∣2 +
1

4 ∫ ∣v∣4. (3.9)

Lemma 2. For any T, there exists a bound

sup
t∈∥−T,T∥

M(v(t)) + E(v(t))≲T 1. (3.10)

Proof. This lemma will be proved using a Gronwall-type argument. In general, it will be convenient to relabel

ul ≙
n−1

∑
j=0

u
j, (3.11)

where ul denotes the linear part. In this case, since n ≙ 1, ul ≙ u
0.

Observe that v solves the nonlinear Schrödinger equation

i∂tv + ∂xxv ≙ ∣v∣2v + 2∣v∣2ul + v2 Åul + 2∣ul∣2v + (ul)2 Åv + ∣ul∣2ul. (3.12)

Therefore,

d

dt
M(v) ≙ 2(∣v∣2v, iul) + (∣v∣2 Åv, i Åul) + (v2, i(ul)2) + (v, i∣ul∣2ul), (3.13)

where

( f , g) ≙ Re∫ f (x)g(x)dx. (3.14)

First, by (2.13),

(v, i∣ul∣2ul) ≲ ∥v∥L2∥ul∥3L6 ≲T M(v)1/2. (3.15)

Next,

(v2, i(ul)2) ≲ ∥v∥4/3L4
∥v∥2/3

L2
∥ul∥2L6 ≲T M(v)1/3E(v)1/3 (3.16)
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and

2(∣v∣2v, iul) + (∣v∣2 Åv, i Åul) ≲ ∥v∥1/3L2
∥v∥8/3

L4
∥ul∥L6 ≲T M(v)1/6E(v)2/3. (3.17)

Now, compute the change of energy

d

dt
E(v) ≙ (∂x∂tv,∂xv) + (∂tv, ∣v∣2v)

≙ (∂tv,−∂xxv + ∣v∣2v)
≙ (∂tv, i∂tv − (∣u∣2u − ∣v∣2v))
≙ (∂tv, ∣v∣2v − ∣u∣2u)
≙ −(∂tv, ∣ul∣2ul) − 2(∂tv, ∣ul∣2v) − (∂tv,u2l Åv) − (∂t(∣v∣2v),ul).

(3.18)

By the product rule,

− (∂tv, ∣ul∣2ul) ≙ − d

dt
(v, ∣ul∣2ul) + (v,∂t(∣ul∣2ul)). (3.19)

Integrating by parts,

(v,∂t(∣ul∣2ul)) ≙ 3(v, (i∂xxul)u2l ) ≙ −6(v, i(∂xul)2ul) − 3(∂xv, i(∂xul)u2l )
≲ ∥∂xul∥2L6∥ul∥L6∥v∥L2 + ∥∂xv∥L2∥∂xul∥L6∥ul∥2L6≲TM(v)1/2 + E(v)1/2. (3.20)

Remark 10. Since ∥⟨∂x⟩4u0∥L6 <∞, (2.5)±(2.13) imply

∥⟨∂x⟩2eit∂xxu0∥L6 ≲ ∥⟨∂x⟩4u0∥L6≲T1. (3.21)

Next,

− 2(∂tv, ∣ul∣2v) ≙ −(∂t ∣v∣2, ∣ul∣2) ≙ − d

dt
(∣v∣2, ∣ul∣2) + (∣v∣2,∂t ∣ul∣2). (3.22)

Again, by the product rule, (3.21), and integrating by parts,

(∣v∣2,∂t ∣ul∣2) ≙ 2(∣v∣2, (i∂xxul) Åul) ≙ −4((∂xv)v, (i∂xul) Åul)
≲ ∥∂xv∥L2∥v∥2/3L2

∥v∥4/3
L4
∥∂xul∥L6∥ul∥L∞ ≲T E(v)2/3M(v)1/6. (3.23)

By a similar calculation,

− (∂tv,u2l Åv) ≙ −12(∂t(v2),u2l ) ≙ −
1

2

d

dt
(v2,u2l ) + (v2,ul(∂tul)). (3.24)

Integrating by parts,

(v2,ul(∂tul)) ≙ −(v2,ul(i∂xxul)) ≙ −(v2, (∂xul)(i∂xul)) − 2(v(∂xv),ul(i∂xul))
≲ ∥v∥2/3

L2
∥v∥4/3

L4
∥∂xul∥2L6 + ∥∂xv∥L2∥v∥2/3L4

∥v∥1/3
L2
∥∂xul∥L6∥ul∥L∞

≲T E(v)1/3M(v)1/3 + E(v)2/3M(v)1/6.
(3.25)

Finally,

− (∂t ∣v∣2v,ul) ≙ − d

dt
(∣v∣2v,ul) + (∣v∣2v,∂tul). (3.26)
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Integrating by parts and using (3.21) to control ∥∂xul∥L∞ ,
(∣v∣2v,∂tul) ≙ (∣v∣2v, i∂xxul) ≙ (−∂x(∣v∣2v), i∂xul)

≲ ∥∂xv∥L2∥v∥2L4∥∂xul∥L∞ ≲T E(v). (3.27)

Therefore, we have proved that for all t ∈ ∥0,T),
d

dt
(M(v) + E(v)) ≤ C(T)(M(v)1/2 + E(v)1/2 +M(v)1/3E(v)1/3

+M(v)1/6E(v)2/3 + E(v)) − d

dt
f (t),

(3.28)

where

f (t) ≙ (v, ∣ul∣2ul) + (∣v∣2, ∣ul∣2) + 1

2
(v2,u2l ) + (∣v∣2v,ul). (3.29)

Now, let

E(t) ≙M(v)(t) + E(v)(t) + f (t). (3.30)

By Hölder’s inequality,

∣ f (t)∣≲T ∥v∥L2 + ∥v∥4/3L4
∥v∥2/3

L2
+ ∥v∥1/3

L2
∥v∥8/3

L4

≲T M(v)1/2 +M(v)1/3E(v)1/3 +M(v)1/6E(v)2/3 ≪M(v)(t) + E(v)(t), (3.31)

whenM(v) + E(v) is large. Plugging (3.31) into (3.30) implies

M(v) + E(v)≲T E(t) + 1 (3.32)

and
d

dt
E(t) ≙ d

dt
(M(t) + E(t) + f (t))≲T (M + E)≲T E(t) + 1. (3.33)

The first inequality in (3.33) uses (3.28). By Gronwall’s inequality, the proof is complete. ◻

Then, by (3.4)±(3.8), this proves Theorem 6. ◻

This argument can be generalized to prove the following theorem:

Theorem 7. For any n ∈ Z, n ≥ 1, if

∥⟨∂x⟩2n+2u0∥L4n+1(R) ≤ ϵ(n), (3.34)

then (1.1) has a global solution.

Proof. In this case, let

ul(t) ≙ n−1

∑
j=0

u
j(t). (3.35)

Then, v solves the equation

i∂tv + ∂xxv ≙ ∣u∣2u − F(t) (3.36)

and

i∂tul + ∂xxul ≙ F(t), (3.37)

where

F(t) ≙ ∣n−2∑
j=0

u
j∣2⎛⎝

n−2

∑
j=0

u
j⎞⎠. (3.38)
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By (2.37)±(2.39),

∥ul∥L∞∩L4n+2 + ∥∂xul∥L∞∩L4n+2 ≲ ϵ, (3.39)

so using (3.37), all the terms in the Proof of Theorem 6 that have two or three v terms can be handled in exactly the same manner, after doing
some algebra with the various Lp norms. The crucial fact is that

(∣v∣2v,∂tul) (3.40)

is the only term which is bounded by some C(T)E(v). All other terms are bounded by C(T)M(v)αE(v)c−α for α > 0 and 0 ≤ c < 1.
Finally, using (2.46),

(v, ∣ul∣2ul − F(t))≲T M(v)1/2. (3.41)

To compute

(v,∂t(∣ul∣2ul − F(t))), (3.42)

decompose

∣ul∣2ul − F(t) ≙ un−1 ⋅ n−1

∑
j1 ,j2=0

c(j1, j2)uj1uj2 . (3.43)

By (2.37)±(2.39),

∥(∂t − i∂xx)un−1∥
L

4n+2
2n−1
x

≲ 1, (3.44)

while integrating by parts,

⎛
⎝v, i∂xxun−1 ⋅

n−1

∑
j1 ,j2=0

c(j1, j2)uj1uj2⎞⎠ ≲ ∥∂xv∥L2∥∂xun−1∥L 4n+2
2n−1

n−1

∑
j=0

∥u j∥2L4n+2
+∥v∥L2∥∂xun−1∥L 4n+2

2n−1
∑
j

∥uj∥L4n+2 ⋅∑
j

∥∂xuj∥L4n+2≲TM(v)1/2 + E(v)1/2.
(3.45)

Therefore,

⎛
⎝v, (∂tun−1) ⋅

n−1

∑
j1 ,j2=0

c(j1, j2)uj1uj2⎞⎠≲T M(v)1/2 + E(v)1/2. (3.46)

The contribution of ∂t∑n−1
j1 ,j2=0c(j1, j2)uj1uj2 to (3.42) is similar. This completes the Proof of Theorem 7. ◻
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