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ABSTRACT

In this paper, we continue our study [B. Dodson, A. Soffer, and T. Spencer, J. Stat. Phys. 180, 910 (2020)] of the nonlinear Schrédinger
equation (NLS) with bounded initial data which do not vanish at infinity. Local well-posedness on R was proved for real analytic data. Here,
we prove global well-posedness for the 1D NLS with initial data lying in L for any 2 < p < oo, provided that the initial data are sufficiently
smooth. We do not use the complete integrability of the cubic NLS.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.00423
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I. INTRODUCTION

In this article, we continue the study’ of the nonlinear Schrédinger equation (NLS) on the continuum,
iU + Ugy = |u\2u, u(0,x) = uo(x), u:RxR—-C. (1.1)

Our analysis does not depend on the complete integrability of (1.1). A solution to (1.1) has a scaling symmetry. If u(#, x) is a solution to (1.1),
then for any A > 0,

)Lu()tz t,Ax) (1.2)
is a solution to (1.1) with initial data Auo(Ax). Direct computation of (1.2) implies that (1.1) is H~?_critical since for anys € R,

1
| Auio (Ax) [ prery = A% o | e ey » (1.3)

so when s = 7%, the norm of the initial data is invariant under the scaling.

Equation (1.3) also implies that (1.1) is L*-subcritical and is also I?-subcritical for any p > 2. Using now standard arguments (see, for
example, Refs. 2-4) (1.1) is locally well-posed for initial data lying in L*. Combining L* subcriticality of (1.1) with conservation of mass,
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M(u(0) = [ u(tx)Pdx= [ u(0.x)P = M(u(0)), 19

gives the global well-posedness of (1.1) with initial data in L*.

For ug € I (R), p > 2, Holder’s inequality also implies that uy € L? on any compact subset of R. Therefore, the obstacle to well-posedness
for ug € L, 2 < p < o0, is that data which are initially spread out can move together. Finite propagation speed prevents this from happening
for the nonlinear wave equation; see Ref. 1. However, for the nonlinear Schrédinger equation, the velocity is controlled by the frequency, and
the nonlinearity may move the solution to higher frequencies. In Ref. 1, we studied (1.1) on a lattice or for a regularized nonlinearity on the
continuum, which prevented the nonlinearity from moving the solution up to high frequencies. Global well-posedness was proved using a
local energy argument. Local well-posedness was also established for (1.1) with bounded real analytic data.

In this paper, we prove global well-posedness for (1.1) with initial data u lying in a sufficiently regular L”-based Sobolev space but which
may have infinite L? norm and infinite energy (1.7).

Theorem 1. Foranyn e Z, n >0, (1.1) is globally well-posed for initial data ug satisfying

[(02)™"* o]

Lin+2(R) < 0o, (15)
The norm (1.5) is defined below.

Definition 1. For any p € [1, oo] and any positive integer n, define the norm

1(0x)" fllr ey = Z(; 1011 1r my- (1.6)
=

Definition 2. The well-posedness definition is in the L2"**(R) space. That is, u € C} (R : L2"**(R)) and the solution continuously depends
on the initial data.

Remark 1. For example, Theorem 1 implies that uo = [cos(x) + cos(v/2x)](1 + |x|*) ™ is globally well posed for any a > 0. When « = 0,
local existence was proved in Refs. 1 and 5; however, global existence is not known. In the Proof of Theorem 2 in Dodson, Soffer, Spencer, there
was a missing factor of (t — 7)""' in the Duhamel term (3.43). This factor could potentially improve the result.

For the KAV equation, another one dimensional dispersive PDE® (Partial Differential Equation) proved global well-posedness for almost
periodic data by exploiting the completely integrable structure of the KAV equation. See also Refs. 7 and 8 for global results for the NLS in a subset
of the almost periodic setting. It may be that the recent results of Ref. 9 could be useful in this direction.

To explain the method of proof, we first note that it is done by successively increasing the p norm and regularity of the initial data. First
observe that when 7 = 0, we can take uy € L* only, and we do not need [[{9x)?uo| > < 0.

When # = 1, note that the choice for the Sobolev space is L and with enough regularity. Then, although the conserved quantities of
the equation are infinite, we note that u3 € L*. Hence, the zeroth order iteration of the equivalent integral equation has its Duhamel term
in L. The exploitation of the fact that the Duhamel term may live in a better space goes back at least to the ideas of Ref. 10, as well as in
Ref. 11 in the context of random data. In Refs. 10 and 11, a better function space means functions with improved differentiability. Here, a better
space means a Lebesgue space with a lower integrability index. For the cubic nonlinear Schrédinger equation on R, this idea was also used in
Ref. 12.

For larger n, one proves that under the linear flow, the L norms remain bounded if the data are sufficiently regular. The solution grows
with time in If but only polynomially, which allows us to prove that the Picard iterations are such that the Duhamel term is in L and in the
local in time Strichartz norm. We can obtain a local solution by making the ansatz

u(®) =l () +u' () + ...+ " (£) +v(t), where u°(¢) = "% uq,

where ' (t) represents the ith Picard iterate and v is the remainder. The idea of using a higher order expansion and exploiting smoothing
properties of higher order iterates appear in recent works (Refs. 13 and 14) on random data dispersive PDE. It is convenient to first rescale so
that the initial data (1.5) are small. Then, by Picard iteration and stationary phase arguments, we prove the local well-posedness of (1.1) on
[-1,1].

The next step is to observe that the equation is sub-critical in these L? spaces, and therefore, it is possible to go from the local result to
global. The fact that one can control the Duhamel nonlinear part of the solution in L? is a key fact that also allows us to use the conservation
laws for the nonlinear terms. Indeed, (1.1) with initial data v(1) € H' has a solution on [1, o). We then prove that (1.1) with initial data u(1)
has a solution on [1, c0) by proving the global well-posedness of (1.1) with initial data v(1) and treating u(1) — v(1) as a perturbation. The
analysis uses the conservation of mass (1.4) and energy
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E(u(t)):%/|ux(t,x)|2dx+if|u(t,x)|4dx

:1f|ux(o,x)|2dx+1/|u(o,x)|4dx:E(u(o)). 7
2 4

One can then control higher If norms by the previous case. This argument has some similarity to the argument in Ref. 15 for the nonlinear
wave equation with random initial data.

It should be pointed out that the decay at infinity of the initial data is crucial for the analysis. Hence, the case p = oo is left open. This is
an indication that even though there is focusing that can produce large derivative and size locally, the decay of the solution at infinity allows
for some dispersion.

Remark 2. Theorem 1 is probably not sharp for any n > 0.

Remark 3. Local well-posedness would hold equally well in the focusing case. While conservation of mass (1.4) would guarantee global
well-posedness for both the focusing and defocusing problems in the case that ug has finite mass, the fact that our proof of global well-posedness
relies on the conservation of energy means that the global result only holds in the defocusing case.

The local arguments would also work for

ity + U = |uu (1.8)

for some integer r > 1. However, when r > 1, one cannot directly use the analog of (3.27) since the power of E(v) will be larger than 1 in that
case.

Remark 4. The study of nonlinear Schrodinger equations of the form (1.1) has mostly focused on initial data in L*-based Sobolev spaces.
Here, we study well-posedness questions for initial data in LF-based Sobolev spaces with p > 2. See Refs. 16-18.

Il. LOCAL RESULT

We begin by proving a local version of Theorem 1.

Theorem 2. Forany n € Z, n > 1, there exists e(n) > 0 such that if

[(85)*" g | panse ey < €(n), (2.1)

then (1.1) has a local solution in L% ([-1,1] x R) on [~1,1].

Remark 5. Observe that the differentiablity assumption in Theorem 2 is weaker than condition (1.5) for the global result.

Proof. The case when n = 0 is already well-known, so start with n = 1.
Theorem 3. There exists € > 0 such that if
05 uolo(ry <&, (2.2)
then (1.1) has a local solution in Lf . ([-1,1] x R) for € > 0 sufficiently small.
Proof. We begin by proving an estimate on the operator ¢

Lemma 1. Forany2 <p < oo,

le" % uolle 5 (1 + £/ (| Ouctio 12 + | Dol e + uo]|12)- 23)

Proof. Lemma 1 is proved by computing the stationary phase kernel

D 1 —ien?
e uo(x):Ctl/Z/e i ug(y)dy. (2.4)
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Let y be a smooth, compactly supported function, y(y) = 1 for |y| < 1, and y is supported on |y| < 2. Integrating by parts,

1 _iGn?
a T == m»dy

1 2it d ,i(ky)z
:W/mjy(e )(17)((x7y))uo(y)dy
Gn?

=Gt / %(%(1 —x(x—y))) & w0()dy

(2.5)

X

i 1
R e (U (L

1

H(l —x(x-9))) e L'(R), Young’s inequality implies that for any 1 < p < oo,

: d
Since o

d 1 i
||Ct”2fd7(ﬁ(1fx(xfy)))‘e a0y 5 ¢ ol 2.6)

Making another integration by parts argument shows that the second term on the right hand side of (2.5) also has a bounded L? norm,

i’ 1
e [ parl SR CRSACOLITE £ Dstto 1> + 72| Duatio |- @7

4t
x
Now, by the fundamental theorem of calculus,

x(x=)uo(y) = x(x = y)uo(x) + x(x = y) (s (y) — uo(x))

- 1 yuo() (e —y) [ i) .

Since y(y) is smooth and compactly supported, ||x(x — y)uo(x)|z < |uo(x)|, and therefore, by the Sobolev embedding theorem and the fact

that ¢ is a unitary operator for L*-based Sobolev spaces,

"% (Yo () 1= % fuo (3. (2:9)
In particular, this implies
€% (x () uo ())1(£:%) 5 Juo ()] (2.10)
Finally, as in (2.5),
1 _in?
a0 w00) - o)y
1 2t d [ _je»?
- | s e - w0y 1)
- (x=p)? 1
:Ctl/zfdiy(eﬂ 0 )X(y)fo ug(x + sy)dsdy.
Integrating by parts in y then implies
1/2 d( _je» Ly, 1/2 1/2
et [ (5 W [ itdsiyli= s 10w lim + ¢ ousuoli 2.12)
J. Math. Phys. 62, 071507 (2021); doi: 10.1063/5.0042321 62, 071507-4
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1O

Interpolating with the well-known unitary group bound ||e"“*ug|| ;2 = |/uo| ;2 proves that for any 2 < p < oo,

Il 5 (14 £2) (il + [Buto s + o). @13
O
Theorem 3 then follows directly from (2.3) by Picard iteration. Define a set
3
X=A{v: “UllLix([O,l]xR) Se} (2.14)
and define a sequence v, recursively, where vo = 0 and
t , .
Vnt1 = —if el([_r)aﬂe"a”uo + 02 (™% up + vy )dr. (2.15)
0
Recall the Strichartz estimates. See Refs. 4, 19, and 20 for more information.
Theorem 4. Let (p1,q1) and (p2,q2) be admissible pairs in one dimension such that
2 1 1 .
Z o2 -2, 4<pi<oo, i=12. (2.16)
pi 2 qi
I
t . .
u(t,x) = u’(t,x) - i/ ¢ (1, x)dr, U0 (t,x) = "%y, u:IxR -G, (2.17)
0
I is an interval containing 0, then
Hu”LflLZl(lx]R) S [u(0) |2 + HF”Lfngqg (xR’ (2.18)
Remark 6. p' is the Lebesgue dual of p, ; + 11; =1
Plugging the Strichartz estimates into (2.15), with p; = q1 = 6and p} = 1,5 = 2, we have
it 113 3 3 3
lvmerllze (-1a1xry S l€"uollzs (oupary + 0nlis (orpxm) S € + [vnllie (-11]um)- (2.19)
Also by Strichartz estimates,
Vns1 = Vs S € v = vnt s + (JvnlZs + [vnotl7e )| vn = vnot | gs - (2.20)
H iz, i, i,
Then, by the contraction mapping principle, this proves that there is a unique v € L¢, such that
t . .
v= —i/ e‘(t_7)8”|e"6”uo + u|2(e”a”uo +v)dr. (2.21)
0
This proves Theorem 3. o
Next, consider the case when n = 2.
Theorem 5. There exists € > 0 such that if
||<8x>5u()HL10 <€, (2.22)
then (1.1) has a local solution on [-1,1].
J. Math. Phys. 62, 071507 (2021); doi: 10.1063/5.0042321 62, 071507-5
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Proof. The solution u(t) is of the form

u(t) = u’(t) + u' (t) + v(t), (2.23)
where
uo(t) T (2.24)
and u! (t) is the next Picard iterate,
W (1) = fo D010 20 (1) d. (2.25)
By Lemma 1, for-1<¢t<1,
1{0s) 2" uo | o S €, (2.26)

and using the product rule, for -1 <t <1,

it=1) 0y
(0 (Ol 5 1405) [ % (D) (2]

(2.27)
S ||(3x)3|u0|2u°||L;Liv/s S 1(0:) 6’ 1o S €.
Remark 7. Observe that by the Sobolev embedding theorem, u°, u' € L7
Then, as in Theorem 4, obtain v(t) that solves
t
() = / D0y Pydr — (1), (2.28)
0
where u satisfies (2.23). We substitute (2.23) into (2.28). Then, since it is not too important to distinguish between u and 4,
t t t
f e’(t_7)6‘x|u|2ud1= f /(700 dT+3f /(70 (u +u")dr
' o L (2.29)
+3f e’(tﬂ)a“v(u0 +u')dr+ / <3'(t7T)6”(u0 +u')dr.
0 0
Then, by the Sobolev embedding theorem, (2.26), and (2.27),
Huo ”Lf; + ||Ll1 Hlfi Se+e. (2.30)

Let §° be the Strichartz space, S°([-1,1] x R) = L"LZ([~1,1] x R) n L{Ly° ([~1,1] x R). By Theorem 4, we can bound the first three terms
on the right hand side of (2.29) by

Ly —T ti —T) Oy
||/0 % A g0 i) + H[O %0 (10 + U drl o (e
t .
o [P0 4 Vit apary $ 0B an + €0l m): (231)

Next, the last term on the right hand side of (2.29) is bounded by

t . t .
f e'(t_r)a“|u0 +u' P+ u)dr -l (1) = f e'(t_r)a”‘ﬂuo +u' P + ) - [ u]dr. (2.32)
0 0

J. Math. Phys. 62, 071507 (2021); doi: 10.1063/5.0042321 62, 071507-6
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Therefore,

t .
| (0 + Y= ()1

(2.33)
02 1 0 12 13 5
S u ||L,°°L;° |u ”L;*’L;O/’ + lu HL;*’L;O u HL;"Lg +lu HL;”Lﬁ Se.
Therefore,
3 5
lvllsocr-nipxry S lvllsocro,17xR) + € (2.34)
which implies that [[v]|so([-11]xR) S €. As in the Proof of Theorem 4, we can prove Theorem 5 by a contraction mapping argument.
Remark 8. We can also take a derivative of v and make the same argument. Indeed, following (2.33),
t .
1406) [ €% u 4 [ (1 + e = () -1y
S 160001 oo 1Ot o s + 140018 o0 14}t Ve + (D)t [ 5 €7 (2.35)
Therefore, by the Sobolev embedding theorem, v € S' ¢ LY, n Ly ¢ L™ forany n > 1. ]
Now, to prove Theorem 2 for a general n, define the sequence of functions
uo(t) _ eitaﬂuo,
t .
u' (t) = / %0120 (1) dr,
0
i Eien)on i k[ 2k
u’(t):/e' DN U Dot | =Y u(x) forany 2<j<n-1. (2.36)
0 k=0 k=0 k=0
Again by (2.5)-(2.12), for -1 <t < 1,
1(0:)" " g | panc < € (2.37)
10" Ul (1)] we S €, (2.38)
L?
and arguing by induction, forany 0 <j<n-1,
2n-1-j)+1 _j 241
[P gy 57 (2.39)
Remark 9. The implicit constants depend on n.
Then, let
t. n=1 .
o(t) = f D% Py - S (1), (2.40)
0 -
j=1

Following (2.29),

‘. n-l . ‘.
o(t) = [ &V uludr- Y (6) = [ ol ude
0 = 0

2
[ n-1 . [ n-1 .
+3f e'<t_r)a‘“1}2(z u’)dT+3f e’(t_f)a“v(z u’) dr (2.41)
0 =0 0 =0

3 n-1 n—1 n—1
+/te’<t-f>f’w|z PSS e - S o).
0 =0 j=1

j=0

J. Math. Phys. 62, 071507 (2021); doi: 10.1063/5.0042321 62, 071507-7
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Again, by Strichartz estimates,
¢ i(t—7) Oy
| [ 0% oPodrlg ey S 0B, (242)

By the Sobolev embedding theorem and (2.39),

to. n-1 .
H/O et T)a”vz(Z u])dT”SD([l,l]xR) S €l v]5o-r11<R) (2.43)
=
and
2
P i(t-1) 0 ety 2
||f0 e ol 2| drlsooiager)y S € [0l o1apam)- (2.44)
j=0

Finally, compute

. n-1 n—-1 n-l .
/tez(t71)61x|z ulz( p/)d‘r— Zu’(t)
=0 J

0 i=0 i i=1
N (245)
ti(t—‘r)a n—1 ‘5 n—1 n—2 i n-2
o e DI O304 B WIR D> | 1
0 j=0 j=0 j=0 j=0
Therefore,
ti(tfr)axx n—1 5 n-1 n-2 5 n-2
Y A DS DR BDSELH DO | i e
0 j=0 j=0 j=0 j=0
, (2.46)
n-1 S 2n+1
SN s | 2 N o | S
LEL \j2o
Therefore,
[vllso(-rayxry § €™+ HngO([—l,l]ny (2.47)
which proves Theorem 2 for a general n. O

Ill. A GLOBAL RESULT

The local results in Sec. IT may be extended to global results for a slightly smaller subset of initial data. First, consider the case when n = 1.

Theorem 6. Equation (1.1) is globally well-posed for
[{0x) u 6 < oo. 3.1)

Proof. Using the scaling symmetry,
u(t,x) = Au(At, Ax), (3.2)

it is possible to rescale the initial data so that (3.1) < €. Then, by Theorem 2, (1.1) has a solution on the interval [-1, 1], which is of the form
) ¢
u(t) = "= yy — i f D%y () Pu(r)dr = u (1) + v(1), (3.3)
0

where |[v(t)] 2 $ € forall t € [-1,1].

Furthermore, if (1.1) has a solution on the maximal interval [0, T'), T < oo, then

lim|v(t)] 12 = +oo. (3.4)
t”2T

J. Math. Phys. 62, 071507 (2021); doi: 10.1063/5.0042321 62, 071507-8
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Indeed, suppose that there exists ty < T such that

[v(to) 2 < oo. (3.5)
Then, by Strichartz estimates, there exists some 8(|v(t)|;2) > 0 such that
(t=t)0,
Hel(t ) V(1) 215 ([t +87xR) < € (3.6)
In addition, by (2.5)-(2.13), for §(T) > 0 sufficiently small,
it O
€ uoll pro((roty401xR) < € (3.7)

Following the Proof of Theorem 3, (1.1) is locally well-posed on the interval [to, to + ]. Since § is a function of |v(t)||;> and T only, if there
exists a sequence t, ~ T for which

lim |v ()2 < oo, (3.8)
then the solution of (1.1) can be continued past T.
Compute the energy and mass of v,
M) +E@) =5 [+ [ 1ol +5 [l (3.9)
) 2 ¥ 4 ‘ ‘

Lemma 2. For any T, there exists a bound

sup M(v(t)) +E(v(t))sSrl. (3.10)
te[-T,T]

Proof. This lemma will be proved using a Gronwall-type argument. In general, it will be convenient to relabel

n-1
w=y 1, (3.11)
=0
where u; denotes the linear part. In this case, since n = 1, u; = °.
Observe that v solves the nonlinear Schrédinger equation
. 2 2 2 - 2 2 - 2
100 + Oxv = || "0 + 20| wy + 074y + 2wy v + (uy) 0 + |y "y (3.12)
Therefore,
d
M) = 2(Jof v, iw) + ([’ 0, id) + (v%,i(w)*) + (v, ilw*w), (3.13)
where
(f.g) =Re / f(x)g(x)dx. (3.14)
First, by (2.13),
(v il ) S |ollz |l gs St M(v)'/2, (3.15)
Next,
(W% i(u)) 5 Jol 7 [0l s 1M (0) P E(0)"" (3.16)
J. Math. Phys. 62, 071507 (2021); doi: 10.1063/5.0042321 62, 071507-9
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and
2([ofvsiw) + (Jo5,i0) $ [0l 22 0¥ o] s $7M(0) P E(u)>.

Now, compute the change of energy

%E(v) (000, 8) + (Brw, [vPv)

= (8ﬂ), —axxv + |U|2U)
= (O, i0w - (|uf’u - [v]*v))
= (O, v — [ul*u)

= (000, |l ur) = 2(ev, Jul*v) = (v, ur0) = (Dr([of*v), ).
By the product rule,

d
— (O, |wl’w) = 7Z(v»|”l|2“1) + (s O (Jui*uy)).

Integrating by parts,

(0, O (Jur*wr)) = 3(v, (iOcur) i) = —6(v, i(Detty)*ur) — 3(Oxv, i( Oy )i} )

S |l Fe gl s ol + 10012 | Betar s || FeseM(0) * + E(w) V2.

Remark 10. Since |[{0x) uo| s < 00, (2.5)-(2.13) imply

1{0:) € uo | o < (Bx) o 1o $71.

Next,

d
= 2(9w, |mlv) = (Dol |ul*) = —E(\vﬁ ju*) + (Jol, Orfau ).

Again, by the product rule, (3.21), and integrating by parts,

(o, Orful*) = 2(Jof, (iOxsur)iay) = ~4((Dxv)v, (i) i)

23 o |41 | Bty o | 1 $7 E(0)>M(w) .

S0l ol vl
By a similar calculation,

1 1d
— (8w, ui ) = -E(at(uz),u%) = -Ea(vz,u%) + (V% w(Ouy)).

Integrating by parts,
(vz,ul(&u,)) = —(’Uz, u;(iaxxul)) = —(’Uz, (8xul)(i8xul)) - 2(1](&;1}), u;(i@xul))
S o220l 1Ounl3e + (85w iz [0 222 [0 |22 [ Dta | ] o=
< E)PM(0)'? + E(v)*PM(v)"°.
Finally,

d
= @ v,w) = = (ol o) + (oo, O,

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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Integrating by parts and using (3.21) to control ||Oxu; |z,
(o[*v, 0) = (Jo[ v, i0xsur) = (=0x(|o[*v), iDst)
S 10w0]2 |0l 1s | st |1 S7E(0).
Therefore, we have proved that for all t € [0, T),
& (M(0) + () < CDYM()" + @) + M(0) PE(w) "
1/6 2/3 d
+M(v) TE() T+ E(v)) - o f (1),

where
1
£(8) = (o ulw) + (ol [wf*) + E(UZsuzz) + (Jofv,w).
Now, let
E(t) = M(v)(t) + E(v)(t) + f(1).
By Holder’s inequality,
F@Isr ol + 1l ol + ol ol

<t M) + M(0) PE(0)'? + M(0) P E(0)*? « M(v)(t) + E(v)(t),

when M(v) + E(v) is large. Plugging (3.31) into (3.30) implies
M(v) +E(v)Sré&(t) +1

and

%S(t) = %(M(t) +E()+ f(1) ST (M+E)Sr&() + 1.

The first inequality in (3.33) uses (3.28). By Gronwall’s inequality, the proof is complete.
Then, by (3.4)-(3.8), this proves Theorem 6.

This argument can be generalized to prove the following theorem:

Theorem 7. ForanyneZ,n> 1, if

“(8x)2n+2u0“L4n+1(R) < G(I’l),
then (1.1) has a global solution.

Proof. In this case, let
n-1
u(t) = Y ().

=0

Then, v solves the equation
i0rv + Onev = |u|*u — F(1)
and
ic?tul + axxul = F(t),

where

F(1) = |§d|2(§d).
j=0

j=0

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
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4] oo rpiner + | Oty oo arinsz S € (3.39)

so using (3.37), all the terms in the Proof of Theorem 6 that have two or three v terms can be handled in exactly the same manner, after doing
some algebra with the various L¥ norms. The crucial fact is that

(|U|2’U, Owuy) (3.40)

is the only term which is bounded by some C(T)E(v). All other terms are bounded by C(T)M (v)*E(v)“*fora>0and0 < c< 1.
Finally, using (2.46),

(v, |wuy — F(t)) ST M(v)"/2. (3.41)

To compute
(0,0 (Jufwy - E(1))), (3.42)

decompose

n—1 o
\ul|2u1 - F(t) =yt Z c(jl,jz)u“u”. (3.43)
Jj1:42=0
By (2.37)-(2.39),

(8 —iaxx)u”_lHL% $1, (3.44)

while integrating by parts,

n—1 L n-1 .
(v>iaxxunl - >0 e(jajo)u’ Lt]z) S 10xv] 2 HaxMWlHL% > ([
=0

=0 (3.45)
S 01 1Y 1o ey g 7 P S0 | ez STM (1) + E(0) 2.
J J
Therefore,
n—1 o
(v, @™ (o) uh) <t M) + E(v)'2, (3.46)
Juj2=0
The contribution of d; eri;jzoc(jl, j2)u 12 to (3.42) is similar. This completes the Proof of Theorem 7. ]
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