

1

2 **Base excision repair system targeting DNA adducts of**
3 **trioxacarcin/LL-D49194 antibiotics for self-resistance**

4 Xiaorong Chen^{1,2,†}, Noah P. Bradley^{3,†} Wei Lu^{2,†}, Katherine L. Wahl³, Mei Zhang², Hua Yuan², Xian-
5 Feng Hou², Brandt F. Eichman^{3,4,*}, and Gong-Li Tang^{1,2,*}

6 ¹ School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of
7 Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China

8 ² State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in
9 Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of
10 Sciences, Chinese Academy of Sciences, Shanghai 200032, China

11 ³ Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232

12 ⁴ Department of Biochemistry, Vanderbilt University, Nashville, TN 37232

13

14 [†] These authors contributed equally to this work

15 * To whom correspondence should be addressed. Tel: +86-21-54925113; Fax: +86-21-64166128; Email:
16 gltang@sioc.ac.cn

17 Correspondence may also be addressed to Brandt F. Eichman. Tel: +1 615 936 5233; Fax: +1 615 936 2211;
18 Email: brandt.eichman@vanderbilt.edu

19

20

21 **ABSTRACT**

22 Two families of DNA glycosylases (YtkR2/AlkD, AlkZ/YcaQ) have been found to remove bulky and
23 crosslinking DNA adducts produced by bacterial natural products. Whether DNA glycosylases
24 eliminate other types of damage formed by structurally diverse antibiotics is unknown. Here, we
25 identify four DNA glycosylases—TxnU2, TxnU4, LldU1, and LldU5—important for biosynthesis of the
26 aromatic polyketide antibiotics trioxacarcin A (TXNA) and LL-D49194 (LLD), and show that the
27 enzymes provide self-resistance to the producing strains by excising the intercalated guanine adducts
28 of TXNA and LLD. These enzymes are highly specific for TXNA/LLD-DNA lesions and have no
29 activity toward other, less stable alkylguanines as previously described for YtkR2/AlkD and
30 AlkZ/YcaQ. Similarly, TXNA-DNA adducts are not excised by other alkylpurine DNA glycosylases.
31 TxnU4 and LldU1 possess unique active site motifs that provide an explanation for their tight
32 substrate specificity. Moreover, we show that abasic (AP) sites generated from TxnU4 excision of
33 intercalated TXNA-DNA adducts are incised by AP endonuclease less efficiently than those formed by
34 7mG excision. This work characterizes a distinct class of DNA glycosylase acting on intercalated DNA
35 adducts and furthers our understanding of specific DNA repair self-resistance activities within
36 antibiotic producers of structurally diverse, highly functionalized DNA damaging agents.

37 **INTRODUCTION**

38 Genome stability and integrity are continually challenged by both intrinsic and extrinsic genotoxic
39 agents that generate a diversity of DNA damage through oxidation, alkylation, or hydrolytic
40 deamination (1). Among the most common forms of damage are those derived from alkylating agents,
41 which can potentially modify any of the heteroatoms in duplex DNA. Different sites are alkylated
42 depending on the nature of the DNA-alkylating agents. The resulting DNA damage—including single
43 or double strand breaks, inter- or intra-strand crosslinks, base detachment and base modification—
44 interferes with normal cellular processes, causing DNA mutations, chromosomal rearrangements and
45 instability, which can contribute to heritable diseases and even cell death (2,3). Due to their
46 cytotoxicity, DNA damaging agents often possess certain antimicrobial or antitumor activities, and
47 some of them are used extensively as drugs in cancer treatment (4-8).

48 In the cell, DNA damage is repaired by several highly conserved pathways (2). Alkylated DNA is
49 eliminated from the genome predominantly by direct reversal, base excision repair (BER), or
50 nucleotide excision repair (NER) pathways (9-13). Direct reversal enzymes (e.g., alkylguanine DNA
51 alkyltransferases and AlkB-family dioxygenases) extract alkyl substituents from the nucleobase to
52 leave the nucleotide and DNA backbone intact, and can remove not only small base modifications,
53 but also inter-strand DNA crosslinks and bulky exocyclic DNA adducts (14-16). BER also removes
54 mainly small but also some bulky and crosslinked adducts (17-19), and is initiated by DNA
55 glycosylases that liberate a single modified nucleobase from the DNA backbone through hydrolysis of
56 the N-glycosidic bond (19-23). This reaction forms an apurinic/apyrimidinic (AP, or abasic) site that is
57 then incised by an AP endonuclease (e.g., Exonuclease III (*Xth*) or Endonuclease IV (*EndoIV, Nfo*) in
58 bacteria), generating a gap in the DNA backbone. In contrast, the NER pathway removes bulky or
59 duplex-distorting lesions by endonuclease-catalyzed incisions that isolate a lesion-containing DNA
60 oligonucleotide (24,25). DNA gaps generated in BER and NER are processed, filled, and sealed by
61 the action of a DNA polymerase and DNA ligase.

62 Recent studies of self-resistance mechanisms against genotoxic natural products revealed that
63 several unrelated glycosylases participate in removing bulky adducts (26,27). Among them, the DNA
64 glycosylase AlkZ, derived from *Streptomyces sahachiroi* and which resides within the biosynthetic
65 gene cluster (BGC) of the natural product azinomycin B (AZB), repairs interstrand crosslink (ICL)
66 damage generated by AZB (27-29). AZB is a bifunctional alkylating agent that forms ICLs in the major
67 groove by linking the N7 nitrogens of purines in the duplex DNA sequence 5'-d(PuNPY)-3' (30). AlkZ
68 unhooks AZB-ICLs by cleaving the N-glycosidic bonds of both modified nucleotides, resulting in AP
69 sites that can be processed by the BER pathway (Figure 1C) (19,27). The crystal structure revealed
70 that AlkZ adopts a C-shaped structure in which the concave channel contains a QΦQ motif essential
71 for catalytic activity and a β-hairpin predicted to contact the lesion in the minor groove (28). AlkZ
72 belongs to the uncharacterized HTH_42 superfamily of proteins widespread in antibiotic producers
73 and pathogenic bacteria (27). To date, the only other bacterial DNA glycosylase characterized as an
74 ICL glycosylase is another HTH_42 protein, *Escherichia coli* YcaQ, which has a relaxed specificity
75 relative to *S. sahachiroi* AlkZ and can cleave N7-linked nitrogen mustard (NM) ICLs and N7-methyl-2'-
76 deoxyguanosine (7mG) monoadducts (29).

77 Trioxacarcins (TXNs) are densely oxygenated, polycyclic aromatic, and structurally complex
78 natural products with potent cytotoxicity (Figure 1A) (31-34). Trioxacarcin A (TXNA) and LL-D49194
79 (LLD), two of the most representative compounds in the TXN family, intercalate the base pairs of DNA
80 and have reactive epoxide moieties that covalently alkylate the N7 of guanine in d(GT) dinucleotides,
81 forming stable DNA lesions that impair normal cellular processes (35,36). Consequently, TXNA and
82 LLD exhibit remarkable antimalarial, antibacterial and antitumor activity (31,33,34). The TXNA analog
83 gutingimycin (Figure 1A), which contains a TXN skeleton and a guanine (Gua) group, has been
84 isolated from the fermentation broth of a marine *Streptomycete* (37). Given that TXNA and LLD are
85 alkylating agents that selectively modify deoxyguanosine (G) to form DNA adducts, we speculated
86 that the biosynthetic pathways of the two natural products should contain DNA glycosylases
87 responsible for cleaving TXNA/LLD-DNA, in which gutingimycin and LLD-Gua are the resulting
88 products (Figure 1A). Therefore, we became interested in the DNA damage repair mechanism
89 targeting TXNs family of DNA alkylating agents.

90 Herein, we report four DNA glycosylases identified from the TXNs BGC, in which TxnU2/U4
91 (GenBank accession numbers AKT74276 and AKT74302) are derived from the TXN BGC (*txn*,
92 GenBank accession number KP410250) and LldU1/U5 (GenBank accession numbers QDQ37873
93 and QDQ37896) originate from the LLD BGC (*lld*, GenBank accession number MK501817). TxnU2/4
94 and LldU1/5 belong to the HTH_42 superfamily and are monofunctional DNA glycosylases that excise
95 TXNA- and LLD-DNA adducts, in which TxnU4 and LldU1 play the major roles in toxin resistance.
96 Interestingly, TxnU4 and LldU1 cannot excise N7-methyl or crosslinked G adducts like their homologs
97 AlkZ and YcaQ (28,29), nor can TXNA-DNA lesions be excised by any other alkylpurine DNA
98 glycosylase. Moreover, relative to AlkZ, TxnU4 and LldU1 have a unique catalytic motif that process
99 TXNA- and LLD-DNA lesions differently and that may explain the redundancy for two paralogs in each
100 *txn* and *lld* biosynthetic gene cluster. We also show that AP sites derived from TXNA-DNA excision
101 are processed less efficiently than those generated from 7mG depurination, suggesting that the
102 product of TXNA-DNA excision requires a specialized mechanism for repair.

103

104 MATERIAL AND METHODS

105 **Reagents.** Expression vector pBG102 (Supplementary Table S1) was obtained from the Vanderbilt
106 University Center for Structural Biology. DNA oligonucleotides (Supplementary Table S2) were
107 purchased from Integrated DNA Technologies. AlkA, AlkC, AlkD, AlkZ, and YcaQ were purified as
108 previously described (28,29,38-40). *E. coli* EndoIV was purchased from New England BioLabs.
109 Unless otherwise noted, all chemicals were purchased from Sigma-Aldrich. TXNA and LLD were
110 isolated from *S. bottropensis* NRRL 12051 and *S. vinaceusdrappus* NRRL 15735, respectively, as
111 described in below.

112 **Sequence Similarity Network (SSN) Analysis.** The 15,119 homologous proteins of AlkZ were
113 obtained from the InterPro website (41) (<http://www.ebi.ac.uk/interpro/search/sequence-search>) by
114 using AlkZ as the query. Sequences were then clustered by CD-HIT Suite (42) on the website

115 (http://weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi?cmd=cd-hit) with 53% sequence identity
116 threshold. The representatives of the resulting clusters and TxnU2, TxnU4, LldU1, LldU5, AlkZ were
117 used for construction of SSN by the online Enzyme Function Initiative-Enzyme Similarity Tool (43)
118 with an alignment score threshold of 110. Cytoscape software was used to view the sequence
119 similarity networks.

120 **Fermentation and Isolation of TXNA and LLD.** For TXNA production, *S. bottropensis* NRRL 12051
121 and its relative mutant strains were cultivated as previously reported (44). After fermentation in SYG
122 medium (soluble starch 60 g/L, glucose 10/L, yeast extract 10/L, NaCl g/L, MgSO₄•7H₂O 1 g/L,
123 KH₂PO₄ 1 g/L, CuSO₄•5H₂O 70 mg/L, FeSO₄•7H₂O 10 mg/L, MnCl₂•4H₂O 8 mg/L, ZnSO₄•7H₂O 2
124 mg/L, CoCl₂•7H₂O 6 µg/L, HP20 30g/L) for 5 days, the TXNA was isolated and detected as described
125 (45). The fermentation and isolation of LLD was similar to TXNA (46). *S. vinaceusdrappus* NRRL
126 15735 and those mutants were cultivated in SYG medium for 10 days, and then isolated and detected
127 by HPLC. HPLC analysis was performed on an Acclaim 120 C18 column (5 µm, 4.6 × 250 mm) at a
128 flow rate of 1.0 mL/min and a linear gradient program: 0-5 min, 10% phase B (0.1% formic acid in
129 CH₃CN); 5-24 min, solvent B gradient from 10 to 90% followed with 90% B at 24-26 min; 26-27 min,
130 gradient from 90 to 10% B; 27-31 min, constant 10% B. Phase A is 0.1% formic acid in H₂O.
131 TXNA/LLD-related compounds were determined by measuring UV absorbance at 400 nm using an
132 Agilent 1200 series system (45,46). LC-MS was carried out on a ThermoFisher LTQ XL under the
133 same conditions.

134 **Cellular TXNA and LLD Self-Resistance Assays.** *Zone of Inhibition Assays in Streptomyces.* The
135 inhibition zones of *Streptomyces* were performed by a disc diffusion assay. Specifically, filter paper
136 discs spotted with different concentrations of TXNA or LLD were laid on the MS plate (20 g/L soybean
137 meal, 20 g/L mannitol, 20g/L agar, pH 7.2), which were pre-inoculated with wild-type strains *S.*
138 *bottropensis* NRRL 12051 (*txnWT*), *S. vinaceusdrappus* NRRL 15735 (*lldWT*), the gene mutant
139 strains, Δ *txnU2*, Δ *txnU4*, Δ *lldU1*, Δ *lldU5* or heterologous expression strains *S. lividans*::pSET152, *S.*
140 *lividans*::*txnU2*, *S. lividans*::*txnU4*, *S. lividans*::*lldU1*, *S. lividans*::*lldU5* (Supplementary Table S1).
141 After incubation at 30°C for 36 hr, resistance levels to TXNA or LLD were determined by the zone of
142 inhibition.

143 **Heterologous Survival Assays in *E. coli*.** *E. coli* BL21 cells transformed with protein overexpression
144 plasmid *txnU2*-pET28a, *txnU4*-pET28a, *lldU1*-pET28a, *lldU5*-pET28a or empty vector pET28a alone
145 were grown overnight at 37°C in LB medium containing 50 µg/mL kanamycin (Kan). The overnight
146 cultures were then transferred to fresh LB medium supplemented with 50 µg/mL Kan and incubated at
147 30°C. When the OD₆₀₀ reached 0.6, 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) was added
148 to induce protein expression. After growing at 16°C for 2 hr, cells were diluted to 0.01 OD₆₀₀ in 2 mL
149 fresh LB supplemented with Kan and IPTG. The dilutions were treated with various concentrations of
150 TXNA for 12 hr at 30°C and cell density was measured by OD₆₀₀. The surviving fraction (%) was
151 calculated as (OD₆₀₀(treated)/OD₆₀₀(untreated))*100. The data were fit by non-linear regression and
152 plotted using GraphPad 8.0 software.

153 ***TxnU2/4 and LldU1/5 Purification.*** The *lldU1/5* and *txnU2/4* genes were synthesized by GenScript
154 and cloned into pBGB102 (Vanderbilt Center for Structural Biology). N-terminal His₆-SUMO proteins
155 were overexpressed in *E. coli* Tuner (DE3) cells at 16°C for 18 hr in LB medium supplemented with
156 30 µg/mL kanamycin and 50 µM isopropyl β-D-1-thiogalactopyranoside (IPTG). Cells were lysed with
157 sonication and cell debris removed by centrifugation at 45,000 × g at 4°C for 30 min. Clarified lysate
158 was passed over Ni-NTA agarose equilibrated in buffer A (50 mM Tris•HCl pH 8.5, 500 mM NaCl, 20
159 mM imidazole, and 10% (vol/vol) glycerol) and protein eluted in 250 mM imidazole/buffer A. Protein
160 fractions were pooled and supplemented with 0.1 mM EDTA, 1 mM tris(2-carboxyethyl)phosphine
161 (TCEP), and 1 mM dithiothreitol (DTT) before incubation with 0.5 mg of Rhinovirus 3C (PreScission)
162 protease and 0.5 mg of yeast ubiquitin-like-specific protease 1 (Ulp1) at 4°C overnight. Cleaved
163 protein was diluted 10-fold in buffer B (50 mM Tris•HCl pH 8.5, 10% (vol/vol) glycerol, 0.1 mM TCEP,
164 and 0.1 mM EDTA) and purified by heparin sepharose using a 0–1 M NaCl/buffer B linear gradient.
165 Fractions were pooled and repassed over Ni-NTA agarose in buffer A, concentrated and filtered, and
166 buffer exchanged into buffer C (20 mM Tris•HCl pH 8.5, 100 mM NaCl, 5% (vol/vol) glycerol, 0.1 mM
167 TCEP, and 0.1 mM EDTA). Proteins were concentrated to 100 µM, flash-frozen in liquid nitrogen, and
168 stored at –80°C. For purification of *TxnU2* and *LldU5*, buffers A and B were supplemented with 0.02%
169 NP-40 and buffer C was supplemented with 0.01% NP-40. Proteins used in HPLC analysis did not
170 contain NP-40. *LldU1/5* and *txnU2/4* mutants were generated using the Q5 Mutagenesis Kit (New
171 England BioLabs). Mutant proteins were overexpressed and purified the same as WT.

172 ***Preparation of DNA Substrates.*** The TXNA- and LLD-DNA substrates for HPLC analysis, which
173 contained two lesions per duplex, were prepared by annealing the 8-bp self-complementary strand 5'-
174 AACCGGTT-3' (36), followed by incubation of 50 µM DNA with 100 µM TXNA or LLD in PBS buffer
175 (pH 7.0) at 16°C for 2 hr. TXNA- and LLD-DNA substrates used in gel-based assays contained a
176 single TXNA-G or LLD-G adduct and a 5'-Cyanine 5 (Cy5) label, and were prepared by annealing the
177 strand containing the TXNA/LLD target sequence (*TXN/LLD Top*, Table S2) to the complementary
178 unlabeled oligo (*TXN/LLD Bottom*, Table S2), followed by incubation of 100 µM DNA with 200 µM
179 TXNA or LLD in 10% methanol and 20% DMSO at 4°C on ice in the dark for 36 hr. Unreacted drug
180 was removed using a G-25 spin column equilibrated in TE buffer (pH 8.0), and the DNA was stored at
181 –80°C. DNA substrates containing a single *N*7-methyl-2'-deoxyguanosine (7mG) lesion and a 6-
182 carboxyfluorescein (FAM) 5'-label on one strand were prepared as described previously using
183 7mG_ *Top* and 7mG_ *Bottom* oligonucleotides (Table S2) (47). NM-ICLs containing both FAM and Cy5
184 labels were generated using *NM_ Top* and *NM_ Bottom* oligonucleotides (Table S2) and purified as
185 reported previously (29).

186 ***Base Excision Assays. HPLC Analysis.*** A 50 µL reaction containing 50 µM TXNA- or LLD-DNA, 20
187 µM protein, and buffer (100 mM Na₂HPO₄, 100 mM NaH₂PO₄, 500 mM NaCl, pH 7.0) was incubated at
188 16°C for 2 hr. The reaction mixtures were quenched with 30 µL methanol and analyzed by LC-MS at
189 400 nm absorbance. TXNA-Gua (gutingimycin), [M+H]⁺ ion with *m/z* 1028.53; LLD-G, [M+H]⁺ ion with
190 *m/z* 1102.43.

191 *Denaturing PAGE Analysis.* Glycosylase reactions were performed with 50 nM DNA in glycosylase
192 buffer (50 mM HEPES pH 8.5, 100 mM KCl, 1 mM EDTA, and 10% (vol/vol) glycerol) at 25°C. Single-
193 timepoint reactions shown in Figures 4-6 were performed with 1 μ M enzyme for either 30 sec, 30 min,
194 or 96 hr, as indicated in each figure legend. Single- and multiple-turnover kinetics reactions shown in
195 Figure 4G were performed with 50 nM (single turnover) or 5 nM (multiple turnover) TxnU4 and 50 nM
196 Cy5-labeled TXNA-DNA. Thermal depurination controls shown in Figure 5A were conducted at 95°C
197 for 5 min. Enzyme and mock reactions involving TXNA, LLD, and 7mG monoadducts were quenched
198 by adding 1 μ L of 1 M NaOH to a 4- μ L reaction aliquot and heating at 70°C for 2 min. Samples were
199 denatured by addition of 5 μ L loading buffer containing 5 mM EDTA pH 8.0, 80% (wt/vol) formamide,
200 and 1 mg/mL blue dextran, and incubating at 70°C for 5 min. Samples were electrophoresed on a
201 20% (wt/vol) acrylamide/8 M urea sequencing gel at 40 W for 1.5 hr in 0.5 \times TBE buffer (45 mM Tris,
202 45 mM borate, and 1 mM EDTA pH 8.0). Gels were imaged on a Typhoon Trio variable mode imager
203 (GE Healthcare) for Cy5 fluorescence (633 nm excitation, 670 nm emission), and bands were
204 quantified with ImageQuant (GE Healthcare). Percent product was calculated as the percent of both
205 β - and δ -elimination bands divided by the total intensity of substrate and β / δ -elimination bands.
206 Unreacted DNA in LLD-DNA reactions was not included in the calculation of percent product. NM-
207 ICLs reactions were performed the same as monoadducts, but were quenched and denatured at 55°C
208 prior to electrophoresis. Gels were imaged for both FAM (488 nm excitation, 526 nm emission) and
209 Cy5 fluorescence and artificially colored (FAM, green; Cy5, red) using Adobe Photoshop and overlaid
210 using ImageJ software as previously described (29). All excision assays were performed in triplicate.

211 *Spontaneous Depurination.* Non-enzymatic depurination of G, 7mG, and TXNA-G were conducted
212 at 37°C in glycosylase buffer using 50 nM DNA, with the same Cy5-oligodeoxynucleotides described
213 above. The G-DNA oligo was the same as that used to make the TXNA-G oligo. Samples were
214 quenched and products quantified the same as the enzymatic reactions described above.

215 **EndoIV Abasic Site Incision Kinetics.** AP-DNA substrates were generated by incubation of 5 nM
216 YcaQ or TxnU4 with 50 nM Cy5-(TXNA/7mG)-DNA in glycosylase buffer for 2 hr at 25°C. EndoIV
217 incision reactions were performed by adding 6 μ L of 83 nM EndoIV (17 nM final concentration) to a
218 24- μ L glycosylase reaction aliquot and incubating at 37°C. Reactions were heated at 70°C for 5 min
219 with 5 μ L of formamide/blue dextran loading buffer and electrophoresed and imaged as above. Curve
220 fitting was performed in Prism 9 using a single exponential one-phase association for 7mG-AP site
221 incision and an exponential two-phase association for TXNA-G-AP sites.

222

223 RESULTS

224 **Self-resistance determinants TxnU2/U4 and LldU1/U5 are closely related to TXNs production**

225 Previously, we identified the BGCs of TXNA (*txn*) and LLD (*lld*) and characterized their partial
226 biosynthetic pathways including starter unit and tailoring steps (45,46,48-51), but the function of many
227 of the proteins encoded in their BGCs are unknown. To study the repair mechanism of DNA damage
228 arising from TXNs family of alkylating agents, we first investigated all proteins encoded within and

adjacent to the TXNA and LLD BGCs (45,46). BLASTP analysis showed that TxnU2/U4 derived from TXNA and LldU1/U5 derived from *lld* belong to the HTH_42 superfamily and exhibit homology to the DNA glycosylase AlkZ with low sequence identity (26-33%) and similarity (39-46%) (Figure 1B and D). AlkZ is found within the AZB BGC and has been reported to be an essential resistance protein in AZB biosynthesis by unhooking AZB-ICLs, which would trigger the BER pathway (Figure 1C) (27). We therefore speculated that TxnU2/U4 and LldU1/U5 could confer resistance to TXNA and LLD for self-protection in the producer. To understand the function of these four proteins, the genes *txnU2/U4* from the TXNA producer *S. bottropensis* NRRL 12051 and *lldU1/U4* from the LLD producer *S. vinaceusdrappus* NRRL 15735 were deleted (Figure S1), and the yield of compounds in these resulting mutants and wild-type (WT) strains were determined by LC-MS. Compared to the WT strain, the production of TXNA in gene deletion mutant strains Δ *txnU2* and Δ *txnU4* was respectively remarkably reduced 72% and 82%, and the yield of LLD in Δ *lldU1* and Δ *lldU5* was also obviously decreased 85% and 80%, respectively, suggesting the genes *txnU2/txnU4* and *lldU1/lldU5* are involved in compound biosynthesis and are closely related to the efficiency of TXNA and LLD production, respectively (Figure 2A and B).

To follow up this finding and further identify the *in vivo* function of the four proteins, the effect of *txnU2/txnU4*, *lldU1/lldU5* deletion and overexpression on cells challenged with TXNs was tested. Disc diffusion tests indicated that gene deletion mutants Δ *txnU4*, Δ *lldU1* and Δ *lldU5* exhibited notable sensitivity to both TXNA and LLD, but mutant Δ *txnU2* was no more sensitive to either TXNA or LLD than the WT strain (Figure 2C and D). Overexpression of *txnU2/txnU4* and *lldU1/lldU5* in *S. lividans* 1326, a TXNs-sensitive strain, increased cellular viability towards both TXNA and LLD (Figure 3A). Moreover, consistent with the growth viability in *Streptomyces*, the survival ratio of *E. coli* BL21 that overexpressed *txnU4* or *lldU1* against TXNA was significantly higher than control cells, while *txnU2* overexpression was weakly protective, and there was no effect for *lldU5* overexpression (Figure 3B). Together, these results show that TxnU2/U4 and LldU1/U5 are self-resistance determinants in TXNA and LLD producers, and among them TxnU4 and LldU1 display the major roles.

255 **TxnU2/U4 and LldU1/U5 are DNA glycosylases that excise TXNA- and LLD-DNA adducts**

256 To determine if TxnU2, TxnU4, LldU1, and LldU5 are DNA glycosylases capable of excising TXNA-
257 and LLD-Gua adducts from DNA, an 8-bp oligodeoxynucleotide duplex d(AACCGGTT) designed
258 based on a previous report was treated with either TXNA or LLD and then incubated with TxnU2,
259 TxnU4, LldU1, or LldU5 (Figure 4A) (36,52). The reaction products were detected by LC-MS at 271
260 and 400 nm (Figure 4B, 4C, Figure S2). After treatment with TXNA, two new peaks appeared at 18.2
261 and 18.9 minutes. The *m/z* of the two peaks were 1644, which was consistent with that of the
262 $[M+2H]^{2+}$ ion of the monoalkylated adduct generated by covalent binding of one molecule TXNA to
263 either G within the duplex d(AACCGGTT) (Figure S2A). Given the previous sequence selectivity
264 studies showing that TXNA reacts preferentially with the DNA sequence 5'-GT (36,52), we supposed
265 that the product with the later retention time (18.9 minutes) and larger peak area is 5'-AACCG(TXNA-
266 G)TT-3', and the other peak at 18.2 minutes is 5'-AACC(TXNA-G)GTT-3'. As TxnU2 or TxnU4 was
267 added, the amount of the two adducts decreased, and a new peak with *m/z* 1028 appeared, which

268 was supposedly the excision product of TxnU2 and TxnU4 (Figure 4B). The molecular weight of the
269 product is equal to that of gutingimycin, which contains a TXN skeleton and a Gua nucleobase. In
270 addition, the molecular formula C₄₇H₅₇O₂₁N₅ determined by HRESIMS ([M+H]⁺ *m/z* 1028.53) and the
271 fragments detected by tandem-MS were consistent with gutingimycin (Figure S3A), confirming that
272 TxnU2 and TxnU4 are able to catalyze excision of TXNA-Gua adducts from DNA. An extended time
273 course indicated that TxnU4 preferentially cleaved the 5'-AACCG(TXNA-G)TT-3' among the two
274 alkylated products (Figure S4). Likewise, under the same experimental condition, the two alkylation
275 products arising from LLD were excised by LldU1, forming a new compound with *m/z* 1102 in the
276 mass spectra, whereas LldU5 showed no activity (Figure 4C, Figure S2B). HRESIMS data ([M+H]⁺
277 *m/z* 1102.43, calcd for C₅₁H₆₈O₂₂N₅) and tandem-MS analysis indicated that the excision product is
278 LLD-Gua (Figure S3B), suggesting LldU1 is capable of excising LLD-G adducts from DNA.

279 For further confirmation, an *in vitro* gel-based assay was performed to quantify the β - and δ -
280 elimination products generated by alkaline hydrolysis of the AP site product of base excision (Figure
281 4D) (28). We verified that the amount of product observed in this assay was not influenced by the use
282 of NaOH to cleave glycosylase generated AP sites, as similar results were obtained with piperidine
283 (Figure S5A,B). Purified enzymes were incubated with either TXNA- or LLD-DNA substrates for 30
284 min under single turnover conditions. We found that all four enzymes produced a significant amount
285 of product as compared to a no-enzyme control (Figure 4E and F). The weaker activity of LldU5
286 relative to the other three enzymes (Figure 4F) is likely the result of poor protein solubility observed
287 during expression and purification. Single-turnover kinetic analysis showed that TXNA-Gua excision
288 by TxnU4 ($k_{st} = 4.6 \text{ min}^{-1}$) is approximately 4 times faster than *S. sahachiroi* AlkZ and *E. coli* YcaQ
289 activity toward AZB-ICL ($k_{st} = 1.2 \text{ min}^{-1}$) and NM-ICL ($k_{st} = 1.1 \text{ min}^{-1}$) substrates, respectively (29)
290 (Figure 4G, Figure S5D). The enzyme also efficiently turns over ($k_{mt} = 0.3 \text{ min}^{-1}$) and shows no
291 observable product inhibition, as evidenced by multiple-turnover kinetics (Figure 4G, S5D). Thus,
292 these enzymes excise TXNs lesions rapidly and efficiently relative to their distant orthologs.
293 Moreover, the *in vitro* excision activities of TxnU2/U4 and LldU1/U5 were further confirmed by the
294 detection of excision products in gene deletion mutant strains (Figure 2A, 2B). Compared to the WT
295 strain, the production of LLD-Gua in gene deletion mutant strains $\Delta lldU1$ and $\Delta lldU5$ was respectively
296 reduced 43% and 30%, and the yield of gutingimycin in $\Delta txnU2$ and $\Delta txnU4$ was also respectively
297 decreased 95% and 99%, suggesting the glycosylases TxnU2/U4 and LldU1/U5 are functional *in vivo*.

298 Monofunctional glycosylases catalyze only hydrolysis of the N-glycosidic bond, whereas
299 bifunctional glycosylases also nick the backbone to generate β - and δ -elimination products. Based on
300 our previous functional analysis of the homolog AlkZ, we hypothesized that TxnU and LldU enzymes
301 were monofunctional. Indeed, similar to AlkZ, NaOH was required to nick the AP-DNA product formed
302 by TxnU4 and LldU1 (Figure 4H). Treating the reacted TXN-DNA with water preserved the AP site,
303 while treatment with hydroxide cleaved the AP site to generate β - and δ - elimination products. These
304 results indicate that the TxnU and LldU enzymes are monofunctional glycosylases and do not contain
305 intrinsic DNA lyase activity.

306 **TxnU4 and LldU1 remove TXNs-guanine adducts with a similar but distinct catalytic motif**
307 **relative to AlkZ**

308 The active sites of all monofunctional DNA glycosylases contain catalytic carboxyl (Asp, Glu) or
309 carboxamide (Asn, Gln) residues that promote base excision by electrostatically stabilizing the
310 positive charge that develops on the deoxyribose as the glycosidic bond is broken, and by
311 deprotonating or positioning a water molecule for nucleophilic attack of the anomeric C1' carbon (19-
312 23). We previously showed that the TxnU/LldU homolog AlkZ contains a catalytic QΦQ motif (Φ is a
313 small aliphatic residue) (Figure S6), and that mutation of either flanking glutamine abrogates base
314 excision of monoadducts and severely reduces ICL unhooking activities (28,29). Based on a rigid-
315 body docking model of AlkZ in complex with AZB-DNA (28), the C-terminal glutamine side chain is
316 likely within proximity to the lesion deoxyribose to position a catalytic water molecule (Figure S7).
317 Although the N-terminal glutamine is more recessed and contacts the DNA backbone of a neighboring
318 nucleotide, a slight rotation of the DNA around the helical axis in our docking model would position
319 this residue for catalysis on the adducted nucleotide, and thus either residue theoretically can play a
320 catalytic role in base excision.

321 Like AlkZ, TxnU2 and LldU5 contain a QΦQ motif, whereas TxnU4 and LldU1 contain a histidine
322 residue (H43) in the first position (Figure 5A). Both QΦQ and HΦQ motifs are predicted to reside in
323 the same location as those observed in AlkZ (Figures S6 and S7), and the His imidazole should be
324 able to perform the same catalytic function as described above for carboxylate and carboxamide side
325 chains. We examined the functional role of the HΦQ motifs in TxnU4 and LldU1 by purifying H43A
326 and Q45A mutants and measuring TXNA-DNA and LLD-DNA excision activity. Wild-type TxnU4
327 removed 94% of the TXNA-DNA adduct after 30 seconds. At this same short time point, the TxnU4
328 H43A mutant showed no activity, whereas substitution of Gln45 with alanine had no effect on TxnU4
329 activity (Figure 5B). Interestingly, we found the exact opposite effect of H43 and Q45 residues in
330 LldU1 tested against an LLD-DNA substrate; LldU1 H43A had no effect compared to wild-type,
331 whereas Lld1 Q45A showed no activity (Figure 5C). We also tested the activity of the QΦQ motif in
332 LldU5; alanine substitution of either glutamine abrogated activity compared to the wild-type enzyme
333 (Figure 5D), similar to that shown for AlkZ (28). We were unable to test the activity of TxnU2 mutants
334 because the proteins were unstable and not amenable to purification. These results indicate that the
335 *in vitro* activity we observe from purified protein is not the result of a contaminating activity in our
336 protein preparations, and suggest that either the histidine or glutamine residues within TxnU4 and
337 LldU1 HΦQ motifs are catalytic, and that they engage TXNA-G and LLG-G lesions differently.

338 **TXNs form stable DNA adducts that are specifically excised by TxnU and LldU glycosylases**

339 *N*7-alkyl-2'-deoxyguanosine adducts (e.g., 7mG) are generally thermally unstable and prone to
340 depurination (53). We therefore explored the stability of TXNs-DNA adducts. Heating the TXNA-DNA
341 to 95°C for 5 minutes, followed by either water or hydroxide workup, led to depurination of only 32%
342 of the adduct (Figure 6A). In contrast, our previous studies show 90% depurination of *N*7-linked NM-
343 and AZB-ICLs under the same conditions (29) suggesting that TXNA-DNA adducts are more stable

344 than other *N*7-alkyl lesions. To test this, we directly compared the stabilities of TXNA-DNA and 7mG-
345 DNA adducts by monitoring their spontaneous depurination rates at 37°C over a period of 7 days. We
346 found that the TXNA-G N-glycosidic bond is at least 5 times more stable than that of 7mG (Figure 6B,
347 Figure S6). Thus, relative to 7mG, TXNA adducts are more resistant to spontaneous depurination,
348 which may be an important property for TXNs toxicity.

349 We next tested the ability of other bacterial alkylpurine DNA glycosylases to excise TXNA-Gua
350 from DNA. These glycosylases, which include *E. coli* AlkA and YcaQ, *Bacillus cereus* AlkC and AlkD,
351 and *S. sahachiroi* AlkZ, have widely varying substrate specificities in addition to their ability to excise
352 7mG (23,28,29,40,54-56). Under the experimental conditions tested, we were unable to detect TXNA
353 excision products from any of these glycosylases (Figure 6C), indicating that recognition of the TXNA
354 lesion is confined to a glycosylase found in a TXNs BGC. We also compared the cross-reactivity of
355 the TxnU and LldU enzymes by testing the ability of TxnU2 and TxnU4 to excise LLD adducts and of
356 LldU1 and LldU5 to excise TXNA adducts, and found that both TxnU4 and LldU1 are capable of
357 excising both TXNA and LLD adducts (Figure 6D), consistent with our results from HPLC analysis
358 (Figure 4B and 4C).

359 Given the efficient activity of TxnU4 for TXNA lesions (Figure 4G), we were interested in
360 determining whether TxnU and LldU could cleave other, less stable *N*7-alkyl-DNA adducts. We
361 previously found that *E. coli* YcaQ readily excises 7mG (Figure 6E) and unhooks NM-ICLs generated
362 from reaction of DNA with mechlorethamine (Figure 6F) (28,29). To our surprise, in contrast to YcaQ,
363 neither TxnU4 nor LldU1 showed any significant activity toward 7mG (Figure 6E) or a NM-ICL (Figure
364 6G, 6H) after 30 min, despite the lower stability of these lesions relative to TXNs adducts. The inability
365 of TxnU4 to act on these less stable *N*7-alkyl adducts and of other alkylpurine DNA glycosylases to
366 process TXNA-DNA indicate that the TxnU/LldU enzymes are highly specific for their cognate natural
367 products, and suggests that the enzymes likely recognize a specific feature of the TXNs-DNA
368 substrates either directly through interaction with the compound or indirectly through the structural
369 distortion to the DNA imposed by the intercalated adduct (Figure S7).

370

371 **AP sites generated from TxnU4 cleavage of TXNA-DNA are inefficiently processed by EndoIV**

372 The AP site product of DNA glycosylase activity is a toxic intermediate of the BER pathway, and
373 thus must be efficiently incised by an AP endonuclease for completion of the pathway. We therefore
374 investigated the efficiency with which a bacterial AP endonuclease could act on the product of the
375 TxnU4/TXNA-DNA reaction. When comparing various methods to cleave TxnU4-generated AP sites
376 in our gel-based assay, we noticed that *E. coli* EndoIV did not fully incise the AP-DNA created by
377 TxnU4 (Figure S5A,B). The EndoIV reaction was carried out under the same conditions that show
378 100% incision activity from AP sites generated by AlkZ or YcaQ excision of 7mG (28,29), suggesting
379 that the product of the TxnU4/TXNA-DNA reaction inhibits the AP endonuclease. We therefore
380 followed up on this result by comparing the kinetics of EndoIV cleavage of AP sites generated by
381 TxnU4/TXNA-DNA and YcaQ/7mG-DNA reactions (Figure 7). We wished to examine AP site
382 processing without interference from residual glycosylase bound to either substrate or product DNA.

383 Therefore, AP sites were generated under conditions that allow for completion of the glycosylase
384 reaction with sub-saturating concentrations of protein with respect to DNA. We found that EndoIV
385 incision of AP sites formed by YcaQ/7mG-DNA are rapidly and fully incised ($k_{obs} = 2.8 \text{ min}^{-1}$) within 5
386 min (Figure 7). In contrast, EndoIV incision of AP sites generated from TxnU4/TXNA-DNA showed
387 biphasic kinetics. The first phase is consistent with the first enzymatic under our experimental
388 conditions, and showed similar kinetics ($k_{fast} = 2.0 \text{ min}^{-1}$) as EndoIV activity on 7mG-produced AP
389 sites. However, the second phase (i.e., subsequent turnovers) was 200-fold slower ($k_{slow} = 0.02 \text{ min}^{-1}$),
390 suggesting that *E. coli* EndoIV is product inhibited when processing TXNA-generated AP sites.
391 More importantly, the difference in EndoIV processing of TXNA and 7mG excision products indicates
392 a difference in AP sites generated from the two lesions, the most likely rationale for which is that
393 gutingimycin (TXNA-Gua) remains intercalated in the DNA after glycosylase excision. These data
394 show that the AP-DNA/TXNA-Gua product poses a challenge for processing by *E. coli* IV, and
395 suggests that a specialized AP endonuclease may be required for efficient BER of these lesions.

396

397 **DISCUSSION**

398 In this study, HTH_42 superfamily proteins TxnU2/U4 and LldU1/U5 were discovered to provide
399 cellular resistance to TXNA and LLD toxicity, respectively, providing an explanation for the
400 evolutionary function of these proteins within the BGC of each antibiotic. Sequence (BLASTP) and
401 structural (AlphaFold) analyses show that TxnU and LldU share homology with AlkZ and YcaQ
402 (Figure S6), and the *in vitro* enzymatic activity confirms that like AlkZ/YcaQ, both TxnU and LldU are
403 monofunctional DNA glycosylases acting on *N*7-alkylguanine adducts (27-29). However, the
404 TxnU/LldU enzymes differ from their HTH_42 homologs—and other alkylpurine DNA glycosylases—
405 with respect to substrate specificity, catalytic machinery, and genomic context.

406 In terms of specificity, most alkylpurine DNA glycosylases hydrolyze 7mG in addition to their major
407 substrates (23,28,29,40,54-56). Interestingly, despite the lower stability of the 7mG N-glycosidic bond,
408 TxnU4 and LldU1 did not exhibit 7mG activity, indicating that TxnU/LldU specifically recognize TXNA-
409 G and LLD-G as opposed to the instability in the N-glycosidic bond generated by substitution of
410 guanine at N7 (1). Similarly, the TXNs-DNA lesions did not appear to be substrates for the other
411 alkylpurine DNA glycosylases, including AlkZ/YcaQ and YtkR2/AlkD, which also act on bulky lesions
412 (26,27,29,57,58). The lack of activity of TxnU/LldU for less stable *N*7-alkylguanine adducts and the
413 inability of other glycosylases to hydrolyze TXNA-G indicate that TxnU and LldU are highly specific for
414 their own natural products. The most significant differences between LLD/TXN-G and other known
415 *N*7-alkylpurine glycosylase substrates are their ability to intercalate into the DNA base stack and their
416 sugar substituents (Figure S7). Based on the TXNA-DNA crystal structure, TXNA intercalates the
417 d(GT/AC) base step and forms hydrogen bonds with the duplex DNA through the two sugar moieties,
418 leading to the 4-sugar in the minor groove and the 13-sugar residing in the major groove (36). In
419 addition, TXNA extrudes the base near the 3' end of the alkylating site out of the helix, leading to an
420 increased helical twist (36).

421 To our knowledge, TxnU and LldU are the only DNA glycosylases identified with activity toward
422 intercalated DNA substrates. An AlkZ-derived homology model of TxnU4 docked against the TXNA-
423 DNA crystal structure provides a rationale for this specificity (Figure S7). Our previous work predicted
424 that AlkZ employs two important secondary structural elements to engage the DNA substrate from
425 opposite faces of the DNA—the β 11/12-hairpin is posited to contact the lesion in the minor groove,
426 and helix α 1 is predicted to make direct contact to the AZB compound from the major groove side
427 (28,29) (Figure S6,7). Because the TXN compounds intercalate both strands of DNA, they protrude
428 from both major and minor groove sides. Consequently, helix α 1 and the β 11/12-hairpin likely contact
429 TXNs from both grooves, with helix α 1 recognizing the C13- or C16-modified sugars on one end and
430 the β 11/12-hairpin recognizing C-4 modified sugar on the other end. Interestingly, the sequences and
431 predicted structures of these two recognition elements are not conserved between AlkZ and
432 TxnU/LldU (Figure S6, S7), consistent with their predicted roles in recognition of two different classes
433 of natural products.

434 Regarding catalysis, the AlkZ/YcaQ/TxnU/LldU family of HTH_42 enzymes act on crosslinked or
435 intercalated substrates that are not likely to be extruded from the DNA, as observed for base-flipping
436 glycosylases including human AAG and bacterial AlkA (19,23). Consistently, the HTH_42 enzymes,
437 like their non-base-flipping counterparts YtkR2/AlkD, do not contain residues that would intercalate
438 the DNA helix to stabilize an extruded nucleobase in the active site, nor do they contain a nucleobase
439 binding pocket within the active site (57,59). Instead, the catalytic residues are pre-organized to
440 contact the target N-glycosidic bond within an intact DNA duplex (28) (Figure S6, S7). We previously
441 showed that the catalytic motifs of the HTH_42 superfamily are divided into QΦQ and QΦD types
442 (29). Sequence similarity network (SSN) analysis showed that the five proteins—AlkZ, LldU1/U5 and
443 TxnU2/U4—are located in three different clades, in which TxnU2 and LldU5 are clustered into one
444 clade, TxnU4 and LldU1 are clustered into another, and AlkZ clustered in a third (Figure 1D). The
445 catalytic motif of TxnU2 and LldU5 is the same as AlkZ and belongs to the QΦQ type. However, the
446 catalytic motifs of TxnU4 and LldU1 belong to neither QΦQ nor QΦD, but instead contain an HΦQ
447 motif (Figures 5 and S6). Our structural models predict the HΦQ side chains to be in the same
448 locations as those in AlkZ QΦQ, and thus either could reside close enough to the target TXNA-G or
449 LLD-G nucleotide to catalyze hydrolysis (Figures S6 and S7) (28). Interestingly, however, our
450 mutational analysis revealed that HΦQ behaves differently than QΦQ and QΦD in two respects. First,
451 mutation of only one residue affected base excision, in contrast to QΦQ (AlkZ) and YcaQ (QΦD), in
452 which mutation of either residue within the motif affects base excision activity (28,29). Second, the
453 two HΦQ motifs in TxnU4 and LldU1 have different effects for TXNA- and LLD-G adducts,
454 respectively; the histidine in TxnU4 had the greater effect on excision of gutingimycin and the
455 glutamine in LldU1 had the greater effect on LLD-G excision. The cross-reactivity of TxnU4 and LldU1
456 against TXNs and their high sequence similarity suggests that the two glycosylases have similar
457 substrate recognition pockets, and thus the different effects of their His and Gln mutants most likely
458 stem from the manner in which TXNA-G and LLD-G lesions are positioned within the active site
459 (Figure S7). These compounds are distinguished by the sugar substituents at position 13 (TXNA) and
460 16 (LLD) (Figure 1A), which reside in the major groove and thus likely are contacted by helix α 1 as

461 described above (Figure S7). Interestingly, TxnU4 and LldU1 contain a 10-15-amino acid insertion in
462 helix α 1 that the AlphaFold model predicts forms a β -hairpin (Figures S6 and S7). Steric interaction
463 from this helix α 1 insertion with the unique 13- and 16-sugar substituents in the major groove would
464 displace the TXNA- and LLD-DNAs differently, placing the target deoxyriboses of TXNA-G and LLD-G
465 in proximity to His43 and Gln45, respectively (Figure S7D). Thus, although TxnU4 and LldU1 share
466 the same catalytic motif, the insertion in the predicted drug-binding α 1-helix and the differences in
467 sugar moieties in TXNs may alter how the two proteins engage their substrates. Consistent with this
468 rationale, neither LldU5, AlkZ, nor YcaQ contain the α 1 helix insertion, and none of these show a
469 preferential catalytic residue within Q Φ Q or Q Φ D motifs (28,29).

470 A growing number of specialized DNA glycosylases produced from the BGCs of genotoxic
471 secondary metabolites have been determined, including those involved in self-resistance to AZB and
472 yatakemycin/CC-1065 (26,27,60). Our cellular resistance/sensitivity assays demonstrate *txnU2/4* and
473 *lldU1/5* are key determinants in self-resistance to TXNA/LLD. The presence of multiple copies of
474 these DNA glycosylases is unique to the *txn* and *lld* BGCs, and may provide redundancy to ensure
475 repair of the highly genotoxic TXN metabolites, in contrast to the lethality of AlkZ knockouts in
476 azinomycin B-producing *S. sahachiroi* (27). Based on our finding that TxnU4 and LldU1 play the major
477 roles in toxin resistance, it is interesting to speculate that TxnU2 and LldU5 play more secondary
478 roles, such as removing lesions formed by TXN derivatives generated from catabolism of TXNA/LLD.

479 The subsequent BER steps necessary for repair of DNA lesions generated from secondary
480 metabolites, and the roles of other pathways (e.g., NER) are remaining questions. Regarding BER,
481 our finding that *E. coli* EndoIV processed TXNs AP-sites less efficiently than 7mG-derived AP-sites
482 suggests that specialized nucleases act on the AP-DNA/TXN-Gua product, as predicted for the
483 putative *ytkR4* and *ytkR5* nucleases located within yatakemycin BGC (26,58,61). Although there do
484 not appear to be any nucleases within the *txn/lld* clusters, genomic analysis reveals both ExoIII and
485 EndoIV orthologs in TXNA/LLD producing strains (and two ExoIII paralogs in the case of *S.*
486 *bottropensis*). Given the bulky, helix-distorting nature of these compounds, it is also likely that NER or
487 other pathways play a role in their repair, as previously shown for yatakemycin-family and NM-ICL-
488 DNA lesions (29,58,62-64). Indeed, *S. vinaceusdrappus* and *S. bottropensis* contain one and three
489 UvrA paralogs, respectively. It is also possible that TXN-DNA lesions are recognized by other
490 enzymes outside of BER or NER, as reported for the structure-specific AziN nuclease within the AZB
491 BGC (65). More work is needed to elucidate the full landscape of cellular mechanisms of repair of
492 these unique DNA damaging agents. Taken together, this work characterizes a unique family of DNA
493 glycosylases from the HTH_42 superfamily that act on heavily functionalized, intercalated DNA
494 adducts, and provides further evidence for that DNA glycosylases residing in BGCs have evolved an
495 exquisite specificity for aberrant nucleotides formed by their cognate genotoxic natural products.

496

497 **SUPPLEMENTARY DATA**

498 Supplementary Data are available at NAR online.

499

500 **FUNDING**

501 This work was supported by the grants from National Natural Science Foundation of China (31930002
502 and 21621002) and Chinese Academy of Sciences (QYZDJ-SSW-SLH037) to G.-L.T. and National
503 Institutes of Health (R01GM131071) and National Science Foundation (MCB-1928918) to B.F.E.
504 N.P.B. was supported by the NSF Graduate Research Fellowship Program (DGE-1445197). Funding
505 for open access charge: National Natural Science Foundation of China, National Institutes of Health.

506

507 **CONFLICT OF INTEREST**

508 No conflict of interest.

509

510 **REFERENCES**

- 511 1. Gates, K.S. (2009) An overview of chemical processes that damage cellular DNA: spontaneous
512 hydrolysis, alkylation, and reactions with radicals. *Chem. Res. Toxicol.*, **22**, 1747-1760.
- 513 2. Jackson, S.P. and Bartek, J. (2009) The DNA-damage response in human biology and disease.
Nature, **461**, 1071-1078.
- 514 3. Terabayashi T and Hanada, K. (2018) Genome instability syndromes caused by impaired DNA
515 repair and aberrant DNA damage responses. *Cell Biol. and Toxicol.*, **34**, 337-350.
- 516 4. Verweij, J. and Pinedo, H.M. (1990) Mitomycin C: mechanism of action, usefulness and
517 limitations. *Anticancer Drugs*, **1**, 5-13.
- 518 5. de Wit, R., Stoter, G., Kaye, S.B., Sleijfer, D.T., Jones, W.G., ten Bokkel Huinink, W.W., Rea, L.A.,
519 Collette, L. and Sylvester, R. (1997) Importance of bleomycin in combination chemotherapy for
520 good-prognosis testicular nonseminoma: a randomized study of the European Organization for
521 Research and Treatment of Cancer Genitourinary Tract Cancer Cooperative Group. *J. Clin.*
522 *Oncol.*, **15**, 1837-1843.
- 523 6. Deans, A.J. and West, S.C. (2011) DNA interstrand crosslink repair and cancer. *Nat. Rev. Cancer*,
524 **11**, 467-480.
- 525 7. Brulikova, L., Hlavac, J. and Hradil, P. (2012) DNA interstrand cross-linking agents and their
526 chemotherapeutic potential. *Curr. Med. Chem.*, **19**, 364-385.
- 527 8. Singh, R.K., Kumar, S., Prasad, D.N. and Bhardwaj, T.R. (2018) Therapeutic journey of nitrogen
528 mustard as alkylating anticancer agents: historic to future perspectives. *Eur. J. Me. Chem.*, **151**,
529 401-433.
- 530 9. Fromme, J.C. and Verdine, G.L. (2004) Base excision repair. *Adv. Protein Chem.*, **69**, 1-41.
- 531 10. Truglio, J.J., Croteau, D.L., Van Houten, B. and Kisker, C. (2006) Prokaryotic nucleotide excision
532 repair: the UvrABC system. *Chem. Rev.*, **106**, 233-252.
- 533 11. Hitomi, K., Iwai, S. and Tainer, J.A. (2007) The intricate structural chemistry of base excision
534 repair machinery: implications for DNA damage recognition, removal, and repair. *DNA Repair*, **6**,

536 410-428.

537 12. Nouspikel, T. (2009) DNA repair in mammalian cells: Nucleotide excision repair: variations on
538 versatility. *Cell. Mol. Life Sci.*, **66**, 994-1009.

539 13. Yi, C. and He, C. (2013) DNA repair by reversal of DNA damage. *Cold Spring Harb Perspect.*
540 *Biol.*, **5**, a012575.

541 14. Pegg, A.E. and Byers, T.L. (1992) Repair of DNA containing O6-alkylguanine. *FASEB J.*, **6**, 2302-
542 2310.

543 15. Wang, L., Spratt, T.E., Liu, X.-K., Hecht, S.S., Pegg, A.E. and Peterson, L.A. (1997)
544 Pyridyloxobutyl adduct O6-[4-Oxo-4-(3-pyridyl)butyl]guanine is present in 4-
545 (acetoxymethyl)nitrosamino)-1-(3-pyridyl)-1-butanone-treated DNA and is a substrate for O6-
546 alkylguanine-DNA alkyltransferase. *Chem. Res. Toxicol.*, **10**, 562-567.

547 16. Fang, Q., Noronha, A.M., Murphy, S.P., Wilds, C.J., Tubbs, J.L., Tainer, J.A., Chowdhury, G.,
548 Guengerich, F.P. and Pegg, A.E. (2008) Repair of O6-G-alkyl-O6-G interstrand cross-links by
549 human O6-alkylguanine-DNA alkyltransferase. *Biochemistry*, **47**, 10892-10903.

550 17. Krokan, H.E. and Bjoras, M. (2013) Base excision repair. *Cold Spring Harbor Perspect. Biol.*, **5**,
551 a012583.

552 18. Schermerhorn, K.M. and Delaney, S. (2014) A chemical and kinetic perspective on base excision
553 repair of DNA. *Acc. Chem. Res.*, **47**, 1238-1246.

554 19. Mullins, E.A., Rodriguez, A.A., Bradley, N.P. and Eichman, B.F. (2019) Emerging roles of DNA
555 glycosylases and the base excision repair pathway. *Trends Biochem. Sci.*, **44**, 765-781.

556 20. Stivers, J.T. and Jiang, Y.L. (2003) A mechanistic perspective on the chemistry of DNA repair
557 glycosylases. *Chem. Rev.*, **103**, 2729-2759.

558 21. Drohat, A.C. and Maiti, A. (2014) Mechanisms for enzymatic cleavage of the N-glycosidic bond in
559 DNA. *Org. Biomol. Chem.*, **12**, 8367-8378.

560 22. Drohat, A.C. and Coey, C.T. (2016) Role of base excision "repair" enzymes in erasing epigenetic
561 marks from DNA. *Chem. Rev.*, **116**, 12711-12729.

562 23. Brooks, S.C., Adhikary, S., Robinson, E.H. and Eichman, B.F. (2013) Recent advances in the
563 structural mechanisms of DNA glycosylases. *Biochim. Biophys. Acta*, **1834**, 247-271.

564 24. Truglio, J.J., Croteau, D.L., Van Houten, B. and Kisker, C. (2006) Prokaryotic nucleotide excision
565 repair: the UvrABC system. *Chem. Rev.*, **106**, 233-252.

566 25. Wood, R.D. (2010) Mammalian nucleotide excision repair proteins and interstrand crosslink
567 repair. *Environ. Mol. Mutagen.*, **51**, 520-526.

568 26. Xu, H., Huang, W., He, Q.L., Zhao, Z.X., Zhang, F., Wang, R., Kang, J. and Tang, G.L. (2012)
569 Self-resistance to an antitumor antibiotic: a DNA glycosylase triggers the base-excision repair
570 system in yatakemycin biosynthesis. *Angew. Chem. Int. Ed. Engl.*, **51**, 10532-10536.

571 27. Wang, S., Liu, K., Xiao, L., Yang, L., Li, H., Zhang, F., Lei, L., Li, S., Feng, X., Li, A. *et al.* (2016)
572 Characterization of a novel DNA glycosylase from *S. sahachiroi* involved in the reduction and
573 repair of azinomycin B induced DNA damage. *Nucleic Acids Res.*, **44**, 187-197.

574 28. Mullins, E.A., Warren, G.M., Bradley, N.P. and Eichman, B.F. (2017) Structure of a DNA
575 glycosylase that unhooks interstrand cross-links. *Proc. Natl. Acad. Sci. U. S. A.*, **114**, 4400-4405.

576 29. Bradley, N.P., Washburn, L.A., Christov, P.P., Watanabe, C.M.H. and Eichman, B.F. (2020)
577 *Escherichia coli* YcaQ is a DNA glycosylase that unhooks DNA interstrand crosslinks. *Nucleic*
578 *Acids Res.*, **48**, 7005-7017.

579 30. Armstrong, R.W., Salvati, M.E. and Nguyen, M. (1992) Novel interstrand cross-links induced by
580 the antitumor antibiotic carzinophilin/azinomycin B. *J. Am. Chem. Soc.*, **114**, 3144-3145.

581 31. Tamaoki, T., Shirahata, K., Iida, T. and Tomita, F. (1981) Trioxacarcins, novel antitumor antibiotics.
582 II. Isolation, physico-chemical properties and mode of action. *J. Antibiot.*, **34**, 1525.

583 32. Tomita, F., Tamaoki, T., Morimoto, M. and Fujimoto, K. (1981) Trioxacarcins, novel antitumor
584 antibiotics. I. Producing organism, fermentation and biological activities. *J. Antibiot.*, **34**, 1519-
585 1524.

586 33. Maskey, R.P., Helmke, E., Kayser, O., Fiebig, H.H., Maier, A., Busche, A. and Laatsch, H. (2004)
587 Anti-cancer and antibacterial trioxacarcins with high anti-malaria activity from a marine
588 *Streptomyctete* and their absolute stereochemistry. *J. Antibiot.*, **57**, 771-779.

589 34. Maiese, W.M., Labeda, D.P., Korshalla, J., Kuck, N., Fantini, A.A., Wildey, M.J., Thomas, J. and
590 Greenstein, M. (2006) LL-D49194 antibiotics, a novel family of antitumor agents: taxonomy,
591 fermentation and biological properties. *J. Antibiot.*, **43**, 253.

592 35. Fitzner, A., Frauendorf, H., Laatsch, H. and Diederichsen, U. (2008) Formation of gutingimycin:
593 analytical investigation of trioxacarcin A-mediated alkylation of dsDNA. *Anal. Bioanal. Chem.*,
594 **390**, 1139-1147.

595 36. Pföh, R., Laatsch, H. and Sheldrick, G.M. (2008) Crystal structure of trioxacarcin A covalently
596 bound to DNA. *Nucleic Acids Res.*, **36**, 3508-3514.

597 37. Maskey, R.P., Sevvana, M., Usón, I., Helmke, E. and Laatsch, H. (2004) Gutingimycin: a highly
598 complex metabolite from a marine streptomyctete. *Angew. Chem. Int. Ed. Engl.*, **43**, 1281-1283.

599 38. Robinson, E.H., Metz, A.H., O'Quin, J. and Eichman, B.F. (2008) A new protein architecture for
600 processing alkylation damaged DNA: the crystal structure of DNA glycosylase AlkD. *J. Mol. Biol.*,
601 **381**, 13-23.

602 39. Taylor, E.L. and O'Brien, P.J. (2015) Kinetic mechanism for the flipping and excision of 1,N6-
603 ethenoadenine by AlkA. *Biochemistry*, **54**, 898-908.

604 40. Shi, R., Mullins, E.A., Shen, X.X., Lay, K.T., Yuen, P.K., David, S.S., Rokas, A. and Eichman, B.F.
605 (2018) Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase
606 AlkC. *EMBO J.*, **37**, 63-74.

607 41. Mitchell, A., Chang, H.Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla, C.,
608 McMenamin, C., Nuka, G., Pesseat, S. *et al.* (2015) The InterPro protein families database: the
609 classification resource after 15 years. *Nucleic Acids Res.*, **43**, D213-D221.

610 42. Huang, Y., Niu, B., Gao, Y., Fu, L. and Li, W. (2010) CD-HIT Suite: a web server for clustering and
611 comparing biological sequences. *Bioinformatics*, **26**, 680-682.

612 43. Gerlt, J.A., Bouvier, J.T., Davidson, D.B., Imker, H.J., Sadkin, B., Slater, D.R. and Whalen, K.L.
613 (2015) Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating
614 protein sequence similarity networks. *Biochim. Biophys. Acta, Proteins Proteomics*, **1854**, 1019-
615 1037.

616 44. Gust, B., Challis, G.L., Fowler, K., Kieser, T. and Chater, K.F. (2003) PCR-targeted *Streptomyces*
617 gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil
618 odor geosmin. *Proc. Natl. Acad. Sci. U. S. A.*, **100**, 1541-1546.

619 45. Zhang, M., Hou, X.F., Qi, L.H., Yin, Y., Li, Q., Pan, H.X., Chen, X.Y. and Tang, G.L. (2015)
620 Biosynthesis of trioxacarcin revealing a different starter unit and complex tailoring steps for type II
621 polyketide synthase. *Chem. Sci.*, **6**, 3440-3447.

622 46. Dong, L., Shen, Y., Hou, X.-F., Li, W.-J. and Tang, G.-L. (2019) Discovery of druggability-improved
623 analogues by investigation of the LL-D49194α1 biosynthetic pathway. *Org. Lett.*, **21**, 2322-2325.

624 47. Mullins, E.A., Rubinson, E.H., Pereira, K.N., Calcutt, M.W., Christov, P.P. and Eichman, B.F.
625 (2013) An HPLC-tandem mass spectrometry method for simultaneous detection of alkylated base
626 excision repair products. *Methods*, **64**, 59-66.

627 48. Yang, K., Qi, L.H., Zhang, M., Hou, X.F., Pan, H.X., Tang, G.L., Wang, W. and Yuan, H. (2015)
628 The SARP family regulator *txn9* and two-component response regulator *txn11* are key activators
629 for trioxacarcin biosynthesis in *Streptomyces bottropensis*. *Curr. Microbiol.*, **71**, 458-464.

630 49. Hou, X.F., Song, Y.J., Zhang, M., Lan, W., Meng, S., Wang, C., Pan, H.X., Cao, C. and Tang, G.L.
631 (2018) Enzymology of anthraquinone-γ-pyrone ring formation in complex aromatic polyketide
632 biosynthesis. *Angew. Chem. Int. Ed. Engl.*, **57**, 13475-13479.

633 50. Shen, Y., Nie, Q.Y., Yin, Y., Pan, H.X., Xu, B. and Tang, G.L. (2019) Production of a trioxacarcin
634 analog by introducing a C-3 dehydratase into deoxysugar biosynthesis. *Acta Biochim. Biophys.*
635 *Sin.*, **51**, 539-541.

636 51. Yin, Y., Shen, Y., Meng, S., Zhang, M., Pan, H.X. and Tang, G.L. (2020) Characterization of a
637 membrane-bound O-acetyltransferase involved in trioxacarcin biosynthesis offers insights into its
638 catalytic mechanism. *Chin. J. Chem.*, **38**, 1607-1611.

639 52. Fitzner, A., Frauendorf, H., Laatsch, H. and Diederichsen, U. (2008) Formation of gutingimycin:
640 analytical investigation of trioxacarcin A-mediated alkylation of dsDNA. *Anal. Bioanal. Chem.*,
641 **390**, 1139-1147.

642 53. Hemminki, K., Peltonen, K. and Vodicka, P. (1989) Depurination from DNA of 7-methylguanine, 7-
643 (2-aminoethyl)-guanine and ring-opened 7-methylguanines. *Chem.-Biol. Interact.*, **70**, 289-303.

644 54. O'Brien, P.J. and Ellenberger, T. (2004) The *Escherichia coli* 3-methyladenine DNA glycosylase
645 AlkA has a remarkably versatile active site. *J. Biol. Chem.*, **279**, 26876-26884.

646 55. Alseth, I., Rognes, T., Lindbäck, T., Solberg, I., Robertsen, K., Kristiansen, K.I., Mainieri, D.,
647 Lillehagen, L., Kolstø, A.B. and Bjørås, M. (2006) A new protein superfamily includes two novel 3-
648 methyladenine DNA glycosylases from *Bacillus cereus*, AlkC and AlkD. *Mol. Microbiol.*, **59**, 1602-
649 1609.

650 56. Parsons, Z.D., Bland, J.M., Mullins, E.A. and Eichman, B.F. (2016) A catalytic role for C-H/π
651 interactions in base excision repair by *bacillus cereus* DNA glycosylase AlkD. *J. Am. Chem. Soc.*,
652 **138**, 11485-11488.

653 57. Mullins, E.A., Shi, R., Parsons, Z.D., Yuen, P.K., David, S.S., Igarashi, Y. and Eichman, B.F.
654 (2015) The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.
655 *Nature*, **527**, 254-258.

656 58. Mullins, E.A., Shi, R. and Eichman, B.F. (2017) Toxicity and repair of DNA adducts produced by
657 the natural product yatakemycin. *Nat. Chem. Biol.*, **13**, 1002-1008.

658 59. Robinson, E.H., Gowda, A.S., Spratt, T.E., Gold, B. and Eichman, B.F. (2010) An unprecedented
659 nucleic acid capture mechanism for excision of DNA damage. *Nature*, **468**, 406-411.

660 60. Mullins, E.A., Dorival, J., Tang, G.L., Boger, D.L. and Eichman, B.F. (2021) Structural evolution of
661 a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites. *Nat.*
662 *Commun.*, **12**, 6942.

663 61. Huang, W., Xu, H., Li, Y., Zhang, F., Chen, X.Y., He, Q.L., Igarashi, Y. and Tang, G.L. (2012)
664 Characterization of yatakemycin gene cluster revealing a radical S-adenosylmethionine
665 dependent methyltransferase and highlighting spirocyclopropane biosynthesis. *J. Am. Chem.*
666 *Soc.*, **134**, 8831-8840.

667 62. Selby, C.P. and Sancar, A. (1988) ABC excinuclease incises both 5' and 3' to the CC-1065-DNA
668 adduct and its incision activity is stimulated by DNA helicase II and DNA polymerase I.
669 *Biochemistry*, **27**, 7184-7188.

670 63. Kiakos, K., Sato, A., Asao, T., McHugh, P.J., Lee, M. and Hartley, J.A. (2007) DNA sequence
671 selective adenine alkylation, mechanism of adduct repair, and *in vivo* antitumor activity of the
672 novel achiral seco-amino-cyclopropylbenz[e]indolone analogue of duocarmycin AS-I-145. *Mol.*
673 *Cancer Ther.*, **6**, 2708-2718.

674 64. Jin, S.G., Choi, J.H., Ahn, B., O'Connor, T.R., Mar, W. and Lee, C.S. (2001) Excision repair of
675 adozelesin-N3 adenine adduct by 3-methyladenine-DNA glycosylases and UvrABC nuclease.
676 *Mol. Cells*, **11**, 41-47.

677 65. Chen, X., Sun, Y., Wang, S., Ying, K., Xiao, L., Liu, K., Zuo, X. and He, J. (2020) Identification of a
678 novel structure-specific endonuclease AziN that contributes to the repair of azinomycin B-
679 mediated DNA interstrand crosslinks. *Nucleic Acids Res.*, **48**, 709-718.

680 66. Sambrook, J. and Russell, D.W. (2001) Gene Cloning. A Laboratory Manual, 3rd Ed. *Cold Spring*
681 *Harbor Laboratory Press*.

682

683

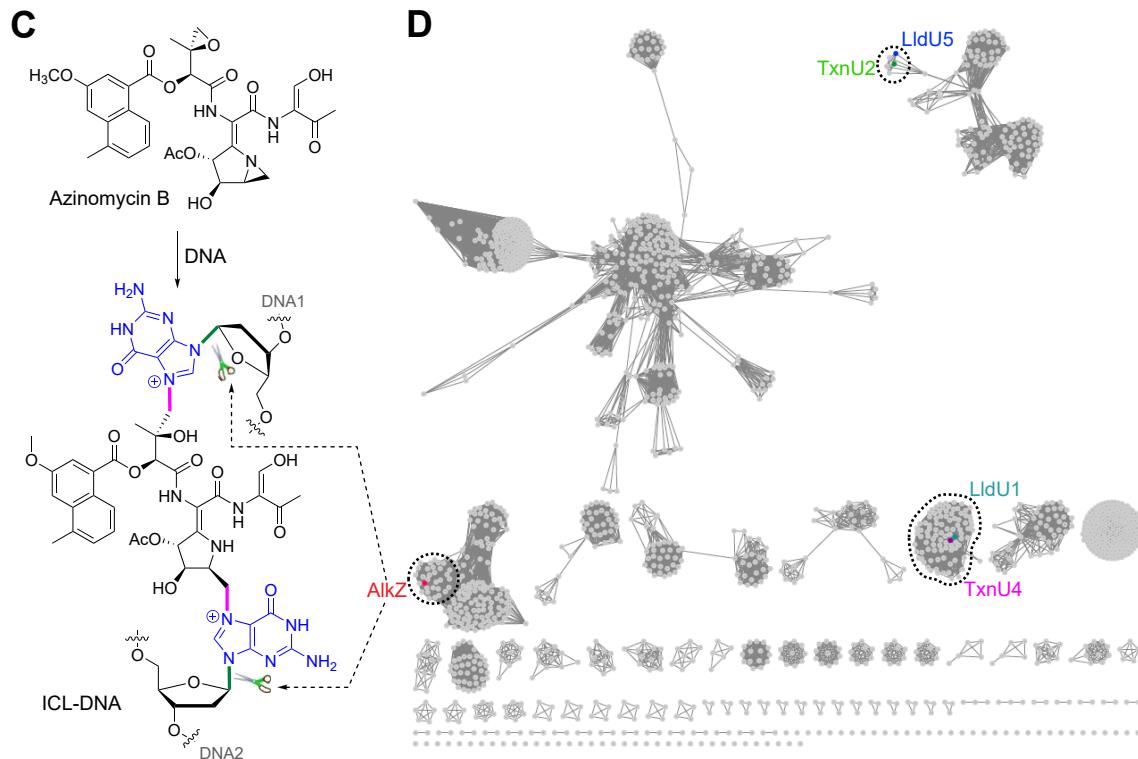
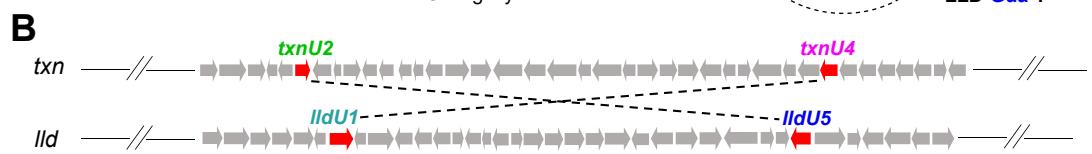
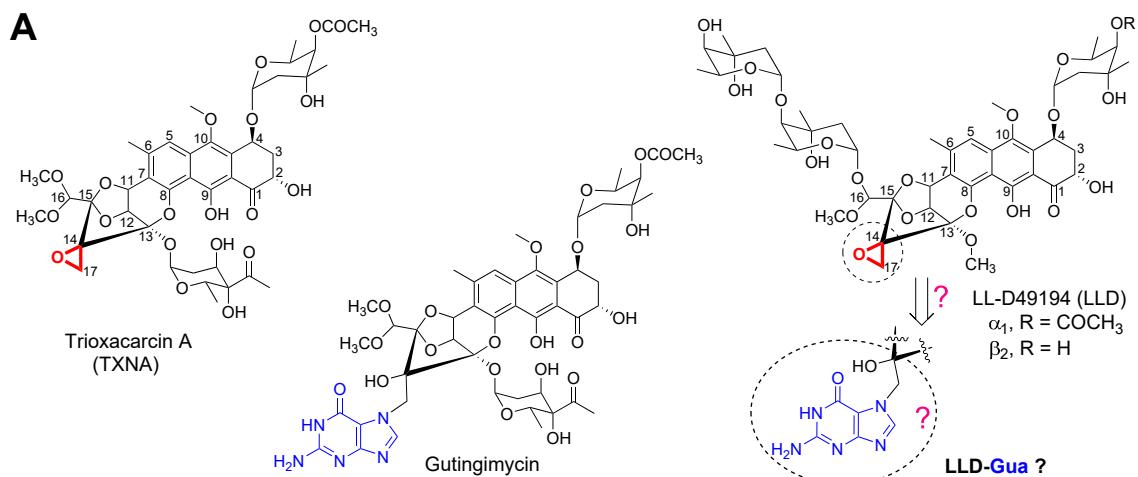
684 **FIGURES LEGENDS**

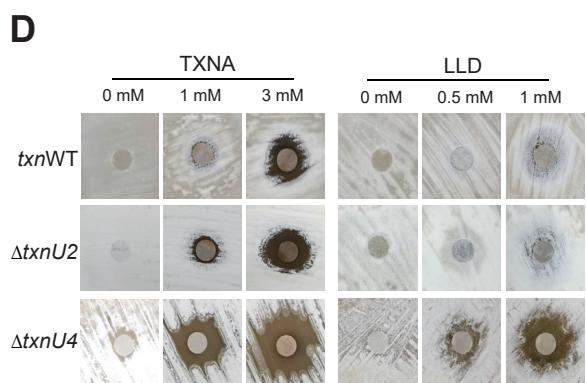
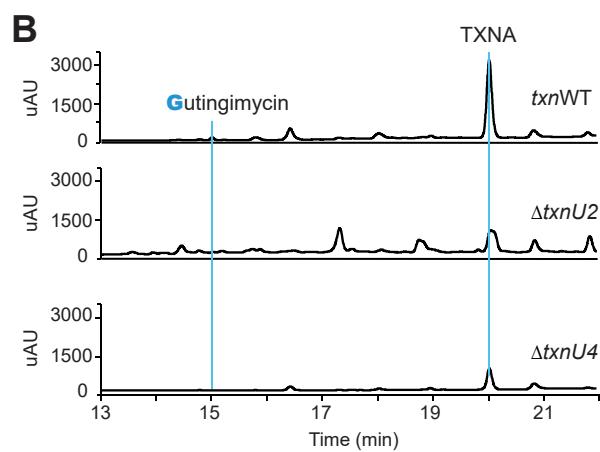
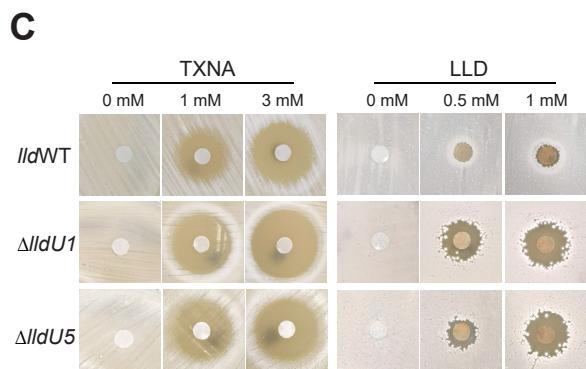
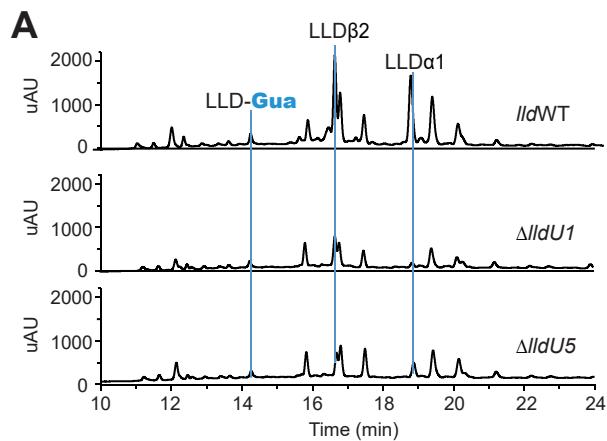
685

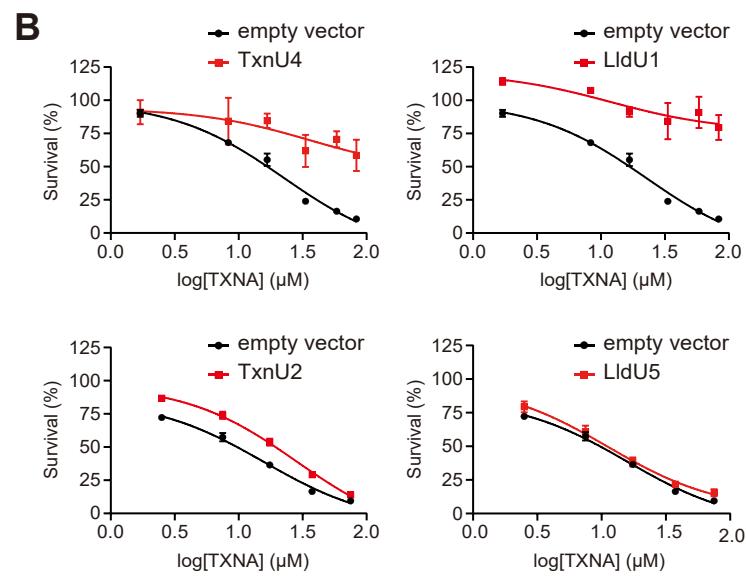
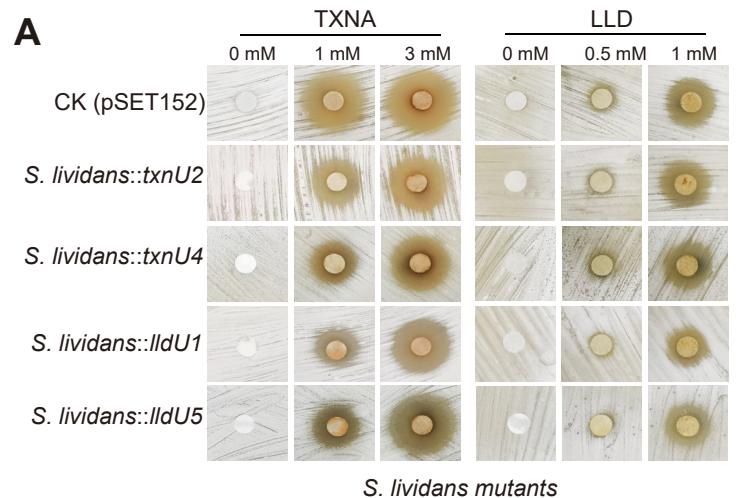
686 **Figure 1. Structures of TXNs family compounds and genomic analysis of self-resistance**
687 **determinants TxnU2/U4 and LldU1/U5.** (A) Structures of trioxacarcin A (TXNA), gutingimycin, LL-
688 D49194 (LLD) and LLD-guanine (LLD-Gua). Reactive epoxide moieties are highlighted in red.
689 Guanine nucleobases are highlighted in blue. (B) Biosynthetic gene clusters (BGC) containing genes
690 encoding HTH_42 superfamily proteins TxnU2/U4 and LldU1/U5. The cluster *txn* is a BGC of TXNs,
691 *lld* is responsible for the BGC of LLD. The two genes connected with dashed lines encode
692 homologous proteins; TxnU2 shares 83% amino acid sequence identity and 90% similarity with
693 LldU5, and TxnU4 shares 71% amino acid sequence identity and 82% similarity with LldU1. (C) Base
694 excision of AZB-ICL-DNA by AlkZ. (D) Sequence similarity network (SSN) analysis of homologous
695 proteins TxnU2/U4 and LldU1/U5. The SSN was constructed by the online Enzyme Function Initiative-

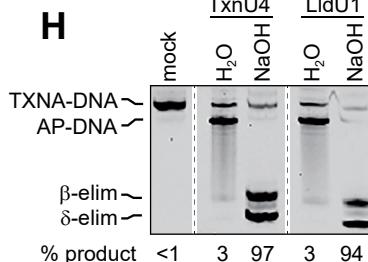
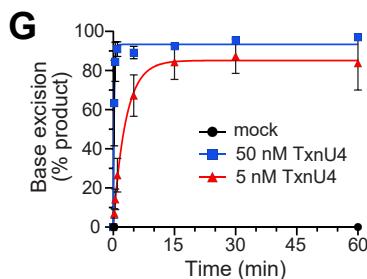
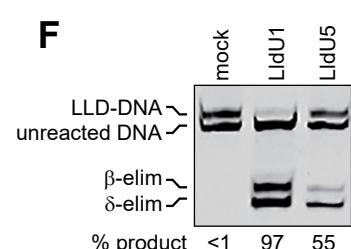
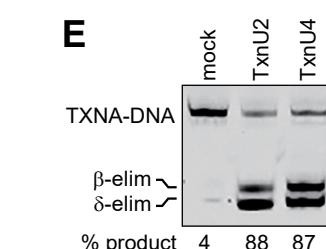
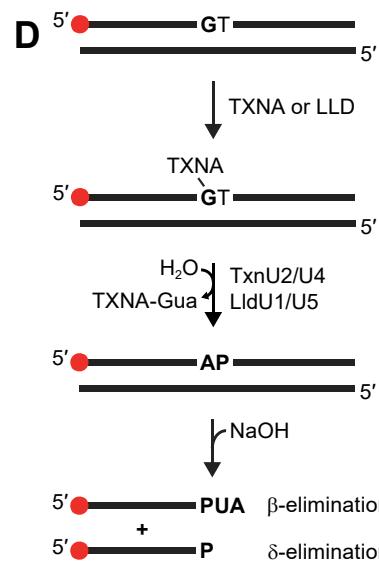
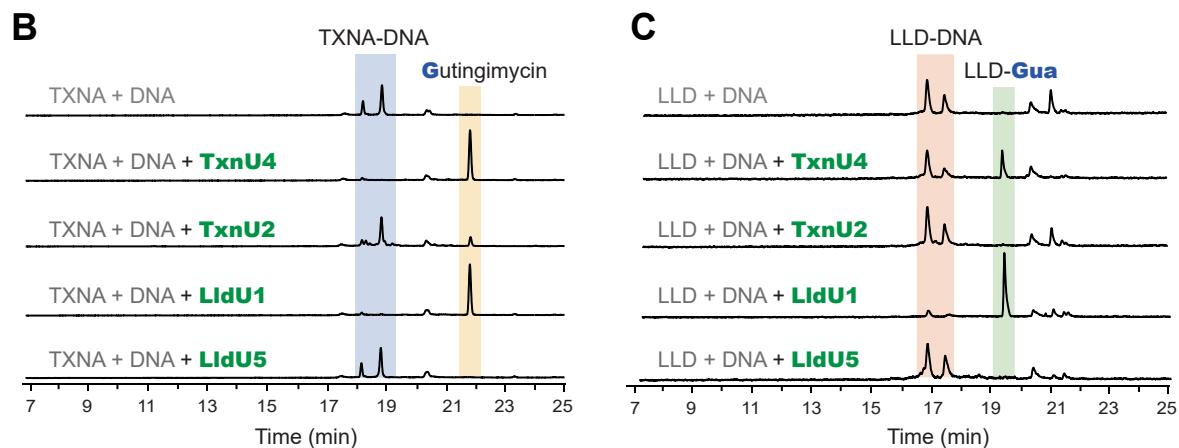
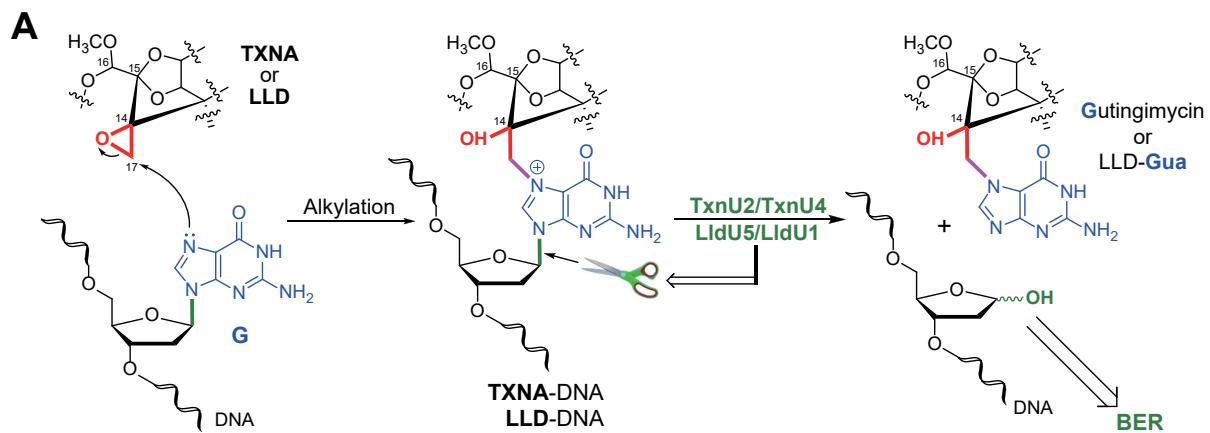
696 Enzyme Similarity Tool with an alignment score threshold of 110. The proteins TxnU2/U4, LldU1/U5
697 and AlkZ were located in three different clades.

698 **Figure 2. *In vivo* characterization of the self-resistance determinants related to LLD and TXNA.**
699 (A) LC-MS analysis of extracts from *S. bottropensis* NRRL 12051 wild-type (*txn*WT) and mutant
700 strains, Δ *txnU2* and Δ *txnU4*, at 400 nm absorbance. (B) LC-MS profiles of extracts from *S.*
701 *vinaceusdrappus* NRRL 15735 wild-type (*lld*WT) and mutant strains, Δ *lldU1* and Δ *lldU5*, at 400 nm
702 absorbance. The effect of *txnU2/txnU4* (C) and *lldU1/lldU5* (D) deletion on cells challenged with
703 increasing concentrations of TXNA (left) and LLD (right) was tested by a disc diffusion assay. Filter
704 paper discs spotted with different concentrations of TXNA or LLD were laid on the MS plate pre-
705 inoculated with wild type or mutant strains. After incubation at 30°C for 36 hr, resistance levels to
706 TXNA or LLD were determined by the zone of inhibition.

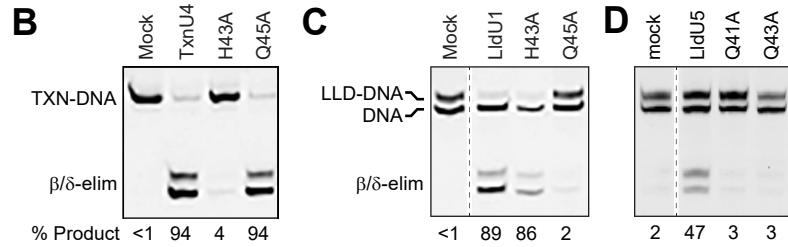



707 **Figure 3. Overexpression of TxnU2/TxnU4 and LldU1/LldU5 confer resistance to heterologous**
708 **hosts against TXNA and LLD.** (A) Disc diffusion test assay to determine the antibiotic sensitivity of
709 heterologous expression strains *S. lividans*::pSET152, *S. lividans*::*txnU2*, *S. lividans*::*txnU4*, *S.*
710 *lividans*::*lldU1* and *S. lividans*::*lldU5* to TXNA (left) and LLD (right). (B) TXNA inhibition of *E. coli* BL21
711 cells transformed with protein overexpression plasmid *txnU2*-pET28a, *txnU4*-pET28a, *lldU1*-pET28a,
712 *lldU5*-pET28a or empty vector pET28a alone. Data are mean \pm SD (n=3).

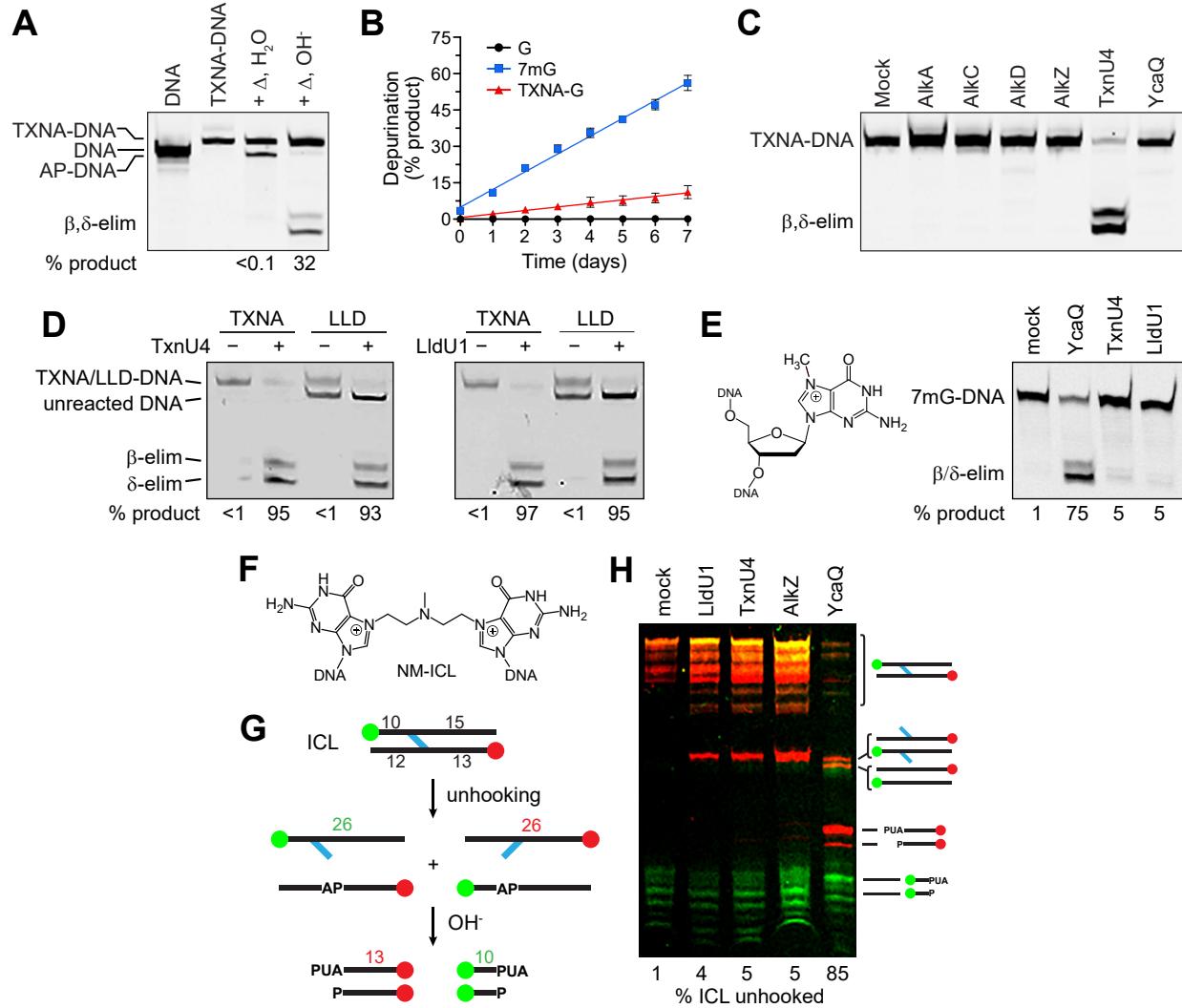




713 **Figure 4. TxnU2/4 and LldU1/5 are monofunctional DNA glycosylases that excise TXN- and**
714 **LLD-DNA adducts.** (A) Chemical reaction between the epoxide moiety of TXNA or LLD and N7 of G
715 in DNA. DNA glycosylases catalyze the hydrolysis of the N-glycosidic bond to liberate the
716 alkylguanine adduct, generating an AP site in the DNA. (B,C) LC-MS analysis of the cleavage
717 products of TxnU2, TxnU4, LldU1 and LldU5 reaction with TXNA-DNA (B) and LLD- DNA (C). An 8-bp
718 oligodeoxynucleotide duplex d(AACCGGTT) was pre-incubated with TXNA or LLD at 16°C for 2 hr,
719 followed by treatment with enzymes TxnU2, TxnU4, LldU1 and LldU5 for 2 hr. The reaction mixtures
720 were analyzed by LC-MS at 400 nm absorbance. (D) Schematic of the base excision assay
721 performed in panels E-H. DNA containing a centrally located GT dinucleotide and a 5'-Cy5-label (red
722 circle) is incubated with TXNA or LLD to form the substrate. Incubation with TxnU2/U4 or LldU1/U5
723 generates an AP site, which is cleaved with hydroxide to generate β - and δ -elimination products.
724 PUA, 3'-phospho- α,β -unsaturated aldehyde; P, 3'-phosphate. (E,F) Denaturing PAGE of TXNA-DNA
725 (E) and LLD-DNA (F) reactions after treatment with enzyme or buffer (mock) for 30 min. Formation of
726 the LLD-DNA substrate only went to ~50% completion, with unreacted DNA migrating faster on the
727 gel. Substrate and product DNA migrate as expected for their sizes, as judged by their relative
728 position to bromophenol blue and xylene cyanol tracking dyes, (Figure S5C) (66). (G) Single- (blue)
729 and multiple-turnover (red) excision kinetics of TxnU4 against TXNA-DNA. 50 nM TXNA-DNA was
730 incubated with buffer (mock), 50 nM TxnU4 (1:1 protein:DNA), or 5 nM TxnU4 (1:10 protein:DNA).
731 Data are mean \pm SD (n=3). A representative gel from which the data were quantified is shown in
732 Figure S5D. (H) Denaturing PAGE of TXNA-DNA adducts after 30-min incubation with TxnU4 or
733 LldU1, followed by work-up with either H₂O or NaOH.

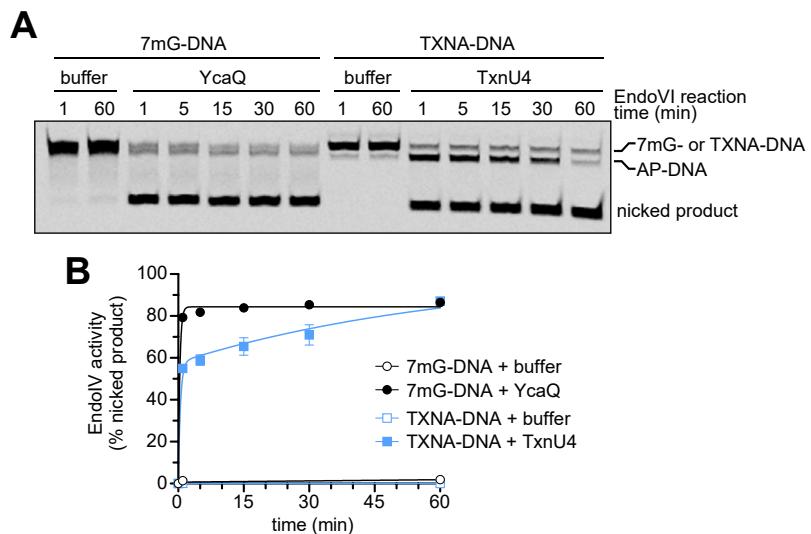


734 **Figure 5. Mutational analysis of excision activity.** (A) Sequence alignment of the catalytic residues
735 in *S. sahachiroi* AlkZ and TxnU2/U4 and LldU1/U5. Denaturing PAGE of TxnU4/TXNA-DNA (B) and
736 LldU1/LLD-DNA (C) Single-turnover reactions containing 1 μ M protein and 50 nM DNA. WT and
737 mutant proteins were incubated with substrates for 30 sec. (D) Single turnover reactions between
738 LldU5 enzymes and LLD-DNA were carried out for 96 hr.








739 **Figure 6. Substrate specificity analysis of TxnU2/TxnU4 and LldU1/5.** (A,B) TXNA forms stable
740 DNA adducts. Denaturing PAGE of TXNA-DNA adducts after thermal depurination. TXNA-DNA was
741 heated (Δ) to 95°C for 5 min, followed by treatment with either water or NaOH. (B) Kinetics of
742 spontaneous depurination of TNXA in DNA as compared with 7mG or unmodified G. Data are mean \pm
743 SD (n=3). Half-lives derived from linear regression of the data are 6.1 \pm 0.3 days (7mG) and 33.9 \pm
744 8.1 days (TXNA). A representative gel from which this data was quantified is shown in Figure S5E.
745 (C) Denaturing PAGE of TXNA-DNA adducts after 1-hr incubation with either buffer (mock) or
746 bacterial alkyl-DNA glycosylases. (D) TxnU4 can excise LLD-DNA and LldU1 can excise TXN-G-DNA
747 adducts. (E) Denaturing PAGE of 30-min reaction products of *E. coli* YcaQ and *Streptomyces* TxnU4
748 and LldU1 with 7mG-DNA. (F) Structure of nitrogen mustard (NM)-ICL produced by reaction of
749 mechlorethamine with guanines on opposite DNA strands. (E) Schematic of ICL unhooking reactions.
750 Strands are 5'-labeled with either FAM (green) or Cy5 (red). Unhooking by a glycosylase produces
751 single stands containing either monoadducts or AP-sites, the latter which are susceptible to nicking by
752 hydroxide. (H) Denaturing PAGE of NM-ICL unhooking reactions after treatment with buffer (mock) or
753 enzyme for 30 min, followed by alkaline hydrolysis. The percent of β/δ -elimination products is
754 quantified below the gel. Each image is an overlay of false-colored FAM (green) and Cy5 (red)
755 fluorescence scans of the gels, in which yellow depicts coincident red and green intensity.

756 **Figure 7. AP sites generated from TxnU4 action on TXNA-DNA are incised inefficiently by**
757 **EndoIV.** (A) Representative denaturing PAGE of EndoIV incision of AP-DNA generated from YcaQ
758 excision of 7mG or TxnU4 excision of TXNA-G. 50 nM 7mG- or TXNA-DNA was incubated with either
759 buffer or 5 nM YcaQ or TxnU4 for 2 hr at 25°C to generate AP sites, followed by addition of EndoIV at
760 a final concentration of 17 nM EndoIV and 40 nM DNA. EndoIV reactions were incubated at 37°C for
761 the specified times prior to denaturing and electrophoresis. (B) Quantification of the gel in panel A.
762 Data are mean \pm SD (n=3). 7mG data were fit to a one-phase exponential ($k = 2.8 \text{ min}^{-1}$, $R^2 = 0.9975$),
763 and TXNA data were fit to a biphasic exponential ($k_{\text{fast}} = 2.0 \text{ min}^{-1}$, $k_{\text{slow}} = 0.02 \text{ min}^{-1}$, $R^2 = 0.9755$).







A

AlkZ	29	VVGR [*] LCGVQAQVWSV [*] AEL
TxnU2	30	VVERLVALQGQE [*] PDA [*] PYV
TxnU4	35	IVRAMCGAHAQVL [*] SAAEL
LldU1	35	LVRALCGAHAQVL [*] SAAEL
LldU5	33	VVEHLVAMQGQE [*] PDA [*] PYV

