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Abstract Electrodeposition in the presence of a DC field is an unstable process leading to morphological patterns
on the cathode. The effect of a low-frequency and small amplitude AC forcing superimposed on a base DC field, �V ,
is investigated by perturbation theory and Floquet analysis. It is shown that we can forecast the stability behavior
of the AC problem from the nature of the graph of electrode base speed, U , versus �V . The key finding is this:
when this graph is always of negative curvature, the effect of AC forcing is stabilizing, whereas when the curvature
changes sign, the effect of AC forcing can be either destabilizing or stabilizing. The difference in the two types of
U–�V curves is characterized by a single dimensionless group that signals the change from diffusion-controlled
transport to transport controlled by reaction kinetics at the electrodes. The critical value of this parameter that marks
the transition is obtained analytically.
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1 Introduction

Electrodeposition of metal occurs when an electrical potential is imposed across two flat metal surfaces separated
by an ionic solution. In a typical electrodeposition process, the metal with the higher potential, the anode, is where
metallic oxidation is predominant, while the second metal which is at the lower potential, the cathode, is where
metallic reduction is predominant. The potential difference is imposed by applying a finite voltage between the
electrodes. The planar electrode surfaces that participate in the process can become wavy due to an interfacial
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Fig. 1 Physics of morphological instability associated with electrodes during electrodeposition. The heavy dashed curves are the
perturbations to electrode surfaces and the dotted line represents the extrapolation of the base potential profile into the solution. The
vector, n, is the unit normal pointing into the solution. In the base state, both planar electrodes move toward the left with a speed, U

instability [1–5]. Several studies on the evolution of the morphology of electrode surfaces and the factors that
determine the growth rate of wavy patterns have been carried out in the past [6–11].

The instability that occurs in electrodeposition, i.e., the growth of wavy patterns consisting of selected wavelengths
at the electrode surface is due to a trade-off between stabilizing and destabilizing effects. To see why this is so,
consider the schematic presented in Fig. 1. A specific example of copper electrodes separated by a dilute copper
sulfate electrolytic solution is taken. At the anode, which is at a higher potential, V A, copper metal is oxidized
releasing cupric ions which transport through the solution via a concentration gradient and a potential gradient.
At the cathode, which is at a lower potential, VC , the cupric ions undergo reduction to metallic copper. As the
figure depicts, any arbitrary displacement of the cathode surface into the solution increases the potential difference
between the solution and the electrode, φC −VC , thereby enhancing the charge transfer rate and reinforcing the rate
of metal deposition. This effect is destabilizing and is independent of the wavenumber of the displacement, denoted
k. The opposite phenomenon occurs at the anode. The destabilizing effects are countered by the stabilizing effect
offered by the curvature of the surface, which increases the energy of activation of the electrochemical reaction,
hence weakening the rate of metal deposition at a crest. This stabilizing effect of curvature, however, is k dependent
[11]. In other words, the wavelength selection in electrodeposition owes its origins to the surface energy of the
metal in the presence of the electrolytic solution. While the explanation given above refers to the crests depicted in
Fig. 1, a similar one can be given for the troughs, also depicted in the same figure [2,11]. It might be noted that the
physical explanation given above for electrodeposition instability has analogs in many other interfacial instability
problems such as solidification, evaporation, and viscous fingering [12–16].

Denoting the linear growth rate of a disturbance by σ , several theories have been developed for σ vs k2 curves
[6–9,11,17–19]. A typical σ vs k2 curve in electrodeposition initially increases, reaches a maximum, and then
decreases, crossing zero at a critical value of k2 called the neutral point. Beyond the neutral point, disturbances of
all wavenumbers are stable with their corresponding growth rates, σ , being negative. Past workers [8,11] developed
a two-electrode model for obtaining the σ vs k2 curves by expressing the governing equations in the domain, i.e.,
the electrolyte solution and the boundaries, i.e, the electrode surfaces, as a function of three input variables, vi z., the
average metal ion concentration, the spacing between the electrodes, and the input voltage difference applied across
the electrodes. One of the objectives of their studies was to see the effect on the neutral point of these input variables.
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Fig. 2 An overview of the theoretical analysis. The objective is to determine the effect of AC of a small amplitude, δ, in addition to a
base DC. This is carried out as a double perturbation series. A linear stability analysis is carried out in the form of series expansion in ε.
For both cases of steady flat electrodes (O(ε0)) and deflected electrodes O(ε), the problem is further expanded in regular perturbation
series in δ to determine the influence of AC

The models that were developed earlier pertained to the case of constant applied DC voltage [6–11]. Inspired by
the physics of stabilizing erstwhile unstable systems with periodic forcing, observed in a vast number of examples
[20–22], one is encouraged to investigate the effect of AC forcing on electrodeposition. Therefore, the goal of the
current work is to determine the effect of an addition of a small AC forcing, of the form δ cos(�t), to a constant
DC voltage on the σ vs k2 curve. Here, δ is the amplitude of the small AC forcing of frequency, �, and t denotes
time. In particular, a shift of the neutral point toward higher wavenumber indicates a destabilizing effect, while a
shift toward lower wavenumber indicates a stabilizing effect. Our analysis will show that the effect of the small AC
voltage on a base DC can first be seen only at O (

δ2
)

and that it arises from the time-independent component at
that order due to the effect of AC voltage appearing as cos2(�t). This in turn is 1/2 + 1/2 cos(2�t), i.e., a sum of
a pseudo-DC component and a time-dependent component.

An overview of our theoretical analysis is presented in Fig. 2. Unlike periodic forcing in hydrodynamic insta-
bility problems [20–22], this study will show that a small AC forcing on a DC problem may lead either to further
destabilization or stabilization, depending on the electrode spacing and the base-applied DC voltage, characterized
principally by two non-dimensional groups. The results of this study hint toward the practical possibility of either
completely suppressing the instability or obtaining well-defined patterns on the electrode surface.

We first present the nonlinear modeling equations in dimensionless form along with their physical interpretation
and the assumptions that are made in deriving the model. The validity and consequences of the assumptions that
are made to simplify the equations are also discussed. We then perform a linear stability analysis by perturbing the
variables about a steady-state solution, i.e., the base state, to obtain the growth rate, σ , of a displacement of a wave
number, k. In general, the problem with AC forcing leads to a set of complicated interdependent equations, wherein
an explicit relationship between σ and k2 is not obtained. The equations are, therefore, solved computationally
using Floquet theory [23,24].

2 The theoretical model

2.1 The nonlinear equations

The theoretical model presented hereunder is developed upon the lines presented by BuAli et al. [11]. The nonlinear
equations describing the concentration and potential profiles in the electrolyte solution, as well as the metal–solution
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interface of both electrodes in terms of scaled variables are presented. The analysis is conveniently performed when
the observer is situated on the moving frame of the erstwhile flat electrode. Figure 1 depicts the coordinate system
in a moving frame with the observer situated on the moving electrode in the base planar state. The change in frame
involves the base speed of the electrode surface in the laboratory frame. This base speed is scaled by its limiting
value, Ulim, where Ulim = 2cref [z1−z2]D1

z1z2cM L . The velocity of the perturbed electrode surface in the moving frame is,

however, scaled by D
L , where D is given by [z1−z2]D1D2

z1D1−z2D2
. Here, L is the electrode spacing, cref is the average metal

ion concentration, and D1 and D2 are the diffusion coefficients of the ionic species of valence z1 and z2, for example,
the cupric and sulfate ions in a copper sulfate solution. All lengths are scaled by the electrode spacing, L . This is
because the electrode spacing in our model is smaller than the maximum concentration boundary layer thickness,
given by D/Ulim. The ion concentration is scaled by cref , the electrical potential by RT

z1F
, and time by L2

D . The
symbols, T and F , stand for the absolute temperature and Faraday constant, respectively.

The equations in the electrolytic solution are developed from the transport equations, i.e., the conservation laws
of the two ionic species, while the equations at the metal-solution interfaces are developed from the mass balance
of the species at the interfaces using four standard assumptions [2]. These are local electrical neutrality in the
solution, diluteness of the ionic species, fixed volume of the electrolyte solution, and negligible convective effects.
These assumptions have been justified in several studies of electrodeposition [1,8,11]. With the above scalings, the
nonlinear equations become

∂c

∂t
= ∇2c and P∇2c + ∇ · (c∇φ) = 0, (1)

in the electrolyte solution, and

n · ∇c = −2n · (U + Cu) and n · c∇φ = −2Zn · (U + Cu), (2)

at the metal–solution interface at both electrodes, y = Y A(x, t), i.e., the anode, and y = 1 + YC (x, t), i.e., the
cathode (cf. Fig. 1). The parameter, P, is defined via

P = z1[D1 − D2]
z1D1 − z2D2

,

and takes the value of −3/17 for the copper–copper sulfate system.
Note that our model is taken to be 2D, i.e., in y and x , without any loss of generality. In the above, c denotes

the scaled value of z1c1 or −z2c2, where the local electroneutrality assumption has been invoked. The speed of the
electrode surfaces in the moving frame is given by u = u · n and the speed of the planar surfaces in the laboratory

frame is U . Thus, in Eq. (2), U = U j. As a result of the volume conservation assumption, we have
∫ 1+YC

Y A c dy = 1.
In addition to the above equations, there are two rate equations which describe the charge transfer taking place

at both electrode surfaces. These rate equations are termed the Butler–Volmer equations [1] and are

Bn · (U + Cu) = e[1−β][V A−φA−�ref−A2H A] − cAe−β[V A−φA−�ref−A2H A], (3)

at the anode, and

−Bn · (U + Cu) = e[1−β][VC−φC−�ref−A2HC ] − cCe−β[VC−φC−�ref−A2HC ], (4)

at the cathode. The superscripts A and C denote the evaluation of the variables at the anode and the cathode,
respectively, and �ref refers to the equilibrium potential difference of the planar electrode surface in contact with
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Table 1 Properties used in our computations for a pair of copper electrodes and copper-sulfate solution [11]

Property Symbol Value

Molar density of copper (kg mol/m3) cM 150

Surface energy density (J/m2) γ 1.5

Diffusivity of copper ions (m2/s) D1 7 × 10−10

Diffusivity of sulfate ions (m2/s) D2 10−9

Exchange current density (A/m2) iref 10 for cref = 0.1 kg mol/m3,

3.2 for cref = 0.01 kg mol/m3

Symmetry factor β 1/2

Faraday constant (C/gmol) F 96500

Absolute Temperature (K) T 298.15

Observe that D for this system is 8.24 × 10−10

the electrolytic solution [2]. Note that

n · u =
−∂YC

∂t[
1 +

(
∂YC

∂x

)2
]1/2 at the cathode

and

n · u =
∂Y A

∂t[
1 +

(
∂Y A

∂x

)2
]1/2 at the anode.

Further,

2HC =
−∂2YC

∂x2
[

1 +
(

∂YC

∂x

)2
]3/2 at the cathode

and

2H A =
∂2Y A

∂x2
[

1 +
(

∂Y A

∂x

)2
]3/2 at the anode.

Observe the scaled equations contain three non-dimensional groups, viz.:

A = γ

RTcM L
, B = 2Fcref D1[1 + Z]

irefL
and C =

D
L

2cref [z1−z2]D1
z1z2cM L

,

where Z = − z1
z2

, γ denotes the surface energy per unit area, iref denotes the exchange current density, obtained
from the Nernst equation and, therefore, depends on cref , and cM denotes the molar density of the metal electrode.
The group A is indicative of the surface energy effects, the product BC is the ratio of diffusive time scale to kinetic
time scale, and C is the ratio of diffusive speed to the limiting speed, Ulim. Their orders of magnitude for a typical
copper–copper sulfate solution, whose properties are given in Table 1, are presented in Table 2.

123



16 Page 6 of 18 A. Ganesh et al.

Table 2 Typical values for the dimensionless parameters

L (m) cref (kg mol/m3) A B C BC

10−4 0.1 4.03 × 10−5 27.02 −882.353 −23841.2

8.01 × 10−4 0.1 5.03 × 10−6 3.3723 −882.353 −2975.56

10−2 0.1 4.03 × 10−7 0.27 −882.353 −238.412

10−4 0.01 4.03 × 10−5 8.44 −8823.53 −74470.6

10−2 0.01 4.03 × 10−7 0.0844 −8823.53 −744.706

Fig. 3 a U vs V, B = 27. b σ vs k2, V = 14.2 and B = 27 for two models: (i) the full nonlinear model given by the solid curve and (ii)
the simplified model given by the dotted curves

Apart from the thermophysical properties associated with the materials, there are three control variables that
define the experiment, namely, the voltage applied across the metal electrodes, �V , the spacing between the metal
electrodes, L , and the mean concentration of the electrolyte solution, cref . The output variables of the nonlinear
model are the concentration and potential fields, as well as the surface morphology of the electrodes. More specif-
ically, the output variable from a linear stability analysis will be the relationship between the growth constant, σ ,
and the wavenumber, k. These output variables are functions of the dimensionless groups, A, B, and C.

Following the work of BuAli et al. [11], two approximations which are helpful in simplifying the forthcoming
analysis will be made. Neither approximation is essential, but both taken together greatly simplify the DC problem
and allow one to obtain an analytical formula for the growth rate of the instability [11]. These approximations are (i)
elimination of domain dynamics in Eq. (1) and (ii) replacement of the concentration field in the term ∇ ·(c∇φ) in Eq.
(1) and in the corresponding term of Eq. (2) by the mean electrolyte concentration. The first of these approximations is
justified by BuAli et al. by observing that the instability is principally driven by the interfacial dynamics expressed by
the Butler–Volmer equations, i.e., Eqs. (3) and (4). We continue to enforce this approximation under the assumption
that the scaled frequency of forcing in the current study is low. In other words, � ≡ ωL2/D < 1, where ω is the
dimensional forcing frequency. The second approximation is similar to an approach taken by Chandrasekhar [25] in
the hydrodynamic instability of Taylor–Couette flows in the thin gap limit. In the current study, it is simply a heuristic
approximation and justified by BuAli et al. [11] on the basis that it does not significantly change either the base or
the stability results of the complete electrodeposition problem. We proceed on the basis of these approximations
so as to retain algebraic simplicity without sacrificing essential physics. Like BuAli et al., we show that the model
with and without these two additional approximations provide results which are close to one another. Evidence to
this effect is graphically represented for typical input variables in a figure in a subsequent Sect. (cf. Fig. 3). The
main equations for the concentration and potential fields for the model retaining these approximations are now:
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∇2c = 0 and ∇2φ = 0, (5)

in the domain and

n · ∇c = −2n · (U + Cu) and n · ∇φ = −2Zn · (U + Cu), (6)

at the boundaries, along with the Butler–Volmer equations, i.e., Eqs. (3) and (4).

2.2 Linear stability analysis

We present in brief the analysis carried out by BuAli et al. as this forms the basis for the current work. A solution
of the nonlinear model is the base state, wherein the planar electrodes move at a constant speed with respect to the
fixed laboratory frame. Thereafter, denoting the variables associated with the base state with an overbar and the
perturbed variables with a prime, we expand the variables as

c = c + εc′eikx , φ = φ + εφ′eikx , and Y ( j) = Y
( j) + εY ′( j)eikx , (7)

where j : A,C and where k is the wavenumber of the perturbation of infinitesimal amplitude, ε.

2.2.1 Steady base solution at O (
ε0

)

Observing that the electrode surfaces are planar in the base state, the ion concentration and potential in the electrolyte
then satisfy the following equations:

d2c

dy2 = 0 and
d2φ

dy2 = 0 in the domain 0 < y < 1, (8)

and

dc

dy
= −2U and

dφ

dy
= −2ZU at y = 0 and y = 1. (9)

Solving the above equations, we obtain

c = −2Uy + cA and φ
C − φ

A = −2ZU. (10)

Here, cA denotes the base concentration at the anode (y = 0). It can be determined in terms ofU from the definition
of average concentration, i.e.,

∫ 1
0 cdy = 1, to obtain cA = 1 + U . This then yields the base concentration at the

cathode (y = 1), denoted by cC , as cC = 1 −U .
The unknown, U , and electrical potential can be determined from the two Butler–Volmer equations, one at each

electrode. Thus, at the anode (y = 0), we have

BU = e
[1−β]

[
V A−φ

A−�ref

]

− cAe
−β

[
V A−φ

A−�ref

]

, (11)

and at cathode (y = 1), we have

−BU = e
[1−β]

[
VC−φ

C−�ref

]

− cCe
−β

[
VC−φ

C−�ref

]

. (12)
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Combining Eq. (10) and the Butler–Volmer equations, an implicit equation for U is obtained as

−BU [ f (U )]β − f (U ) + 1 −U = 0 (13)

where f (U ) = (1−U )+(1+U )e−β(V−2ZU )

1+e(1−β)(V−2ZU ) , where V is used as a short form for �V .

2.2.2 Perturbed state solution at O(ε)

The domain equations at the first-order perturbation are

∂2c′

∂y2 − k2c′ = 0 and
∂2φ′

∂y2 − k2φ′ = 0, (14)

and at the two-electrode surfaces, we have

∂c′

∂y
= −2C

dY ′

dt
and

∂φ′

∂y
= −2ZC

dY ′

dt
. (15)

Defining c∗A and c∗C as

c∗A = [1 − β]e[V A−φ
A−�ref ] + βcA, (16a)

and

c∗C = [1 − β]e[VC−φ
C−�ref ] + βcC , (16b)

we obtain the Butler–Volmer equations at the anode and cathode as

[
c∗A − cA

(1 − β)U

]

C
dY ′A

dt
+

[
c∗Aφ′A + c′A]

= −Y ′A [
−2ZUc∗A − 2U

]
+ c∗AAk2Y ′A, (17a)

and

[
c∗C − cC

(1 − β)U

]

C
dY ′C

dt
+

[
c∗Cφ′C + c′C]

= −Y ′C [
−2ZUc∗C − 2U

]
− c∗CAk2Y ′C . (17b)

Solving for c′ and φ′ from Eqs. (14) and (15) and evaluating them at the anode and the cathode, we get

c′A = 2C

k sinh k

[
dY ′A

dt
cosh k − dY ′C

dt

]
, (18a)

c′C = 2C

k sinh k

[
dY ′A

dt
− dY ′C

dt
cosh k

]
, (18b)

φ′A = 2ZC

k sinh k

[
dY ′A

dt
cosh k − dY ′C

dt

]
, (19a)
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and

φ′C = 2ZC

k sinh k

[
dY ′A

dt
− dY ′C

dt
cosh k

]
, (19b)

whence, further substitution into Eqs. (17a) and (17b), we get

[
c∗A − cA

(1 − β)U

]

C
dY ′A

dt
+ 2C

k sinh k

[
dY ′A

dt
cosh k − dY ′C

dt

] [
1 + Zc∗A]

+ Y ′A [
−2U − 2ZUc∗A − c∗AAk2

]
= 0, (20a)

and

[
c∗C − cC

(1 − β)U

]

C
dY ′C

dt
+ 2C

k sinh k

[
dY ′A

dt
− dY ′C

dt
cosh k

] [
1 + Zc∗C]

+ Y ′C [
−2U − 2ZUc∗C + c∗CAk2

]
= 0. (20b)

Equations (20a) and (20b) are at the heart of the problem. They are, in principal, two equations for the perturbed
electrode deviations, Y ′A and Y ′C . In the typical instability problem, where we only have DC forcing, the perturbed
variables, c′, φ′, and Y ′ are re-expanded as c′eσ t , φ′eσ t , etc., where σ is termed the growth constant and the primed
notation is retained for simplicity. Introducing these re-expanded variables into the above and, in particular, into Eqs.
(20a) and (20b) yield two algebraic equations that constitute an eigenvalue problem with {Y ′A,Y ′C } as the eigenvec-
tor and σ as the eigenvalue. These equations, obtained atO(ε), are in the form A� = σ B �, where A and B are 2×2
matrices. This yields a quadratic equation for σ , the eigenvalue, with one of the roots being negative and the other root
being positive for some values of k2 and negative beyond a critical value of k2. The eigenvector, � = {Y ′A,Y ′C } will
reveal that Y ′A/Y ′C is typically very small, indicating insignificant morphological growth at the anode compared to
the cathode, in agreement with the physical argument proposed in the introduction. In Fig. 3, typical plots ofU vs V
from Eq. (13) and σ vs k2 from the solutions of (20a) and (20b), based on our principal approximations, are given.
The figure also depicts the corresponding curves from the full model without these approximations, repeating the
work given by BuAli et al. As is clear, the simplified model provides a reasonable approximation to the full model.
Observe in particular, that the wavelength corresponding to the maximum growth rate remains virtually unchanged,
while the neutral point has shifted to lower wavenumber indicating that the approximation leads to a slightly lower
range of unstable wavenumbers. The closeness between these two models encourages us to continue on the basis of
Eqs. (3), (4), (5), and (6). To this end, we consider the superposition of a small voltage input on a base DC voltage.

3 Small-amplitude AC voltage superimposed on a base DC voltage

Let us now assume that an additional AC voltage of very small amplitude, δ, is imposed on the base DC voltage,
i.e., V A = V A

0 + δV A
1 and VC = VC

0 + δVC
1 , where V A

1 = cos �t and VC
1 = 0. We will see later that the case

of equivalent root mean square (RMS) DC voltage, obtained by setting V A
1 = 1/

√
2 and VC

1 = 0, is of special
significance, when comparing the effect of AC input with the companion DC problem.

In order to determine the effect of the additional small amplitude voltage on the base DC problem, we expand the
base state variables (denoted generically by ζ ), the perturbed state variables (denoted by ζ ′), as well as the growth
constant, σ , in series of δ as follows:
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ζ = ζ 0 + δ ζ 1 + δ2

2
ζ 2 + · · · , ζ ′ = ζ ′

0 + δζ ′
1 + δ2

2
ζ

′
2 + · · · and σ = σ0 + δ σ1 + δ2

2
σ2 + · · · (21)

As the additional voltage is of a time-periodic AC form, further expansions using Floquet theory [23,24] are done
for the base state and perturbed state variables, as below:

ζ = ζ 0 + δ

N∑

n=−N

ζ 1nein�t + δ2

2

N∑

n=−N

ζ 2nein�t , (22a)

ζ ′ = ζ ′
0 + δ

N∑

n=−N

ζ ′
1nein�t + δ2

2

N∑

n=−N

ζ ′
2nein�t , (22b)

where N determines the cut-off frequency in the Fourier series expansion. These expansions are then substituted
into the base state equations, at O (

ε0
)
, and perturbed state equations, at O(ε). Collecting terms at each order of δ,

we obtain corrections to the base state solution, as well as the perturbed state solution. We, thus, get at O (
δ0

)
:

A0 � ′
0 − σ0 B0 � ′

0 = 0, (23a)

at O(δ):

A0 � ′
1 − σ0 B0 � ′

1 = σ0 B1 � ′
0 + σ1 B0 � ′

0 − A1 � ′
0, (23b)

and at O (
δ2/2

)
:

A0 � ′
2 − σ0 B0 � ′

2 = σ0 B2 � ′
0 + 2σ0 B1 � ′

1 + 2σ1 B1 � ′
0 + 2σ1 B0 � ′

1

+ σ2 B0 � ′
0 − 2A1 � ′

1 − A2 � ′
0. (23c)

In the above, the unknowns are σ0 and � ′
0 at O (

δ0
)
, σ1 and � ′

1 at O(δ) and σ2 and � ′
2 at O(δ2/2). The vectors,

� ′
0, � ′

1 and � ′
2 take different forms. They are given by

�
′
0 =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

Y
′A
01

Y
′A
02
...

Y
′A
0n

Y
′C
01

Y
′C
02
...

Y
′C
0n

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

, �
′
1 =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

Y
′A
11

Y
′A
12
...

Y
′A
1n

Y
′C
11

Y
′C
12
...

Y
′C
1n

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

, and �
′
2 =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

Y
′A
21

Y
′A
22
...

Y
′A
2n

Y
′C
21

Y
′C
22
...

Y
′C
2n

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

. (24)

The matrices, Ai , Bi above contain involved algebraic expressions and are given in the supplementary material to
this manuscript. The perturbations to the growth constant at various order, σ1 and σ2, are the key unknowns that we
seek from the above equations. They are obtained by solvability conditions by observing that the right hand sides
of Eqs. (23b) and (23c) must reside in the null space of the adjoint of Eq. (23a). The solvability conditions require
numerical projection of the right hand side vectors on to the null space. These were done using Mathematica®

v.12.0 and for a representative electrodeposition system whose properties are given in Table 1 and in dimensionless
form in Table 2. We now turn to a discussion of results from these calculations.
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4 Results

An important observation is that σ1 becomes zero. This comes as no surprise as the mean of an AC input is zero and
periodic inputs are symmetric about the mean. Another important observation is that our results at every order has
been computationally seen to be independent of �. We attribute this observation to the assumption that � < 1. This
in turn implies that the domain dynamics are slaved to the interface dynamics and are in phase with the periodicity
of the interface motion. A third observation is that the second order correction the base speed, U2 vs. V0 is key to
the behavior of the second order correction to growth rate, σ2. This is explained as follows. At each order of the
calculation, of interest are the time-averaged perturbations to the base speed, i.e., U1 and U2. The time-averaged
U1 is zero for the AC perturbation. Figure 4a depicts the base U0 vs V0 and Fig. 4b depicts the corresponding
second order correction U2 vs V0, for three different values of B. These values are chosen for typical electrode
spacings given in Table 2. When theU0–V0 curve is of negative curvature (cf. dashed curve in Fig. 4a), U2 is strictly
negative (cf. dashed curves in Fig. 4b), whereas, when theU0–V0 curve has an inflection point indicating a change in
curvature (cf. solid curve in Fig. 4a),U2 correspondingly changes sign (cf. solid curves in Fig. 4b). The critical value
of B, which just marks the appearance of an inflection point on the U0–V0 curve is given by Bc = 3.3723 (dotted
curve). This critical value, Bc, can be obtained from Eq. ((13)) by setting the slope of the curvature of U0–V0 curve

at origin (U = V = 0) to zero, i.e., ∂3U0
∂V 3

0
(V0 = 0) = 0. Differentiating Eq. (13) once with respect to V , we obtain

∂U0

∂V0
(V0 = 0) = 1

(2B + 4)
. (25)

In obtaining Eq. (25), we have used β = 1/2 and Z = 1, as given in Table 1. Differentiating Eq. (13) twice and
making use of (25), we obtain

∂2U0

∂V 2
0

(V0 = 0) = 0, (26)

independent of B. This is also evident from Fig. 4b, where for all choices of B, it is seen that U2(V = 0) = 0.

Finally, differentiating (13) thrice, substituting (25) and (26), and setting ∂3U0
∂V 3

0
(V0 = 0) = 0, we obtain the following

cubic equation for Bc,

B3
c − 9Bc − 8 = 0. (27)

Solving the above equation for the only positive physically meaningful root, we get Bc = 3.3723.
The change in curvature in U0–V0 curve as a function of B demands an explanation. Low values of B typically

occur at large electrode spacing and indicate diffusion–limited transport. Ions released at the anode, on account of
the applied voltage, diffuse through the solution without charge accumulation at the cathode for all values of voltage
input until the voltage becomes large enough that a limiting current is achieved. Contrast this with the case of small
electrode spacing, i.e., large B. Here, diffusional transport is not limiting and small voltage input results in charge
accumulation until the voltage input is made strong enough that diffusional transport and kinetic conversion become
comparable. Further increase in the applied voltage leads to the total current and electrode speed approaching their
limiting values. This dual effect of applied voltage on diffusional transport and reaction kinetics, which is seen at
large B, is the principal cause for the presence of an inflection point. It might be noted that the topology of the
U0–V0 curves as a function of the parameter B is independent of the approximations made in the model from which
Eq. (13) arises (cf. Fig. 3a).

Note that at every point on the base curve, Fig. 4a, σ0 vs k2 and likewise σ2 vs k2 may be plotted. In particular,
four markers are placed on the solid curve, the curve of changing curvature. These four markers have been chosen to
exemplify four different characteristics of the σ2 vs k2 curves displayed in Fig. 5. Observe that in the first pair, i.e.,
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Fig. 4 a U0 as a function of the base voltage, V0. b Time-averaged component of U2 as a function of the base voltage, V0; solid curve:
B = 27, dotted: Bc = 3.3723, dashed curve: B = 0.27. U2 is always negative for the dashed curve, while changes sign at V0 ∼ 14 for
the solid curve. The critical value of Bc = 3.3723 marks the transition with zero slope for U2 at V0 = 0. The markers on the B = 27
curve correspond to the particular cases of interest discussed in Fig. 5

Fig. 5a and b, drawn for the lowest marker of Fig. 4a, denoted by a circle (◦), the σ2 vs k2 curve follows the same
behavior as the σ0 vs k2 curve. Contrast that with the second marker, denoted by a star (�), located slightly above
the inflection point. Here, the σ2 vs k2 curve given by Fig. 5d is a positive correction on the σ0 vs k2 curve shown
in Fig. 5c. In both cases considered above, it should be noted that the erstwhile unstable wavenumbers are further
destabilized. The last two markers denoted by (�) and (�) in Fig. 4a have their σ2 vs k2 curves displayed in Fig. 5f
and h respectively. They both show an initial negative correction which then changes sign. The value of the voltage,
where the σ2 vs k2 curve moves from the positive half plane to the negative half plane is not precisely where U2

changes sign in Fig. 4b. The location where U2 changes sign precedes the location where the σ2 vs k2 curve moves
from being wholly positive to negative. This is important because a negative value of σ2 implies stabilization of
an otherwise unstable morphology of the electrodes. It is clear from these exemplifying calculations that the AC
perturbation can either have a stabilizing or destabilizing effect, depending upon the base DC voltage and the value
of B. An observation made from Fig. 5e and f is that the long-wave perturbations can be selectively stabilized by
AC forcing, thereby possibly leading either to well-defined patterns or regularized dendritic patterns. Such regu-
larization of dendritic side-branching by periodic forcing has been observed experimentally and numerically in the
case of solidification [26]. Further, a comparison of Fig. 5g and h show the stabilizing effect of AC perturbation
for all erstwhile unstable wavenumbers, suggesting the hypothesis that large amplitude AC forcing can completely
quench the instability. A formal proof for this hypothesis, however, is beyond the scope of the current work. It must
be noted that the correction to the growth constant is sizeable for the system exemplified in this study in panels 5g
and 5h. However, calculations reveal that the correction may be amplified for systems with low magnitudes of C.
In the case of small amplitude AC perturbations, we aim to understand the root cause of the behavior of σ2 vs k2,
the leading order correction to the growth constant, and it is to this that we proceed next.
Physical insights into the AC problem from the companion DC problem

Ordinarily, the effect of a DC perturbation on a base DC voltage can be obtained by merely recalculating the
DC problem with an increased input. However, to see the effect of this increased DC applied voltage, we make the
same algebraic moves as we did in the AC case, and compare our results with the corresponding AC problem. The
calculations from such an analysis are revealed in Fig. 6. Figure 6a is a comparison of the time-averaged value of
U2 in the AC case with the corresponding value of U2 in the RMS DC case. This is indicative that the predictions
of the one case can be made entirely from the other for all even orders of δ. Figure 6b reveals the same result, but
in this case for σ2 vs k2. This relationship between the AC forcing and the DC forcing carries through for all values
of applied voltage and all topologies of σ2 vs k2 given in Fig. 5. Also from Fig. 5, it is evident that the shift in σ2 vs
k2 curves from positive half plane to negative half plane exhibits its signature at small k. Thus, an investigation of
the limit of small k is expected to shed light into the aforementioned transition in σ2 vs k2 curves. Because the DC
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Fig. 5 The effect of small AC voltage on the linear growth rate plotted for different values of imposed base DC voltage. Panels (a, c,
e, g) depict the corresponding σ0 as function of k2 and panels (b, d, f, h) depict σ2 as function of k2; B = 27
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Fig. 6 a Comparison of the time-averaged component of U2 as function of the base voltage obtained for AC problem and the corre-
sponding RMS DC case; B = 27. b Comparison of the σ2 vs k2 curve obtained for AC problem and the corresponding RMS DC case;
V0 = 1,B = 27

problem is a forerunner at every even order of the AC problem, it is instructive to investigate the limiting case of
small k in the DC problem in order to gain insight into the corresponding AC problem. An additional assumption
of small U is required to render the problem amenable to analytical treatment.

4.1 The limiting case of small k and U

An analytical expression for σ in terms of the base variable U may be used to obtain an estimate of the sign of σ2

in the limit of small k. We further assume that the base electrode speed, U , is also small.
Notice that for a pure DC problem σ can be calculated from the quadratic expression,

(1 + M)σ 2 − (σA + σC )σ + σAσC = 0, (28)

where

M =
4
[
1+Zc∗C ][

1+Zc∗A]

k2sinh2 k(
c∗A−cA

(1−β)U + 2 cosh k
[
1+Zc∗A]

k sinh k

)(
c∗C−cC

(1−β)U − 2 cosh k
[
1+Zc∗C ]

k sinh k

) ,

CσA = − [−2U − 2ZUc∗A − Ak2c∗A]

(
c∗A−cA

(1−β)U + 2 cosh k
[
1+Zc∗A]

k sinh k

) ,

and

CσC = − [−2U − 2ZUc∗C + Ak2c∗C]

(
c∗C−cC

(1−β)U − 2 cosh k
[
1+Zc∗C ]

k sinh k

) .

To see how we arrive at Eq. (28), substitute Y
′C = 0 in Eq. (20a), solve for σ and name it σA. Likewise, solve Eq.

(20b) for σ upon inserting Y
′A = 0, and call this root σC . Equations (20a) and (20b) are a quadratic equation for σ ,

which upon algebraic manipulation can be conveniently represented in terms of σA and σC . This results in Eq. (28),
where it might be observed that the variables, σA, σC and M are known explicitly in terms of k and U , which, in
turn, derives from Eq. (13). The two roots of σ from Eq. (28) are precisely the dashed curves displayed in Fig. 3b.
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Recall that cA and cC are 1 +U and 1 −U respectively and c∗A and c∗C are given by Eqs. (16a) and (16b). They
can be expanded for smallU holding B fixed. These expansions allow us to obtain limiting forms for M , σA and σC ,
whence we arrive at simple expressions for the roots of Eq. (28). Thereafter, the base speed, U , is expanded about
δ = 0 with the objective of finding the first and second order corrections to σ , i.e., σ1 and σ2. We now proceed to
give the main results.

4.1.1 Expansions in terms of small U

In the limit of small U , the variables, σA, σC and (1 + M), take the limiting forms:

σA = Uk2

C

[
1 − k2

(
1

3
+ F1

)]
, (29a)

σC = −Uk2

C

[
1 − k2

(
1

3
− F2

)]
, (29b)

(1 + M) = k2
[

1 + F1 − F2 − k2
{

2

3
+ 4

3
(F1 − F2) + F1F2 + (F1 − F2)

2
}]

, (29c)

where

F1 =
c∗A−cA

(1−β)U

2
[
1 + Zc∗A] = B

4

[
1 +U

B
4

−U 2
(

1

2
+ B

4
+ B2

16

)
+U 3

(
1

16
+ 3B

16
+ B2

16
− 3B3

64

)]
,

and

F2 =
c∗C−cC

(1−β)U

2
[
1 + Zc∗C] = B

4

[
−1 +U

B
4

+U 2
(

1

2
+ B

4
+ B2

16

)
+U 3

(
1

16
+ 3B

16
+ B2

16
− 3B3

64

)]
.

It is observed that σA + σC ≈ 0, whence σ 2 = −σAσC
1+M is a consequence of Eq. (28). Taking only the leading order

term for the dominant σ up to O(U 3), we obtain

σ = − Uk

C
(

1 + B
2

)1/2

[
1 + U 2

2 + B
( B

16
+ B2

8
+ B3

32

)]
. (30)

Equation (30) is not only an expression up to O (
U 3

)
, it also corrects the low k limit expression obtained by BuAli

et al. [11]. Note in the above that C is a negative parameter, so the dominant σ must be positive. The base speed,
U , may be expanded in terms of δ leading to corrections to the dominant σ , given by Eq. (30). We therefore have
U = U0 + δU1 + δ2

2 U2, whence at O (
δ0

)
, we get

σ0 = − U0k

C
(

1 + B
2

)1/2

[

1 + U 2
0

2 + B
( B

16
+ B2

8
+ B3

32

)]

. (31a)

At O (δ), we get

σ1 = −U1k
[
64 + 32B + 6BU 2

0 + 12B2U 2
0 + 3B3U 2

0

]

16C
√

2(2 + B)3/2
, (31b)
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Fig. 7 Comparison of the linear growth rate predicted by our simplified analytical expression in the limit of low U and k with the full
solution. The markers denote the reduced expression while the curve denotes the full solution. a σ0 as function of k2, b σ2 as function
of k2; V0 = 1,B = 0.27, resulting in U0 = 0.218

and at O (
δ2/2

)
, we get

σ2 = −k
[
12BU0U 2

1 + 24B2U0U 2
1 + 6B3U0U 2

1 + 64U2 + 32BU2 + 6BU 2
0U2 + 12B2U 2

0U2
]

16C
√

2(2 + B)3/2
︸ ︷︷ ︸

Term I

− k
[
3B3U 2

0U2
]

16C
√

2(2 + B)3/2
︸ ︷︷ ︸

Term II

. (31c)

The sign of σ2 depends on the magnitude of B. In the limit of small B, Eq. (30) reduces to

σ = −Uk

C
. (32)

Correspondingly, Eq. (31c) reduces to

σ2 = −U2k

C
. (33)

In this case, U2 is negative (cf. the dashed curve in Fig. 4b), thus σ2 is also negative as evident from Eq. (33) and
depicted in Fig. 7b. Now, for the case of large B, σ2 has to be determined using Eq. (31c). For this case, we know
that U2 is positive in the low U limit, as seen from solid curve in Fig. 4b. Thus, the entirety of Terms I and II are
strictly positive, which makes σ2 positive (cf. Fig. 8b). The change in sign in σ2 in the low U limit as B increases
in magnitude is the essence of the results portrayed in Fig. 4b and in the inferences made therefrom.

5 Summary

This study shows that the effect of AC perturbation on the morphological instability of electrodes during electrode-
position driven by a base DC field, V , hinges on the behavior of a pure DC problem itself. This is because the time-
averaged response of a small AC perturbation of amplitude, δ, on a base DC problem is first seen atO (

δ2
)

and arises
from the RMS component. Our study specifically shows that the behavior of the base speed, U , with respect to the
applied voltage, V , forecasts the conclusions that we arrive at. The nature of this behavior is principally of two types.
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Fig. 8 Comparison of the linear growth rate predicted by our simplified analytical expression in the limit of low U and k with the full
solution. The markers denote the reduced expression while the curve denotes the full solution. a σ0 as function of k2, b σ2 as function
of k2; V0 = 1,B = 27 resulting in U0 = 0.017

When B is small, indicating diffusion-limited transport or large electrode spacing, the curvature of the U–V graph
is entirely negative, whereas for large B, it is initially positive, advances through an inflection point, and becomes
negative. The critical value of B that marks the transition is analytically obtained as Bc = 3.3723. The changing
curvature for large B signals a change in the relative stabilization as the voltage, V , increases. For small applied
voltages, the leading order correction to the growth constant, σ , is positive and becomes negative for large applied
voltages following the trend of curvature displayed in the U–V graph. These results are portrayed in this study via
calculations and asymptotic expressions obtained in the limit of small wavenumber and small electrode base speed.
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