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Abstract

Understanding the spread of false or dangerous beliefs—often called misinformation or dis-

information—through a population has never seemed so urgent. Network science research-

ers have often taken a page from epidemiologists, and modeled the spread of false beliefs

as similar to how a disease spreads through a social network. However, absent from those

disease-inspired models is an internal model of an individual’s set of current beliefs, where

cognitive science has increasingly documented how the interaction between mental models

and incoming messages seems to be crucially important for their adoption or rejection.

Some computational social science modelers analyze agent-based models where individu-

als do have simulated cognition, but they often lack the strengths of network science,

namely in empirically-driven network structures. We introduce a cognitive cascade model

that combines a network science belief cascade approach with an internal cognitive model

of the individual agents as in opinion diffusion models as a public opinion diffusion (POD)

model, adding media institutions as agents which begin opinion cascades. We show that the

model, even with a very simplistic belief function to capture cognitive effects cited in disinfor-

mation study (dissonance and exposure), adds expressive power over existing cascade

models. We conduct an analysis of the cognitive cascade model with our simple cognitive

function across various graph topologies and institutional messaging patterns. We argue

from our results that population-level aggregate outcomes of the model qualitatively match

what has been reported in COVID-related public opinion polls, and that the model dynamics

lend insights as to how to address the spread of problematic beliefs. The overall model sets

up a framework with which social science misinformation researchers and computational

opinion diffusion modelers can join forces to understand, and hopefully learn how to best

counter, the spread of disinformation and “alternative facts.”

Introduction

Understanding the spread of false or dangerous beliefs through a population has never seemed

so urgent. In our modern, highly networked world, societies have been grappling with wide-

spread belief in conspiracies [1–5], increased political polarization [6–9], and distrust in
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scientific findings [10, 11]. Some of the most prominent in our times are conspiracies sur-

rounding COVID-19, and starkly polarized distributions of beliefs regarding scientifically-

motivated safety measures.

Throughout the course of the pandemic, much effort has been spent trying to understand

why, in the face of a global pandemic, so many believed COVID-19 was a hoax, targeted politi-

cal attack, caused by 5G cell towers, or that it was simply not dangerous and did not justify

wearing a protective mask [1, 3–5, 10, 12–14]. Understanding the spread of misinformation

requires a way of modeling and understanding both how this misinformation spreads in a

population, and also why some individuals are more or less vulnerable.

This paper applies a class of models which capture the spread of ideas, innovations, culture,

and more [15] to the spread of misinformation—including components from both social net-

work science and cognitive science. While social network science and cognitive science have

both sought to contribute to the understanding of the mechanisms that govern individuals’

acquisition and updates of beliefs, each has traditionally focused on different pieces of this puz-

zle. Social network science has provided interesting insights by applying techniques originally

developed to model the spread of disease to modeling the spread of misinformation [2, 16–19].

Modern psychological and cognitive science has focused on the relationship of suggested

beliefs to an individual’s current set of beliefs, and how this influences an individual’s likeli-

hood of updating their beliefs in the face of confirmatory or contradictory information [3, 13,

14, 20–23]. We call our models cognitive cascade models—those that adopt a cascading net-

work-based diffusion model from social network science [2, 24, 25], but include a more indi-

vidually differentiated model of belief update and adoption that is informed by cognitive

science as in cognitive contagion models [26–28]. We show that even very simple versions of

cognitive cascades result in interesting network dynamics that seem to represent some of the

real-world phenomena that were seen in pandemic misinformation.

Misinformation beliefs, once adopted, are so difficult to extricate that over the course of

2020, after forming an initial opinion, the proportion of those who did not believe in the virus

hardly changed [29]. In the U.S., reports circulated of nurses in states with few regulations like

South Dakota describing patients who would be dying of COVID and refusing to believe they

had it. One nurse was quoted saying, “They tell you there must be another reason they are

sick. They call you names and ask why you have to wear all that ‘stuff’ because they don’t have

COVID and it’s not real” [30].

Modern psychological and cognitive science have made a substantive contribution by mak-

ing a clear distinction between beliefs that update in accordance to the evidence one receives,

and others which persist despite clear, logical contrary evidence [22, 31, 32]. This is the distinc-

tion that appears key to understanding mechanisms governing belief in misinformation. In

fact, there is evidence that those who engage in manufacturing misinformation exploit this

research to make their messages more potent. Wiley [33] has recently revealed that some

polarized, partisan beliefs and conspiracies have been designed to persist despite contrary

evidence.

While the study of individual beliefs has recently been advancing, attempting to determine

how beliefs, true or otherwise, spread through an entire population adds yet another layer of

complexity. Sociologists and political theorists have long studied public opinion: the theoretical

mechanisms by which populations come to certain beliefs, which are notoriously difficult to

verify empirically [34–36]. However, with the advent of social network research, scholars are

moving toward that goal, empirically studying how information cascades through groups [2,

24, 37–39], leading to the wide-scale adoption of certain beliefs [40], and motivating theoreti-

cal models of networked opinion dynamics [25, 41–45] based off of classic sociological theories

[46–48]. Other lines of research develop algorithms on top of those networked opinion models
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which optimally manipulate network-wide measures like polarization [49], opinion difference

[50], or susceptibility to persuasion [51]. This work is complemented by media studies which

theorize about and test mechanisms behind polarization and selective exposure stemming

from dissonance pressures [52–57], as well as the role of large media institutions in shaping

public opinion [1, 5, 58, 59]. Our work seeks to take one further step: understanding how an

integrated model combining individual cognitive belief models with social network and media

dynamics might be employed to study how public opinion shifts.

Our work applies a class of Agent-Based Models (ABMs), called Agent Based Social Systems
(ABSS) [60, 61]—more specifically, social contagion models [25]—to the study of network cas-

cades, which measure the number people a given story spreads to via sharing [2]. ABM is a

powerful modeling paradigm that has both successes and future potential in a variety of areas,

including animal behavior [46, 62–65], social sciences [66, 67], and, notably, opinion dynamics

[25, 44, 68, 69].

By combining social contagion paradigms with some of the cognitive literature regarding

misinformation, we propose a cognitive cascade model that captures the spread of identity-

related beliefs. This model is tuned to capture, on the individual agent-level, two major effects

cited in misinformation literature: dissonance [20], and exposure [10, 70], capturing what we

call defensive cognitive contagion (DCC).

We then situate agents following different classes of contagion rules in a cascade model that

includes institutional agents who begin the cascades by injecting messages into the network.

Here, we define cascades as the spread of messages via sharing through the population, initi-

ated by institutional agents. Where we say contagion, we mean the spread of a belief between

two agents, as opposed to cascades, which describes multiple contagion events. We call this

our public opinion diffusion (POD) model. This model allows media companies, who have

played crucial roles in COVID misinformation [1, 5, 11], to be included in the study of opinion

dynamics.

Through a simple cognitive function defined at the level of individual agents, our cognitive

cascade model appears more expressive and ecologically valid than both cascade models that

follow simple or complex contagion rules, and contagion models that do not simulate institu-

tion-driven cascades. Moreover, the motivations behind the DCC function demonstrate that

simple and complex contagion rules cannot capture identity-related belief spread between

individuals. Given findings from COVID misinformation studies, results from our POD

model with DCC appear to align with population-level results reported by U.S. opinion polls

—namely that beliefs about the virus remained starkly partisan [6–9], and hardly changed

throughout 2020 [29]. This article is grounded in our experience with U.S. patterns of informa-

tion, and the cases we cite are from the U.S. However, we note that misinformation has been

on the rise worldwide, and in fact, may cross national boundaries as information is accessed

on the Internet [71]. However, commonalities and differences and the extent that models for

the US media ecosystem may generalize to different sociopolitical structures, or how models

should be contextualized for different environments, will be left as a subject of future research.

These preliminary results, which are in alignment with other similar emerging studies [72],

hint at possible interventions and offer plenty of opportunities for future studies to be con-

ducted using these methods.

Background

Social contagion

ABMs have been widely used to model social contagion effects—those which describe the pro-

cess of ideas or beliefs spreading through a population [24]. Such models attempt to explain
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possible processes underlying the spread of innovations [15, 73, 74], culture and ideology [27,

28, 72, 75–77], or unpopular norms [68]. These models are extensions of earlier work in sociol-

ogy that theorized how social network structure and simple decisions, such as the threshold

effect [47], may affect group-level behavior. Through more abundantly available computa-

tional power, these ideas can now be simulated and their implications can be analyzed.

There are two popular types of social contagion models used in ABMs: simple—also called

independent cascade—and complex contagion—which has a proportional and absolute varia-

tion. Both model the spread of behaviors, norms, or ideas through a population. For simplicity,

we will refer to behaviors or norms as “beliefs” going forward, as it is plausible to argue that

both are generated by beliefs that an individual holds, explicit or otherwise.

Simple contagion. The simple contagion model assumes that behaviors or norms can

spread in a manner akin to a disease [24, 37, 38, 44]. Simply being connected to an individual

who holds a belief engenders a probability, p, that the belief may spread to you. This can even

be true given different belief strengths or polarities for the same proposition. More formally,

given two nodes in the model u and v, with each having respective beliefs bu and bv at time t,
when node u is playing out its decision process (i.e. u is the focal node and v is the node expos-

ing u to a belief), the probability of adopting belief bv can be modeled as:

Pðbu;ðtþ1Þ ¼ bv j bu;tÞ ¼ p: ð1Þ

As opposed to many studies in innovation diffusion [15], we choose to argue in our formu-

lation of contagion that every agent has a prior belief. Innovation diffusion studies often imag-

ine any individual has no prior opinion about a new idea until they are “infected” with it.

However, as we will illustrate below, we model beliefs on a spectrum, including belief in,

against, and uncertainty about, a proposition. This departure from the epidemiological view of

opinion diffusion allows us to argue for a prior, even if it is uncertainty.

It is important to note that in belief contagion models, the probabilities assigned to adopt-

ing a new belief given a prior one are over an event set of only two outcomes: adopt the new

belief, or keep the prior one. Thus, if there are several possible beliefs to adopt from a set B, the

sums of probabilities of adopting some bv given a prior of bu, for all values in B, do not neces-

sarily add to 1. Rather, because each agent interaction is only between two belief values, even if

they both come from a larger set, the interaction is represented as a Bernoulli process. Each

instance below in which we motivate probabilities of adopting a belief given a prior is adherent

to the same logic.

Of course, since beliefs are not actually transmitted through airborne pathogens that incite

infected individuals to believe something, there are abundant sociological hypotheses as to

why this phenomenon may appear infectious [24]. There are other contagion models that have

put forward alternative explanations.

Complex contagion. Complex contagion rather imagines that the spread of beliefs is pre-

dominantly governed by a ratio of consensus of those whom any agent is connected to [25,

42]. There are two major variations of complex contagion: what is typically called a propor-
tional threshold contagion, and what we call an absolute threshold contagion. Proportional

threshold contagion creates some α proportion of neighbors which must believe something for

the ego agent u to believe it. Absolute threshold contagion, on the other hand, may imagine

some whole number η of neighbors who must believe something in order for the ego u to

believe it [25, 47]. We choose to use the proportional threshold model for our examples and

in-silico experiments. One of the most famous examples of this type of model, captured an a

cellular automata paradigm, is in Schelling’s segregation model [48]. Formally, given an ego u
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and set of neighbors N(u), the probability of adopting belief b can be represented as:

Pðbu;ðtþ1Þ ¼ b j bu;tÞ ¼
1;

1

jNðuÞj

X

v2NðuÞ

dðv; bÞ � a;

0; otherwise
;

8
><

>:
ð2Þ

where d(v, b) is a simple indicator function which returns 1 if bv = b—i.e. if neighbor v believes

b—and where α 2 [0, 1] is a threshold indicating the ratio of believing neighbors necessary for

u to adopt the belief. In this model, the agent u is guaranteed to adopt b if a sufficient ratio of

its neighbors believe b.

It may seem tempting to imagine, given the expected number of agents necessary to cross a

repeated trial probability threshold from p, that the behavior of proportional threshold conta-

gion can also be modeled with the “sufficient number of neighbors” idea. However, that notion

does not capture the ratio effect that proportional threshold contagion models. Proportional

threshold contagion says nothing about the innate infectiousness of any belief, but rather the

infectiousness of the connections surrounding any agent.

The focus on a “portion” of believing neighbors being required to propagate a belief

spawned new questions and investigations. This type of belief contagion has been argued to

explain why some norms may spread despite them being disagreed with on an individual level,

such as collegiate drinking behavior [68]. It elegantly captures phenomena associated with

group dynamics such as peer pressure. It also can be used to model diffusion of health infor-

mation or technological innovations [78].

Cognitive contagion. Both these contagion models can be generalized to allow heteroge-

neous sets of agents whose update rules are different for agents of different types (for example,

more or less susceptible to infection). However, while these two popular types of contagion

can effectively model some classes of belief contagion, others cannot be captured by their

mechanisms—even with heterogeneous agents. Many simple and complex contagion models

only imagine several states of belief, heavily influenced by epidemiological models: susceptible,

infected, and removed. Models where there is an internal model of what a given individual

agent already believes that dynamically affects what beliefs they spread and adopt cannot be

described by either simple or proportional threshold contagion.

To address these problems, a class of what Zhang & Vorobeychik [15] call “cognitive agent

models” exist. Based off of foundational work by Hegselmann & Krause [79], Deffuant et al.

[80], DeGroot [43] and others, these models are often used to study group opinion dynamics

when agents can influence each other in a more nuanced manner. Rather than simply allow

agents to be “infected” by a belief or not, these models often place belief in any given proposi-

tion on a continuous spectrum. Agents then influence each other through opinion diffusion

processes that can be tailored to a given cognitive or social phenomena. A generalization of the

belief update process may be stated as:

Pðbu;ðtþ1Þ ¼ bv j bu;tÞ ¼ bðbu;t; bvÞ; ð3Þ

β can be a weighted update based on similarity of two agents’ beliefs [27, 77], do nothing if

the beliefs are too far away from each other [81], or be beholden to logical relations between

beliefs [28]. Notably for our purposes, these models have been used to study polarization [27,

72, 75–77] and opinion dynamics given cognitive effects like dissonance reduction [81] or

homophily [41].
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Cognitive cascade model

The goals of this work are twofold: (1) to apply empirically-grounded techniques from network

and cognitive science to opinion diffusion models, and (2) to show that even the simplest

resultant cognitive cascade model adds expressive power and leads to interesting dynamics of

belief propagation that cannot arise in cascade models using the simple or proportional thresh-

old contagion rules. To do so, we will lay out our cascade model and compare simulation

results between using simple, proportional threshold, and cognitive contagion techniques.

Agent contagion function

First, we can lay out which contagion models should be used for the agent-to-agent interac-

tions occurring during a cascade. If our micro interactions are grounded in literature sur-

rounding misinformation belief, we can analyze the ensuing macro effects knowing the model

is grounded soundly. In our simple example, we consider belief in a single proposition B (for

example, B could be, “COVID is a hoax,” or, “mask-wearing does not help protect against

spreading or contracting COVID”). In cognitive contagion models, as distinct from simple or

proportional threshold contagion models, u’s probability of believing a message from v is

influenced by an internal model of u’s beliefs. For our simple cognitive cascade model, we

model this internal prior initially as a single variable bu, with −1 � bu � 1. Without loss of gen-

erality, we use -1 to indicate strong disbelief and 1 to indicate strong belief.

Theoretically, bu can be a continuous variable with the interval from strong disbelief to

strong belief, or it can take on discrete values. Inspired by frequently used 7-point scales to

convey belief strength in public opinion surveys (e.g. [6, 11, 82], and justified by [83]), we

choose 7 discrete, equally spaced values for belief in B as follows: we represent the strength of

the belief in proposition B with elements from the set B ¼ fb j 0 � b � 6g; b 2 Z; 0 repre-

sents strong disbelief, 1 disbelief, 2 slight disbelief, 3 uncertainty, 4 slight belief, 5 belief, and 6

strong belief. We note that our framework allows other resolutions of belief strength, from the

discrete to approaching continuous, so we also explore these alternative model choices with

additional in-silico experiments with lower and higher “resolutions” of belief: with b able to

take integer values between 0 and 2, 3, 5, 7, 9, 16, 32, and 64 to approach behavior over contin-

uous beliefs. Results from those belief resolutions are shown in S9–S18 Figs. We find that the

particular belief resolution of 7 was not exactly critical, and that nearby values (e.g. 5, 9, 13,

and 16) produced very similar network dynamics. On the other hand, as b approached a more

continuous scale, we did not see exactly the same behavior, as some of our initial conditions

changed in a way that made cascades more difficult. This implies that a realistic continuous

model of beliefs might require different initial model parameters. More details can be found in

S3 Text.

Importantly, this representation captures the polarity of the proposition as well: belief

strength of the affirmative of B (if b � 4), and the negation of B (if b � 2). From here on, we

will capture the idea of belief polarity—belief in or against a proposition B—by simply saying

“belief strength.”

We include this cognitive model for an individual agent within a message-passing ABM: At

each time step t, agents have the chance to receive messages, to believe them, and share them

with neighbors. We will further clarify the role of messages in spreading beliefs below, when

we describe our diffusion model. But it should be noted upfront that regardless of being passed

by a message, or by simple network connection exposure, we can compare beliefs from two

agents, u and v the same way. We further note that cognitive science shows evidence that, for

beliefs that are core to an individual’s identity (such as political or ideological beliefs), exposure

to evidence that is too incongruous with an individual’s existing belief can cause individuals to
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disregard evidence in an attempt to reduce cognitive dissonance [20]. Therefore, we later

choose an update rule where an agent u is only likely to believe messages when encoded belief

values for proposition B are not too far from u’s prior beliefs.

As a simple example, this could be represented by a binary threshold function. Given an

agent u with belief strength in B, bu, and an incoming belief from v with strength bv, the follow-

ing equation could govern whether agent u updates its belief:

Pðbu ¼ bv j buÞ ¼

(
1; jbu � bvj � g;

0; otherwise
; ð4Þ

where γ is a distance threshold. Each agent has some existing belief strength in the proposition

B, but will be unwilling to change their belief strength if a neighbor’s belief strength is too far

from theirs. There are similar functions motivated in contagion models centering dissonance

[77, 81], and some which weight positive or negative influence differently [76]. We chose to

weight positive or negative influence equally in this example, and subsequent contagion func-

tions, to simplify the model and make its results more easily analyzable. Perhaps an agent u
who strongly believes the proposition (bu = 6) will not switch immediately to strongly disbe-

lieving it without passing through an intermediary step of uncertainty. Given a neighbor v
sharing belief bv = 0, agent u should not adopt this belief strength, because the difference in

belief strengths is clearly greater than γ. Simple contagion would fall short because agent u
may simply randomly become “infected” with belief strength 0 by v with some probability p. A

proportional threshold contagion would similarly falter if agent u were entirely surrounded by

alters with belief strength 0. It would inevitably switch belief strengths regardless of some

threshold α as in Eq (2).

As mentioned above, this manner of belief update could model the update of beliefs that are

core to an individual’s identity, such as political or ideological beliefs [31, 84, 85]. Rather than

updating based on evidence presented, exposure to evidence that is too incongruous with an

individual’s existing belief may have no effect due to rationalization processes activated by cog-

nitive dissonance [20].

In addition to the effects related to cognitive dissonance, there are other effects that have

been reported to be involved in belief update. Pertinent to the misinformation literature, two

that center the incoming belief itself are the illusory truth effect [23, 70] and the mere-exposure

effect [86]. These effects emphasize that the number of exposures to a piece of information can

motivate belief in it.

Regardless of effect, it is clear that some social contagion processes cannot be captured

without modeling some sort of representation of an agent’s cognition. For these reasons, we

will extend work done in cognitive contagion models—particularly those modeling dissonance

[81] and selective exposure [27, 72]—to capture the above effects. In general, given an agent u
with belief bu, during its update step, the likelihood of updating its belief strength from bu to b,

given their prior belief, can be captured by the cognitive contagion model in Eq 3. We graphi-

cally illustrate this process in Fig 1.

Because this equation is so general, there is a need to motivate a meaningful choice of β
function, and analyze how its effects differ from simple and proportional threshold contagion.

There are obviously many choices for such a function, but the key lies in the fact that it com-

pares beliefs between two agents, rather than being driven by network structure or mere

chance. Below, we will describe our process of choosing a β function in order to adequately

model the misinformation effects that motivated our study.
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Institutional cascade model

Of course, a cognitive contagion model could be implemented on top of many different

ABMs, so we will describe one that captures the misinformation problem, and that we can

use over multiple experiments to arrive at a cognitive cascade model suited to the problem.

Our public opinion diffusion (POD) ABM will be designed to capture the effects of misinfor-

mation spread by media companies, since in the aforementioned COVID misinformation

studies, media played a pivotal role in people’s belief or disbelief in safety protocols [82, 87,

88]. Moreover, in media studies, some scholars utilize frameworks such as Giddens [89]

“theory of structuration”—which views media providers as macrolevel “structures” and

individuals as microlevel “users” [52]—in order to model the ontological duality of media

ecosystems.

Often, ABMs attempt to model so-called “levels” of social systems by grouping individual

agents into a set—as in the case of a corporation being some hierarchical relation of individu-

als. Epstein persuasively argues that this individualistic method of modeling is not accurate, as,

for example, a media organization’s behavior depends not only on behaviors of a hierarchy of

individual employees, but also on social conditions, governmental bodies, and more [90]. The

POD model addresses this by including institutional influence in the form of media agents.

We argue that an institution is not just a collection of individual agents, but an entirely differ-

ent ontological entity, with separate incentives and influences, that still captures elements of

media scholars framework for media ecosystems. Though, as will be clear below, our media

agents are highly simplified, and could be made more complex in future studies. This addition

is what makes our model a cascading model as opposed to a pure contagion model. Because

the spread of messages starts with an institution—analogous to a media company—our conta-

gion closely resembles cascade models used for analyzing media ecosystems [2, 5, 59]. A visual

description of the model is included in Fig 2.

As previously mentioned, we will be using a message-passing ABM: at each time step t,
agents have the chance to receive messages m from the set of all possible messages M—whose

spread begins with media agents, which we call institutional agents—and to believe and share

them with neighbors. We chose a message-passing model as opposed to the simple diffusion

models often found in simple and proportional threshold contagion models because it allows

us to capture the notion that beliefs are spread by explicit communication rather than simply

by being connected to an agent.

Our model consists of N agents in a graph, G = (V, E) where each agent’s initial belief

strength bu, 0 � u � N is drawn from a uniform distribution over the set of possible belief

Fig 1. A graphical illustration of cognitive contagion. An illustration of cognitive contagion with the DCC contagion

function described in Eq 6. (a) (Top) Given an agent u with bu = 6 and v with bv = 0, the chance of contagion

is < 0.001. (b) (Bottom) Given an agent u with bu = 6 and v with bv = 5, the chance of contagion is 0.982.

https://doi.org/10.1371/journal.pone.0261811.g001
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strengths for proposition B, B ¼ fb; 0 � b � 6g; b 2 Z. There is a separate set of institutional

agents I—entirely different entities in the ontology of our model—which have directed edges

to a set of “subscribers” S � V if some parameter � � |bu − bi|, u 2 V, i 2 I—i.e. an agent in the

network will subscribe to an institution if its belief strength from B is sufficiently close to the

belief strength of that institution. For all of our experiments, we will fix � at 0. Institutional

agents are designed to model media companies or notable public figures which begin the mass

spread of ideas through the population. The belief strength of an institutional agent can be

thought of as a perceived ideological “leaning” that would cause people with different prior

beliefs to trust different media organizations.

At each time step, t, each institution i will send a list of messages to each of its subscribers,

represented by the function Mi : t ! ðm0;m1; . . . ;mjÞ; mj 2 M; j � 0. In this simple

example, the set of possible messages M will only encode one proposition, B, so for simplic-

ity, we can set M ¼ B. Additionally, institutions will only send one message per time step.

Whenever a message is received, an agent will “believe” it based on the contagion method

being utilized, where bmj is the strength of belief in proposition B encoded by the message,

and bu is the agent’s belief strength for B. If agent u believes message mj, then its belief

strength is updated to be bmj. When an agent believes a message, it shares the original mes-

sage, mj, with all its neighbors. It should be noted that because agent u would change its belief

strength to bmj, agents will always share beliefs that are congruous to prior belief strengths—

cohering to our cognitive contagion model outlined above. After a neighbor receives a mes-

sage, the cycle continues: It has a chance to believe the message, and if believed, spread it to

its neighbors. To avoid infinite sharing, each agent will only believe and share a given mes-

sage once based on a unique identifier assigned to it when it is broadcast by the institutional

agent.

Each time a message makes its way through the population, via some contagion method, we

are capturing one cascade. By combining this cascading behavior with belief modeling typical

of cognitive contagion models, we can synthesize the advantages of both disciplines for a more

expressive and grounded model.

Our model and experiments were implemented using NetLogo [91] and Python 3.5. Code

is made available on GitHub (https://github.com/RickNabb/cognitive-contagion).

Fig 2. A graphical illustration of one time step of the POD model. In the left panel, (A) depicts the initial setup of a

small network with institutional agent i1 with subscribers s1, s2, s3. All agents in the network are labeled with their belief

strength. The right panel, (B) depicts one time step t = 0 of agent i1 sending messages M1(t = 0) = (m0, m1). (i) shows

the initial sending of m0 = 4 to subscribers, and (ii) shows s1 and s3 believing the message and propagating it to their

neighbors. (iii) and (iv) show the same for m1 = 3, but only s3 believes m1.

https://doi.org/10.1371/journal.pone.0261811.g002
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In-silico contagion experiments

Experiment design

We wish to show that our cognitive cascade model can capture the observed effects of identity-

based belief spread better than existing models of simple or proportional threshold contagion.

To do so, we will lay out a series of in-silico (computer simulated) experiments to test each

contagion method given the same initial conditions.

For each contagion method, we test three conditions where one institutional agent, i1,
attempts to spread different combinations of messages over time. We will refer to the first mes-

sage set as single, as the institutional agent simply broadcasts one message for the entirety of

the simulation; Mi(t) = (6), 1 � t � 100. The second set, we will call split, as the institution

switches from messages of Mi(t) = (6), 1 � t � 50 to Mi(t) = (0), 51 � t � 100 halfway through

the simulation. We call the final set gradual because the institution starts out spreading mes-

sages of Mi(t) = (6), but at every interval of ten time steps, switches to Mi(t) = (5), Mi(t) = (4),

etc. until finishing the last 30 time steps by broadcasting Mi(t) = (0). We display these visually

in Fig 3.

These specific sets of messages were chosen to expose distinct effects given each set, specifi-

cally with agent-to-agent cognitive contagion in mind. Based on research about how identity-

related beliefs update, a proper cognitive contagion function would not allow agents with a

belief strength significantly different from the message to update their belief. With the single
message set, we wish to provide the simplest case: only one belief strength message is being

spread. We predict that simple contagion will simply spread the messages to all agents, regard-

less of prior belief strength, and all agents will eventually update their belief strength to that in

the message. We also anticipate that proportional threshold contagion, being so reliant on

prior belief strengths of an agent’s neighbors, will not be so straightforward. Assuming a nearly

uniform distribution of agent neighbor belief strengths, the threshold chosen would likely

make the difference between all agents updating their beliefs, or no agents updating their

beliefs. A proper cognitive contagion function that captures our desired effect should see only

belief updates from agents whose belief strengths are already close to the belief strength

encoded in the message.

The split message set, on the other hand, should have different effects. We predict that sim-

ple contagion will see all agents believe the first belief, then all agents believe the second, while

proportional threshold contagion may spread the initial belief but not the second. For cogni-

tive contagion, if the function we choose successfully models our target phenomena, only

agents within the same threshold as in the single condition should believe the first message,

Fig 3. A graphical illustration of the different message sets. A visual depiction of the different message set

conditions used in our in-silico experiments: single (top), split (middle), and gradual (bottom), set against a 100-step

simulation from t = 0 to t = 100.

https://doi.org/10.1371/journal.pone.0261811.g003
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then virtually no agents should believe the second—except a few who may switch based on

exposure effects.

Finally, we predict that the gradual message set should be the only which allows cognitive

contagion to sway the entire network. Because agents will only believe messages that are rela-

tively close to their prior beliefs, it logically follows that the only way to move beliefs from one

pole to another is incrementally. We further anticipate that simple contagion will sway the

entire agent population to adopt the belief strength of each message in turn, and that propor-

tional threshold contagion may sway the entire population to one specific belief strength, but

then not be able to change any agent belief strengths after such a contagion.

We also keep certain contagion variables static between experiments and conditions. In

each case, we will fix the simple contagion probability, p to be 0.15, and fix α, the proportional

threshold contagion neighbor threshold to be 0.35. Parameters are fully laid out in Table 1.

The former was chosen to allow a slower spread of belief strengths, as higher values would

make the spread too fast to properly analyze. The latter was chosen as it, too, would ideally

avoid being so low that contagion happens immediately and in all cases, or so high that it

never occurs. In preliminary experiments, the chosen values best satisfied these goals. We fur-

ther explain the process we underwent to choose these values in S1 Text and S1 Table.

As a final experimental condition to vary independently of message set, we will run experi-

ments on a host of different graph topologies, keeping the number of nodes and prior distribu-

tion of belief strengths constant. We test each contagion method on four networks topologies:

• The Erdős-Rényi (ER) random graph [92]

• The Watts-Strogatz (WS) small world network [93]

• The Barabási-Albert (BA) preferential attachment network [94]

• The Multiplicative Attribute Graph (MAG) [95]

We explicate rationale behind choosing each below. Running experiments across different

graph topologies should allow us to determine how much graph structure affects cascades. We

anticipate that cascades using simple contagion may not vary much over graph type, that those

with proportional threshold contagion will vary the most because it is the most dependent on

neighborhood structure, and that cognitive contagion should vary least, as it relies more on

single instances of neighbor belief strengths rather than an aggregate. Additionally, because

Table 1. Parameter values for in-silico contagion experiments.

Parameter Value Description

Contagion Methods

p 0.15 The chance of spread for simple contagion.

α 0.35 The ratio for proportional threshold contagion.

β(bu,(t+1), bv) 1

1þeaðjbu;t�bv j�gÞ The cognitive contagion function (DCC, Eq (6)) we use.

α, γ α = 4, γ = 2 Scale and translation values for the DCC function, 1

1þeaðjbu;t�bv j�gÞ

PODModel

N 500 The number of networked agents.

|I| 1 The number of institutional agents.

� 0 The maximum distance between agent and institution beliefs necessary to be a

subscriber.

T {t, 0 �

t � 100}

The set of timesteps.

https://doi.org/10.1371/journal.pone.0261811.t001
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the model has stochastic elements in the initial distribution of agent beliefs, at each potential

contagion step governed by the contagion function, and in the randomness of the networks

constructed, experiments are run from ten to one hundred times and results are shown as

averages over the total simulations, with variances displayed in supplemental materials S1 and

S2 Figs where applicable. We display results aggregated over 10 simulations here, as there was

not significant variation between results from 10, 50, or 100 simulations, and include results

from 50 and 100 simulations with justification for using 10 in S3 Text, S2 Table, and S23 Fig.

But first, we need to choose a cognitive contagion function that best suits our empirically-

based goals. After choosing such a function, it will be compared against simple and propor-

tional threshold contagion in each condition.

Motivating choice of β functions

Unsurprisingly, depending on the choice of β, the network should display significantly differ-

ent dynamics. That choice should depend on what type of phenomena is being modeled. We

will explore a variety of choices for this function and compare the outcome of their respective

cognitive contagion against the qualitative target phenomena. Other works studying cognitive

contagion have motivated similar dissonance-related contagion functions [76, 81], treating

dissonance as a weighted update based on belief distance.

We want to follow suit, and tune the choice of function to capture the effect of updating

beliefs core to an individual’s identity: in a manner where incoming belief strengths must be

close to existing belief strengths to yield an update. If possible, it would also be useful to be able

to choose a function which also captures aspects of exposure effects: that beliefs do have a

small chance to update that grows as the agent is exposed to a belief over time. However, agents

should prioritize the dissonance effect. That is, they should only experience an exposure effect

if incoming messages are already somewhat close to existing beliefs. The dissonance effect

should take precedence. Our function will differ, however, in our discrete belief updating—

moving from one discrete value to another rather than meeting in between as in prior work.

Keeping these two target phenomena in mind, we explore three classes of functions: linear,

threshold, and logistic.

Linear functions. To begin with perhaps the simplest function, an inverse linear function

would capture the effect of making beliefs that are further apart have a smaller probability of

updating. Moreover, we can generalize this inverse function by adding some parameters to

add a bias and scalar to the denominator. The equation comes out as follows:

Pðbu;ðtþ1Þ ¼ bv j bu;tÞ ¼ bðbu;t; bvÞ ¼
1

g þ ajbu;t � bvj
ð5Þ

In this equation, γ becomes a parameter to add bias towards being reluctant to update

beliefs, and α similarly decreases the probability of update as it increases. This turns out to be a

useful formulation, because if we set γ and α to be very low, then the agent becomes relatively

more “gullible.” Conversely, setting γ and α to be high would make the agent “stubborn.” We

expect that the “stubborn” agent will be most desirable for our purposes of modeling cognitive

dissonance.

To compare parameterizations of the inverse linear function, we contrast, on an Erdős-

Rényi random graph, G(N, ρ) = (V, E) with N = 250, ρ = 0.05, in our POD model setup

described above, a relatively “gullible” agent function (γ = 1, α = 0) to a “normal” function (γ =

1, α = 1), and to a “stubborn” (γ = 10, α = 20) function. We additionally display results for only

the split message set, though results for others can be found in S3–S8 Figs. Results are displayed

in Fig 4.
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As expected, the results show that the “gullible” agents simply believe everything. The “nor-

mal” agents take a bit longer to all update their belief strengths to that of the messages broad-

cast, but eventually do. Importantly, when all agents’ belief strength for B is b = 6 after the first

50 time steps, they all quickly switch over to b = 0, which does not fit the cognitive dissonance

effect we are trying to model. The “stubborn” agent case is the closest to what we are seeking.

Only the agents who are already closest to b = 6 believe the first message over time, with some

effect on agents with more distant beliefs. After the messages switch polarity halfway through,

the agents whose strength of belief is b = 6 do drop significantly, but less so than in the other

conditions. This effect seems closer to the dissonance mixed with exposure effects that we

desire: beliefs are less likely to change as they are far away, but there is a chance to change with

many messages over time.

Threshold functions. Next, we evaluate the behavior of threshold functions and compare

to our desired effect. Threshold update functions are used in opinion diffusion ABMs, most

notably in the HK bounded confidence model [79, 81, 96]. We anticipate that these functions

will capture the desired dissonance effect. The function can be parameterized as we already

motivated in Eq (4), with γ serving as the threshold.

Using the same formulations as above, with “gullible” (γ = 6), “normal” (γ = 3), and “stub-

born” (γ = 1) agents, we find results on the same graph structure as displayed in Fig 5.

These results confirm our anticipations, and perfectly capture the effect of only updating if

incoming messages are within a certain distance of existing beliefs. However, the threshold

function leaves no possibility of update to capture the repetition effects of mere exposure or

illusory truth. The probability of updating is either 0 or 1, which loses much of the nuance of

the actual phenomena.

Fig 4. Linear cognitive contagion function result comparisons. The split message set on an ER random graph,

N = 250, ρ = 0.05, for agents updating their beliefs based on the inverse linear cognitive contagion function in Eq (5).

Graphs display percent of agents who believe B with strength b over time. The left graph shows agents parameterized to

be “gullible” (γ = 1, α = 0); the middle shows “normal” agents (γ = 1, α = 1), and the right, “stubborn” agents (γ = 10, α
= 20).

https://doi.org/10.1371/journal.pone.0261811.g004

Fig 5. Threshold cognitive contagion function result comparisons. The split message set on an ER random graph,

N = 250, ρ = 0.05, for agents updating their beliefs based on the threshold cognitive contagion function in Eq (4).

Graphs display percent of agents who believe B with strength b over time. The left graph shows agents parameterized to

be “gullible” (γ = 6); the middle shows “normal” agents (γ = 3); and the right, “stubborn” agents (γ = 1).

https://doi.org/10.1371/journal.pone.0261811.g005

PLOS ONE Cognitive cascades: How to model (and potentially counter) the spread of fake news

PLOS ONE | https://doi.org/10.1371/journal.pone.0261811 January 7, 2022 13 / 32

https://doi.org/10.1371/journal.pone.0261811.g004
https://doi.org/10.1371/journal.pone.0261811.g005
https://doi.org/10.1371/journal.pone.0261811


Sigmoid functions. Finally, we will test a logistic function—specifically a sigmoid func-

tion, as we are attempting to capture probabilities and the range of the sigmoid is [0, 1].

Sigmoid functions are commonly used in neural network models because they capture “activa-

tion” effects arguably akin to action-potentials in biological neurons, and rein in outputs so

they do not explode while learning [97]. This property is useful for our purposes as well. We

formulate our sigmoid cognitive contagion function as follows:

bðbu;ðtþ1Þ; bvÞ ¼
1

1 þ eaðjbu;t�bv j�gÞ
ð6Þ

In this equation, α and γ control the strictness and threshold, respectively. As α increases,

the function looks more like a binary threshold function, and restricts any significant probabil-

ity to center around γ − 1. γ controls the threshold value by translating the function on the x
axis. Though, in a sigmoid function, the value at x = γ will always be 0.5, so if one wishes to

guarantee belief update given a threshold τ, it must be set as τ = γ + � where � / 1

a
. We use this

strategy to set our γ values throughout our in-silico experiments.

Given the same experiments as above, the sigmoid function parameterized for different

agent types (“gullible” (α = 1, γ = 7), “normal” (α = 2, γ = 3), and “stubborn” (α = 4, γ = 2))

yields results as show in Fig 6.

These results seem to display characteristics of both the inverse linear function and the

threshold function. The “gullible” agents, as always, believe everything but with a softer transi-

tion than for the linear or threshold functions. “Normal” agents are the first indication that we

are getting closer to our desired effect. After an initial widespread uptake of belief strength

b = 6 in the first half of the simulation, some agents begin to believe b = 0, but the population

that decreases the most to engender that gain seem to be agents with belief strength b = 1.

Though, from our model, some agents with strength b = 6 must have believed b = 0 messages,

because if they did not, the messages would never have been shared and made it to b = 1 agents

—the institutional agents are only connected to b = 6 agents as � = 0.

Finally, the “stubborn” agents seem to best capture our desired effect. Initially, b = 6, b = 5,

and b = 4 agents are the only who update beliefs. There is also a small effect where some b = 3

agents update to b = 6, capturing the exposure effects combined with a dissonance effect.

Importantly, when messages switch to b = 0, none of the b = 6 agents update their beliefs. The

exposure effects would not work as the dissonance effect would take primacy.

These agents act in a way akin to what we observe from cognitive literature [20, 23], albeit

in a highly simplified manner: an agent who “strongly disbelieves” in something like COVID

mask-wearing will likely only be swayed by a message that “disbelieves” or is “uncertain” about

the belief. On the individual level, a maximum two relative magnitudes of belief separation,

with decreasing probabilities as distance increases, seems to qualitatively match empirical

Fig 6. Sigmoid cognitive contagion function result comparisons. The split message set on an ER random graph,

N = 250, ρ = 0.05, for agents updating their beliefs based on the sigmoid cognitive contagion function in Eq (6). Graphs

display percent of agents who believe B with strength b over time. The left graph shows agents parameterized to be

“gullible” (α = 1, γ = 7), the middle shows “normal” agents (α = 2, γ = 3), and the right, “stubborn” agents (α = 4, γ = 2).

https://doi.org/10.1371/journal.pone.0261811.g006
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work. In our simulations using more than 7 points on a belief spectrum, this argument can still

be held by setting the equivalent belief “markers” along the spectrum, and using those to scale

the contagion function.

Given these initial experiments, it seems most reasonable to choose the “stubborn” sigmoid

cognitive contagion function as that which best captures our desired effects. We will use this

defensive cognitive contagion (DCC) function in the rest of our experiments as we compare the

effects of cascades with cognitive contagion to those with simple and proportional threshold

contagion.

Comparing contagion methods

Now that we have selected a cognitive contagion function that best captures the effects we wish

to model, it is necessary to compare cascade results of this function to those from simple and

proportional threshold contagion in our cascading POD model. We will investigate the way

that these different contagion methods manifest effects on different network structures. For

simplicity, we will henceforth refer to each cascade-contagion function combination as simple
cascades, proportional threshold cascades, and cognitive cascades, respectively. Parameter values

used in these comparisons are listed in Table 1. In addition to significant effects based on the

choice of the β function, we expect that effects will also significantly differ based on the struc-

ture of the network. The structure will determine which ideas reach agents, and which do not,

and thus should affect the final outcome of belief distribution over the network.

We will test each cascade method on five types of networks: the Erdős-Rényi (ER) random

graph [92], the Watts-Strogatz (WS) small world network [93], the Barabási-Albert (BA) pref-

erential attachment network [94], and the Multiplicative Attribute Graph (MAG) [95]. Each

network has distinct properties that will affect how the cascading contagions play out. Addi-

tionally, we will test each message set for each network type to explore the effects of different

influence strategies.

First, we will qualitatively analyze the aggregate effects on the diffusion of beliefs, and subse-

quent belief strength updates, across the entire network. After doing so for each network topol-

ogy, we will analyze the cascading behavior itself.

Cascades on ER random networks

We will begin with cascades on Erdős-Rényi [92] random networks G(N, ρ) = (V, E) where ρ =

0.05 and N = 500. Note that ρ is not the chance of simple contagion, p, but the chance that two

agents connect in the random graph. This graph type was chosen as a baseline to compare oth-

ers to, as is standard in network science. Results of the simple and proportional threshold cas-

cades are shown in S19 Fig.

Results from the simple cascade experiments show that in each message set condition, the

belief strength being spread pervaded the entire network in all cases. Moreover, the strength of

beliefs broadcast were adopted by the population very quickly. In the case of proportional

threshold cascades, the initial distributions of belief strengths did not change in any message

set condition.

Cognitive cascades on the ER graphs yielded markedly different results. As depicted in Fig

7, both the single and split message sets were only able to sway agents that started with b = 6,

b = 5, or b = 4, with what appears to be a few b = 3 agents persuaded. Importantly, no agents

were swayed after the messaging change in the split condition. The gradual message set is the

only that was able to sway all agents over to b = 0.
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Cascades on WS small world networks

Our second set of experiments were conducted on Watts-Strogatz [93] small world networks,

G(N, k, ρ) = (V, E), where N = 500, k = 5, and ρ = 0.5. In this formulation, k is the number of

initial neighbors any node is connected to, and ρ is the chance of rewiring any edge. We chose

this graph topology because small world networks exhibit some attributes of real-world social

networks (low diameter and triadic closure). Results of simple and proportional threshold cas-

cades on these WS graphs are shown in S20 Fig.

Simple cascade results showed largely the same pattern as in the ER random graph, but a

significantly slower spread through the population. Interestingly, proportional threshold cas-

cades were successful on the WS graphs, but with a high amount of variance over simulations

(variance shown in S1 Fig).

Results from cognitive cascade experiments closely match those from the ER random graph

experiments. These are displayed in Fig 8. The population displayed the same patterns given a

significantly different graph structure, which begs explanation. We will discuss this further

below.

Cascades on BA preferential attachment networks

We continued our experiments by testing Barabási-Albert [94] preferential attachment net-

works, G(N, m) = (V, E), where N = 500 and m = 3, where m represents the number of edges

added with each newly added node. This network type was also chosen because of its proper-

ties that closely resemble real-world social networks (low diameter, power law degree distribu-

tion). Results are shown in S21 Fig.

Again, simple cascade results are similar to those of the WS graphs: slower spread than in

ER random graphs, but faster than in WS graphs. In this case, spread is facilitated by the

power law distribution of node degree—even a few nodes with high degree believing the mes-

sage can have an outsize effect in spreading quickly to the outskirts of the network [98]. Also

Fig 7. DCC results on ER random networks. DCC on ER random networks with N = 500, and connection chance ρ =

0.05. Graphs show the percent of agents who believe B with strength b over time.

https://doi.org/10.1371/journal.pone.0261811.g007

Fig 8. DCC results on WS small world networks. DCC on Watts-Strogatz small world networks with N = 500, initial

neighbors k = 5, and rewiring chance ρ = 0.5. Graphs show the percent of agents who believe B with strength b over

time.

https://doi.org/10.1371/journal.pone.0261811.g008
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interestingly, proportional threshold cascades appear to have slight effects on these graphs,

with the gradual message set having most effect. Proportional threshold cascade results also

showed significant variance (shown in S2 Fig).

Results from cognitive cascade experiments were again similar to those of the ER random

and WS graphs—most similar to results from the WS graph. Results are shown in Fig 9.

Cascades on MAG networks

Finally, we tested cascades on the Multiplicative Attribute Graph [95] with an affinity matrix

Θb that yielded a graph with very high homophily. We chose this graph topology because real

world social networks are homophilic—people who have similar interests tend to connect.

Testing a highly homophilic graph (higher than in a real social network) can allow us to test

the extreme case of communities in silos based on their belief strength. The affinity matrix was

constructed as follows:

Yb ¼ ðyijÞ 2 Rm�n
¼

1

1 þ 50ðj � iÞ2
ð7Þ

¼

0:167 0:018 0:005 0:002 0:001 0:0008 0:0006

0:018 0:167 0:018 0:005 0:002 0:001 0:0008

0:005 0:018 0:167 0:018 0:005 0:002 0:001

0:002 0:005 0:018 0:167 0:018 0:005 0:002

0:001 0:002 0:005 0:018 0:167 0:018 0:005

0:0008 0:001 0:002 0:005 0:018 0:167 0:018

0:0006 0:0008 0:001 0:002 0:005 0:018 0:167

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

ð8Þ

To measure homophily, we used a simple measure of the global average neighbor distance

given the b value of each node, and compared against a random ER graph. The measure is

detailed in Eq (9):

hðG ¼ ðV;EÞÞ ¼

X

v2V

X

u2NðvÞ

jbu � bvj

2jVj
2

;
ð9Þ

where N(v) is a function that returns neighbors u 2 V of v. Over ten ER random graphs with

N = 500 and ρ = 0.05, the mean average neighbor distance was 2.30 with a mean variance of

0.349. Over ten MAG graphs generated with Θb, the mean average neighbor distance was 0.31

Fig 9. DCC results on BA preferential attachment networks. DCC on a Barabási-Albert preferential attachment

network with N = 500, and added edges m = 3. Graphs show the percent of agents who believe B with strength b over

time.

https://doi.org/10.1371/journal.pone.0261811.g009
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with a mean variance of 0.02. Results from simple and proportional threshold cascades on

these homophilic MAG graphs are shown in S22 Fig.

As it turns out, a high degree of homophily did not appear to make a significant difference

to any cascade patterns. The patterns generated from simple and proportional threshold cas-

cades appear similar to those from the ER random graphs. The same is true for cognitive cas-

cade results, which are depicted in Fig 10.

Analysis of results

Belief change

To quantify the relationships we observe qualitatively between the cascading contagion pat-

terns, we can examine correlations between results. We choose to illustrate these patterns

using only data from the single messaging pattern, as differences in this pattern appear to be

the smallest within cascade methods. By arguing from the standpoint of the apparent most

similar results, it implies that results that are more different given simple and proportional

threshold cascade methods—while DCC results are still quite similar—further prove the stabil-

ity of the cascade method.

Table 2 displays results within cascade methods (simple, proportional threshold, and

DCC) between pairs of graph types. We measure various correlations between belief results

from these pairs. Details of the methods by which we performed the tests can be found in S4

Text. Briefly, �r denotes an average Pearson coefficient across belief values; and �w2 denotes a

version of the χ2 test applied to time series data, testing for independence between the two

Fig 10. DCC results on homophilic MAG networks. DCC on homophilic MAG networks with N = 500, and Θb
detailed in Eq (8). Graphs show the percent of agents who believe B with strength b over time.

https://doi.org/10.1371/journal.pone.0261811.g010

Table 2. Correlation test results measuring similarity between cascades on graph type pairs, by cascade method.

Measure ER-WS ER-BA ER-MAG WS-BA WS-MAG BA-MAG

Simple
�r 0.751 0.869 0.999 0.973 0.750 0.868

�w2 0.010 0.208 1.000 0.040 0.010 0.208

Proportional Threshold
�r 0.529 0.649 ; 0.899 ; ;

�w2 0.020 0.040 1.000 0.020 0.020 0.040

DCC
�r 0.964 0.983 0.981 0.989 0.970 0.917

�w2 0.327 1.000 1.000 1.000 0.327 1.000

Correlation tests within cascade method, between graph type pairs. Bolded values are the strongest correlations across cascade methods for a given test. ; denotes that a

test could not be performed because no changes occurred from initial conditions on one or both graphs.

https://doi.org/10.1371/journal.pone.0261811.t002
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graphs’ belief distributions at each time step. For all test values, a higher value indicates

stronger correlation.

It is clear from correlation test results that the DCC method yields the strongest correlations

between graph topologies. This supports what looks apparent qualitatively from graph results.

While for simple and proportional threshold cascade, correlations are weak or hardly present,

almost all values for DCC are consistently strong. Intuitively, we may expect that graph struc-

ture would affect any cascading contagion method, as is the case for simple and proportional

threshold. However, this analysis reveals that when using the DCC function, effects of struc-

ture are greatly diminished in most cases.

Cascades

Results across different graph topologies further support our motivations for introducing cog-

nitive cascade models. These results are encouraging because the entire motivation for our

model takes out the structural dependencies of proportional threshold cascade, and replaces

simple cascades’ random chance of spread with one motivated by what agents already believe.

Thus the key factors determining the spread of messages and change in beliefs in our cognitive

cascade model are:

1. Whether or not any given agent is exposed to some message;

2. How many times an agent is exposed to similar messages; and

3. The difference between agent beliefs and that message.

These results qualitatively match what has been observed in misinformation literature.

Even when exposed to factual or scientific evidence (e.g. that wearing masks would mitigate

the COVID-19 pandemic), people who are already skeptical of mask-wearing are not able to

be swayed. They often instead rationalize their existing beliefs [2, 22, 31, 85]. Additionally,

mass-exposure to a given message still has a chance to sway agents in our model—proportion-

ally to how distant that message is to agent beliefs. This captures the illusory truth [23, 70] and

mere-exposure effects [86].

We can also quantify this result by analyzing the cascading behavior for any given message.

For any message mj from a list Mi : t ! ðm0;m1; . . . ;mjÞ;mj 2 M; j � 0 sent by an institu-

tion i at time step t, there will be a probability that any agent u will believe the message, which

depends on the factors listed above. In terms of our model,

(1) becomes the probability of mi being received and believed by any neighbor N(u) of u;

To travel from institution i to agent u, a message must follow a directed path through the

graph, wiu = (v1, v2, . . ., vn) where v1 = i and vn = u. The probability of a message being passed

down the entire path can be expressed as:

Pðmj;wÞ ¼
Y

v2w

bðv;mjÞ: ð10Þ

To then properly represent (1), we can limit wiu to end at neighbors of u.

The next step requires us to determine how many neighbors N(u) of u believe mj—as they

would then subsequently propagate the message to u. Therefore,

(2) becomes |Nβ(i, u, mj)|, the number of neighbors of u who are likely to believe mj coming

from i.
However, we do not know ahead of time which neighbors will actually believe mj as the

model is stochastic. We can argue that a probability within some δ will suffice. We can
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represent Nβ(i, u, mj) as:

Nbði; u;mjÞ ¼ f v j v 2 NðuÞ ^ Pðwiu;mjÞ � 1 � d g; ð11Þ

Because in the POD model, agents can only believe and share mj once, to determine how

many neighbors of u would share the message, we must choose a set of non-overlapping paths

W� from i to neighbors of u—moreover, one that maximizes total path probabilities:

W�

iu ¼ max
w

Y
Pðmj;wÞ f wiu j

[

wiu

ð�Þ ¼ ; g ð12Þ

The algorithmic formulation of such a process would best be captured in future work.

Regardless of methods, it stands that Pðmj;wÞ is crucial in determining whether any agent

u will have a chance of receiving a message and believing it. This result can help explain why

simple and proportional threshold cascades showed such variation across graph types, but cog-

nitive cascades did not. Given the probabilities of adopting belief strengths bu given a prior

belief of bv for DCC shown in Table 3, it becomes clear that if any β(v, mj) is given a belief

strength difference of 3 or higher, then the entire chain’s probability Pðmj;wÞ will collapse to

very close to 0.

To satisfy (1), a path of agents with belief strengths at most distance 1 away from the mes-

sage would reliably transmit it with high probability. If any agents in the path have a belief of

distance 2 from the message, the transmission probability would decrease; halving the proba-

bility with each agent of distance 2. Compare this with simple cascades, where every agent has

a flat 0.15 probability of sharing, and the path probability converges close to 0 in only two

steps; or proportional threshold cascades where if any agent in the path does not meet the

threshold of 0.35, the path probability immediately collapses to 0.

Taking these criteria for (1) into account, Table 3 also makes clear that to satisfy (2) and (3),

the chain may only need to end with one agent—i.e. jW�

iuj ¼ 1. If the message belief strength is

distance 0 or 1 from u, then there is already a near guaranteed chance that u will believe the

message after receiving it only once. Conversely, in any quantitative analysis of which agents

may believe a message, we can exclude with high confidence all agents with a belief strength

difference of 3 or higher from consideration, as their chances of believing the message even if

it made it to them would be near zero.

Therefore, to quantitatively demonstrate why the cognitive cascade results were so stable

across random graph types, we can show, for a randomly selected agent u with belief strength

bu, the percentage of 100 random generations of the graph which yield at least one path of

agents v entirely with bv distance at most τ away from a message with belief strength bmj.

Table 3. Probabilities of adopting beliefs bu given prior bv using DCC.

bu/bv 0 1 2 3 4 5 6

0 0.999 0.982 0.500 0.018 <0.001 <0.001 <0.001

1 0.982 0.999 0.982 0.500 0.018 <0.001 <0.001

2 0.500 0.982 0.999 0.982 0.500 0.018 <0.001

3 0.018 0.500 0.982 0.999 0.982 0.500 0.018

4 <0.001 0.018 0.500 0.982 0.999 0.982 0.500

5 <0.001 <0.001 0.018 0.500 0.982 0.999 0.982

6 <0.001 <0.001 <0.001 0.018 0.500 0.982 0.999

Probabilities given by β(bu, bv) for the DCC function, described in Eq (3).

https://doi.org/10.1371/journal.pone.0261811.t003
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Moreover, we can show this for all potential values of bu, keeping the belief strength of the

message constant, bmj, at 6 (quantifying the single message condition). Importantly, this path

does not include u because for bu = 3 and below, the distance of bu to bmj would always be too

high; thus, our paths lead to neighbors of u. These paths were found by assigning edge weights

equal to the distance between the message and the belief strength of the source node in the

directed pair, and running Dijkstra’s weighted shortest path algorithm with i as the source and

u as the target. Results are displayed in Table 4.

When τ is 1 the path yields an almost guaranteed probability of the message reaching u.

When τ equals 2, the path can yield a range of chances to reach u—depending on how many

distances of 2 there are in the path, each inserting a probability of 0.5 into the total product.

However, compared to the path probability for cascades using simple or proportional thresh-

old contagion—where the former is a path entirely of probabilities of 0.15, and the latter

requiring meeting a threshold of 0.35 for each agent in the path to even have a non-zero

chance—both path types under DCC yield significantly higher probabilities of messages reach-

ing target agents.

Moreover, the analysis shows that across graph topologies, where there are high propor-

tions of both path types present, there is a high likelihood for messages to reach agents of all
belief strengths. Particularly for Erdős-Rényi random graphs, both path types are almost

always present. Both Watts-Strogatz and Barabási-Albert networks show lower, but still high

proportions of both path types being present. This likely accounts for the slight variations in

cognitive cascade results displayed in graphs above. Predictably, homophilic MAG graphs

show a decreasing likelihood of both path types as the distance between bu and bmj increases. If

any of these paths yielded a message reaching agent u, then combined with the probabilities in

Table 3, we see that target agents with belief strength distance 2 or less from the message will

likely believe it, and update accordingly. This is exactly what we see qualitatively in the above

results, as regardless of graph topology, agents with belief strength 4 or higher quickly adopt a

stronger belief of 6 from the message, and agents with belief strength of 3 eventually update

after enough messages reach them.

Discussion

From our in-silico experiments, it is clear that the three types of social contagion affect popula-

tions differently given the same initial conditions and beliefs to spread. We were able to show,

Table 4. Probabilities of agents with belief bu having a strongly contagious DCC path to it from an institutional agent.

(τ = 1) bu = 0 bu = 1 bu = 2 bu = 3 bu = 4 bu = 5 bu = 6

ER 0.91 0.9 0.97 0.95 1.0 1.0 1.0

WS 0.51 0.56 0.59 0.7 0.64 0.62 1.0

BA 0.73 0.66 0.66 0.75 0.63 0.75 1.0

MAG 0.13 0.2 0.37 0.54 0.8 1.0 1.0

(τ = 2) bu = 0 bu = 1 bu = 2 bu = 3 bu = 4 bu = 5 bu = 6

ER 0.98 0.99 0.97 1.0 1.0 1.0 1.0

WS 0.65 0.8 0.76 0.72 0.76 0.81 1.0

BA 0.84 0.89 0.84 0.82 0.89 0.88 1.0

MAG 0.29 0.29 0.45 0.84 0.99 1.0 1.0

Proportion of 100 random graphs (N = 500) with at least one path leading from the institutional agent i to a randomly selected node u with belief strength bu, where

each agent v in the path has belief strength |bv − bmj|�τ, and bmj = 6.

https://doi.org/10.1371/journal.pone.0261811.t004
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as predicted, that at the individual level, simple and proportional threshold contagion methods

change agent belief strengths in a manner that does not depend on what they were believing

previously. In the single and split message set conditions, many agents’ belief strengths were

able to be swayed from value-to-value regardless of their initial belief. Thus, these contagion

models do not capture the cognitive phenomena that motivated our experiments.

On the other hand, our simple individual cognitive contagion and cascade models also per-

formed as expected. The results were fairly robust across several graph topologies. In the single
and split message set conditions, most agents following the DCC function did not change their

belief strength over time. This fits the underlying social theory because the messages were too

far from what agents initially believed, so not updating their beliefs accurately models the

defensive or entrenching effects observed when people are exposed to identity-related beliefs

that they do not agree with [23, 31]. The only message set condition that was able to sway the

entire population in the cognitive cascade condition was the gradual set.

The POD model with DCC also appears to capture population-level trends in opinion data

that originally motivated our study. Results match the partisan polarization phenomena being

observed [6–9, 29], as agents who only update their belief strengths in this manner are highly

unlikely to be swayed by belief strengths that are too far from theirs. Once swayed in one direc-

tion or another, our agents could not adopt significantly differing belief strengths without

being nudged along. Moreover, our results appear convergent with results from emerging

work that use ABM with similar polar belief assumptions. Sikder et al. demonstrate in their

ABM of biased agents—those only accepting congruent information—that they engender a

mix of final opinions among the agents in a manner that appears robust against graph topology

[72]. This result also seems to be in line with work on polarization which argues that having

biased agents is key to bringing about polarized beliefs, regardless of homophilic network

structure [75–77]. Though, our results are convergent under a different model: the cited works

employ typical social contagion models rather than one driven by an institutional spreader

leading to cascades, as ours does. The questions asked in the cited works could also be asked of

cascading contagion models in future study.

Given these similarities in results, even our very simple model may be able to lend insight

into potential ways to deal with spread of conspiracy beliefs—though we in no way mean for

these to be taken as policy recommendations. Our model and experiments would need to be

modified and parameterized to fit a given narrative spread scenario in order to be grounded

enough to draw conclusions from. This may be appropriate for a follow-up study which applies

this model, with more detail, to the spread of a COVID-related belief such as belief in mask-

wearing.

Our analysis revealed that the three most important factors in swaying any agent’s belief

were (1) whether or not an agent is exposed to a message, (2) number of exposures, and (3) the

difference between prior agent beliefs and those expressed in the message. Even if (1) and (2)

are met, as in some attempts to debunk misinformation [5], (3) would prevent staunch con-

spiracy believers from changing beliefs if exposed to a contradictory message. Some analyses

attempt to focus on the network structure [2, 16, 99]—i.e. (1) and (2)—without acknowledging

that individual psychology is just as important—as in (3). Our model, which captures both net-

work effects and individual effects, therefore gives novel insights into a more holistic interven-

tion. Our analysis of results showed that for a highly homophilic network (a trait present in

real social networks), certain messages have a slim chance of reaching those with certain

beliefs. These theoretical results were confirmed in supplemental experiments (results in S15–

S18 Figs) where graphs with high homophily and low node degree yielded smaller cascades

and less contagion—even with the DCC function. The interplay between network structure

and cognitive function (e.g. “stubbornness”) on cascade results could benefit from further
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study, as it likely has empirical analogues that are crucial to understanding reality. Any inter-

vention would need to take these factors into account, and imagine what types of messages

would be most likely to reach certain populations.

Moreover, on the individual level, an intervention under our model would have to gradu-

ally nudge the agent away from an undesirable belief strength. This brings the individual into

the debate over interventions. The only message sets from our experiments that successfully

swayed all agents in the population were those which gradually eased agents from one belief

polarity to another. It should be noted that belief change tactics aimed at individuals’ psy-

chology are already widely considered and used by private and public institutions to manipu-

late target population beliefs, but not yet in the case of domestic misinformation [33, 100,

101]. The ethics of these interventions—often targeted at anti-radicalization, voter manipula-

tion, or behavior change for economic gain—are clearly fraught. This begs more analysis of

the ethics of intervention techniques, but such an endeavor is easily outside the scope of this

report.

Limitations and future work

Our models are in their early stages of development. While the motivation for models of cogni-

tive cascades exists, there are several steps that still must be taken in order to flesh the model

out further. For instance, in the social science literature that backs misinformation and iden-

tity-based reasoning effects, there is a great deal of evidence backing belief effects that rely on

in/out-group effects [14, 22, 84], trust in message sources [10], more nuanced belief structures

[31, 102–104], or effects of emotion on social contagion [14, 32]. These theories and findings

could motivate more complex agent cognitive models than either the simple sigmoid distance

function, or the singular proposition, we used in our model.

Our cognitive cascade model could also be made more complex in ways that would lend

themselves to interesting analysis. For one, there could be added complexity when it comes to

agent prior beliefs, or contagion functions. For the former, agent priors could be drawn from

distributions other than the uniform distribution. Concerning the latter, parameters in the

contagion functions themselves could be distributed to lead to varying levels of “gullible” ver-

sus “stubborn” agents—rendering the graph even more heterogenous. These techniques are

common in opinion diffusion models [15]. Prior agent beliefs or contagion function parame-

ters could otherwise be initialized from empirical data.

Moreover, there are potential model features that could be added to introduce a dynamic

quality to the structure of the network. Some diffusion models we reviewed incorporate the

ability for agents to switch information sources [72] and neighbor connections [81] based on

the degree of agreement between their modeled beliefs. In media studies, however, there is no

clear consensus on the behavior of individuals when it comes to choosing or switching media

sources [52, 57]. Media studies dub consumer preference for bias-confirming media “selective

exposure,” and studies have shown both evidence of its existence [53–55] (often with small

effects), and against it [8, 52, 56]. A more thorough synthesis of this literature could lead to

another model layer that captures meaningful aspects of reality.

Further, a more rigorous application of the model to empirical population-level belief

changes would help in verifying the legitimacy of the model’s results. Using both real network

structures, such as snapshots of social media networks, and real institutional message data,

such as tweets or posts from notable figures, would be steps forward for this goal. While ABMs

have been used to model spread of misinformation [16], social media messages [99, 105], and

value-laden topics [106], it appears that few have verified outcomes against ground truth.

Among other reasons, this is likely due to the fact that such data seems difficult to obtain.
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There is great promise for computational social scientific tools like ABM to leverage

computational power to tackle complex social problems previously limited to thought experi-

ments and small experiments—such as modeling misinformation spread. However, if the

promise is to be fulfilled, more work must be done to motivate and empirically ground both

individual agent models, and global network structures and population models. But this work

is a step towards establishing fruitful collaboration between the computational modeling com-

munity and social scientists in order to tackle one of the greatest political challenges of our

time.

Conclusion

This paper lays out what we call a cognitive cascade model: a combination of an individual

cognitive contagion model for identity-related belief spread embedded in a Public Opinion Dif-
fusion (POD) model in which external, institutional agents (modeling media companies) dic-

tate influence of internal agent beliefs. The cognitive cascade model, by giving each individual

agent a cognitive model to direct belief update, allows a level of expressiveness above existing

simple and proportional threshold contagion models typically used in network cascade analy-

sis. Moreover, adding institutional agents to drive belief cascades in an opinion diffusion

model using various network topologies adds insights from network science to typical opinion

diffusion studies. After proposing the cognitive cascade model, we compared potential cogni-

tive contagion functions to arrive at one capturing misinformation spread—what we called a

Defensive Cognitive Contagion (DCC) function—which adequately captured the cognitive dis-

sonance and exposure effects referenced in empirical literature. This allowed us to run simula-

tion models of networked populations of agents whose belief strength in a given proposition is

influenced by an external agent. Across several graph topologies, keeping the cascade model

consistent, we compared simulation results for cascades using simple contagion, proportional

threshold contagion, and our DCC function. Analysis of these results revealed that our DCC

function is much less sensitive to graph topology than the other cascade methods. It showed

that the crucial factor in belief change was not only who surrounds a given agent but also the

content of any message and its relation to the agent’s prior belief. We concluded by briefly

motivating potential interventions to correct misinformation and conspiracy beliefs that

address the individual and the network holistically, rather than only the network they are

embedded in.

Supporting information

S1 Text. Process for choosing contagion parameters. An outline of our decision process for

choosing simple and proportional threshold parameter values of p = 0.15 and γ = 0.35 for in-

silico experiments.

(TEX)

S2 Text. Process for testing different belief resolutions and analysis of results. An outline

of our process for setting up and running versions of our main contagion experiments with

different belief resolutions (2, 3, 5, 9, 16, 32, and 64), including an analysis of some of the

results.

(TEX)

S3 Text. Process for comparing contagion results with differing simulation run counts. An

outline of our process for setting up, running, and analyzing versions of our main contagion

experiments with different simulation run counts (10, 50, and 100).

(TEX)
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S4 Text. Process for running correlation analyses between contagion results. An in-depth

explanation of the correlation measures we used to measure similarity between contagion

result data.

(TEX)

S1 Table. Results of parameter sweeping simple contagion value p. A table of timestep t at

which simple contagion with probability p spread b = 6 to at least 90% of agents in different

graph topologies (at a belief resolution of 7). ; indicates the contagion never reached at least

90% of agents.

(TEX)

S2 Table. Correlation test results with low scores between run count combinations. Corre-

lation tests that yielded low scores for certain experimental combinations of graph type and

message set.

(TEX)

S1 Fig. Proportional threshold contagion variance on WS small world networks. Propor-

tional threshold contagion results over ten iterations of a Watts-Strogatz small world network

with N = 500, initial neighbors k = 5, and rewiring chance ρ = 0.5. Graphs show the mean per-

cent of agents who believe b 2 B, color coded by b value, plotted against time step. Shaded por-

tions show variance over iterations.

(PNG)

S2 Fig. Proportional threshold contagion variance on BA preferential attachment net-

works. Proportional threshold contagion results over ten iterations of a Barabási-Albert pref-

erential attachment network with N = 500, and added edges m = 3. Graphs show the mean

percent of agents who believe b 2 B, color coded by b value, plotted against time step. Shaded

portions show variance over iterations.

(PNG)

S3 Fig. Additional results from single message set contagion with linear cognitive conta-

gion functions. The single message set on an ER random graph, N = 250, ρ = 0.05, for agents

updating their beliefs based on the inverse linear cognitive contagion function in Eq (5) in the

main paper. Graphs display percent of agents who believe B with strength b over time. The left

graph shows agents parameterized to be “gullible” (γ = 1, α = 0); the middle shows “normal”

agents (γ = 1, α = 1), and the right, “stubborn” agents (γ = 10, α = 20).

(PNG)

S4 Fig. Additional results from single message set contagion with threshold cognitive con-

tagion functions. The single message set on an ER random graph, N = 250, ρ = 0.05, for agents

updating their beliefs based on the threshold cognitive contagion function in Eq (2) in the

main paper. Graphs display percent of agents who believe B with strength b over time. The left

graph shows agents parameterized to be “gullible” (γ = 6); the middle shows “normal” agents

(γ = 3); and the right, “stubborn” agents (γ = 1).

(PNG)

S5 Fig. Additional results from single message set contagion with sigmoid cognitive conta-

gion functions. The single message set on an ER random graph, N = 250, ρ = 0.05, for agents

updating their beliefs based on the sigmoid cognitive contagion function in Eq (6) in the main

paper. Graphs display percent of agents who believe B with strength b over time. The left graph

shows agents parameterized to be “gullible” (α = 1, γ = 7), the middle shows “normal” agents
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(α = 2, γ = 3), and the right, “stubborn” agents (α = 4, γ = 2).

(PNG)

S6 Fig. Additional results from gradual message set contagion with linear cognitive conta-

gion functions. The gradual message set on an ER random graph, N = 250, ρ = 0.05, for agents

updating their beliefs based on the inverse linear cognitive contagion function in Eq (5) in the

main paper. Graphs display percent of agents who believe B with strength b over time. The left

graph shows agents parameterized to be “gullible” (γ = 1, α = 0); the middle shows “normal”

agents (γ = 1, α = 1), and the right, “stubborn” agents (γ = 10, α = 20).

(PNG)

S7 Fig. Additional results from gradual message set contagion with threshold cognitive

contagion functions. The gradual message set on an ER random graph, N = 250, ρ = 0.05, for

agents updating their beliefs based on the threshold cognitive contagion function in Eq (2) in

the main paper. Graphs display percent of agents who believe B with strength b over time. The

left graph shows agents parameterized to be “gullible” (γ = 6); the middle shows “normal”

agents (γ = 3); and the right, “stubborn” agents (γ = 1).

(PNG)

S8 Fig. Additional results from gradual message set contagion with sigmoid cognitive con-

tagion functions. The gradual message set on an ER random graph, N = 250, ρ = 0.05, for

agents updating their beliefs based on the sigmoid cognitive contagion function in Eq (6) in

the main paper. Graphs display percent of agents who believe B with strength b over time. The

left graph shows agents parameterized to be “gullible” (α = 1, γ = 7), the middle shows “nor-

mal” agents (α = 2, γ = 3), and the right, “stubborn” agents (α = 4, γ = 2).

(PNG)

S9 Fig. Contagion result comparisons using a belief resolution of 2. The single, split, and

gradual message sets on a Barabási-Albert preferential attachment graph, N = 500, and added

edges m = 3. Graphs display percent of agents who believe some b in

B ¼ fb; 0 � b � 2g; b 2 Z.

(PNG)

S10 Fig. Contagion result comparisons using a belief resolution of 3. The single, split, and

gradual message sets on a Barabási-Albert preferential attachment graph, N = 500, and added

edges m = 3. Graphs display percent of agents who believe some b in

B ¼ fb; 0 � b � 3g; b 2 Z.

(PNG)

S11 Fig. Contagion result comparisons using a belief resolution of 5. The single, split, and

gradual message sets on a Barabási-Albert preferential attachment graph, N = 500, and added

edges m = 3. Graphs display percent of agents who believe some b in

B ¼ fb; 0 � b � 5g; b 2 Z.

(PNG)

S12 Fig. Contagion result comparisons using a belief resolution of 9. The single, split, and

gradual message sets on a Barabási-Albert preferential attachment graph, N = 500, and added

edges m = 3. Graphs display percent of agents who believe some b in

B ¼ fb; 0 � b � 9g; b 2 Z.

(PNG)

S13 Fig. Contagion result comparisons using a belief resolution of 16. The single, split, and

gradual message sets on a Barabási-Albert preferential attachment graph, N = 500, and added
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edges m = 3. Graphs display percent of agents who believe some b in

B ¼ fb; 0 � b � 16g; b 2 Z.

(PNG)

S14 Fig. Contagion result comparisons on BA preferential attachment networks using a

belief resolution of 32. The single, split, and gradual message sets on a Barabási-Albert prefer-

ential attachment graph, N = 500, and added edges m = 3. Graphs display percent of agents

who believe some b in B ¼ fb; 0 � b � 32g; b 2 Z.

(PNG)

S15 Fig. Contagion result comparisons on MAG networks using a belief resolution of 32.

The single, split, and gradual message sets on a Multiplicative Attribute Graph, N = 500, and Θ
generated from the same formula in Eq (8) in the main paper—i.e. one that brings about high

levels of homophily so agents would rarely connect to agents more than 3 belief values away

from them. Graphs display percent of agents who believe some b in

B ¼ fb; 0 � b � 32g; b 2 Z.

(PNG)

S16 Fig. Contagion result comparisons on WS small world networks using a belief resolu-

tion of 64. The single, split, and gradual message sets on a Watts-Strogatz small world network

with N = 500, initial neighbors k = 5, and rewiring chance ρ = 0.5. Graphs display percent of

agents who believe some b in B ¼ fb; 0 � b � 64g; b 2 Z.

(PNG)

S17 Fig. Contagion result comparisons on BA preferential attachment networks using a

belief resolution of 64. The single, split, and gradual message sets on a Barabási-Albert prefer-

ential attachment graph, N = 500, and added edges m = 3. Graphs display percent of agents

who believe some b in B ¼ fb; 0 � b � 64g; b 2 Z.

(PNG)

S18 Fig. Contagion result comparisons on MAG networks using a belief resolution of 64.

The single, split, and gradual message sets on a Multiplicative Attribute Graph, N = 500, and Θ
generated from the same formula in Eq (8) in the main paper—i.e. one that brings about high

levels of homophily so agents would rarely connect to agents more than 3 belief values away

from them. Graphs display percent of agents who believe some b in

B ¼ fb; 0 � b � 64g; b 2 Z.

(PNG)

S19 Fig. Simple and proportional threshold contagion results on ER random networks.

Simple (top row) and proportional threshold (bottom row) contagion on ER random networks

with N = 500, and connection chance ρ = 0.05. Graphs show the percent of agents who believe

B with strength b over time.

(PNG)

S20 Fig. Simple and proportional threshold contagion results on WS small world net-

works. Simple (top row) and complex (bottom row) contagion on a Watts-Strogatz small

world network with N = 500, initial neighbors k = 5, and rewiring chance ρ = 0.5. Graphs show

the percent of agents who believe B with strength b over time. Asterisks (�) denote these conta-

gions had significant variance over simulation iterations.

(PNG)

S21 Fig. Simple and proportional threshold contagion results on BA preferential attach-

ment networks. Simple (top row) and proportional threshold (bottom row) contagion on

PLOS ONE Cognitive cascades: How to model (and potentially counter) the spread of fake news

PLOS ONE | https://doi.org/10.1371/journal.pone.0261811 January 7, 2022 27 / 32

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261811.s020
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261811.s021
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261811.s022
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261811.s023
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261811.s024
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261811.s025
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261811.s026
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261811.s027
https://doi.org/10.1371/journal.pone.0261811


Barabási-Albert preferential attachment networks with N = 500, and added edges m = 3.

Graphs show the percent of agents who believe B with strength b over time. Asterisks (�)

denote these contagions had significant variance over simulation iterations.

(PNG)

S22 Fig. Simple and proportional threshold contagion results on homophilic MAG net-

works. Simple (top row) and proportional threshold (bottom row) contagion on a homophilic

MAG networks with N = 500, and Θb detailed in Eq (8). Graphs show the percent of agents

who believe B with strength b over time.

(PNG)

S23 Fig. Graphical contagion results for low correlation combinations across simulation

run counts. Graphical results of contagion cascades across 10, 50, and 100 simulation runs for

specific graph-message set combinations. Results displayed are those which yielded the lowest

correlation scores between simulation run counts.

(PNG)
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