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A B S T R A C T   

Phase field theory for fracture is developed at large strains with an emphasis on a correct 
introduction of surface stresses at nanoscale. This is achieved by multiplying the cohesion and 
gradient energies by the local ratio of the crack surface areas in the deformed and undeformed 
configurations and with the gradient energy in terms of the gradient of the order parameter in the 
reference configuration. This results in an expression for the surface stresses which is consistent 
with the sharp surface approach. Namely, the structural part of the Cauchy surface stress rep
resents an isotropic biaxial tension, with the magnitude of a force per unit length equal to the 
surface energy. The surface stresses are a result of the geometric nonlinearities, even when strains 
are infinitesimal. They make multiple contributions to the Ginzburg-Landau equation for damage 
evolution, both in the deformed and undeformed configurations. Important connections between 
material parameters are obtained using an analytical solution for two separating surfaces, as well 
as an analysis of the stress-strain curves for homogeneous tension for different degradation and 
interpolation functions. A complete system of equations is presented in the deformed and un
deformed configurations. All the nanoscale phase field parameters are obtained utilizing the 
existing first principle simulations for the uniaxial tension of Si crystal in the [100] and [111] 
directions.   

1. Introduction 

Phase field method for fracture. The Ginzburg-Landau or the phase field method is a powerful approach for simulation of complex 
microstructures. The phase field approaches have some advantages. In particular, they provide the possibility of describing the 
evolution of an arbitrary and complex evolving crack geometry without requiring a priori information or additional computational 
efforts to track crack paths. Interaction with discrete (precipitates, different interfaces, and inclusions) and continuous heterogeneities 
does not require additional computational efforts either (Jafarzadeh et al., 2019b). A phase field model is commonly associated with an 
order parameter. There are different definitions for the order parameter, depending on the discipline and the purpose. We refer to the 
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order parameter as a thermodynamic variable which describes some type of material instability/stability during microstructure 
evolutions such as fracture (Amor et al., 2009; Borden et al., 2016; Bourdin et al., 2011; Farrahi et al., 2018; Hakim and Karma, 2009; 
Hesch and Weinberg, 2014; Jafarzadeh et al., 2019a; Jafarzadeh and Mansoori, 2020; Kuhn and Müller, 2010; Levitas et al., 2011; 
Levitas et al., 2018; Miehe et al., 2016; Miehe and Schänzel, 2014; Wang et al., 2002; Weinberg and Hesch, 2017), martensitic phase 
transformations (Levitas, 2013a, b; Levitas, 2014; Levitas and Javanbakht, 2010; Levitas and Warren, 2016; Rahbar et al., 2021), 
damage (Voyiadjis and Mozaffari, 2013), twinning (Amirian et al., 2022a,bAmirian et al., 2022a,b), etc. For the martensitic phase 
transformations (which is a first-order, displacive, and diffusionless transformation), the order parameter is related to one of the 
following: (a) concentrations of martensitic variants, (b) transformation strain tensor, (c) some components of the total strain tensor, or 
(d) atomic shuffles (intracellular displacements). Fracture is also associated with the displacement of some atoms, like the phase 
transformation. However, in the context of fracture, certain displacement of atomic planes leads to atomic bond breaking. Thus, an 
order parameter φ is employed to describe the stability of the position of atomic planes during the separation. The intact material, 
which is the solid state, corresponds to φ = 0; the completely broken (damaged) state has φ = 1; and within each crack surface, which 
has a small thickness, the order parameter continuously varies from 1 to 0. The order parameter ϕ describes the bond breaking, and to 
keep this feature, a single-well potential (Bourdin et al., 2011; Kuhn and Müller, 2010; Levitas et al., 2011; Levitas et al., 2018; Miehe 
et al., 2016; Wang et al., 2002) is required rather than the double-well one, which treats the crack propagation as a phase trans
formation from solid to gas (Farrahi et al., 2018; Jafarzadeh et al., 2019a). Note that, similar to phase transformation, the order 
parameter in fracture can also be related to eigen strain tensor (Jafarzadeh and Mansoori, 2020) which is not the case here. 

Surface stresses within the phase field approach. The thickness of external surfaces and crack tip radius are of the order of magnitude of 
few nanometers. Surface tension, been found to play significant roles in the determination of mechanical properties of nanosized 
materials and structures (Li and Mi, 2019). Thus, the surface stresses should play an essential role in nanoscale simulations of 
nucleation and propagation of cracks. It is well known that isotropic biaxial stresses with force per unit length T (Porter et al., 2009) act 
on each material interface or surface. For liquid-liquid and liquid-gas interfaces, the surface stresses are independent of deformation 
because they do not support elastic stresses. The force per unit length for these interfaces is equal to the surface energy, T=γ. This leads 
to a jump in the normal stresses across the interface with the magnitude of 2γ/r, where r is the mean interface radius. However, for a 
solid surface or interface, the surface stresses have the deformation-dependent part, which can be either tensile or compressive and is 
related to the surface elasticity. 

The Griffith criterion for the crack propagation is based on the surface energy (Griffith, 1921) and does not account for the surface 
stresses. However, sharp corners and a sharp crack tip are subjected to large surface stresses. Since it is difficult to measure the surface 
stresses, there is not a lot of quantitative predictions for the effect of the surface stresses on the fracture. In the sharp surface approach, 
the surface stress tensor (with a dimension of force per unit length, not area) is related to the surface energy by the equation σs = γIs +

∂γ/∂εs, where εs is the surface strain tensor and Is is a two-dimensional surface unit tensor (Cammarata and Sieradzki, 1994). This 
equation is usually used (Hu et al., 2018; Li and Mi, 2019; Li and Wang, 2015; Ou et al., 2008; Wang and Li, 2013) to consider the effect 
of the surface stresses on fracture behavior using the linear constitutive law ∂γ/∂εs=Cs:εs, where Cs is the surface elastic moduli tensor. 
The first part of the surface stresses γIs is the structural part which is like that in liquids and gases and the second term ∂γ/∂εs is the 
strain-dependent part of the surface stresses. The first (elastic) part of the surface stresses can be neglected in the small strain theory 
(Ou et al., 2008; Wang and Li, 2013) because it is shown in atomistic simulations that the components of Cs are of the same order of 
magnitude as γ (Li and Wang, 2015). Furthermore, the material parameters for constituting the surface stresses are not known well. 
Another problem is uncertainty as to whether strong heterogeneity across the surface fields of properties, strains, and stresses can be 
formalized in terms of the resultant stresses without the moments (Levitas, 2014). However, in the phase field approach, the elastic 
part of the surface stresses comes directly from the coupled solution of the Ginzburg-Landau and elasticity equations. Thus, the elastic 
stresses localized inside the diffuse (i.e., finite-width) surface present and consider the variation of elastic properties across the surface, 
the finite surface width, and the heterogeneity of stresses across and along the surface. This includes a description of the 
strain-dependent surface stresses with much more details than any sharp surface model. Therefore, we only need to include the 
structural contribution to the surface stresses, which is our main goal in this paper. Similar problem formulation was suggested in 
Levitas and Javanbakht, 2010; Levitas, 2013b; Levitas, 2014 for the martensitic phase transformations. Thus, we will focus on the 
structural contribution to the surface stresses only. 

Wheeler and McFadden, 1997 suggested a general treatment of the interfacial stresses for anisotropic diffuse phase interfaces 
(including anisotropic interface energy and tension). They utilized the total energy per unit current volume and the gradient of the 
order parameter in the deformed state. Such assumptions and application of the principle of least action (or Noether’s theorem) 
resulted in an automatic appearance of the interfacial stresses. Similar models, but coupled to mechanics, were developed in Anderson 
et al., 2001; Lowengrub and Truskinovsky, 1998. As it was shown in Levitas, 2013b; Levitas, 2014, stresses obtained in these works 
were correct for the thermodynamic equilibrium condition and isotropic interfaces. However, they contained an additional hydrostatic 
pressure in the bulk material for propagating interfaces; this is contradictory because the stresses were not localized at the interface. 
Note that Hakim and Karma, 2009 applied the Noether’s theorem-based approach to fracture, in which the energy and the gradient of 
the order parameter were determined in the reference configuration. Such a formulation did not lead to any surface stress, highlighting 
the necessity of the utilization of the current configuration for such approaches. The most advanced model for the interfacial stresses 
during phase transformations is developed in Levitas, 2013b; Levitas and Javanbakht, 2010) for small strains and in Levitas, 2014, 
Levitas and Warren, 2016 for large strains. The approach in Levitas, 2013b; Levitas, 2014; Levitas and Javanbakht, 2010; Levitas and 
Warren, 2016 utilizes the gradient of the order parameter in the current configuration, and the gradient and the double-well energy are 
defined per unit current volume. A detailed literature review and a comparison of different approaches for the introduction of the 
interfacial stresses for phase interfaces can be found in Levitas, 2014; Levitas and Warren, 2016. 
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The only phase field approaches to fracture that include the surface stresses were recently developed in Levitas et al., 2018 and 
Jafarzadeh and Mansoori (2020) for small strains. The approach in Jafarzadeh and Mansoori (2020) is a direct application of the 
approach for phase transformations from Levitas (2013b) to fracture with double-well potential. However, it was shown in Levitas 
et al., 2018 that the approaches to the interface stresses developed for phase transformations and based on energies per unit deformed 
volume could not be applied to the fracture problem if single-well potential is used. This is because, within such an approach, a space 
between the crack surfaces also possesses a cohesion energy, which violates an energy balance; thus, a new approach is required. Such 
an approach was developed in Levitas et al., 2018. It also includes geometric nonlinearities even within the small strain formulation: 
the cohesion and the gradient energies are determined per unit volume in the reference configuration but are multiplied by the ratio of 
the current to the initial crack surface area, dS/dS0. In the reference configuration, the space between the crack surfaces does not 
appear and is not energetically penalized, resolving the contradiction above. At the same time, a thermodynamic treatment of the 
potential with the ratio of the current to the initial crack surface area results in the desired expression for the structural part of the 
surface stresses. The general theory in Levitas et al., 2018 is illustrated by the finite element solutions of some model problems. 

In summary, we are not aware of any phase field model which includes the surface stresses during fracture at large strains. As it was 
mentioned, the surface stresses are incorporated in Levitas et al., 2018 by introducing some geometric nonlinearities. Thus, a strict 
treatment of the surface stresses requires a thermodynamically consistent finite strain formulation. Also, at the nanoscale, the material 
is exposed to large strain before and during fracture. Some of the recently developed phase field models have incorporated a large 
strain formulation for fracture (Borden et al., 2016; Hesch and Weinberg, 2014; Miehe et al., 2016; Miehe and Schänzel, 2014; 
Weinberg and Hesch, 2017). However, these papers do not include the surface stresses and have some drawbacks, which will be 
discussed below. 

Goals and outlook. Our goal in this paper is to develop a general thermodynamically consistent large-strain phase field approach to 
fracture which includes the surface stresses. We will use the main ideas for including the surface stresses from Levitas et al., 2018 for 
the small-strain formulation and will advance and incorporate them into a large-strain approach. Thus, the relationship between the 
current model and the one in Levitas et al., 2018 is similar to the relationship between small (Levitas, 2013b) and large (Levitas, 2014) 
strain formulations for the martensitic phase transformations with the interfacial stresses. 

Below is the main content of the paper. In Section 2, the integral laws of thermodynamics are presented and localized in the 
undeformed configuration. A generalized thermodynamic surface force which is conjugated to the order parameter is introduced at the 
external surface. This allows a stricter treatment of the gradient-type materials. Then, the expression for stresses and the driving force 
for the evolution of the order parameter for damage are derived. In Section 3, boundary conditions for the order parameter are 
presented in both the undeformed and deformed states. The structure of the free energy is suggested in Section 4, which leads to the 
correct expression for the surface stresses. Thus, two terms which determine the surface energy, the cohesive and the isotropic gradient 
energies, are multiplied by the ratio of the current to the initial crack surface area, dS/dS0. This defines the surface energy per unit 
current area, similar to the sharp surface approach with the surface tension (Porter et al., 2009). It is shown in Section 5, where the 
corresponding expressions for the first Piola-Kirchhoff and Cauchy stress tensors are derived, that each consists of the elastic and 
structural parts; the structural part appears due to the multiplier dS/dS0 in the expression for energy. It is shown that the structural part 
represents a biaxial tension which its magnitude is equal to the surface energy, reproducing a proper expression for the surface stresses. 
Detailed expressions for the Ginzburg-Landau equation for the evolution of the order parameter are derived in Section 6. Remarkably, 
the elastic and surface stresses both explicitly contribute to the evolution equation. In Section 7, a new family of interpolation functions 
for the cohesive energy is introduced so that the damage starts at finite strains with a significant jump in elastic moduli. An additional 
requirement for the interpolation function is introduced to ensure a finite width of the damage zone within the crack surfaces. Cor
responding conditions and the interpolation function are found. A flexible degradation function with a new parameter n, which is used 
to calibrate the shape of the stress-strain curve for homogeneous tension, is also introduced. This allows for an improved description of 
the local stress-stress curve at the nanoscale when it is known from the experiment or atomistic simulations. Equilibrium stress-strain 
curves for any pair of work conjugates are shown in Section 8. In Section 9, the stationary Ginzburg-Landau equation is solved for a 
static crack for the chosen interpolation function. Section 10 includes an analytical expression of the surface stresses for the current 
model. A complete system of equations is formulated in Section 11. All the phase field parameters are obtained utilizing the existing 
first principle simulation results for an uniaxial tension of Si crystal in the [100] and [111] directions in Section 12. Section 13 contains 
the concluding remarks and future outlooks. 

Multiplication and the inner product of two second-order tensors A = {Aij} and B = {Bij} are denoted by A ⋅ B = {AijBjk} and A : B 
= AijBji, respectively; a ⊗ b = {aibj} stands for a dyadic product of vectors a = {ai} and b = {bj}. The norm of vector a is designated as 
|a| =

̅̅̅̅̅̅̅̅aiai
√ ; 0 and I are second-order null and unit tensors; and AT, A− 1, det A, and Ȧ are the transpose, inverse, determinant, and 

material time derivatives of A, respectively. ∇∘ and ∇ are the gradients with respect to the undeformed and deformed configurations, 
respectively; ∇2

∘ = ∇∘ ⋅ ∇∘ is the Laplacian operation in the undeformed configuration; and := stands for equality by definition. 

2. Thermodynamic treatment 

In particle kinematics, the path line of each particle in a continuous media is specifically described by the vector r. Each material 
point is in the undeformed configuration (r=r0) at the reference time (t=t0) and in the deformed configuration r at the current time t, i. 
e., r=r(r0,t). The motion of the material point is described by the deformation gradient tensor F = ∇◦ r = I + ∇◦ r, where u=r− r0 is the 
displacement vector. 

The thermodynamic laws are presented below for an arbitrary volume V0, which is cut from an actual body, with external surfaces 
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A0 that include cracks. Crack surfaces do not refer to discontinuities in the displacement field but regions with a sharp variation of the 
order parameter from 0 to 1. Elastic properties for φ = 1 are zero, which reproduces completely damaged (empty) region. The global 
form of the first law of thermodynamics is presented as: 

∫

A0

(p0 ⋅ v − h0 ⋅ n0)dA0 +

∫

A0

G0ϕ̇ ⋅ n0dA0 +

∫

V0

ρ0(f ⋅ v + r)dV0 =
d
dt

∫

V0

ρ0(U + 0.5v ⋅ v)dV0. (1) 

Here p0=P⋅n0 is the traction vector acting on the undeformed area; P is the first nonsymmetric Piola-Kirchhoff stress tensor, which 
is defined based on the undeformed configuration; and n0 is the unit outward normal to the undeformed surface. v = u̇ is the material 
velocity and h0 is the heat flux per unit undeformed area. U, f, and r are internal energy, body force vector and the heat supply, 
respectively, all per unit mass. The generalized force G0⋅n0 is introduced at the undeformed surface, whose conjugate to produce work 
is the rate of change of the order parameter φ̇. Without G0, the terms which appear due to the dependence of the thermodynamic free 
energy on the gradient of the order parameter ∇∘φ are not balanced for an arbitrary volume. Explicit expression for G0 (see Eq. (12)) 
will be derived using thermodynamic procedure, which will confirm that without G0 energy is independent of ∇∘φ. In approach by 
Fried and Gurtin, 1993, 1994; Gurtin, 1996, this force is called micro-stress vector and an additional micro-force balance law is 
postulated, which is not needed in our approach. The rate of the total entropy production St presents the second law of thermodynamics 
as a result of combining the Clausius-Duhem inequality and the global entropy balance for the entire volume V0: 

St :=
d
dt

∫

V0

ρ0sdV0 −

∫

V0

ρ0
r
θ

dV0 +

∫

A0

h0

θ
⋅ n0dA0 ≥ 0, (2) 

where s is the entropy per unit mass, and θ>0 is temperature. The Gauss theorem is utilized to transform the surface integrals into 
the integrals over volume and, after some simplification, the first and second laws of thermodynamics are obtained as: 

∫

V0

∫
(
P : ḞT

− ρ0U̇ − ∇∘ ⋅ h0 + ρ0r + ∇∘ ⋅ (G0ϕ̇) + (∇∘ ⋅ P + ρ0f − ρ0v̇) ⋅ v
)
dV0 = 0; (3)  

St =

∫

V0

(

ρ0 ṡ − ρ0
r
θ

dV0 + ∇∘ ⋅
h0

θ

)

dV0 ≥ 0. (4) 

According to the principle of material frame-indifference, Eq. (3) should be satisfied independent of the velocity of the observer v0 
with respect to a fixed frame. Thus, replacing the velocity v with v− v0 should not affect the energy balance. This results in ∇∘ ⋅ P +ρ0f 
− ρ0v̇ = 0 as the equation of motion. We see that the generalized surface force does not change the equation of motion. Shrinking the 
arbitrary volume to the infinitesimal volume transforms the global Eq. (3) and Eq. (4) to their local forms: 

P : ḞT
− ρ0U̇ − ∇∘ ⋅ h0 + ρ0r + ∇∘ ⋅ (G0ϕ̇) = 0; (5)  

ρ0S̃t := ρ0 ṡ − ρ0
r
θ

+ ∇∘ ⋅
h0

θ
= ρ0 ṡ − ρ0

r
θ

+
1
θ
∇∘ ⋅ h0 −

1
θ2∇∘θ ⋅ h0 ≥ 0. (6) 

S̃t is the rate of entropy production per unit mass. The local energy dissipation rate per unit mass is defined as: 

ρ0D̃ := ρ0θS̃t = P : ḞT
− ρ0U̇ + ρ0θṡ + ∇∘ ⋅ (G0φ̇) −

1
θ
∇∘θ ⋅ h0 ≥ 0, (7)  

where we used Eq. (5) to resolve − ∇∘ ⋅ h0 + ρ0r. Splitting Eq. (7) into the mechanical and thermal parts leads to two more strong 
inequalities. One is Fourier’s inequality − 1

θ∇∘θ ⋅ h0 ≥ 0, and the other is the classical mechanical dissipation inequality with a new 
term at the end: 

ρ0D := P : ḞT
− ρ0U̇ + ρ0θṡ + ∇∘ ⋅ (G0φ̇) ≥ 0. (8) 

Transforming U = U(F, s,φ,∇∘φ) to ψ = U − θs = ψ(F, θ,φ,∇∘φ) leads to a more convenient form of (mechanical) dissipation 
inequality to manipulate with: 

ρ0D = P : ḞT
− ρ0ψ̇ − ρ0sθ̇ + ∇∘ ⋅ (G0ϕ̇) ≥ 0. (9) 

The last term is evaluated as 

∇∘ ⋅ (G0φ̇) = (∇∘ ⋅ G0)φ̇ + G0 ⋅ ∇∘φ̇ = (∇∘ ⋅ G0)φ̇ + G0⋅(∇∘φ)̇. (10) 

Substituting Eq. (10) into Eq. (9) and differentiating ψ with respect to all of its variables give: 

ρ0D =

(

P − ρ0
∂ψ
∂F

)

: ḞT
− ρ0

(

s +
∂ψ
∂θ

)

θ̇ −

(

ρ0
∂ψ
∂φ

− ∇∘ ⋅ G0

)

φ̇ +

(

G0 − ρ0
∂ψ

∂∇∘φ

)

⋅(∇∘φ)̇ ≥ 0. (11) 

By assuming that the dissipation rate depends only on φ̇, entropy s = − ∂ψ/∂θ; Eq. (12) as an explicit expression for the generalized 
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force; and Eq. (13) for the constitutive equations for the stress tensor, are obtained: 

G0 = ρ0
∂ψ

∂∇∘ϕ
; (12)  

P = ρ0
∂ψ
∂F

. (13) 

It can be assumed that the dissipation rate also depends on (∇∘φ)̇, and a dissipative contribution to the generalized force G0 may be 
added. Then, a traditional structure of the Ginzburg-Landau equation will not be obtained. Dissipative stresses such as viscosity can 
then be added in Eq. (13), as it was done for phase transformations in Levitas, 2013b; Levitas, 2014. However, we would like to focus 
on fracture as the only dissipation mechanism. Therefore, the only residual term in Eq. (11) is a product of the dissipative force per unit 
mass X conjugated to φ̇ as follows: 

ρ0D = ρ0Xϕ̇ ≥ 0; X := −
∂ψ
∂ϕ

+
1
ρ0

∇∘ ⋅
(

ρ0
∂ψ

∂∇∘ϕ

)

. (14) 

Eq. (14)2 is the driving force for the evolution of the order parameter φ. 

3. Boundary condition 

The generalized force at the external surface is assumed to be zero as a boundary condition, which is similar to the isolated 
boundary in the heat conduction problem: 

n0 ⋅ G0 = n0 ⋅ ρ0
∂ψ

∂∇∘ϕ
= 0. (15) 

Using Nanson’s equation dAn=dA0JF− T ⋅n0 (Lai et al., 2009), where the Jacobian J is defined traditionally as J := dV /dV0 = ρ0 /ρ 
= detF, the boundary condition in Eq. (15) can be expressed in the deformed configuration: 

n0 ⋅ G0dA0 = n0 ⋅ ρ0
∂ψ

∂∇∘ϕ
dA0 = J− 1n ⋅ F ⋅ ρ0

∂ψ
∂∇∘ϕ

dA =

n ⋅ F ⋅ ρ ∂ψ
∂∇∘ϕ

dA = n ⋅ F ⋅ F− 1 ⋅ ρ ∂ψ
∂∇ϕ

dA = n ⋅ ρ ∂ψ
∂∇ϕ

dA = n ⋅ GdA,
(16)  

where G := ρ∂ψ/∂∇φ is the generalized force conjugated to the order parameter at the surface in the deformed configuration and ∂ψ 
/∂∇∘φ = F− 1 ⋅ ∂ψ/∂∇φ was used for the last transformation. Finally, the boundary condition in the deformed configuration has the 

Fig. 1. a) Schematics of crack with the finite width surfaces described by the level surfaces of the order parameter φ=const with the distribution of 
the surface Cauchy stresses in the a) referenceconfigurationand b) currentconfiguration. Unit vectors m and m0 are normal to the crack surfaces and 
mutually orthogonal unit vectors k and t, as well as k0 and t0 are within the crack surface. Surface Cauchy stresses are zero along m and have the 
same components σst along k and t. 
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same form as that in the undeformed configuration: 

n ⋅ G = n ⋅ ρ ∂ψ
∂∇ϕ

= 0. (17) 

Thus, the normal component of the generalized force in the deformed configuration is zero as well. 

4. Expression of free energy 

The Ginzburg-Landau free energy per unit mass is presented in the form of 

ψ = ψ(F,ϕ,∇∘ϕ) =
dS
dS0

(ψ∇ + ψc) + ψe;
dS
dS0

= J
⃒
⃒F− T ⋅ m0

⃒
⃒, (18)  

where ψ∇, ψc, ψe are the gradient, cohesion and elastic parts of the free energy and are all defined per unit mass and calculated in the 
undeformed volume; m0 = ∇∘φ/|∇∘φ| is a unit vector normal to the crack surface, i.e., orthogonal to the constant φ surfaces. k0 and t0 
are the mutually-orthogonal unit vectors that are also orthogonal to m0 (see. Fig. 1a); m = ∇φ/|∇φ| is a unit vector in the direction of 
∇φ; and k and t are defined in the current configuration, which are the mutually-orthogonal unit vectors both orthogonal to m (see. 
Fig. 1b). 

The multiplier dS/dS0 = J
⃒
⃒F− T ⋅ m0

⃒
⃒, which is the ratio of the current to the initial elemental area at the crack surface, is included to 

obtain biaxial surface stresses with the magnitude of the resultant force equal to the surface energy (see Fig. 1 and Eqs. (27)-(31) 
below). The gradient and the cohesive energies are both localized at the diffuse crack surfaces, and their sum determines the surface 
energy. The energy of the elemental volume at one crack surface (defined as the excess energy with respect to the bulk material, 
without elastic energy) with a spatial coordinate ξ0 along m0 is 

dΓ = 0.5
∫ +∞

− ∞

dS
dS0

(ψ∇ + ψc)ρ0dξ0dS0 = 0.5
(∫ +∞

− ∞
ρ0(ψ∇ + ψc)dξ0

)

dS = γdS;

γ = 0.5
∫ +∞

− ∞
ρ0(ψ∇ + ψc)dξ0 = ρ0(ψ∇ + ψc)avh0,

(19)  

where the crack’s possession of two material surfaces is taken into account, h0 is the width of the crack surface (in which φ > 0) in the 
reference configuration, and the subscript “av” denotes averaging over one crack surface. Eq. (19) shows that the term γ is the surface 
energy per unit deformed area. Without the multiplier dS/dS0, this term would define the surface energy per unit undeformed area γ0. 
Thus, instead of γ0dS0, the term γdS is introduced, producing surface tension in classical thermodynamics (see, e.g., Porter et al., 2009). 
Although dS/dS0 in the small strain theory is close to unity, it provides a finite contribution to the derivative of the free energy with 
respect to strains, i.e., to stresses. Therefore, even in the small strain theory, some of the geometric nonlinearities are retained for the 
reproduction of the surface stresses (Levitas et al., 2018). The expression of each energy term is described below. 

Gradient energy is defined in the undeformed configuration and is accepted in the conventional form: 

ρ0ψ∇ = ρ0ψ∇(∇∘ϕ) =
1
2

β(∇∘ϕ)
2
. (20) 

Cohesion energy is expressed as 

ρ0ψc = ρ0ψc(ϕ) = Af (ϕ), (21)  

where A is the maximum cohesion energy corresponding to the fully broken bonds; f(φ) is an interpolation function for the cohesion 
energy and will be determined below. 

Elastic energy is expressed as the Taylor series of the elastic Lagrangian strain tensorE = (FT ⋅ F − I)/2. The kth-rank elastic moduli 
tensors Ck are degraded by the degradation function, I(φ): 

ρ0ψe = ρ0ψe(ϕ,F) := ρ0ψe(ϕ,E) =

I(ϕ)

(
1
2

E : C2 : E +
1
3!

(E : C3 : E) : E +
1
4!

E : (E : C4 : E) : E + ...

)

:= I(ϕ)Ψe(E),
(22)  

where Ψe is the elastic energy of the damage-free material corresponding to the strain tensor E. In general, each Ck can have a different 
degradation function. 

5. Expression of stress tensors 

Eqs. (13) is used to obtain the first Piola-Kirchhoff P and Cauchy σ = P ⋅ FT/J stress tensors. Stress tensors are split into an elastic 
part (with superscript e) and a surface part (with superscript st): 

P = Pe + Pst; σ = σe + σst. (23) 
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Elastic stresses. The elastic part of the stress tensor is obtained according to the conventional definition: 

Pe = ρ0
∂ψe

∂F
= ρ0F ⋅

∂ψe

∂E
, (24)  

with 

∂ψe

∂E
= I(φ)

(

C2 : E +
1
2

E : C3 : E +
1
3!

(E : C4 : E) : E + ...

)

, (25)  

where ∂ψe/∂F = F ⋅ ∂ψe/∂E is used. The Cauchy elastic stress is: 

σe =
1
J
Pe ⋅ FT =

ρ0

J
F ⋅

∂ψe

∂E
⋅ FT = ρF ⋅

∂ψe

∂E
⋅ FT . (26) 

Surface stresses. Since dS/dS0 depends on F, it produces a finite contribution to the stresses. This leads to a desirable expression for 
the surface stresses. Thus, 

Pst = ρ0(ψ∇ + ψc)
d

dF
dS
dS0

= ρ0
dS
dS0

(ψ∇ + ψc)(I − m ⊗ m) ⋅ F− T . (27) 

Here m is normal to the constant φ surfaces, i.e., crack surface (see Fig. 1b) and the detailed derivation is shown in the 
Appendix Eqs. (109)-((114)). 

The true surface stresses are obtained as 

σst =
1
J
Pst ⋅ FT =

ρ0

J
dS
dS0

(ψ∇ + ψc)(I − m ⊗ m) = ρ dS
dS0

(ψ∇ + ψc)(I − m ⊗ m). (28) 

They represent an isotropic biaxial tension along the crack surface with the magnitude of 

σst := ρ dS
dS0

(ψ∇ + ψc). (29) 

Thus, dS/dS0 is multiplied to those terms of the free energy, which we would like to contribute to the biaxial part of the Cauchy 
stress tensor. This is more evident in the small strain framework, when dS/dS0 = 1 + (I − m ⊗ m) : ε, and d(dS/dS0)/dε=I − m ⊗ m, 
where ε is the small strain tensor (Levitas et al., 2018). 

Operating with parameters averaged over the undeformed crack surface width h0, we obtain: 

σst
avdV = σst

av
ρ0

ρav
dV0 = σst

av
ρ0

ρav
h0dS0 = ρav

dS
dS0

(ψ∇ + ψc)av
ρ0

ρav
h0dS0 =

ρ0(ψ∇ + ψc)avh0dS = γdS,
(30)  

i.e., σst
avh = γ where h:=dV÷dS is the width of the crack surface in the actual configuration. The resultant force acting at each crack 

surface T with a spatial coordinate ξ along m is 

T = 0.5
∫ +∞

− ∞
σstdξ = 0.5

∫ +∞

− ∞
ρ dS

dS0
(ψ∇ + ψc)dξ = 0.5

∫ +∞

− ∞
(ψ∇ + ψc)

dm
dS0

=

0.5
∫ +∞

− ∞
ρ0(ψ∇ + ψc)dξ0 = γ,

(31)  

where dm = ρdSdξ = ρ0dS0dξ0 is the elemental mass. Thus, introducing the factor dS/dS0 in the expression for energy, we obtained the 
isotropic biaxial surface tension with the resultant force equal to the surface energy per unit crack surface in the actual configuration. 

Total stresses. Combining all the contributions, we obtain the total first Piola-Kirchhoff stress tensor as 

P = Pe + Pst = ρ0F ⋅
∂ψe

∂E
+ ρ0

dS
dS0

(ψ∇ + ψc)(I − m ⊗ m) ⋅ F− T , (32)  

where we used the total true stress tensor as 

σ = σe + σst = ρF ⋅
∂ψe

∂E
⋅ FT + ρ dS

dS0
(ψ∇ + ψc)(I − m ⊗ m). (33) 

Stresses Pst and σst are called the structural stresses at the surface because σst reduces to a biaxial stress tensor with the magnitude of 
the resultant force equal to the surface energy per unit current area (see Eq. (31)). 

Surface stresses in small strain theory. In the limit of small strains and rotations, one has dS/dS0≃1 as well as ρ≃ρ0, while Eq. (27) and 
Eq. (28)reduce to: 

σst = Pst = ρ(ψ∇ + ψc)(I − m ⊗ m) ∕= 0, (34) 
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which are equal to the surface stresses in Levitas et al., 2018. Thus, while the large strain formulation was required to introduce the 
surface stresses, the surface stresses do not disappear or even change at small strains. This is why incorporating the large strain 
formulation is essential, even for a small strain study, to introduce the surface stresses. 

6. Ginzburg-Landau equation 

The time-dependent Ginzburg-Landau equation has the same origin for and application to any structural changes: it is a linear 
relationship between the order parameter rate and the thermodynamically-conjugate thermodynamic force. The linear relationship 
between X and φ̇ leads to the generalized Ginzburg-Landau equation accounting for the surface stresses. 

φ̇(r0, t) = L
[

−
∂ψ
∂φ

+ ∇∘ ⋅
∂((dS/dS0)(ψ∇ + ψc))

∂∇∘φ

]

, (35)  

where L is the kinetic coefficient, this guarantees that Eq. (14)1 is always satisfied. Note that the initial homogeneity in density where 
∇∘ρ0 = 0 was assumed in writing Eq. (35). 

6.1. Undeformed configuration 

By elaborating Eq. (35), an explicit evolution for the order parameter is obtained; this is a generalization of the Ginzburg-Landau to 
include the surface effects. 

1
)L

ϕ̇(r0,t)+I’(ϕ)Ψe +A
dS
dS0

f ’(ϕ)

=∇∘ ⋅
∂((dS/dS0)(ψ∇ +ψc))

∂∇∘ϕ
=

∇∘ ⋅

(
dS
dS0

∂
(
0.5β(∇∘ϕ)

2
+ψc)

∂∇∘ϕ
+

∂
(
J
⃒
⃒F− T ⋅m0

⃒
⃒
)

∂∇∘ϕ
(ψ∇ +ψc)

)

=

∇∘ ⋅(β(dS/dS0)∇∘ϕ+JM(ψ∇ +ψc))=β(dS/dS0)∇2
∘ ϕ+β∇∘ϕ⋅∇∘(dS/dS0)+

(J∇∘ ⋅M+M ⋅∇∘J)(ψ∇ +ψc)+JM ⋅∇∘
(
0.5β(∇∘ϕ)

2
+Af (ϕ)

)
=

β(dS/dS0)∇2
∘ ϕ+β∇∘ϕ⋅Y+J

(
N+M ⋅

(
F− T :∇∘F

))
(ψ∇ +ψc)+

βJM ⋅∇∘∇∘ϕ⋅∇∘ϕ+JAf ’(ϕ)M ⋅∇∘ϕ, (36)  

where L := L/ρ0 and ∇∘J = dJ/dr = (dJ /dF) : dF/dr = JF− T : ∇∘F is used. Derivations and final expressions of M, Y, and N with the 
below definitions are given in Appendix Eqs. (115)-((124)). 

M :=
∂

∂∇∘φ
⃒
⃒F− T ⋅ m0

⃒
⃒, Y := ∇∘

dS
dS0

, N := ∇∘ ⋅ M. (37) 

Finally, using Eqs. (115)-(124), the Ginzburg-Landau equation in the undeformed configuration Eq. (36) takes the form of 

1
L

ϕ̇(r0, t) + I’(ϕ)Ψe + A
dS
dS0

f ’(ϕ) = β
dS
dS0

∇2
∘ ϕ+

Jβ∇∘ϕ ⋅
(

m0 ⋅ ∇∘F− 1 ⋅
F− T ⋅ m0⃒
⃒F− T ⋅ m0

⃒
⃒

+
⃒
⃒F− T ⋅ m0

⃒
⃒F− T : ∇∘F

)

+ J(ψ∇ + ψc) ×

{
(
∇∘m0 ⋅ F− 1 ⋅ F− T + m0 ⋅ ∇∘F− 1 ⋅ F− T + m0 ⋅ F− 1 ⋅ ∇∘F− T) :

I − m0 ⊗ m0⃒
⃒F− T ⋅ ∇∘ϕ

⃒
⃒

−

∇∘ ⋅ m0⃒
⃒F− T ⋅ ∇∘ϕ

⃒
⃒
m0 ⋅ F− 1 ⋅ F− T ⋅ m0−

F− T ⋅ ∇∘ϕ
(
F− T ⋅ ∇∘ϕ

)2 ⋅
(
∇∘F− T ⋅ ∇∘ϕ + F− T ⋅ ∇∘∇∘ϕ

)
⋅ (I − m0 ⊗ m0) ⋅ F− 1 ⋅ F− T ⋅ m0

}

+

Jm0 ⋅ F− 1 ⋅ F− T ⋅
I − m0 ⊗ m0⃒
⃒F− T ⋅ ∇∘ϕ

⃒
⃒

⋅
( (

F− T : ∇∘F
)
(ψ∇ + ψc) + β∇∘∇∘ϕ ⋅ ∇∘ϕ

)
.

(38) 

As can be seen in Eq. (38), distinguishing between deformed and undeformed surfaces directly affects the driving force of the crack 
nucleation and propagation. Also, the change in the stress distribution due to the contribution of the surface stresses to the mechanical 
equilibrium equation is another indirect effect of the coefficient dS/dS0 on the Ginzburg-Landau equation. 
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6.1.1. Some simplifications 
a) We approximate for small strains and rotations similar to Levitas et al., 2018, i.e., F≃I+ε+ω, and evaluating F− 1≃I− ε− ω and 

F− T≃I− ε+ω, and neglect all the products of small tensors. ω is the small rotation tensor, which is the asymmetric part of the gradient of 
displacement. Then, Substituting Eqs. (126)-(128) into Eq. (36), we obtain the Ginzburg-Landau equation for a small strain framework 
including the surface effects, which is also given in (Levitas et al., 2018): 

1
L

ϕ̇(r0, t) + I’(ϕ)Ψe + A(1 + (I − m0 ⊗ m0) : ε)f ’(ϕ) =

β(1 + (I − m0 ⊗ m0) : ε)∇2
∘ ϕ + β∇∘ϕ ⋅ ∇∘ε : (I − m0 ⊗ m0)−

β
(

1 +
ψc

ψ∇

)

(|∇∘ϕ|∇∘m0 : (ε ⋅ (I − m0 ⊗ m0)) + ∇∘ϕ ⋅ ∇∘ε : (I − m0 ⊗ m0)+

m0 ⋅ ε ⋅
(
m0∇2

∘ ϕ − m0 ⋅ (∇∘∇∘ϕ)
T)

− ∇∘ϕ ⋅ ε ⋅ (I − m0 ⊗ m0) ⋅ (ε : ∇∘ε)
)
−

2βm0 ⋅ ε ⋅ (I − m0 ⊗ m0) ⋅ ∇∘∇∘ϕ ⋅ m0,

(39)  

b) By neglecting strains but retaining the gradient of small strains, i.e., for F≃I but retaining all the gradients, we obtain 

1
L

φ̇(r0, t) + I ′

(φ)Ψe + Af ′

(φ) = β∇2
∘ φ + β∇∘φ ⋅

(
m0 ⋅ ∇∘F− 1 ⋅ m0 + ∇∘ ⋅ F

)
+

0.5β
(

1 +
ψc

ψ∇

)

∇∘φ ⋅
(
∇∘F− 1 + ∇∘F− T) : (I − m0 ⊗ m0),

(40)  

where I : ∇∘F = ∇∘ ⋅ F is used. 
c) Keeping all terms except the gradients of F leads to 

1
L

ϕ̇(r0, t) + I’(ϕ)Ψe + A
dS
dS0

f ’(ϕ) = β
dS
dS0

∇2
∘ ϕ + J(ψ∇ + ψc) ×

{

∇∘m0 ⋅ F− 1 ⋅ F− T :
I − m0 ⊗ m0⃒
⃒F− T ⋅ ∇∘ϕ

⃒
⃒

−
∇∘ ⋅ m0⃒

⃒F− T ⋅ ∇∘ϕ
⃒
⃒
m0 ⋅ F− 1 ⋅ F− T ⋅ m0−

F− T ⋅ ∇∘ϕ
(
F− T ⋅ ∇∘ϕ

)2 ⋅ F− T ⋅ ∇∘∇∘ϕ ⋅ (I − m0 ⊗ m0) ⋅ F− 1 ⋅ F− T ⋅ m0

}

+

Jβm0 ⋅ F− 1 ⋅ F− T ⋅
I − m0 ⊗ m0⃒
⃒F− T ⋅ ∇∘ϕ

⃒
⃒

⋅ ∇∘∇∘ϕ ⋅ ∇∘ϕ.
(41)  

d) For neglected surface stresses (dS/dS0≃1), the Ginzburg-Landau equation reduces to the standard form: 

1
L

φ̇(r0, t) + I ′

(φ)Ψe + Af ′

(φ) = β∇2
∘ φ. (42)  

6.2. Deformed configuration 

The following transformation is used to express the Ginzburg-Landau equation in the deformed configuration: 

∇∘ ⋅
∂ψ

∂∇∘φ
= ∇∘ ⋅

(
∂ψ

∂∇φ
∂∇φ
∂∇∘φ

)

= ∇∘ ⋅
(

F− 1 ⋅
∂ψ

∂∇φ

)

= ∇
(

F− 1 ⋅
∂ψ

∂∇φ

)

: F. (43) 

Then the Ginzburg-Landau equation in the current configuration for an initially homogenous material is 

Dφ(r, t)
Dt

=
∂φ(r, t)

∂t
+ v ⋅ ∇φ = L

[

−
∂ψ
∂φ

+ ∇
(

F− 1 ⋅
∂((dS/dS0)(ψ∇ + ψc))

∂∇φ

)

: F
]

, (44)  

where 

ρ0ψ∇ = Jρψ∇ =
1
2

β(∇∘ϕ)
2

=
1
2

β
(
FT ⋅ ∇ϕ

)2
; (45)  

dS
dS0

= J
⃒
⃒F− T ⋅ m0

⃒
⃒ = J

⃒
⃒F− T ⋅ ∇∘ϕ

⃒
⃒

/

|∇∘ϕ| = J|∇ϕ|

/
⃒
⃒FT ⋅ ∇ϕ

⃒
⃒ = J

/
⃒
⃒FT ⋅ m

⃒
⃒. (46) 

In Eq. (44), the material time derivative of φ in the undeformed configuration is transformed to the corresponding expression in the 
deformed configuration. 
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6.3. Eliminating fracture under compressive normal to crack surface stress 

Here, we impose a condition that the stress normal to the crack surfaces should be tensile. We use analysis in Levitas et al., 2018, 
were alternative approaches are criticized. Thus, keeping the same expression for the elastic energy, the stress-sign-dependent kinetic 
coefficient is defined as: 

L =

{
0 l ⋅ σ ⋅ l ≤ 0;

L otherwise,
(47)  

where Lt>0 is the value of the kinetic coefficient under tensile normal stresses, and lis the unit normal to the crack surface. In this 
straightforward way, the atomic bonds do not break under compressive normal stresses, although the compressive stresses have a 
contribution to the driving force for the crack propagation. This approach is consistent with the sharp surface approach based on the J- 
integral (the total elastic energy release rate during crack growth) and is vital especially in the phase models which J-integral is 
explicitly incorporated (Li and Landis, 2011). This contrasts with the previous remedies based on the change in the driving force for the 
crack growth (Borden et al., 2016; Hesch and Weinberg, 2014; Miehe et al., 2016; Miehe and Schänzel, 2014; Weinberg and Hesch, 
2017). Note that instead of setting L=0, the driving force can equivalently be set as Х=0. All the equations in which φ̇/L or φ̇/L are used 
for comapctness of presentation, should be multiplied by L and L, respectively, to avoid division by zero. 

The unit normal l is naturally defined as l = m everywhere but crack tip, where m strongly varies around the tip and does not 
coincide with the normal to crack. Then the crack tip should be detected by condition that the curvature κ := ∇⋅m, is much larger than 
the corresponding values for the curved crack surface and should be determined by trial simulations. Then the crack surface should be 
defined, e.g., like surface passing through points with minimal values of 1− φ, and l is the normal to this surface for points within crack 
tip region. For 2D case, within the crack tip region, l = m(rc), where rc is the position of the closest point that does not belong to the 
crack tip. We understand that there are additional computational problems in implementing Eq. (47), which we will not consider here, 
but at least this is the only physically strict and straightforward conditions to eliminate fracture under compressive stresses. 

7. Specification of the cohesion energy and degradation function 

The detailed analysis of the homogeneous solution and the main requirements of the cohesion energy and the degradation function 
can be found in Levitas et al., 2018. The well-known requirements, are summarized below, as well as new requirements which we want 
to impose:  

a) The only existing energy in the intact state where φ = 0, is the elastic energy. Thus, f(0)=0 and I (0)=1.  
b) The maximum cohesion energy A is reached at the fully damaged state where φ = 1, then, f(1)=1.  
c) The fully damaged state φ = 1 cannot sustain any elastic energy, i.e., I (1)=0. 

Thus, I(φ) is employed as: 

I(φ) = (1 − φ)
n
; n ≥ 1, (48)  

which satisfies all the three mandatory requirements above; the parameter n is introduced so that different stress-strain curves can be 
obtained.  

d) The homogeneous (ψ∇ = 0) and stationary (φ̇ = 0) state, leads to the equilibrium form of the Ginzburg-Landau equation 

− X =
∂ψ
∂ϕ

= I’(ϕe)Ψe
e + A

dS
dS0

f ’(ϕe) = 0. (49)   

It should be mentioned that, while calculating dS/dS0 = J
⃒
⃒F− T ⋅ m0

⃒
⃒ for a homogeneously distributed order parameter, ∇∘φ = 0 and 

m0 = ∇∘φ/|∇∘φ| is undefined. The indeterminacy in the direction of m and the surface stress tensor can be eliminated numerically by 
setting dS/dS0=0 and, consequently, zero surface stresses σst=0=0 when ∇φ = 0. 

When the homogeneous state is considered, we assume that the decohesion (cleavage) plane is known and m is defined as 
orthogonal to it. Eq. (49) results in the following damage equilibrium condition (subscript e) 

Ψe
e(E) = − A

dS
dS0

f ’(ϕe)

I’(ϕe)
, (50)  

which determines the equilibrium value of the order parameter φe for a given strain tensor E. If the right-hand side of Eq. (50) is finite 
at φe = 0, then the damage is absent below this value: 
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ϕe = 0 (intact state) for Ψe
e ≤ − A

dS∗

dS0

f
′

(0)

I
′

(0)
, (51)  

where dS* is the infinitesimal deformed area when φ starts to grow, i.e., when φe = 0 and φ̇e > 0. Eq. (51) is the damage initiation 
condition. A similar condition was fulfilled for gradient damage models in Pham and Marigo, 2013 where a clear elastic threshold is 
present, below which the damage parameter does not evolve. After excluding the order parameter, Eq. (50), along with Eq. (24) and 
Eq. (25) for the elastic stresses, represent the equilibrium stress-strain relationship. Because f ′

≥ 0 and I′

≤ 0, if polynomial f ′

(φ) starts 
with the same degree as I′

(φ) for φ → 0, the right-hand side of Eq. (51) is finite and there is a critical elastic energy at the start of 
damage. For the degradation function in Eq. (48), I′

(φe) = n(1 − φe)
n− 1 and I′

(0) = n. Thus, to have a nonzero value of strain for the 
damage initiation, f ′

(0) should be finite. Therefore, we choose 

f (ϕ) =
kϕ2 + ϕ

k + 1
; k ≥ 0. (52) 

For large k we have 

lim
k→∞

f (ϕ) = lim
k→∞

kϕ2 + ϕ
k

= lim
k→∞

(

ϕ2 +
ϕ
k

)

= ϕ2. (53) 

Moreover, for k close to 0 we obtain 

lim
k→0

f (ϕ) = lim
k→0

(
kϕ2 + ϕ

)
= ϕ. (54) 

Such an analysis on the degradation function in essential, as a new degradation function was introduced in Wilson et al., 2013 to 
address undesired consequences of the classic quadratic function. Figure 2 shows I(φ) and f(φ) for various n and k. 

Then Eqs. (50) and (51) are simplified to 

Ψe
e = A

dS
dS0

2kϕe + 1
(k + 1)n(1 − ϕe)

n− 1 for Ψe
e ≥ Ψe

i , (55)  

where, the critical strain (elastic energy), which is the strain (elastic energy) at the initiation of damage (subscript i), is found from: 

Ψe
i = Ψe(Ei) = A

dS∗

dS0

1
(k + 1)n

. (56) 

According to Eq. (55) for φe = 1, damage completes at finite strain for n=1 and at infinite strain for n>1. 
The stability condition is now checked; because 

∂2ψ
∂φ2 = I′′(φe)Ψe

e + A
dS
dS0

f ′′(φe) = n(n − 1)(1 − φe)
n− 2Ψe

e + A
dS
dS0

2k
k + 1

> 0, (57)  

the equilibrium solution in Eq. (55) is stable and corresponds to the minimum of the free energy during the damage growth. 

Fig. 2. Effect of the material parameters on the a) degradation function I(φ) and b) interpolation function f(φ).  
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8. Thermodynamic equilibrium stress-strain curves 

Here, the relationship between the second Piola-Kirchhoff stress T and the Lagrangian strain E is used in the one-dimensional 
problem and the simplest quadratic energy, i.e.,Ψe = 0.5C2E2 is considered, without the surface stresses. C2 is Young’s modulus. T 
is then obtained as 

T =
∂ψe

∂E
= I(ϕ)C2E. (58) 

Since we consider thermodynamic equilibrium stress-strain curves, we use Eq. (49) (X=0) along with Eq. (58) and obtain 

T = I
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
2C2Af ’

I’

√

. (59) 

Now, let us calculate dT/dφ at φ = 0; thus, 

dT
dϕ

= I’

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
2C2Af ’

I’

√

− I
C2A(f ’’I’ − I’’f ’)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 2C2Af ’I’

√ . (60) 

For I(φ) = (1 − φ)
n and f(φ) = (kφ2 + φ)/(k + 1), we obtain 

dT
dφ

= I ′

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
2C2Af

′

I ′

√

− I
C2A(I

′

− I′′(2kφ + 1)/(k + 1))
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 2C2Af ′ I ′

√ =

− n(1 − φ)
n− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
2C2Af

′

I
′

√

+ I
n(1 − φ)

n− 2C2A((1 − φ) − (n − 1)(2kφ + 1)/(k + 1))
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 2C2Af ′ I ′

√ .

(61) 

For the onset of damage φ = 0: 

dT
dφ

⃒
⃒
⃒
⃒

φ=0
= 0.5

̅̅̅̅̅̅̅̅̅̅̅
nC2A

√
(

1 −
2n

k + 1

)

, (62)  

which is zero for 2n=k+1 and negative for 2n>k+1. For 2n≥k+1, since dE/dφ > 0 is always true, the equilibrium tangential modulus 
dT/dE ≤ 0 at the onset of the damage. Thus, damage starts at the strain at which the second Piola-Kirchhoff stress has its maximum, and the 
tangent modulus jumps from C2 to the non-positive value (see Fig. 3 for k=1 and various n≥1 and Fig. 6 for n=1 and k≤1). Then, after the 
initiation of damage and during it, the second Piola-Kirchhoff stress decreases. While not necessarily valid for other stresses and strains 
(see Fig. 4, 5), this is more realistic than in some previous models (Levitas et al., 2018) in which the damage always starts at an 
infinitesimal strain and the elastic modulus continuously decreases from its value in the undamaged state. 

Ti and Ei can then be calculated by substituting Ψe=0.5C2E2 in Eq. (56), as follows: 

Ψe
i = 0.5C2E2

i = A
dS∗

dS0

1
(k + 1)n

, (63) 

Fig. 3. Normalized second Piola-Kirchhoff stress T vs. Lagrangian strain E for uniaxial tension for different n and k=1.  
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resulting in 

Ei =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
AdS∗/dS0

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C2(k + 1)n

√ ; Ti =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
AC2dS∗/dS0

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(k + 1)n

√ , (64)  

which are equal to the strain and stress at the peak point when 2n≥k+1. Since dS∗/dS0 also depends on Ei, Eq. (64) is dependent on Ei, 
which can be easily solved for different models. In the first approximation dS∗/dS0≃1, we obtain explicit relationships 

Ei =

̅̅̅
A

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C2(k + 1)n

√ ; Ti =

̅̅̅̅̅̅̅̅̅
AC2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(k + 1)n

√ . (65) 

Thus, the strain at the damage initiation and the corresponding stress, in addition to the magnitude of the cohesion energy, can be 
controlled by the parameters in the degradation function n and in the interpolation function k. Eq. (65) is important in the sense that, 
for given n and k, it determines A in terms of the elastic energy (or maximum Ei or Ti) at the beginning of damage. As we will see in Eq. 
(68), A is also the total work until the damage completes. Then, the parameters n and k produce portioning between the works in the 
elastic region and after the initiation of damage until the fracture completes. 

Fig. 4. Normalized first Piola-Kirchhoff stress P vs. deformation gradient F for uniaxial tension for different n and k=1.  

Fig. 5. Normalized Cauchy stress σ vs. ln F for uniaxial tension for different n and k=1.  
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Excluding the order parameter from Eqs. (50) and (58) leads to the equilibrium stress-strain relationship. Figure 3 shows the 
uniaxial equilibrium second Piola-Kirchhoff stress vs. Lagrangian strain (T-E) curves for different values of n and k=1. 

Using the relationship between the first Piola-Kirchhoff stress and second Piola-Kirchhoff stress, 

P = FT = I(ϕ)C2FE = 0.5I(ϕ)C2F
(
F2 − 1

)
; F = (1 + 2E)

0.5
, (66)  

we plot the first Piola-Kirchhoff stress against its work-conjugate strain, i.e., F, in Fig. 4. 
For the uniaxial loading along the normal-to-the-crack direction, the work increment per unit current volume is J− 1PdF = σ

F dF =

σd(lnF), i.e., the work-conjugate of Cauchy stress σ is the logarithmic strain ln F. The Cauchy stress in the normal direction σ1 is defined 
as 

σ1 = J− 1P1F1 = P1F1
dV0

dV
= P1F1

dV0

F1F2F3dV0
= P1

1
F2F3

= P1
dS0

dS
and σ1 = F1T1

dS0

dS
. (67) 

The Cauchy stress σ vs. ln F is presented in Fig. 5 under the assumption dS/dS0≃1. For both P and σ, the elastic part is nonlinear, and 
for n close to 1, the stresses continue to slightly grow after the damage starts before they decrease. 

To investigate the effect of k on stress-strain curves, Figure 6 shows the equilibrium solution of the T-E curve for various k and n=1. 
As can be deduced from Fig. 6, the peak point and the start of damage are equal and coincide for k≤1. The general condition for this 

coincidence was discussed in Eq. (62) and after it. For k>1, the damage initiates before the peak point of T, producing the nonlinear 
portion of the T-E curve. The damage initiation and the peak point of T both decrease as k increases. 

Calibration of A. We consider the general three-dimensional homogenous state, and evaluate the elastic work per unit undeformed 
volume: 

∫ Fφ=1

F=I
P : dFT =

∫ Fφ=1

F=I
ρ0

∂ψ
∂F

: dFT = ρ0

∫ Fφ=1

F=I
dψ(F,φ) = ρ0(ψ(Fφ=1, 1) − ψ(I, 0)) =

I(1)Ψe(Eφ=1) − I(0)Ψe(0) + A(Sφ=1/S0)(f (1) − f (0)) = ASφ=1/S0.

(68) 

The equality dψ = (∂ψ /∂F) : dFT + (∂ψ /∂φ)dφ = (∂ψ /∂F) : dFT has been used; ∂ψ/∂φ = 0 is used because of the thermodynamic 
equilibrium condition; I(1)=0; I(0)=1; Ψe(0)=0; f(0)=0; and f(1)=1. Here S0, and Sφ=1 are the surfaces of the crack in the reference 
configuration and current configuration at φ = 1, respectively. Eq. (68) is valid for any type of nonlinear hyperelastic materials. For 
one-dimensional homogenous tension, the elastic work is equal to the area under the stress-strain curve. 

The elastic work within the reference volume S0d, where d is the initial thickness of the cohesive layer, should be equal to the 
created surface energy. Thus, (ASφ=1 /S0)S0d = 2γSφ=1 and the maximum cohesion energy, i.e., the parameter A, is obtained as: 

A =
2γ
d
. (69) 

Note that, since the normal-to-the-crack surface stress is zero at φ = 1, and if all the other stresses are also zero in the experiment, S0 

= Sφ=1 and γ is the surface energy per undeformed area. 

Fig. 6. Normalized second Piola-Kirchhoff stress T vs. Lagrangian strain E for uniaxial tension for different k and n=1.  
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9. Stationary solution 

The stationary Ginzburg-Landau equation in the stress-free case is: 

β∇2
∘ φ = A

df
dφ

, (70)  

where the deformation of the diffuse surfaces is neglected. Integration of Eq. (70) over φ (see Levitas et al. (2018) for more details) 
leads to 

β
2

(∇∘ϕ)
2

= Af (ϕ) ⇒ ψ∇ = ψc. (71) 

According to Eq. (71), the excess of the cohesion energy is equal to the gradient energy. Allowing for our specific interpolation 
function Eq. (52), in the one-dimensional case, Eq. (71) leads to 

β
2

(
dϕ
dξ0

)2

=
2γ
d

kϕ2 + ϕ
k + 1

. (72) 

Finally, the solution of Eq. (72) yields an explicit expression for the two diffuse crack surfaces profile: 
⎧
⎨

⎩

̅̅̅̅̅̅
kϕ

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
kϕ + 1

√
=
( ̅̅̅

k
√

+
̅̅̅̅̅̅̅̅̅̅̅
k + 1

√ )
e−

̅̅̅̅̅̅̅̅̅
kγ

(k+1)βd

√
|ξ0 |

|ξ0| < ξ0t;

ϕ = 0 |ξ0| ≥ ξ0t,

(73)  

where φ = 1 corresponds to the separation plane at ξ0 = 0, and 

ξ0t =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(k + 1)βd
kγ

√

ln
( ̅̅̅

k
√

+
̅̅̅̅̅̅̅̅̅̅̅
k + 1

√ )
(74)  

is the transition plane from the damaged state to the intact state. For k=0 and infinity, Eqs. (73) and (74) lead to: 
⎧
⎪⎪⎨

⎪⎪⎩

ϕ =

(

1 −

̅̅̅̅̅
γ

βd

√

|ξ0|

)2

|ξ0| < ξ0t =

̅̅̅̅̅
βd
γ

√

;

ϕ = 0 |ξ0| ≥ ξ0t,

for k = 0 and

ϕ = e− 2
̅̅̅γ
βd

√
|ξ0 |

; ξ0t = ∞ , for k = ∞

(75) 

Thus, the intact phase is at a finite distance of ξ0t from the separation plane unless k is infinity. This is in contrast to the other models 
(Levitas et al., 2018). Figure 7 represents a damage distribution of the crack in the reference configuration, at the position x0=0 in an 

Fig. 7. Finite-width profile of the crack surfaces. ξ0>0 is one surface, ξ0=0 is the separation plane, and ξ0<0 is 
another surface. Damage zone has a finite width ξ0t =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(k + 1)βd/(kγ)

√
ln(

̅̅̅
k

√
+

̅̅̅̅̅̅̅̅̅̅̅
k + 1

√
) from each side. 
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infinite bar for various k. 
In the general case, 

β
2

(
dϕ
dξ0

)2

=
2γ
d

f (ϕ) ⇒
∫ ϕ

1

dϕ
̅̅̅̅̅̅̅̅̅
f (ϕ)

√ = − 2
̅̅̅̅̅
γ

dβ

√

|ξ0|. (76) 

Since f(0) = 0 and the integrand in Eq. (76) has a singularity at φ = 0, the finite or infinite values of the integral and, consequently, 
ξ0t depend on the behavior of the function f(φ) at φ → 0. Since f(0) = 0 and, for infinitesimal φ, we generally have f(φ) = φα, 

∫ ϕ→0

1

dϕ∗

̅̅̅̅̅̅̅̅̅̅̅
f (ϕ∗)

√ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
ϕ→0

1 − ϕ1− 0.5α

1 − 0.5α =
1

1 − 0.5α α < 2;

lim
ϕ→0

1 − ϕ1− 0.5α

1 − 0.5α = ∞ α > 2;

− lim
ϕ→0

lnϕ = ∞ α = 2.

(77) 

Thus, if we have φα for infinitesimal φ, 
{

ξ0t = ∞ α ≥ 2;
ξ0t is finite α < 2. (78) 

Note that, for k=∞, we have α = 2, and for finite k, we have α = 1. Finite ξ0t is physical and practical because it allows one to avoid 
the damage in the entire region in the numerical solution for localized cracks. This condition was met for gradient damage models in 
Pham and Marigo, 2013 and is one of the reasons which for the current model α=1 was chosen. This condition was not listed in Levitas 
et al., 2018 and is formulated for the first time here. 

Calibration of β. Due to the definition of surface energy (see Eq. (19)), β can be related to γ and d: 

γ = 0.5
∫ +∞

− ∞
ρ0(ψc + ψ∇)dξ0 =

∫ +ξ0t

− ξ0t

ρ0ψcdξ0 = A
∫ +ξ0t

− ξ0t

fdξ0 = 2A
∫ 1

0
f

dξ0

dφ
dφ =

̅̅̅̅̅̅̅̅
2Aβ

√
∫ 1

0

̅̅̅
f

√
dφ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2Aβ/(k + 1)

√
∫ 1

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

kφ2 + φ
√

dφ ⇒ β =
16
(
k2 + k

)

(
2(2k + 1)

̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + k

√
− ln

(
2
̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + k

√
+ 2k + 1

))2 γd.
(79) 

Eq. (71) was utilized in derivations and Eq. (69) was used for A. Note that the crack has two surfaces, explaining the factor of 0.5 in 
the definition Eq. (19). This is different from what is presented in some other phase field models for fracture Borden et al., 2016; Miehe 
and Schänzel, 2014; Weinberg and Hesch, 2017). The important point is that in those models, γ is the fracture energy which is mainly 
the dissipation energy associated to the crack surface propagation, and in this sense, we do not need to impose the factor 0.5 in Eq. (19) 
and Eq. (79). Using Eqs. (74) and ((79) we obtain for the especial cases of k=0: β=9γd/16=0.5625γd; ξ0t=0.75d, k=1: β=0.708γd; 
ξ0t=1.05d, and k=∞: β=γd and; ξ0t=∞. 

We would like to make an important point as to why the free energy terms ρ0ψc and ρ0ψ∇ should be expressed per unit undeformed 

Fig. 8. Schematic crack profile (dashed lines) and the plot of the interpolation function f (solid lines) a) for the current model, with the energy 
defined per unit undeformed volume, and b) if the energy is defined per unit deformed volume. 
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volume. The damage distribution φ and the cohesion interpolation function f(φ), in the undeformed and deformed configurations, are 
represented in Fig. 8a and Fig. 8b, respectively. 

In the empty region of width W between the two crack surfaces, φ = 1 and f(φ) = 1. Therefore, the expression of the cohesion 
energy, if defined per unit deformed volume, adds an extra nonphysical cohesion energy per unit current crack area ρ0ψc(1)W = AW in 
the region between the two separated planes (see Fig. 8b). This violates an energy balance, which is why we did not use the cohesion 
energy per unit deformed volume and could not use the approach for introducing the surface stresses developed in Levitas, 2013b; 
Levitas, 2014; Levitas and Javanbakht, 2010; Levitas and Warren, 2016 based on the deformed configuration. Our current approach 
based on including the term dS/dS0 in Eq. (18) also involves the deformed state in term of dS. However, this deformation is along the 
crack surfaces and does not involve deformation producing the empty space. 

10. Analytical expression for surface stresses 

Inserting Eq. (74) and Eq. (79) into Eq. (73) leads to a more convenient form of the surface profile for the current model and the 
particular case of k=1, where β=0.708γd and ξ0t=1.05d: 

̅̅̅̅
ϕ

√
+

̅̅̅̅̅̅̅̅̅̅̅̅
ϕ + 1

√
=
(

1 +
̅̅̅
2

√ )
e−

|ξ0 |
1.2d|ξ0| < 1.05d;

ϕ = 0 |ξ0| ≥ 1.05d.
(80) 

Based on Eq. (29), and using Eqs. (52), (69), and (71), we obtain 

σst = ρ dS
dS0

4γ
d

kφ2 + φ
k + 1

. (81) 

A plot of σst := σst

4ργdS/dS0
= kφ2+φ

(k+1)d for k=1 with φ(ξ0) from Eq. (80) for several surface width parameter d is presented in Fig. 9. The 
maximum magnitude of σst is 1/d at ξ0=0 (which is the same for any k). 

Since all the curves in Fig. 9 correspond to the same surface energy, the resultant surface force, which is equal to the surface energy 
and proportional to the area below the curves, is the same. It is clear that in all the curves σstd coincide. As it is shown in Eq. (71), for the 
same surface energy, the surface width ξ0t is proportional to d. 

It was demonstrated in Levitas et al., 2018 that the effect of the surface stresses on the stress field of the crack tip is important for 
nanoscale d and negligible for a sufficiently large d. Even without the surface stresses the local elastic stress field near the crack tip 
strongly depends on d (Levitas et al. 2018) but the surface stresses decay faster (∝1/d) than the elastic stresses (∝1 /

̅̅̅
d

√
), as d increases. 

11. Complete system of the equations 

The final system of equations is collected below. 

Fig. 9. Distribution of the surface stress σst for several interface widths d shown near curves and k=1.  
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11.1. Kinematics 

Large strains 

F = I + ∇∘u; E = 0.5
(
FT ⋅ F − I

)
. (82) 

Small strains 

ε = 0.5
(
∇u + ∇uT). (83)  

11.2. Helmholtz free energy per unit mass and its contributions 

ψ =
dS
dS0

(ψ∇ + ψc) + ψe; (84)  

ρ0ψ∇ =
1
2

β(∇∘ϕ)
2
; ρ0ψc = Af (ϕ); f (ϕ) =

kϕ2 + ϕ
k + 1

. (85)  

dS
dS0

= J
⃒
⃒F− T ⋅ m0

⃒
⃒;m0 = ∇∘φ

/

|∇∘φ|; (86) 

Large strains 

ρ0ψe = (1 − ϕ)
n
(

1
2

E : C2 : E +
1
3!

(E : C3 : E) : E + ...

)

. (87) 

Small strains 

dS
dS0

= 1 + (I − m0 ⊗ m0) : ε; m0 = ∇∘ϕ
/

|∇∘ϕ|; (88)  

ρ0ψe = (1 − φ)
n
(

1
2

ε : C2 : ε +
1
3!

(ε : C3 : ε) : ε + ...

)

; (89)  

11.3. Phase field parameters 

Damage distribution 
⎧
⎨

⎩

̅̅̅̅̅̅
kϕ

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
kϕ + 1

√
=
( ̅̅̅

k
√

+
̅̅̅̅̅̅̅̅̅̅̅
k + 1

√ )
e−

̅̅̅̅̅̅̅̅̅
kγ

(k+1)βd

√
|ξ0 |

|ξ0| < ξ0t;

ϕ = 0 |ξ0| ≥ ξ0t,

(90) 

Gradient and cohesive energy coefficients 

β =
16
(
k2 + k

)

(
2(2k + 1)

̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + k

√
− ln

(
2
̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + k

√
+ 2k + 1

))2 γd; A =
2γ
d
. (91) 

Location of the furthest damaged plane 

ξ0t =
4(k + 1)ln

( ̅̅̅
k

√
+

̅̅̅̅̅̅̅̅̅̅̅
k + 1

√ )

2(2k + 1)
̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + k

√
− ln

(
2
̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + k

√
+ 2k + 1

) d. (92) 

Elastic energy at damage initiation 

Ψe
i = A

dS∗

dS∗
0

1
(k + 1)n

. (93)  

11.4. Stress tensor 

Large strains 
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P = Pe + Pst;

Pe = (1 − ϕ)
nF ⋅

(

C2 : E +
1
2

E : C3 : E + ...

)

;

Pst = ρ0
dS
dS0

(ψ∇ + ψc)(I − m ⊗ m)⋅F− T ; m = ∇ϕ
/

|∇ϕ|;

σ = σe + σst;

σe =
1
J
(1 − ϕ)

nF ⋅
(

C2 : E +
1
2

(E : C3 : E) + ...

)

⋅ FT ;

σst = ρ dS
dS0

(ψ∇ + ψc)(I − m ⊗ m).

(94) 

Small strains 

σ = σe + σst;

σe = (1 − ϕ)
n
(

C2 : ε +
1
2

ε : C3 : ε + ...

)

;

σst = ρ(ψ∇ + ψc)(I − m⊗m); m = ∇ϕ/|∇ϕ|.

(95)  

11.5. Ginzburg-Landau equation 

11.5.1. Reference configuration 
Compact form 

ϕ̇(r0, t) = L
[

−
∂ψ
∂ϕ

+ ∇∘ ⋅
∂((dS/dS0)(ψ∇ + ψc))

∂∇∘ϕ

]

. (96) 

Detailed form (large strains) 

1
L

φ̇(r0, t) + I ′

(φ)Ψe + A
dS
dS0

f ′

(φ) = β
dS
dS0

∇2
∘ φ+

Jβ∇∘φ ⋅
(

m0 ⋅ ∇∘F− 1 ⋅
F− T ⋅ m0⃒
⃒F− T ⋅ m0

⃒
⃒

+
⃒
⃒F− T ⋅ m0

⃒
⃒F− T : ∇∘F

)

+ J(ψ∇ + ψc)×

{
(
∇∘m0 ⋅ F− 1 ⋅ F− T + m0 ⋅ ∇∘F− 1 ⋅ F− T + m0 ⋅ F− 1 ⋅ ∇∘F− T) :

I − m0 ⊗ m0⃒
⃒F− T ⋅ ∇∘φ

⃒
⃒

−

∇∘ ⋅ m0⃒
⃒F− T ⋅ ∇∘φ

⃒
⃒
m0 ⋅ F− 1 ⋅ F− T ⋅ m0−

F− T ⋅ ∇∘φ
(
F− T ⋅ ∇∘φ

)2 ⋅
(
∇∘F− T ⋅ ∇∘φ + F− T ⋅ ∇∘∇∘φ

)
⋅ (I − m0 ⊗ m0) ⋅ F− 1 ⋅ F− T ⋅ m0

}

+

Jm0 ⋅ F− 1 ⋅ F− T ⋅
I − m0 ⊗ m0⃒
⃒F− T ⋅ ∇∘φ

⃒
⃒

⋅
( (

F− T : ∇∘F
)
(ψ∇ + ψc) + β∇∘∇∘φ ⋅ ∇∘φ

)
.

(97) 

Detailed form (small strains) 

1
L

ϕ̇(r0, t) + I’(ϕ)Ψe + A(1 + (I − m0 ⊗ m0) : ε)f ’(ϕ) =

β(1 + (I − m0 ⊗ m0) : ε)∇2
∘ ϕ + β∇∘ϕ ⋅ ∇∘ε : (I − m0 ⊗ m0)−

β
(

1 +
ψc

ψ∇

)

(|∇∘ϕ|∇∘m0 : (ε ⋅ (I − m0 ⊗ m0)) + ∇∘ϕ ⋅ ∇∘ε : (I − m0 ⊗ m0)+

m0 ⋅ ε ⋅
(
m0∇2

∘ ϕ − m0 ⋅ (∇∘∇∘ϕ)
T)

− ∇∘ϕ ⋅ ε ⋅ (I − m0 ⊗ m0) ⋅ (ε : ∇∘ε)
)
−

2βm0 ⋅ ε ⋅ (I − m0 ⊗ m0) ⋅ ∇∘∇∘ϕ ⋅ m0.

(98) 
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11.5.2. Deformed configuration 

Dϕ(r, t)
Dt

=
∂ϕ(r, t)

∂t
+ v ⋅ ∇ϕ = L

[

−
∂ψ
∂ϕ

+ ∇
(

F− 1 ⋅
∂((dS/dS0)(ψ∇ + ψc))

∂∇ϕ

)

: F
]

. (99)  

11.6. Momentum balance equation 

Large strains 

∇∘ ⋅ P + ρ0f = ρ0v̇. (100) 

Small strains 

∇ ⋅ σ + ρf = ρv̇. (101)  

Fig. 10. Cauchy stress-engineering strain diagrams for the homogeneous phase field solution for loading in the a) [111] and b) [100] directions. Eq. 
(106) are utilized. Solid lines and dashed lines correspond to k=1 and k=15, respectively. Points represent the first principle simulation results from 
(Černý et al., 2012)). 
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11.7. Boundary condition for φ 

Reference configuration 

n0 ⋅
∂ψ

∂∇∘ϕ
= 0 , or ϕ = 1 or ϕ = 0. (102) 

Deformed configuration 

n ⋅
∂ψ

∂∇ϕ
= 0, or ϕ = 1 or ϕ = 0. (103)  

12. Parameter calibration 

In this section, we calibrate the phase field parameters and the stress-strain curves for homogenous uniaxial tension. The Cauchy 
stress σ1 vs. the engineering strain e1 curves along the crystallographic (and loading) directions <100> and <111> of the perfect 
crystal of silicon (Si) with a diamond lattice are taken from the first principle simulations in Černý et al., 2012. Our equations must be 

Fig. 11. Cauchy stress-engineering strain diagrams for the homogeneous phase field solution for loading in the a) [111] and b) [100] directions. Eq. 
(107) are utilized. Solid lines and dashed lines correspond to k=1 and k=15, respectively. Points represent the first principle simulation results from 
Černý et al., 2012. 
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transformed into the stress and strain measures presented in Černý et al., 2012. For stresses, Eq. (67) is used and simplified to 

σ1 = P1/(1 + e2 + e3) and σ1 = (1 + e1)T1/(1 + e2 + e3). (104) 

Components of the engineering and Lagrangian strains are related as 

Ei = ei + 0.5e2
i . (105) 

As Eq. (104) shows, the Cauchy stress depends on the other components of the strain tensor as well. Thus, e2 and e3 must be 
evaluated to obtain σ1. We use the known elastic constants C11=C22=C33=166, C12=C13=C23=63, C44=C55=C66=80 GPa (Hennig 
et al., 2010) with axis 1 along the direction [100]. By rotating the elastic matrix, we obtain the elastic constants for the coordinate 
system with axis 1 along direction [111]: C11=204.043, C22=194.543, C33=194.543, C12=43.968, C23=53.435, C13=44.054, 
C44=60.957, C55=70.5, C66=61.0 GPa. Inverting the elastic matrices leads to compliance, and for the case of only one nonzero 
component T1∕=0, we obtain 

E1 = 0.0076T1/(1 − ϕ)
n
, E2 = E3 = − 0.0021T1/(1 − ϕ)

n for [100] and
E1 = 0.0053T1/(1 − ϕ)

n
, E2 = E3 = − 0.0009T1/(1 − ϕ)

n for [111],
(106)  

where the stresses are in GPa. To plot the σ-e curves, we combine Eqs. (105), (106), and (50), exclude the order parameter and resolve 
for σ (for convenience, the superscript 1 is eliminated from here on). The obtained σ-e curve is shown in Fig. 10. 

We vary parameter A to achieve the best fit and use n=1 and two different values of k=1 and 15. It is clear that k=15 gives a better 
correspondence with the first principle simulations in Černý et al., 2012, but there is still room for improvement. The main reason for 
the discrepancy is related to our desire to keep the theory simple and use the linear relationship between T and E before damage starts. 
However, if we sacrifice the accuracy for small strains and change C2 to 110 GPa for [100] and 121 GPa for [111], i.e., change Eqs. 
(106) to 

E1 = 0.0091T1/(1 − ϕ)
n
, E2 = E3 = − 0.0021T1/(1 − ϕ)

n for [100] and
E1 = 0.0083T1/(1 − ϕ)

n
, E2 = E3 = − 0.0009T1/(1 − ϕ)

n for [111],
(107)  

we obtain a much better description of the larger strains (Fig. 11), especially for k=15. 
All the parameters for our phase field are presented in Table 1 which are based on the dashed lines, i.e., k=15 in Fig. 11. 
Knowing A, C2, and the surface energy γ, we can obtain d from Eq. (69). The gradient coefficient is then determined from Eq. (79) as 

β=0.938γd and ξ0t=2.06d is obtained from Eq. (74). 
The distance between two <100> and <111> planes d0 is given as 

a = d0,100 = 0.539nm
(

Černý et al., 2012
)
; d0,111 = a

/
√3 = 0.311nm, (108)  

where a is the lattice constant. The value N:=d/d0 reported in Table 1 is close to 1, as would be expected for a nanoscale model, i.e., the 
distance between two crack surfaces is equal to the distance between the two nearest atomic planes (Levitas et al., 2018). The small 
discrepancy appears because some data (e.g., surface energy) are taken from different studies and due to use of the second-order 
elasticity. Therefore, surface stresses cannot be neglected for this material with small values of N. 

13. Concluding remarks 

A thermodynamically consistent phase field approach to the fracture in large strain framework is presented. One of the main 
contributions is the introduction of the surface stresses, which requires large-strain formulation even for infinitesimal strains. Another 
necessity of the large-strain formulation is to avoid artificial penalization of the cohesive energy in the space between crack surfaces. 
Therefore, cohesive and gradient energies should be defined in the reference configuration, and only strains along the crack surface are 
allowable in their expressions. In solid surfaces, the surface stresses consist of the elastic and structural parts. The elastic contribution 
to the surface stresses results automatically from the solution of the coupled Ginzburg-Landau and mechanics equations. After 
comparing the total surface stresses from the model with experiments or atomistic simulations, one can develop a more sophisticated 

Table 1 
Phase field parameters for Si for tension in the [100] and [111] directions. The references are shown in 
front of each parameter.  

Crystallographic directions [100] [111] 
n (best fit) 1 1 
C2 (GPa) (best fit) 110 121 
A (GPa) (best fit) 6.0 4.2 
γ (J/m2) (Messmer and Bilello, 1981) 1.34 1.14 
d (nm) [current model, Eq. (69)] 0.45 0.54 
d0 (nm) [from Eq. (108)] 0.54 0.31 
N (Levitas et al., 2018) 0.83 1.7 
β × 109 (N) [current model, Eq. (79)] 0.57 0.58 
ξ0t (nm) [current model, Eq. (74)] 0.93 1.1  
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constitutive development for the elastic surface stresses, if necessary. Thus, the main focus is on the structural part, which also exists 
within the liquid-liquid and liquid-gas interfaces. The critical point is that a physical phenomenon such as surface stresses is resulted by 
utilizing geometric nonlinearities. Thus, the gradient and the cohesion energies are multiplied by the ratio of areas of elemental crack 
surfaces after deformation and before it, dS/dS0. This leads to the desired isotropic biaxial surface tension, with the force per unit 
length equal to the surface energy per unit deformed surface. The explicit expression for the damage evolution equation has been 
obtained for the fully geometrically nonlinear formulation, which leads to significant complication of the equation. Several approx
imate expressions for the Ginzburg-Landau equation under different geometric simplifications are presented. Without introducing 
some geometrically nonlinear terms, we could not introduce consistent surface stresses, even at small strains. This highlights the 
necessity of starting with a fully geometrically nonlinear formulation even for small strains. The surface stresses affect the driving force 
of fracture in two ways. First, they disturb the mechanical equilibrium equation by means of the additional contribution to the stress 
field which arises from the surface stresses. In an other words, the mechanical equilibrium equation is changed from ∇ ⋅ σe +ρf = ρv̇ 
(∇∘ ⋅ Pe + ρ0f = ρ0 v̇) to ∇ ⋅ (σe +σst) + ρf = ρv̇ (∇∘ ⋅ (Pe +Pst) + ρ0f = ρ0 v̇). Second, it leads to several additional sophisticated terms in 
the Ginzburg-Landau equation. At the level of the specific models:  

1) A more general degradation function was introduced, including an additional material parameter n in comparison to the traditional 
physical or fitting parameters in any phase field approach to fracture. This parameter allows an improved description of the local 
stress-stress curve at the nanoscale when it is known from atomistic simulations.  

2) The interpolation function for the cohesive energy introduced in this model leads to the crack surface with a finite width of the 
damaged zone. This is in contrast to all the previous phase field models, in which the intact phase is mathematically located at 
infinity.  

3) The damage initiation criterion is formulated in the current model. Parameters n and k produce portioning of the total stress work 
into the elastic work before damage initiation and during damage. 

Implementation of the derived equations for the surface stresses and the Ginzburg-Landau equation into a finite element code and 
the solution of some boundary-value problems will be considered in the next paper. Generalization for the anisotropic surface energy 
(Clayton and Knap, 2015; Hakim and Karma, 2009) can also be performed in future work. The most popular method is to consider the 
anisotropic gradient energy (Wheeler and McFadden, 1997) in addition to the anisotropic cohesion energy, in which the peak stress for 
homogenous states is anisotropic as well. The other generalization of the developed theory can be performed for the interaction be
tween crack propagation and phase transformation (Jafarzadeh et al., 2019b; Schmitt et al., 2015), plasticity (Mozaffari and Voyiadjis, 
2016; Ruffini and Finel, 2015). 

Note that Levitas et al. (2018) developed a phase field model for fracture, which is valid for an arbitrary scale, from nano to macro. 
Development of the current paper can be implemented for that model as well. However, the contribution of the surface stresses is 
essential at the nanoscale only. 

Appendixes Some derivations  

⋅ Here we obtain explicit expression for d
dF

dS
dS0

in Eq. (27) is such way 

d
dF

dS
dS0

=
d

dF
(
J
⃒
⃒F− T ⋅ m0

⃒
⃒
)

=
dJ
dF
⃒
⃒F− T ⋅ m0

⃒
⃒+ J

d
dF
⃒
⃒F− T ⋅ m0

⃒
⃒ = JF− T

⃒
⃒F− T ⋅ m0

⃒
⃒−

J
⃒
⃒F− T ⋅ m0

⃒
⃒(m ⊗ m) ⋅ F− T = J

⃒
⃒F− T ⋅ m0

⃒
⃒(I − m ⊗ m) ⋅ F− T =

dS
dS0

(I − m ⊗ m) ⋅ F− T ,

(109)   

where the equality dJ/dF = JF− T was used, and the second derivative was manipulated by defining 

Z :=
d

dF
⃒
⃒F− T ⋅ m0

⃒
⃒ =

d
dF
( (

F− T ⋅ m0
)

⋅
(
m0 ⋅ F− 1))1/2

. (110) 

In the component form 

Zmn =
d

dFmn

(
F− T

ij m0jm0kF− 1
ki

)1/2
=

1
2
⃒
⃒F− T ⋅ m0

⃒
⃒

d
dFmn

(
F− 1

ji m0jm0kF− T
ik

)
=

1
⃒
⃒F− T ⋅ m0

⃒
⃒

dF− 1
ji

dFmn
m0jm0kF− T

ik .

(111) 

Now we use dF− 1
ji /dFmn = − F− 1

jm F− 1
ni which is a consequence of the equations F− 1 ⋅ F = I, dF− 1 ⋅ F + F− 1 ⋅ dF = 0, and dF− 1 = −

F− 1 ⋅ dF ⋅ F− 1. Then we continue from the last term in Eq. (111): 
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Zmn = −
1

⃒
⃒F− T ⋅ m0

⃒
⃒
F− 1

jm F− 1
ni m0jm0kF− T

ik = −
1

⃒
⃒F− T ⋅ m0

⃒
⃒
F− T

mj m0jF− T
ik m0kF− 1

ni =

−
1

⃒
⃒F− T ⋅ m0

⃒
⃒

1
(∇∘φ)

2

(
F− T

mj ∇∘φj

)(
F− T

ik ∇∘φk
)
F− 1

ni = −
1

⃒
⃒F− T ⋅ m0

⃒
⃒

1
(∇∘φ)

2 ∇φm∇φiF− 1
ni =

−
1

⃒
⃒F− T ⋅ m0

⃒
⃒

(∇φ)
2

(∇∘φ)
2mmmiF− 1

ni = −
⃒
⃒F− T ⋅ m0

⃒
⃒mmmiF− T

in ,

(112)  

which is the component form of 

Z = −
⃒
⃒F− T ⋅ m0

⃒
⃒(m ⊗ m) ⋅ F− T . (113) 

Note that we also used 

∇ϕ = F− T ⋅ ∇∘ϕ; ∇ϕi = F− T
ij ∇∘ϕj. (114)    

⋅ Let us calculate M, which is defined from Eq. (37) as 

M =
∂

∂∇∘φ
⃒
⃒F− T ⋅ m0

⃒
⃒ =

∂
∂∇∘φ

( (
F− T ⋅ m0

)
⋅
(
m0 ⋅ F− 1))1/2

. (115)   

In a component form 

Ml =
∂

∂∇∘φl

(
F− T

ij m0jm0kF− 1
ki

)1/2
=

1
2
⃒
⃒F− T ⋅ m0

⃒
⃒

∂
∂∇∘φl

(
F− T

ij m0jm0kF− T
ik

)
=

1
⃒
⃒F− T ⋅ m0

⃒
⃒

(
F− T

ij m0kF− T
ik

) ∂m0j

∂∇∘φl
=

1
|∇∘φ|

⃒
⃒F− T ⋅ m0

⃒
⃒
m0kF− 1

ki F− T
ij

(
Ijl − m0jm0l

)
,

(116)  

where we used 

∂m0

∂(∇∘φ)
=

∂(∇∘φ/|∇∘φ|)

∂∇∘φ
=

(∂∇∘φ/∂∇∘φ)|∇∘φ| − (∂|∇∘φ|/∂∇∘φ) ⊗ ∇∘φ
(∇∘φ)

2 =

I|∇∘φ| − (∇∘φ/|∇∘φ|) ⊗ ∇∘φ
(∇∘φ)

2 =
I − m0 ⊗ m0

|∇∘φ|
.

(117) 

Finally, in index-free notations, we have 

M = m0 ⋅ F− 1 ⋅ F− T ⋅
I − m0 ⊗ m0⃒
⃒F− T ⋅ ∇∘φ

⃒
⃒
. (118) 

Since (I − m0 ⊗ m0) ⋅ m0 = m0 − m0 = 0 and, consequently (I − m0 ⊗ m0) ⋅ ∇∘φ = 0 thus, M ⋅ ∇∘φ = 0 and the last term in Eq. (36) 
vanishes.  

⋅ Y is defined in Eq. (37) as 

Y = ∇∘
dS
dS0

= ∇∘
(
J
⃒
⃒F− T ⋅ m0

⃒
⃒
)

= J∇∘
( (

F− T ⋅ m0
)

⋅
(
m0 ⋅ F− 1))1/2

+
⃒
⃒F− T ⋅ m0

⃒
⃒∇∘J. (119)   

For the first term on the right side, we use 

Y ′

l :=

((
F− T

ij m0jm0kF− 1
ki

)1/2
)

,l
=

1
2
⃒
⃒F− T ⋅ m0

⃒
⃒

(
m0jF− 1

ji F− T
ik m0k

)

,l
=

1
⃒
⃒F− T ⋅ m0

⃒
⃒

(
m0jF− 1

ji,l F− T
ik m0k + m0j,lF− 1

ji F− T
ik m0k

)
.

(120) 

Thus, in the direct tensor notations, Y is 
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Y =
J

⃒
⃒F− T ⋅ m0

⃒
⃒

( (
m0 ⋅ ∇∘F− 1) ⋅

(
F− T ⋅ m0

)
+ ∇∘m0 ⋅ F− 1 ⋅ F− T ⋅ m0

)
+
⃒
⃒F− T ⋅ m0

⃒
⃒∇∘J =

J
(
m0 ⋅ ∇∘F− 1 + ∇∘m0 ⋅ F− 1) ⋅

F− T ⋅ m0⃒
⃒F− T ⋅ m0

⃒
⃒

+ J
⃒
⃒F− T ⋅ m0

⃒
⃒F− T : ∇∘F =

J
(
m0 ⋅ ∇∘F− 1 + ∇∘m0 ⋅ F− 1) ⋅ m + J

⃒
⃒F− T ⋅ m0

⃒
⃒F− T : ∇∘F.

(121) 

We have used ∇∘J = ∂J
∂F : ∇∘F = JF− T : ∇∘F and ∇∘m0 can be evaluated as 

∇∘m0 = ∇∘
∇∘φ

|∇∘φ|
=

∇∘∇∘φ|∇∘φ| − (∇∘∇∘φ ⋅ ∇∘φ/|∇∘φ|) ⊗ ∇∘φ
(∇∘φ)

2 = ∇∘∇∘φ ⋅
I − m0 ⊗ m0

|∇∘φ|
, (122)  

which is a symmetric tensor. Note that m0 ⋅ ∇∘m0 = 0 and therefore ∇∘φ ⋅ ∇∘m0 = 0 while evaluating ∇∘φ ⋅ Y in Eq. (36).  

⋅ Scalar N is defined in Eq. (37) as 

N = ∇∘ ⋅ M =

(
m0kF− 1

ki F− T
ij

(
Ijl − m0jm0l

)

(
F− T

hm ∇∘φmF− T
hn ∇∘φn

)1/2

)

,l

=

(
m0k,lF− 1

ki F− T
ij + m0kF− 1

ki,l F− T
ij + m0kF− 1

ki F− T
ij,l

) Ijl − m0jm0l⃒
⃒F− T ⋅ ∇∘φ

⃒
⃒

− m0kF− 1
ki F− T

ij
m0j,lm0l + m0jm0l,l⃒
⃒F− T ⋅ ∇∘φ

⃒
⃒

−

F− T
hm ∇∘φm

(
F− T ⋅ ∇∘φ

)2

(
F− T

hn,l ∇∘φn + F− T
hn ∇∘φn,l

)
m0kF− 1

ki F− T
ij

(
Ijl − m0jm0l

)
.

(123)   

We used m0j,lm0l = 0, i.e., ∇∘m0 ⋅ m0 = 0, which comes from m0l,jm0j = m0j,lm0j = 0.5(m0jm0j).l = 0, where the symmetry property of 
∇∘m0 is used from Eq. (122). Thus, 

N =
(
∇∘m0 ⋅ F− 1 ⋅ F− T + m0 ⋅ ∇∘F− 1 ⋅ F− T + m0 ⋅ F− 1 ⋅ ∇∘F− T) :

I − m0 ⊗ m0⃒
⃒F− T ⋅ ∇∘φ

⃒
⃒

−

∇∘ ⋅ m0⃒
⃒F− T ⋅ ∇∘φ

⃒
⃒
m0 ⋅ F− 1 ⋅ F− T ⋅ m0−

F− T ⋅ ∇∘φ
(
F− T ⋅ ∇∘φ

)2 ⋅
(
∇∘F− T ⋅ ∇∘φ + F− T ⋅ ∇∘∇∘φ

)
⋅ (I − m0 ⊗ m0) ⋅ F− 1 ⋅ F− T ⋅ m0,

(124) 

One can evaluate the scalar ∇∘ ⋅ m0 = ∇∘ ⋅ ∇∘φ
|∇∘φ|

=
∇2

∘ φ− m0 ⋅∇∘∇∘φ⋅m0
|∇∘φ|

.  

⋅ Here, we simplify Eq. (18)2 and Eqs.(115), (119), and (123) for the small strains and rotations in such a manner: 

dS
dS0

= J
⃒
⃒F− T ⋅ m0

⃒
⃒ = J

( (
F− T ⋅ m0

)
⋅
(
m0 ⋅ F− 1))1/2

= J[((I − ε − ω) ⋅ m0) ⋅ (m0 ⋅ (I − ε + ω))]
1/2

≈ J(1 − 2(m0 ⊗ m0) : ε)
1/2

≈ (1 + I : ε)(1 − (m0 ⊗ m0) : ε) = 1 + (I − m0 ⊗ m0) : ε.
(125)   

We neglect the higher-order terms in ε and ω and their combination. Using |F− T ⋅ m0|≃ 1 − (m0 ⊗ m0) : ε from Eq. (125), we obtain 

M =
∂
⃒
⃒F− T ⋅ m0

⃒
⃒

∂∇∘φ
=

∂(1 − (m0 ⊗ m0) : ε)

∂∇∘φ
= − 2m0 ⋅ ε ⋅

I − m0 ⊗ m0

|∇∘φ|
. (126) 

Using Eq. (125) again, we obtain 

Y = ∇∘(dS/dS0) = ∇∘(1 + (I − m0 ⊗ m0) : ε) =

∇∘((I − m0 ⊗ m0) : ε) = (I − m0 ⊗ m0) : ∇∘ε− 2m0 ⋅ ε ⋅ ∇∘m0.
(127) 

Then, by utilizing Eq. (126), we obtain 

N = ∇∘ ⋅ M = − 2∇∘ ⋅
(

m0 ⋅ ε ⋅
I − m0 ⊗ m0

|∇∘φ|

)

= − 2∇∘m0 :

(

ε ⋅
I − m0 ⊗ m0

|∇∘φ|

)

−

2m0 ⋅ ∇∘ε :
I − m0 ⊗ m0

|∇∘φ|
− 2m0 ⋅ ε ⋅

(
m0∇2

∘ φ − m0 ⋅ (∇∘∇∘φ)
T)
/

(∇∘φ)
2
.

(128) 
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The direct simplification of M, Y, and N from Eqs. (118), (121), and (124) is given as follows. We neglect the higher-order terms in 
ε; thus, (I − ε) ⋅ (I − ε)≃I − 2ε. M is simplified as 

M = m0 ⋅ F− 1 ⋅ F− T ⋅
I − m0 ⊗ m0⃒
⃒F− T ⋅ ∇∘φ

⃒
⃒

≈ m0 ⋅ (I − ε) ⋅ (I − ε) ⋅
I − m0 ⊗ m0

|∇∘φ|
=

m0 ⋅ (I − 2ε) ⋅
I − m0 ⊗ m0

|∇∘φ|
= − 2m0 ⋅ ε ⋅

I − m0 ⊗ m0

|∇∘φ|
,

(129)  

where (I − m0 ⊗ m0) ⋅ m0 = m0 − m0 = 0 was used. Similarly, Y is 

Y = J
(
m0 ⋅ ∇∘F− 1 + ∇∘m0 ⋅ F− 1) ⋅

F− T ⋅ m0⃒
⃒F− T ⋅ m0

⃒
⃒

+ J
⃒
⃒F− T ⋅ m0

⃒
⃒F− T : ∇∘F ≈

( − m0 ⋅ ∇∘ε + ∇∘m0 ⋅ (I − ε)) ⋅
(I − ε) ⋅ m0⃒
⃒F− T ⋅ m0

⃒
⃒

+ I : ∇∘ε =

− m0 ⋅ ∇∘ε ⋅ (I − ε) ⋅ m0 + ∇∘m0 ⋅ (I − ε) ⋅ (I − ε) ⋅ m0 + I : ∇∘ε =

− m0 ⋅ ∇∘ε ⋅ I ⋅ m0 + ∇∘m0 ⋅ (I − 2ε) ⋅ m0 + I : ∇∘ε =

− ∇∘ε : (m0 ⊗ m0) + ∇∘m0 ⋅ (I − 2ε) ⋅ m0 + I : ∇∘ε = ∇∘ε : (I − m0 ⊗ m0) − 2∇∘m0 ⋅ ε ⋅ m0,

(130)  

where we used ∇∘m0 ⋅ m0 = 0. And for N 

N =
(
∇∘m0 ⋅ F− 1 ⋅ F− T + m0 ⋅ ∇∘F− 1 ⋅ F− T + m0 ⋅ F− 1 ⋅ ∇∘F− T) :

I − m0 ⊗ m0⃒
⃒F− T ⋅ ∇∘φ

⃒
⃒

−

∇∘ ⋅ m0⃒
⃒F− T ⋅ ∇∘φ

⃒
⃒

(
m0 ⋅ F− 1 ⋅ F− T ⋅ m0

)
−

F− T ⋅ ∇∘φ
(
F− T ⋅ ∇∘φ

)2 ⋅
(
∇∘F− T ⋅ ∇∘φ + F− T ⋅ ∇∘∇∘φ

)
⋅ (I − m0 ⊗ m0) ⋅ F− 1 ⋅ F− T ⋅ m0 ≈

(∇∘m0 ⋅ (I − ε) ⋅ (I − ε) − m0 ⋅ ∇∘ε ⋅ (I − ε) − m0 ⋅ (I − ε) ⋅ ∇∘ε) :
I − m0 ⊗ m0

|∇∘φ|
−

∇∘ ⋅ m0

|∇∘φ|
m0 ⋅ (I − ε) ⋅ (I − ε) ⋅ m0−

(I − ε) ⋅ ∇∘φ
(∇∘φ)

2 ⋅ ( − ∇∘ε ⋅ ∇∘φ + (I − ε) ⋅ ∇∘∇∘φ) ⋅ (I − m0 ⊗ m0) ⋅ (I − ε) ⋅ (I − ε) ⋅ m0.

(131) 

Since (I − m0 ⊗ m0) ⋅ (I − ε) ⋅ (I − ε) ⋅ m0, the last term vanishes and 

N = (∇∘m0 ⋅ (I − 2ε) − 2m0 ⋅ ∇∘ε) :
I − m0 ⊗ m0

|∇∘φ|
−

∇∘ ⋅ m0

|∇∘φ|
m0 ⋅ (I − 2ε) ⋅ m0 = (∇∘m0 − 2∇∘m0 ⋅ ε − 2m0 ⋅ ∇∘ε) :

I − m0 ⊗ m0

|∇∘φ|
−

∇∘ ⋅ m0

|∇∘φ|
(m0 − 2m0 ⋅ ε) ⋅ m0 = − 2∇∘m0 :

(

ε ⋅
I − m0 ⊗ m0

|∇∘φ|

)

−

2m0 ⋅ ∇∘ε :
I − m0 ⊗ m0

|∇∘φ|
− 2m0 ⋅ ε ⋅

(
m0∇2

∘ φ − m0 ⋅ (∇∘∇∘φ)
T)
/

(∇∘φ)
2
,

(132)  

where we used ∇∘m0 : (I − m0 ⊗ m0) = ∇∘ ⋅ m0 − m0 ⋅ ∇∘m0 ⋅ m0 = ∇∘ ⋅ m0 and m0 ⋅ m0∇∘ ⋅ m0 = ∇∘ ⋅ m0. Eqs (129)-(132) are the same as 
Eq. (126)-(128) from a different derivation. We did not introduce the rotation tensor into the derivations here because it vanishes, 
similar to Eq. (125). 
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