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Abstract

The standard picture of galaxy formation motivates the decomposition of the Milky Way into 3–4 stellar
populations with distinct kinematic and elemental abundance distributions: the thin disk, thick disk, bulge, and
stellar halo. To test this idea, we construct a Gaussian mixture model (GMM) for both simulated and observed stars
in the solar neighborhood, using measured velocities and iron abundances (i.e., an augmented Toomre diagram) as
the distributions to be decomposed. We compare results for the Gaia−APOGEE DR16 crossmatch catalog of the
solar neighborhood with those from a suite of synthetic Gaia−APOGEE crossmatches constructed from FIRE-2
cosmological simulations of Milky Way mass galaxies. We find that in both the synthetic and real data, the best-fit
GMM uses five independent components, some of whose properties resemble the standard populations predicted by
galaxy formation theory. Two components can be identified unambiguously as the thin disk and another as the
halo. However, instead of a single counterpart to the thick disk, there are three intermediate components with
different age and alpha abundance distributions (although these data are not used to construct the model). We use
decompositions of the synthetic data to show that the classified components indeed correspond to stars with
different origins. By analogy with the simulated data, we show that our mixture model of the real Gaia−APOGEE
crossmatch distinguishes the following components: (1) a classic thin disk of young stars on circular orbits (46%),
(2) thin disk stars heated by interactions with satellites (22%), (3, 4) two components representing the velocity
asymmetry of the alpha-enhanced thick disk (27%), and (5) a stellar halo consistent with early, massive
accretion (4%).

Unified Astronomy Thesaurus concepts: Galaxy dynamics (591); Milky Way dynamics (1051); Solar
neighborhood (1509); Galactic abundances (2002); Milky Way Galaxy physics (1056)

1. Introduction

The kinematics and elemental abundances of the Milky Way’s
stars are thought to contain clues to the formation history of the
Galaxy we live in (e.g., Freeman & Bland-Hawthorn 2002). In the
classic picture, the distribution of stars in velocity and elemental
abundances has a relatively small number of distinct components
linked to different formation epochs:

1. At very early times, star formation and proto galaxy
merging take place in a relatively chaotic environment,
leading to a roughly spheroidal distribution variously
referred to as an “early spheroid” (e.g., Elmegreen et al.
2008). Stars formed very fast in this epoch, so despite

starting from gas almost free of metals, the resultant
population is quite metal-rich.

2. A subsequent epoch of accretion creates a hot disk
structure (still relatively metal-poor), which forms stars in
the present-day thick disk (e.g., Forbes et al. 2012; Bird
et al. 2013) and/or stars formed early on in a thin disk are
heated by scattering processes and displaced by radial
migration to form the thick disk (Sharma et al. 2021). At
larger radii, stars above the plane are built up by flaring of
mono-age populations (Minchev et al. 2015).

3. The thin disk is formed by colder and more gradual accretion
of more metal-rich gas, regulated by feedback from relatively
steady star formation, in a process that continues to the
present day (e.g., Brook et al. 2012; Garrison-Kimmel et al.
2018; Ma et al. 2017; Stern et al. 2021).
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4. Accretion of smaller, more metal-poor components con-
tributes an additional, roughly spheroidal component with a
larger scale radius but with substructures, commonly referred
to as the “outer halo” or “accreted halo” (e.g., Searle &
Zinn 1978).17 In studies of the solar neighborhood, this
component and the first one are often jointly referred to as
the “halo,” which is a suitable simplification given the
short scale radius and complex kinematics of the Milky
Way’s bulge-like component (Gerhard & Martinez-
Valpuesta 2012).

This picture sets up the expectation of a multicomponent
stellar distribution in the solar neighborhood, with old,
spheroidally distributed stars at the lowest metallicities (the
“halo”), young, metal-rich stars in a kinematically cold “thin
disk,” and a population intermediate in age, metallicity, and
kinematics, commonly referred to as the “thick disk.” Sustained
star formation during the cooling of the gas reservoir, as well as
gradual dynamical heating of the resulting stellar population,
would predict a smooth correspondence between kinematic
temperature, metallicity, and age in the disk, with kinematically
hotter stars being older and more metal-poor.

Many papers prior to this one have sought to test these ideas
and refine our understanding of the processes that built the
solar neighborhood by selecting stars based on their kinematics
and studying their abundance distributions (e.g., Bensby et al.
2003; Venn et al. 2004; Ishigaki et al. 2013; Nissen &
Schuster 2010; Bonaca et al. 2017; Fernández-Trincado et al.
2019; An & Beers 2020; Hayden et al. 2020). Most often, these
kinematic cuts are performed in the Toomre diagram, where the
x axis has the velocity of stars in the direction of Galactic
rotation VY, and the y axis has the perpendicular component

º +V V VXZ X Z
2 2 . Here, VX is along the Sun−Galactic center

direction, and VZ is perpendicular to the disk plane in the
direction of the total angular momentum.

Figure 1 shows the Toomre diagram of stars drawn from
traditional components of the Galaxy measured by Bensby
et al. (2003), with the thin disk in magenta, the thick disk in
orange, and the halo in purple. These components are

overlapping, but a selection criterion based on the relative
velocity with respect to the local standard of rest (LSR) can
preferentially select thin disk stars comoving with the LSR
(magenta shaded region in Figure 1), thick disk stars at
intermediate distance from the LSR (orange shaded region),
and halo stars moving at high velocity with respect to the LSR
(purple shaded region).
In an alternative to such kinematic selections, other studies

have selected disk stars based on their elemental abundances and
from their spatial distributions tested the idea of a continuous
transition between thin and thick disks (e.g., Bovy et al.
2012a, 2012b, 2016; Mackereth et al. 2017). Some cosmological
simulations (e.g., Ma et al. 2017; Obreja et al. 2019; Bird et al.
2021; Buck et al. 2020) also do not predict a clean/sharp
transition from the thick to the thin disk, but rather, a more
gradual settling of the stellar disk (note, however, that some
simulations such as the FIRE simulations analyzed in this paper
suggest a sharper transition in the properties of the gas disk, as
galaxies transition from highly bursty to more steady star
formation rates, e.g., Stern et al. 2021). Still others were
interested in searching for local interlopers from the halo to assess
the Milky Way’s accretion history, simultaneously employing
both kinematic and metallicity cuts to select this relatively small
population from the overwhelmingly more numerous disk stars
(e.g., Helmi et al. 2017; Herzog-Arbeitman et al. 2018).
The assumptions these approaches make about links between

the kinematics and metallicity and/or alpha enhancement of
stars have begun to be challenged with the advent of Gaiaʼs
exquisite kinematic information (Gaia Collaboration et al.
2016). For example, several authors have pointed out the
presence of a population that is either an intermediate
component between the thick disk and the halo (Bonaca
et al. 2017; Posti et al. 2018; Belokurov et al. 2018) or a sense
of rotation in the halo itself (Deason et al. 2017; Kafle et al.
2017). The Gaia-Enceladus or “Sausage” structure (Belokurov
et al. 2018; Helmi et al. 2018; Myeong et al. 2018; Mackereth
et al. 2018) is likely a massive contributor to the local
neighborhood and has 30%–50% of the halo stellar mass
(Mackereth & Bovy 2020).
This influx of new information both enables and motivates the

relaxation of some of the assumptions about the structure of the
solar neighborhood, in favor of allowing the data themselves to tell
us what the distribution looks like. In this work, we take the
agnostic approach of modeling the stellar distribution as a mixture
of Gaussians, with the goal of imposing as few assumptions as
possible on its observed quantities.
We construct a mixture model (described briefly in Section 2)

of the velocities and iron abundances of stars in the solar
neighborhood, leaving the number of Gaussian components in
the model free to vary and using an information criterion to pick
the most suitable number. We test this approach on a new set of
mock Gaia−APOGEE catalogs generated from FIRE-2 cosmo-
logical simulations18 of a Milky Way mass galaxy (Sanderson
et al. 2020; described in Section 3). From these mock catalogs,
we find that the best-fit model is consistent with previous
arguments on the origins of solar neighborhood stars and their
spatial, kinematic, and abundance distributions (Section 4).
Perhaps surprisingly, we find that the optimal decomposition
features five components in all of the simulations: two analogous
to the thin disk and the halo, but instead of a single counterpart

Figure 1. Typical regions of the Toomre diagram based on observation in the
solar neighborhood and ascribed to different chemokinematic components
following Bensby et al. (2003): the metal-poor “halo” (purple), the intermediate
“thick disk” (orange), and the metal-rich “thin disk” (magenta).

17 These two terms, though sometimes used interchangeably, are not
synonymous: accreted material, especially from early epochs, can certainly
be found at small radii, while stars formed in outflows from regions of high star
formation in the disk (Yu et al. 2020), and those kicked out by interactions with
satellite galaxies (Laporte et al. 2018), can reach large radii (El-Badry et al.
2018; Starkenburg et al. 2017). 18 See the FIRE project website: http://fire.northwestern.edu.
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to the thick disk, there are three intermediate components with
distinct age−alpha distributions and formation histories, even
though these data are not used to fit the model. We then apply
the same strategy to stars in the solar neighborhood using the
Gaia DR2 catalog crossmatched with the APOGEE DR16
(Section 3) survey and find a similar result (Section 5). We
conclude in Section 6 by drawing analogies with the simulated
surveys to postulate distinct origins for the five components
identified in our Milky Way.

2. Gaussian Mixture Modeling

A Gaussian mixture model (GMM) describes a distribution
of ns data points (samples) xj using a combination of nc
Gaussian distributions with independent mean values


mi and

covariance matrices Σi. The xj contain the nf features (i.e.,
dimensions of data) used to determine the probabilities p that
each of the data points belongs to each of the nc Gaussian
components.

Thus for a given sample,
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free parameters in the model. The probability of data point j
belonging to component k in the GMM, also known as the
responsibility R, is
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The model assigns a label to each sample, i.e., identifies the
Gaussian component to which the data point with coordinates
xj is most likely to belong, by choosing the component with the
highest Rk. Thus the GMM acts as both a description of the
overall density distribution of the ns samples in nf-dimensional
space, and as an unsupervised classifier that places each sample
into one of nc groups. We use the implementation provided in
the Python package scikit-learn (Pedregosa et al. 2011).

In our case the features used for classification will be the three-
dimensional velocities {VX, VY, VZ} of the ns stars, where VY is the
Galactocentric velocity in the direction of the disk rotation, VX
along the Sun–Galactic center direction, and VZ perpendicular to
the disk plane in the direction of the total angular momentum. We
add the iron abundances [Fe/H] as a fourth dimension or feature,
so for our case nf= 4. This means for a model with five
components nc= 5, we have 74 free parameters (Equation (2)).

The reduction of dimensionality in moving from a three-
dimensional velocity vector to two Toomre components of
velocity {VY, VXZ} is motivated by the underlying symmetry of
the Galaxy, but since there is a zero cutoff in VXZ and our
model is a mixture of Gaussians, we construct our model with
the three-dimensional velocity vector plus metallicity and just

represent obtained clusters in the Toomre subspace plus
metallicity. Likewise, we use Cartesian coordinates rather than
cylindrical or spherical coordinates for the velocities to avoid
imprinting assumptions about symmetries. Surveys of the
current generation are for the most part embedded in the solar
neighborhood, where the assumption of axisymmetry is
appropriate. Symmetry assumptions like this are less appro-
priate to future surveys exploring a larger volume of the Galaxy
(e.g., Beane et al. 2019), and the framework and intuition
developed in this work lay ground for this transition.
To find the best-fit GMM, we start by choosing a number of

components nc. We initialize their means, covariances, and
weights by preliminarily labeling each sample using k-means
clustering (Steinhaus 1957) and maximizing the likelihood
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using expectation-maximization (Dempster et al. 1977), which
determines the best-fit weights, means, and covariances. We
then repeat this process for different values of nc and determine
the number of components that minimizes the Bayes informa-
tion criterion (Schwarz 1978),

ˆ ( ) ( )= - + n nBIC 2 ln ln , 5p s

where ̂ is the maximum value of the likelihood function given
by Equation (4) and np is the total number of free parameters in
the model, given by Equation (2). This criterion compares the
maximum likelihood values for different numbers of compo-
nents (the first term) while including a penalty for introducing
additional parameters into the model (the second term), to
account for the fact that a model with more free parameters will
always produce a better fit. The value of the penalty is derived
from an asymptotic expansion of the Bayes evidence as the
sample size approaches infinity, under the assumption that the
data are independent samples from a distribution with an
exponential form (such as a Gaussian). This agrees with the
fundamental assumption of the GMM, which motivates our use
of this criterion for model selection rather than an information-
theory-based criterion such as the Akaike information criterion
(AIC; Akaike 1974). The BIC’s penalty for adding model
parameters, weighted by nln s, strongly prefers models with
lower np relative to the AIC (Schwarz 1978).
The assumption that the data we are fitting are truly drawn from

a combination of Gaussian components is not necessarily a great
one; in fact, it is demonstrably not true for the Toomre
coordinates, as we will discuss further in Section 4, so the
penalty in the BIC for adding extra components to the mixture
model is at best an approximation. Thus, although in the idealized
case one would look for the minimum BIC value to select the
preferred number of components in the model, in practice we do
so by increasing nc just until the BIC stops rapidly decreasing,
which is called the Elbow rule/method (Thorndike 1953).

3. Observational and Mock Gaia−APOGEE Catalogs

To apply the concept of separating populations of stars using
mixture modeling, we created a suite of mock catalogs
mimicking the crossmatch between the Gaia Data Release 2
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(Gaia Collaboration et al. 2016, 2018) and the 16th data release
(DR16) of the Apache Point Observatory Galactic Evolution
Experiment (APOGEE; Ahumada et al. 2020; Jönsson et al. 2020).

3.1. Observed Catalog

APOGEE-2 (Majewski et al. 2017) is a dual hemisphere
survey that uses cloned spectrographs (Wilson et al. 2019)
operating each at the Apache Point Observatory on the Sloan
Foundation 2.5 m telescope (Gunn et al. 2006) and at Las
Campanas Observatory on the duPont Telescope (Bowen &
Vaughan 1973). APOGEE targets primarily red giant stars in
all components of the Milky Way (MW), with substantial
additional numbers of main-sequence and massive evolved
stars, which are selected using a simple set of dereddened-color
and magnitude criteria (Zasowski et al. 2013, 2017, R. Beaton
et al. 2021 in preparation, F. Santana et al. 2021 in
preparation). The exact criteria vary by location in the Galaxy
and the length of time a given field will be observed.

A custom processing pipeline (Nidever et al. 2015) reduces the
data and calculates heliocentric radial velocities (RVs), and the
APOGEE Stellar Parameters and Abundances Pipeline (ASPCAP,
García Pérez et al. 2016) produces fundamental stellar parameters
(e.g., ( )glog and Teff) and elemental abundances for up to 26
species. The DR16 catalog contains measurements for 430,000
stars. We also make some quality selections on the data to remove
stars with very small “observed” parallaxes (i.e., spuriously large
distances, π< 0.1 μas or d> 100 kpc) and/or large measurement
errors on the parallax (Δπ/π> 0.1), metallicity, and radial
velocity. After applying these quality cuts around 150,000 stars
remained, which give us a radial coverage of 4–12 kpc Galacto-
centric distances.

3.2. Mock Catalog

To create the mock Gaia−APOGEE crossmatches, we start
from the synthetic Gaia surveys Sanderson et al. (2020) created
from three MW-mass galaxies in the Latte suite (first
introduced in Wetzel et al. 2016) of FIRE-2 cosmological
simulations (Hopkins et al. 2018), which feature self-consistent
clustering of star formation in dense molecular clouds and thin
stellar/gaseous disks in live cosmological halos with satellite
dwarf galaxies and stellar halos. In each of those simulations,
there are three solar viewpoints that generate nine synthetic
Gaia-like surveys (3 galaxies× 3 neighborhoods). The synth-
etic stars are sampled by assuming each star particle represents
a single stellar population. The simulations have initial star
particle masses of 7070 Me, but because of stellar mass loss, a
typical star particle, at z= 0, has a mass of ~5000 Me. At each
neighborhood, dust extinction is computed from the simulated
gas metallicity distribution.

Regarding the iron abundance, it is important to bear in mind
that supernovae (core collapse and type Ia) and stellar winds
generate and disperse metals, which are then deposited into gas
particles. For supernovae Ia, the stellar nucleosynthesis yields
are adopted from Iwamoto et al. (1999), where the rates follow
Mannucci et al. (2006), including both prompt and delayed
populations. For core collapse supernovae, yields are from
Nomoto et al. (2006); for stellar winds (AGB and O/B stars),
yields are from a compilation of van den Hoek & Groenewegen
(1997), Marigo (2001), and Izzard et al. (2004).
These simulations also include an explicit treatment for

unresolved turbulent diffusion of metals in gas, which produces

more realistic abundance distributions in both the MW-like
galaxies and in their satellite dwarf galaxies (Su et al. 2017;
Hopkins et al. 2018; Escala et al. 2018).
We also add an APOGEE-like error model for the elemental

abundances [Fe/H], [Mg/Fe], [C/Fe], [N/Fe], [S/Fe], [O/Fe],
[Si/Fe], and [Ca/Fe] as determined in V. J. Poovelil et al.
(2021 in preparation)19 where we assume a signal-to-noise ratio
of 100 for every star. Although we only use [Fe/H] for
constructing the GMM, we need to track individual abundances
(which are not used to fit the model) to see the physical
origin and formation histories of each component. In this paper,
[Mg/Fe] is used for this purpose, but other abundances will be
explored in forthcoming works.
For each star the error-convolved abundances and radial

velocities are each drawn from a one-dimensional normal
distribution around the “true” value generated from the simulation,
with the width of the normal distribution equivalent to the error on
each property (qualitatively the same approach as used in
Sanderson et al. (2020) to sample the Gaia error model). Our
mock catalog is thus essentially an all-sky version of the Gaia
−APOGEE crossmatch. Although they are based on the synthetic
Gaia surveys constructed in Sanderson et al. (2020), we refer to
these simulated observations as mock catalogs rather than synthetic
surveys since we do not overlay the APOGEE selection function.
However, this will be done in future work to produce true synthetic
surveys for the Gaia−APOGEE crossmatch. Finally, before
running the mixture model we make the same quality selections
on the mock catalogs as the observed catalog. These selections are
all based on the simulated Gaia observations, not on our
rudimentary APOGEE error modeling.
To compare the spatial extent of the observed and mock

catalogs, the parallax distribution of stars in both real data and
one of the mocks (see Section 4 below) is shown in Figure 2.
Our mock catalogs in general contain more stars than the real
catalog for a few reasons. First, the total stellar mass of our
simulations ranges over a factor of a few, some likely larger
than the MW (Sanderson et al. 2020). Second, these are mock
catalogs and not true synthetic surveys, so for example the
APOGEE sky footprint has not been applied, and crowding
effects are not modeled, so that even in the densest regions
every star enters our mock catalogs. These effects also serve to
increase the number of stars relative to the real survey.

Figure 2. Parallax distribution of stars in the observed catalog and the m12f
-LSR0 mock catalog after applying the quality cuts on parallax, metallicity, and
radial velocity.

19 A similar process was ultimately adopted for DR16 as is described in
Jönsson et al. (2020).

4

The Astrophysical Journal, 921:106 (17pp), 2021 November 10 Nikakhtar et al.



However, the parallax distributions of the real and mock
surveys are similarly shaped even if the normalization is
different. The reach of the mock catalogs relative to the size of
the simulated galaxies is also consistent with an “all-sky”
extension of APOGEE; Figure 3 shows face-on and edge-on
views of the m12i simulation with density contours of the
sample stars from m12i-LSR0 to illustrate.

In addition to the APOGEE error model for elemental
abundances, we added the Two Micron All Sky Survey
(2MASS) J, H, and Ks magnitudes to our catalogs (Skrutskie
et al. 2006), corresponding to the bands used to select
APOGEE targets (see descriptions in Zasowski et al.
2013, 2017). The 2MASS photometric errors are estimated
by using an exponential plus constant model and, similar to the
elemental abundances, the convolved magnitudes are drawn
from a zero-mean normal distribution with the corresponding
variance.

4. Mixture Models of Mock Gaia−APOGEE Catalogs

To construct the mixture model, we use the three
components of the space velocity in Cartesian coordinates
{VX, VY, VZ} computed from the error-convolved astrometry
(according to the Gaia error model) and radial velocities
(according to the APOGEE error model) and add the error-
convolved iron abundances relative to solar, [Fe/H], as a fourth
dimension. Compared to the classic Toomre diagram (VXZ–VY

or VRZ–Vf plane), which has historically been used to separate
different stellar kinematic components in the solar neighbor-
hood, this feature space allows for the possibility that stars in
different kinematic components can have different metallicity
distributions, but notably does not make any assumptions about
what those distributions are. It likewise makes no assumptions
about approximate symmetries in the phase space distribution
(spherical, axisymmetric, or otherwise). This leaves us free to
interpret the components obtained by the model in the context

of broader ideas about galaxy formation, such as the
expectation that stars in the thin disk, with a velocity
distribution centered most closely on the Sun’s, should also
be the youngest and most metal-rich.
Figure 4 shows the results of testing different numbers of

Gaussian components to model this four-dimensional “aug-
mented Toomre diagram.” There is a clear improvement up to
five components and nearly no appreciable improvement after
that (Elbow rule). Moreover, the next components (sixth
component and more) do not correspond to a distinct group and
just split one of the pre-specified clusters. Given the preference
for a low number of distinct components (consistent with the
idea of a thin disk, thick disk, and halo perhaps broken into
some subpopulations) we choose the five component model for
further examination.
In Figure 5 the density contours of each component of the

best-fit model for one of the mock catalogs are shown in three
projections of Toomre+[Fe/H] space. Each set of colored
contours shows the density distribution of synthetic stars for
which the probability of belonging to that component is
highest. We see that this model includes components that fit the
standard expectations of galaxy formation and the solar
neighborhood distribution: a metal-rich component with a
narrow velocity distribution around the solar velocity (the “thin
disk,” shown in magenta), a very metal-poor component with a
broad rotational velocity distribution around zero (the “halo,”
shown in dark purple), and a few progressively broader and
more metal-poor components that together span the difference
between these (shown in orange, black, and rose). We see a
similar result, with slight variations in the relative positions of
the components, for all nine mock catalogs.
The probability panel (top right) in this figure gives a sense of

how well the model describes the data. It shows the distribution of
probabilities of belonging to each component for the different
stars in the sample. For some components, this distribution has
well-defined peaks at 0 (i.e., the star is definitely not in that

Figure 3. Face-on (left) and edge-on (right) views of m12i, one of the simulated galaxies used to generate the mock catalog. The red contours represent density
contours of the sample stars around the solar position that are used for constructing the Gaussian mixture model.
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component) and 1 (i.e., the star is almost certainly part of that
component) with a relatively low number of probabilities at
intermediate values. This means that for these components,
stars are easily classified. The halo and thin disk components
demonstrate this behavior.

That said, for other components, there is still a peak at zero
but the distribution has more intermediate probability values
and drops to zero before reaching p= 1. This indicates that it is
more difficult for the model to securely classify stars in one of
these components; in this case it is because they are relatively
similar, as can be seen by examining the other panels, so many
stars overlap with these. The three intermediate components
demonstrate this behavior. This ambiguity between the
components could come from the fact that a single Gaussian
distribution in velocity is a bad description of the asymmetric
velocity distribution displayed by thick disk stars, which is
better modeled by a superposition of Gaussians (e.g.,
Schwarzschild 1907; Nordström et al. 2004). In this case one
would expect that multiple otherwise similar components are
being used to effectively expand the velocity distribution in a
basis of Gaussians. If the GMM is simply to be used to separate
the three traditional constituents of the solar neighborhood, the
three intermediate components can be lumped together as the
“thick disk” with no practical or conceptual difficulty.
However, the preference for a small number of intermediate
components, and the consistency of that number across all
simulated and real data sets, also raises the intriguing
possibility that the GMM is identifying subpopulations of
stars with different intrinsic properties or different origins. We
will evaluate this possibility, and analyze the intermediate
components in detail, in Section 4.1.

We can verify the correspondence between the traditional
components of the solar neighborhood and these Gaussian
components by examining the distributions of various proper-
ties not used to derive the model. For example, if the most
metal-rich component truly corresponds to a traditional “thin
disk,” then stars in this component should have a narrow
distribution of heights above the disk plane, young-to-
intermediate ages, unenhanced alpha abundances relative to
iron, and formation locations within the Galactic disk.

In Figure 6 we show a series of one-dimensional distribu-
tions of various stellar properties for each component in the
same mock catalog. The probability panel is the same as the top
right panel of Figure 5 and colors of the components are the
same as in that figure; the overall distribution is shown in gray
where applicable. In contrast to Figure 5, which uses the GMM
as a classifier and thus includes only stars with pi(x)> pj≠i(x) in
each component, these distributions are calculated by weight-
ing each star’s contribution by its probability of belonging to
that component. This illustrates the power of mixture modeling
to permit full probabilistic analysis, which is especially
important given the degree of overlap between populations
(illustrated by the probability distributions shown in Figure 5,
which contain many intermediate values).
As seen in the top row of Figure 6, the velocity distributions

of these three intermediate components bridge the gap between
stars rotating in the disk plane with the Sun (VY= VY,e, shown
with a vertical dashed line) and stars orbiting in a broader
distribution centered on the Galactic center. However, the
inclusion of [Fe/H] as a fourth component shows that there is
indeed some additional information in this distribution:
components with lower mean metallicities that include metal-
poor stars tend to have a broader velocity distribution. In the
standard picture of galaxy formation, metal-poor stars originate
predominantly from a galaxy merger and it is anticipated that
they have a broader/more spheroidal velocity distribution.
However, recent observations show that the Milky Way’s
metal-poor stars have a strong preference to be on prograde
disk orbits (Sestito et al. 2019, 2020, 2021). The similar
behavior of metal-poor stars is shown for 11 of the 12 galaxies

Figure 5. Augmented Toomre diagram (VY vs. VXZ vs. [Fe/H]) contours of the
best-fit five component mixture model to the m12f-LSR0 mock Gaia
−APOGEE catalog. The top right panel shows the distribution of probabilities
of belonging to each component for the different stars in the sample. In this
model, two components can be identified unambiguously as the thin disk
(magenta: metal-rich component with a narrow velocity distribution around the
solar velocity) and another as the halo (purple: metal-poor component with a
broad rotational velocity distribution around zero). Additionally, there are three
progressively broader and more metal-poor components that together span the
difference between these.

Figure 4. Bayes information criterion (BIC) over the number of objects versus
the number of components of mixture models for all nine Gaia−APOGEE
mocks. Black symbols are for the m12f simulation, orange symbols for the
m12i simulation, and magenta symbols are for m12m. All of the 3
simulations × 3 neighborhoods show the same BIC plateau at five components,
which means the optimal decomposition features five components in all of the
simulations.
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from the FIRE-2 simulation suite, including two of the
simulations that we use in this work (m12f and m12m;
Santistevan et al. 2021). The only galaxy among the 12 that
does not show prograde orbits for metal-poor stars is m12i and
the reason for this might be that all mergers occurred at about
the same time, which could have distorted any coherent effect
(Santistevan et al. 2021). This preference of metal-poor stars
helps us to understand the velocity asymmetry that we see in
Figure 6 for the halo component and the most metal-poor thick-
disk-like component.

The other panels in Figure 6 show quantities that were not
used in constructing the mixture model:

1. The formation distance dform of the star particle from
which each mock star was spawned relative to the main
galaxy;

2. The height |z| above the disk plane;
3. The magnesium-to-iron abundance ratio;
4. The stellar age.

These distributions can help us assess how the components
identified by the model map onto ideas about the structure of
the solar neighborhood outlined in Section 1.

We track the approximate formation locations of each star
particle in the simulated galaxy, relative to the center of the
main halo at the time of formation, by post-processing the
Gizmo20 snapshots saved from the simulation (Wetzel &
Garrison-Kimmel 2020a). We define dform as the distance of the
star particle from the host galaxy center in the first snapshot
after it is formed. As in Bonaca et al. (2017) and Sanderson
et al. (2018), we consider stars with dform> 20–30 kpc to be
accreted depending on the simulation (see Figure 1 of
Sanderson et al. 2018), although the caveats discussed
extensively in both those works apply here as well. In short,
this can be considered a conservative definition of the accreted
stellar component.

Overall, we see that the distribution of the magenta
component closely resembles what would be considered the
thin disk in the Milky Way: mostly young, metal-rich stars

formed inside the Galaxy, with alpha-to-iron ratios close
to solar, orbiting with the Sun near the disk plane. The
metallicity distribution of the stars in this component is
not exclusively metal-rich, but extends down to at least
[Fe/H]∼−0.5. The component also includes some stars as
old as ∼10 Gyr that nevertheless chemically resemble the
Sun. These characteristics are consistent with recent studies
of the MW’s chemically-selected thin disk (e.g., Beraldo e
Silva 2021). Likewise, the dark purple component pretty
clearly fits our expectations for the halo: velocities consistent
with a kinematically hot spheroid (slightly counter-rotating in
some cases), a broad spatial distribution, and old, metal-poor,
alpha-enhanced stars mostly formed at very large distances
from the central galaxy. These two components are clearly
identifiable in the best-fit mixture model for all nine mock
catalogs. Given the clear parallels between these two
components and standard interpretations of stellar popula-
tions, we will refer to them as the thin disk and halo for short
in the remainder of the paper. For these two components the
formation distance of the stars also supports classical theories
about their origin: stars in the thin disk component all formed
within 25 kpc of the Galactic center, while about 20% of the
halo component was formed beyond 20 kpc, where for this
simulation most material can be considered accreted rather
than formed in situ. Interestingly, more than half of the stars
in the halo component have an origin consistent with our
picture of an early spheroid: extremely old ages and low
metallicity, yet formed within the main galaxy. These stars
come from early, extremely bursty epochs of star formation
seen in the simulations (El-Badry et al. 2018; Yu et al. 2020;
Muratov et al. 2015; Sparre et al. 2017; Faucher-
Giguère 2018). The accreted fraction the halo component
of m12f, m12i, and m12m simulations is about 20%, 10%,
and 25%, respectively; these percentages depend on the
assembly history of each simulation and these three
simulations have different accretion histories. In each
simulation, the accreted fraction of each component is almost
the same (within 1%–2%) in the three different LSRs and
also the accreted fraction of all stars is the same in all nine
mocks (about 2%).

Figure 6. Distribution of various properties of stars in each component of the best-fit mixture model, for the m12f-LSR0 mock catalog. As with all our mocks, one
component (dark purple) is halo-like, one (magenta) is thin-disk-like, and three (rose, orange, and black) represent intermediate populations whose properties vary
with LSR and formation history. The overall distribution for all stars in this sample is shown in gray. The upper right panel shows dform distributions and stars with
dform > 20 kpc are considered to be accreted. The accreted fraction of the total sample is about 2% and for the halo component it is about 20%. All five components
have different age and alpha abundance distributions and these properties are not used to construct the model.

20 https://bitbucket.org/awetzel/gizmo_analysis
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From the velocity and metallicity distributions, it is under-
standable how these two components, comprising the oldest
and the youngest stars in the sample, are most easily picked out
by the model with certainty. In the age distribution, which is
not used in our model, they are also very well separated. They
are most consistent with a Gaussian velocity distribution,
though for two very different reasons: one has barely been
transformed from its birth distribution at all while the other
has evolved for many dynamical times. They also pick out the
metal-poor tail and metal-rich peak of the total stellar
distribution, respectively, making these stars particularly easy
to classify.

4.1. Thick Disk Decomposition

The remaining three components, which together make up
what would traditionally be referred to as the “thick disk,” lie
intermediate to the thin disk and halo components in all of the
characteristics we examined. The separation of this intermedi-
ate population into multiple components could indicate less
consistency with the assumptions of the model, a more
complex origin, or some of both. In this section we discuss
these three components in detail.

The component shown in orange most resembles the halo
component in terms of its velocity, metallicity, and z
distributions, but differs in a few important respects. First,
there are some younger stars present than in the halo
component (purple); and second, although there are a few
stars present formed at larger distances, the overall makeup of
this sample resembles the total solar neighborhood in terms of
its accreted fraction (about 1%). The stars in this component are
also slightly more metal-rich than in the halo, and notably less
alpha-enhanced.

Moreover, from Figure 7, which shows the distribution of
the inclination angle of stars relative to the disk plane at the
time of formation, we can see that this component has a much
flatter distribution than the other two intermediate components,
but it is still not as flat as the distribution of the halo
component. The rose and black components also have distinct
distributions in this view: most of the stars in the rose
component have θform< π/4 (i.e., are formed quite close to the
galactic plane), while the black component has a longer tail at
higher θform.

The three components also show differences in their age and
alpha abundance, two other features that were not used in
classifying them. Figure 8 shows the distribution of age versus
alpha for these three components, obtained by classified stars as
shown in Figure 5. The rose component has younger, less
alpha-enhanced stars, which is consistent with the picture given
by its formation angle distribution that these stars formed after
the disk plane is well established and the disk relatively cold. In
these simulations, this is usually due to an influx of cold, high-
angular-momentum gas at relatively late times (Garrison-
Kimmel et al. 2018). Conversely, the orange component
includes the oldest and most alpha-enhanced stars of the three,
consistent with the picture that these stars formed earlier when
the disk was kinematically hotter (often because of a wider
distribution of angular momentum in the cold gas accretion).
The GMM used to classify the stars in these components is

based solely on 3D velocities plus iron abundance, yet we see
that they have different age and [Mg/Fe] distributions and are
formed in different locations relative to the galactic center
(dform) and to the disk plane at the time of formation (θform).
Furthermore, while the thin disk and halo components are
consistently identified in every mock catalog, the character-
istics of intermediate components identified in different
simulations (which have different assembly histories) are
markedly different. If the GMM were simply decomposing
the asymmetric drift in a combination of Gaussians, it is
highly unlikely that all of these differences would be
apparent. We thus argue that the mixture model is indeed
identifying components with different physical origins within
the thick disk.

4.2. Dependence on Position in the Galaxy

With mock catalogs, it is possible to study how the
distribution of stars in the augmented Toomre space varies as
a function of position in the Galaxy. The solar position within
the simulation is a fairly arbitrary choice since the simulated
galaxy does not resemble the Milky Way in its detailed

Figure 7. The distribution of the inclination angle of stars relative to the disk
plane at the time of formation for all components of the m12f-LSR0 mock
catalog. The orange component has a much flatter distribution than the other
two intermediate components (rose and black), but it is still not as flat as the
distribution of the halo component (purple).

Figure 8. The distribution of age−alpha for three intermediate (thick disk)
components of the m12f-LSR0 mock catalog. The rose component has
younger, less alpha-enhanced stars, which is consistent with the picture given
by its formation angle distribution (Figure 7).
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structure, such as the position and number of spiral arms, the
size and orientation of a bar, or the number and location of tidal
streams in the halo. To illustrate how the augmented Toomre
diagram changes as a function of location, and to test the
sensitivity of this approach to the choice of solar position, we
generated different catalogs for three solar locations in each
simulated galaxy. They have 120° displacement relative to each
other on the solar circle. As shown in Figure 4, the behavior of
the BIC and the number of preferred mixture components is
consistent across different solar locations, implying that this
technique will be successful when applied to the real data
regardless of the local variations in the density or distribution
of stars.

Figure 9 shows that the characteristics of the components
identified by the model are not completely the same in all of the
nine mock catalogs, but in all of them we have three
components for the thick disk. In addition to position
dependence in the galaxy, these differences can depend on
the assembly history of each simulation since these three
galaxies have different relative formation times and accretion
histories.

4.3. Dependence on Assembly History

Many scenarios have been proposed for the origin of the thick
disk. It may emerge from stars migrating outward from the hot,
inner disk (e.g., Loebman et al. 2011), from a turbulent
interstellar medium (ISM; e.g., Bournaud et al. 2009) or a gas-
rich merger (e.g., Brook et al. 2004) at high redshift, from the
nested flairs of mono-age populations (e.g. Minchev et al. 2015),
from a satellite dynamically heating a preexisting stellar disk
(e.g., Villalobos & Helmi 2008), or from the accretion of stars
stripped from satellites (e.g., Abadi et al. 2003). In addition to
each of these single-origin theories, the thick disk could also
arise from various combinations of these processes at different
times. Moreover, in these simulations, since there was not
always a single main progenitor, the definition of in/ex situ for
early-forming stars is complicated (Santistevan et al. 2020).

Figure 9 shows formation distance of stars versus their age in
each component. For each simulation we can see the dependence
on position in the galaxy (different LSRs) and by comparing
simulations to each other, we are able to see the dependence on
assembly history. In addition, the movies available here21 show
the formation and spatial evolution of each component
over time.

In m12f (top three rows), we see that the halo component is
clearly accreted, but includes the very earliest star formation in
the main halo as well. The oldest thick disk component
(orange) is mostly composed of stars that formed very early on
near the galaxy center (El-Badry et al. 2016; Ma et al. 2017; El-
Badry et al. 2018). It also has some stars from a merger that
comes in on a nearly co-planar orbit late in the simulation
(bouncing track at high dform). This leads to a far lower mean
metallicity for this component than for the other two thick disk
components (black and rose). These also mostly form interior
to the solar circle, but at more intermediate radii, starting and
finishing their star formation later than the orange component.
The movie of these components shows they also have some
initial diskiness. The disk in this simulation starts out
perpendicular to what ends up being the disk plane at present
day, and is torqued by a merger into its present configuration.

These intermediate components thus show the stages of inside-
out formation in the disk, modified by merger interactions that
scatter young stars formed near the solar circle, by the rotation
of the disk during the merger, and by “blurring” (the selection
effect that solar neighborhood stars are preferentially near
apocenter). These two intermediate components are also
staggered in age, especially in LSR0, and this is reflected in
the systematic variation of their mean [Fe/H]. Closer to z= 0,
we see that the two later-forming thick disk components also
contain stars that were scattered onto orbits that intersect the
solar circle by the late interaction with the merging galaxy,
especially in LSR1 and LSR2. The thin disk forms latest, after
the merger torques all of the thick disk stars vary rapidly over
into its preferred plane from a nearly 90 degree angle. The stars
in the thin disk mostly come from interior to the solar circle,
but the degree to which blurring can contribute to this effect is
limited, since this component contains the stars on the most
circular orbits (that is, the maximum eccentricity is limited by
the velocity selection). This component is also scattered by the
merger; it looks like perhaps some stars are removed due to the
interaction, transferred to the higher-dispersion component.
Examining m12i (middle three rows), we see that its

different history is reflected in the classified components, but
that the same set of mechanisms is present: accretion and early
star formation in the halo component, young stars and blurring
in the thin disk, and radial migration and heating in the three
thick disk components, which pick out stars of different ages
formed in different regions: the most metal-poor component
(orange) is also the oldest and most transformed by radial
migration; the intermediate component (black) shows the
classic combination of blurring and radial transport; the
youngest and most metal-rich (rose) actually resembles the
thin disk in some respects, but its stars are mostly older, have a
broader velocity distribution, and show a greater alpha
enhancement. Here, the different solar positions do not differ
as much as in m12f, a reflection of this simulated galaxy’s
overall much calmer late-time history that leads to a well-mixed
system. This is also reflected in the larger difference between
the halo metallicity and the disk-like components, and in the
systematic variation of the mean metallicities of the disk-like
components.
Finally, in m12m we find yet another superposition of the

different formation channels. Here, we see stars with a high
formation distance even in the thin disk component, and across
all of the others. These stars come from a ∼1:1 merger at z∼ 2
that results in a starburst across the whole galaxy; a handful of
these even end up on thin-disk-like orbits.22 There are traces of
this merger scattered among all of the components but the bulk
of its stars are in the halo (dark purple) where it is apparent as a
thick descending line at high age. We also see some variations
in the makeup of the thick disk components at different solar
positions: in two cases (LSR0 and LSR2) there are two
components with similar average metallicities of around −0.2
that are very old stars likely related to the merger starburst, and
another population at much higher metallicity (around 0.0) that
looks more like a classic radially migrated distribution. In the
other case (LSR1) the proportions are reversed, and so are the
average metallicities (now two components have [Fe/H]∼ 0
and one has [Fe/H]∼−0.2).

21 https://web.sas.upenn.edu/dynamics/data/ananke-2a

22 Since the merger is roughly equal mass, it is somewhat arbitrary which
galaxy is the main progenitor.
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Figure 9. Formation distance−age for each component in all simulations. Some major events in each simulation are annotated in each panel (e.g., radial mixing,
“inside-out” growth sequence, merger, etc.) The intermediate components show the stages of inside-out formation in the disk, modified by merger interactions that
scatter young stars formed near the solar circle, by the rotation of the disk during the merger, and by “blurring” (the selection effect that solar neighborhood stars are
preferentially near apocenter). In the m12f simulation the intermediate components contain stars that have been heated by interactions with satellite galaxies such as
Sagittarius or a late merger. The halo components of the m12m panels support the idea that the majority of the halo component is from one or two early, massive
mergers.
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To summarize, we find that across all simulations and solar
locations, the components of our mixture models generally
correspond to different formation channels for their stars,
including the decomposition of the thick disk into multiple
subcomponents. These can be disambiguated to some extent by
the grouping of the mean metallicities of the different
components, which varies based on the specific formation
channels involved for each galaxy, or by examining distribu-
tions of other elemental abundances if these are available.

5. Mixture Models of the Real Gaia−APOGEE Catalog

We next constructed a mixture model of the real Gaia DR2
−APOGEE DR16 crossmatched catalog. As before, we tried
models with different numbers of Gaussian components and
used the Bayes Information Criterion to choose a preferred
number of components. Figure 10 shows that as with the mock
catalogs, the model with five components provides a significant
improvement over fewer-component models, while adding
additional components improves the performance far less. We
therefore proceed with five components as for the mock
catalogs.

In Table 1, we present the coefficients of the five component
Gaussian mixture model trained on the real Gaia−APOGEE
data set (different components of the model are defined by their
colors). This trained model can be used to identify members of
these components in other surveys (Section 6). The correlation
matrices in this table show that for the thin disk component
there is a strong correlation (large off-diagonal elements)
between VX and VY, pointing toward a cylindrical symmetry

and VR, Vf as coordinates. However, for other components this
is not as strong; the halo component in particular is correlated
similarly strongly in VX and VY and in VX and VZ, which
suggests spherical symmetry, as expected.
In Figure 11, the left panel shows the residual plot of our

GMM model in the {VX, VY} plane, and the right panel is the
density plot of the stars in the solar neighborhood. In the
residual plot, we compare the kernel density estimation (KDE)
of the stars in that plane with the GMM probability estimation,
which shows the over- and underestimation locations of the
density. The positions of the centers of the stellar moving
groups according to Antoja et al. (2008, 2010) are shown in the

Figure 9. (Continued.)

Figure 10. Bayes information criterion (BIC) over the number of stars versus
the number of components of mixture models for the real Gaia DR2−APOGEE
DR16 crossmatched catalog (compare to Figure 4 for the mock catalogs).
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residual plot. The dashed lines show the approximate trace of
the branches and they are at the same levels in both plots. They
show that over[under]estimation of the density occurs at the
locations of physical under[over]densities. The Sirius, Coma,
Hyades, Pleiades, Hercules, and HR 1614 moving groups are
clearly matched with our over/under estimated regions and this
shows that our GMM model is classifying structures on larger
scales than individual moving groups, and could potentially be
used to remove the underlying smooth component for better
study of these groups.

Figure 12 shows the augmented Toomre diagram for the
best-fit five component Gaussian mixture model of Gaia
−APOGEE. The components identified are strikingly similar
to those picked out by the best-fit model for the mock catalog

(Figure 5). This is borne out by examining the distributions of
various other stellar properties in Figure 13: though (sadly) we
cannot show the dform values and ages for the real catalog,
APOGEE provides magnesium-to-iron ratios, Gaia provides
heights above the disk plane at present day, and the astroNN
Value-Added Catalog provides ages and estimated orbital
properties (Leung & Bovy 2019; Mackereth et al. 2019). For
this catalog, in addition to quality cuts that we apply on the
observed and mock catalogs, we select the astroNN ages for
stars with [Fe/H]>−0.5 because there is not any training set
stars for the catalog with low metallicities. The age distribu-
tions panel in Figure 13 is from the astroNN Value-Added
Catalog and it shows the same pattern as in the mock catalogs:
an exclusively old halo component, a thin disk containing

Figure 11. Left panel: 2D histogram of the velocity plane for the stars in the solar neighborhood. Right panel: residual plot for the GMM model in the velocity plane.
The positions of the centers of the stellar moving groups are shown in the residual plot. The dashed lines show the approximate trace of the branches and they are at the
same levels in both plots. They show that over[under]estimation of the density occurs at the locations of physical under[over]densities.

Table 1
Best-fit Gaussian Mixture Model for the Real Gaia−APOGEE Catalog

Component Color τ

m [km s−1, km s−1, km s−1, dex] Ŝ

H Dark purple 0.04 [ ]-19.01, 99.30, 3.32, 0.69 ⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

- -
- -
- -

13107.177 447.250 851.968 4.756
447.250 7498.934 2.700 15.538
851.968 2.700 4212.157 1.404
4.756 15.538 1.404 0.172

I1 Rose 0.14 [ ]- -8.16, 195.53, 18.5, 0.28 ⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

- -
- -

- -
- -

2667.817 81.931 132.633 1.146
81.931 1165.986 98.953 0.355

132.633 98.953 648.367 1.070
1.146 0.355 1.070 0.045

I2 Orange 0.22 [ ]- -44.25, 209.84, 2.24, 0.10 ⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

- -
- -
-

-

1857.374 405.721 2.581 1.080
405.721 540.602 4.405 1.355
2.581 4.405 423.121 0.009
1.080 1.355 0.009 0.041

I3 Black 0.13 [ ]- - -2.16, 182.16, 19.73, 0.25 ⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

- - -
- -
- -
-

3368.552 60.419 157.776 1.134
60.419 1164.563 35.883 0.532
157.776 35.883 711.881 1.784
1.134 0.532 1.784 0.059

D Magenta 0.46 [ ]- - -1.28, 211.78, 0.37, 0.01 ⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

-
-

- -

1019.530 142.882 1.035 0.200
142.882 441.262 14.896 1.027
1.035 14.896 201.201 0.012
0.200 1.027 0.012 0.026

Note. The order of the data vector is {VX, VY, VZ, [Fe/H]}.
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nearly all of the youngest stars, and three intermediate groups
with distinct distributions. The rose and the black components
are close to each other in age, but the orange component is
much younger on average.

Figure 14 shows the orbital eccentricity distributions of the
real data for subpopulations classified using our mixture model.
From the orbital eccentricity distributions, we see that stars in
the halo component have more elliptical orbits and thin disk
stars are on circular orbits, also as expected. The three thick
disk components in this space are also different from each
other; the orange component contains orbits that are generally
more circular than those in the black and rose components.

Examining the alpha abundance distributions bears out our
intuition from the mock catalogs as well. The Milky Way
famously has a bimodal distribution in [α/Fe] (e.g., Nidever et al.
2015; Hayden et al. 2015) and we see that the least alpha-enhanced
stars are associated with the thin disk component, while the halo
includes the most enhanced ones. The black and rose components
include some stars with both alpha abundances, while the orange
component is mainly composed of stars with some alpha
enhancement, but less than the other two. However, the black
and rose components are not completely identical: the metallicity
distribution for the black component extends to solar metallicity
and above, while the rose component truncates at lower [Fe/H].
The black component also has a larger tail at high VXZ, extending
as far as the orange component does, while the rose component is
somewhat less extended in random energy. Interestingly, the
orange component has a higher mean VY than all but the thin disk,
yet also the widest spread in VXZ of any but the halo component.

6. Discussion

In this paper we derived a best-fit, five component Gaussian
mixture model of the solar neighborhood in augmented Toomre
space (velocities plus iron abundances). Despite extremely
limited assumptions, the components picked out by the model
in both the mock and real Gaia−APOGEE catalogs generally

reflect common interpretations of the origin of various
kinematic subpopulations. Based on our parallel analysis of
simulated data, the model appears to be flexible enough to
accommodate both asymmetric drift and thick disk subpopula-
tions with different histories.

6.1. Origins of the Families in Our Neighborhood

In Section 5 we discuss the properties of the five components
identified by our mixture model in the Gaia−APOGEE cross-
match. By analogy with similar distributions in our simulations, we
propose the following scenario that is consistent with the properties
of these different components and with other observations of the
Galaxy.

(a) The halo component (H in Table 1; shown in dark purple)
is extremely old yet has a relatively high mean
metallicity, resembling the early history of m12m. This
supports the idea that the majority of the halo component
is from one or two early, massive mergers (e.g.,
Belokurov et al. 2018; Helmi et al. 2018; Myeong et al.
2019; Horta et al. 2021; Santistevan et al. 2020).

(b) The most metal-rich thick-disk-like component (I2 in
Table 1; shown in orange) has very high random energy
yet still orbits nearly at the solar circular velocity, and
appears to be made up mostly of stars with solar values of
[α/Fe] or slightly higher with younger estimated ages.
This resembles intermediate components in our m12f
simulation that contain stars disturbed by a late merger.
We propose that this component contains stars that have
been heated by interactions with satellite galaxies such as
Sagittarius (e.g., Villalobos & Helmi 2008; Ma et al.
2017; Antoja et al. 2018; El-Badry et al. 2018; Laporte
et al. 2018; Sheffield et al. 2018).

(c) Of the two metal-poor thick-disk-like components, one
component (I3, shown in black) has a random energy
distribution as wide as I2 and extends to a similarly high
metallicity, but has a lower orbital velocity and contains
far more alpha-enhanced stars. It also seems to contain
stars with a preferentially negative VZ, while the other
component (I1, shown in rose) has mostly stars with a
positive VZ (Figure 15). I1 also has a slightly narrower
VXZ distribution and a slightly higher mean VY, but is
otherwise elementally and spatially similar to I3. These
two components comprise the velocity-asymmetric,
alpha-enhanced thick disk (Widrow et al. 2012), with
one component used to represent each side of the “wave.”
Consistent with observations of the velocity asymmetry
(e.g., Figure 3 of Widrow et al. 2012), we find that the
negative-velocity component (I3) has a wider velocity
spread and includes stars both above and below the disk,
while the positive-velocity component (I1) is more
coherent in velocity, more spatially confined, and slightly
prefers positive z (Figure 15). In terms of formation
mechanism, these components resemble the radially
mixed thick disks seen in all three simulations, but given
the MW’s quiet recent accretion history, they seem to
most closely resemble the black component of the three
m12i simulations.

(d) The thin disk component (D in Table 1; shown in
magenta) contains young, non-alpha-enhanced stars
consistent with recent star formation in a cold gas disk,
after a late influx of gas that reset the local [α/Fe] ratio

Figure 12. Augmented Toomre diagram for the five component mixture model
of the real Gaia−APOGEE catalog (compare to Figure 5 for the mock catalog).
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(e.g., Mackereth et al. 2017, 2018, A. Wetzel et al. 2021,
in preparation).

Finally from the weights τ in Table 1 we can estimate the
proportion of stars with each of these origins in the APOGEE
(i.e., evolved-star) view of our solar neighborhood. According
to our mixture, the APOGEE sample is 4% halo (a), 22%
interaction-heated (b), 27% radially mixed, asymmetric thick
disk (c, d), and 46% thin disk (e). We caution that this
breakdown is modulated by the APOGEE selection function;
we plan to correct for this in future work using our new mock
catalogs as a testbed.

6.2. Further Applications of the Mixture Model

Our strategy offers a probabilistic approach for selecting
stars that are likely to belong to a particular population, as an
alternative to making hard cuts on the data, through analogy
with state-of-the-art simulations of galaxies. The resulting
model can be used either to classify and study the stars within
the modeled data set (in this case the Gaia−APOGEE catalog),
or to predict the composition of other data sets that measure the
same parameters.

The model in Table 1 offers several options for use as a
classifier, of which the optimal method will depend on the
application. One option is simply to assign each star to the
component that produces the highest probability for that star, as
we have done here to produce Figures 5 and 12. Another is to
use the upper right-hand panel of Figure 12 to set a limit on the
acceptable probability that a star belongs in a particular
component (particularly useful for strongly bimodal probability
distributions like the one seen for the halo). Yet another option
is to include all stars in the analysis of a component of interest,
weighted by their probability of belonging to that component.
This last approach showcases the real power of the GMM
strategy, since it can handle the ambiguity of weakly assigned
stars on the same footing with those that more clearly belong to
a particular population. A short Python script implementing the
model will be provided as part of the public data release (with
Sloan DR17).
A trained Gaussian mixture model can be used to identify

members of its components in any data set where the same
features are available. To identify structural components of the
Galaxy, we built a mixture model using 3D kinematics and
metallicities of stars observed with Gaia−APOGEE, but this
model can be used to probabilistically classify any star with a
measured 3D velocity and [Fe/H]. Care should be taken to use
the same metallicity scale when combining data from multiple
sources. The “validity volume,” where the GMM has been
constructed, should be considered as well. An already trained
mixture model is especially useful for identifying members of
Galactic components in smaller surveys, or ones that have a
more complicated selection function and are thus unlikely to
independently constrain a mixture model. This is likely to be
especially useful given that while Gaia provides all-sky
coverage for proper motions and distances, radial velocities
and elemental abundances for most stars are determined by an
ensemble of ground-based spectroscopic surveys, each with a
different selection function, sky coverage, and target depth.
Mixture modeling will thus supply a crucial tool to relate stars
in the same population that have been observed by different
instruments, unifying our chemodynamical view of the Galaxy.

Figure 13. Distribution of various properties of stars in each component of the best-fit mixture model, for the real Gaia−APOGEE catalog. We do not have the dform
values and ages for the real catalog; APOGEE provides magnesium-to-iron ratios, Gaia provides heights above the disk plane at present day, and the astroNN Value-
Added Catalog provides ages.

Figure 14. The distribution of orbital eccentricity from the astroNN catalog.
Stars of the halo component have more elliptical orbits and thin disk stars are
on circular orbits. The three thick disk components in this space are also
different from each other.
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