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Labeling Out-of-View Objects in Immersive
Analytics to Support Situated Visual Searching

Tica Lin, Yalong Yang, Johanna Beyer and Hanspeter Pfister

Abstract—Augmented Reality (AR) embeds digital information into objects of the physical world. Data can be shown in-situ, thereby
enabling real-time visual comparisons and object search in real-life user tasks, such as comparing products and looking up scores in a
sports game. While there have been studies on designing AR interfaces for situated information retrieval, there has only been limited
research on AR object labeling for visual search tasks in the spatial environment. In this paper, we identify and categorize different
design aspects in AR label design and report on a formal user study on labels for out-of-view objects to support visual search tasks in
AR. We design three visualization techniques for out-of-view object labeling in AR, which respectively encode the relative physical
position (height-encoded), the rotational direction (angle-encoded), and the label values (value-encoded) of the objects. We further
implement two traditional in-view object labeling techniques, where labels are placed either next to the respective objects (situated) or
at the edge of the AR FoV (boundary). We evaluate these five different label conditions in three visual search tasks for static objects.
Our study shows that out-of-view object labels are beneficial when searching for objects outside the FoV, spatial orientation, and when
comparing multiple spatially sparse objects. Angle-encoded labels with directional cues of the surrounding objects have the overall best
performance with the highest user satisfaction. We discuss the implications of our findings for future immersive AR interface design.

Index Terms—Object Labeling, Mixed / Augmented Reality, Immersive Analytics, Situated Analytics, Data Visualization
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1 INTRODUCTION

S EARCHING for elements of interest is an essential component
for almost all visual analytics tasks, such as identifying out-

liers and clusters, comparing values encoded in visual elements,
and summarizing properties for a group of objects. Designers of
desktop visualization tools have grappled with this problem for
decades and have developed sophisticated techniques to support
visual search. To make search results pop out in a visualization, it
is common to show icons or labels overlaid on top of the original
visualization (e.g., restaurants on a map). To avoid occluding local
visualization features, external labeling techniques [1] place labels
outside the visualization, and use leader lines to connect the visual
elements with their associated labels. Other techniques allow users
to zoom out to an overview to locate the searched for elements,
and then zoom in to check the details. These techniques are well
studied and widely used in desktop visualization tools.

With the rapid development in technology, consumer-level
head-mounted displays (HMDs) for virtual reality (VR) and
augmented reality (AR) have become mature and affordable. In
response to this revolution, immersive analytics has emerged as a
new research field, focusing on the use of engaging, embodied
analysis tools in VR and AR, to support data understanding
and decision making [2]. VR/AR removes the boundaries of
physical screens and facilitates new human-computer interaction
experiences. In particular, AR can embed digital information in
the physical world in almost any environment. Thereby, AR pro-
vides opportunities to support situated visual search for real-life
tasks [3], such as showing ratings of nearby restaurants [4], adding
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historical information for artifacts in a museum [5], or annotating
player names and stats in a basketball game [6], [7], all without
diverging users’ attention from the real-world environment.

In these AR applications, additional information for the phys-
ical objects is commonly rendered in small “virtual canvases” or
labels. However, compared to the desktop, visual searching in
AR has two distinct differences. First, interface designers cannot
manipulate everything in the AR display space. While labels can
be moved freely in AR, physical objects (e.g., the locations of the
restaurants, the basketball players on the court) usually cannot be
manipulated. As a result, users have to physically move or rotate to
get to or face the physical targets. Second, unlike desktop displays
where visual elements can be scaled to fit the screen, physical
objects in the real world cannot be scaled (e.g., again, a restaurant
or a basketball player). Due to these two distinct differences, some
desktop techniques for visual searching, such as zooming, cannot
be used in AR applications, and more emphasis needs to be put on
efficient object labeling techniques. Therefore, further studies are
needed to understand how to place labels in AR to effectively
support situated visual search. Currently, there are still many
open questions, such as whether labels should be placed as close
to their linked objects as possible, or whether labels should also
encode spatial information of objects that are inside or outside the
user’s FOV to help reduce a user’s search effort.

To address these questions, we first thoroughly review existing
labeling techniques in AR. Previous studies on labeling objects in
AR focused on algorithms to place labels [8], [9], [10], [11], [12]
and filter data [13] to avoid visual clutter on limited AR FoV. Most
labeling techniques only show labels for objects that are within
the user’s FoV, so-called in-view objects. In many real-world AR
scenarios, however, the objects of interest are not just in front of
the user. Sometimes the user may not even know the locations of
the target objects. Without any additional clues, the user will then
have to physically scan the entire surrounding environment to find
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Figure 1: AR label design for objects outside the field-of-view (FOV). (a) Our user study uses a VR HMD to simulate consistent AR conditions. (b)
The user is surrounded by spatially sparse objects and can see labels for in-view and out-of-view objects on the AR screen. Labels for out-of-view
objects are placed on the boundary to support embodied navigation. (c) A simulated grocery shopping experience with AR labels.

an object and its label, which is a time-consuming and fatiguing
task. To support efficient situated visual search tasks, labels for
out-of-view objects (i.e., physical objects that are not within the
FoV) is thus necessary. Although previous work studied visual
encoding techniques for out-of-view objects in AR [14], [15], [16],
[17], [18], not much research has focused on labels and label
design for out-of-view objects. In this work, we explore different
visual encodings for AR labels and quantitatively compare them
for situated analysis tasks in a user study.

The motivation for this paper is to investigate in which sit-
uations out-of-view labels are helpful, and whether certain tasks
would benefit from only providing in-view labels. We specifically
focus on labeling static objects as a preliminary step towards
answering this question. Labeling static objects has many real-
world use scenarios, such as goods in grocery stores or restaurants
around a person (see Sec. 3.3). Labeling moving objects, on the
other hand, requires other design considerations, which we briefly
discuss in our future work (Sec. 7.3).

Our first contribution is a systematical exploration of the
design space of labels in AR applications, with an emphasis
on labeling out-of-view objects. We analyzed previous works on
AR labeling [8], [12], embodied interaction [19], and leader line
placement [11], and identified four different aspects in AR labeling
systems (label proxy, proximity, encoding, and interaction), which
can guide the design of future AR labeling systems.

Our second contribution is a controlled user study com-
paring five representative AR labeling techniques. In two
conditions we show labels for in-view objects only: situated,
where labels are placed slightly above the physical object, and
boundary, where labels are pushed to the boundaries of the FoV
to reduce visual clutter. We also designed three conditions for
labeling of out-of-view objects: height, where labels are placed
at the same height as their linked objects will appear once the
user rotates toward them; angle, where label positions indicate the
angle between the user’s viewing direction and the object, using
a top-down view metaphor; and value, where labels are ordered
by their associated values (e.g., restaurant ratings) on the left of
the FoV. Following previous work in AR research [20], [21], [22],
to easily manipulate the locations of physical objects, we used
VR to simulate AR applications in our study. To achieve this,
we created an AR FoV in VR, and render labels and leader lines
only when they are within this AR FoV. In our study, we limit
the number of labels to 10 and 20 objects. This is based on the
number of AR labels used in other user studies [11], [23], and also
follows the design guideline of avoiding information overload in

AR applications [24], [25], [13]. For labeling a larger number
of objects, label clustering and filtering techniques have been
proposed [13], but this is outside the scope of our study.

We evaluated our five different label conditions in three visual
search tasks. Overall, we found that labels for out-of-view ob-
jects helped users in getting a quick overview, provided helpful
directional cues, and was beneficial for visual comparisons in
AR. We found that the angle condition was the overall winner;
it was faster than value in all tested tasks, faster than situated and
boundary labels in value comparisons, and faster than height in
summarizing multiple data points. The angle condition was also
preferred by our participants overall. Our work contributes to the
growing body of knowledge of effective AR interface design to
support situated analysis in the real world.

2 RELATED WORK

In the following, we review the literature on situated visual search
to motivate the use case of AR labels, and point out the gap in
previous AR labeling and visualization techniques.

2.1 Situated Visual Search in AR
Visual search is a fundamental perceptual task that people perform
to identify a particular target among other distractors in a visual
environment [26]. In real-world visual search tasks, information
relevant to the location or object can be placed situated to support
target comparison and spatial navigation [27]. Many design frame-
works and use cases have been proposed that exploit the situated-
ness [4], [28] and embodiment [19] of AR visualizations. Buschel
et al. [29] proposed a conceptual framework for annotating real-
world objects with situated labels and accessing information
through interaction with the labels. Bach et al. [30] proposed
AR-canvas, a framework for designing embedded visualizations
for visual search in realistic use scenarios.Attention management
research [31], [32] has shown that high information density
can lead to information overload, especially in real-world use
cases [33], [34]. Managing information density on AR screens can
be achieved with spatial and knowledge-based filtering [25], [24],
and data clustering [13]. Building on the existing AR information
retrieving workflow, our study is a concrete step towards designing
labels in immersive environments to support situated visual search.

2.2 Labeling Objects in AR
In AR settings, we distinguish between labels for static and labels
for dynamic objects that change over time.
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Earlier studies have focused on managing label placement for
static 3D landscape models [8] viewed from a top-down viewing
angle. Subsequent work improved algorithmic performance to
create embedded [9] and external labels [35] for landscape models
in interactive 3D virtual space. Azuma et al. [10] proposed a
cluster-based algorithm to place dense occlusion-free AR labels
of static in-view objects in real-time. Tatzgern et al. [11] designed
a depth-encoded hedgehog labeling technique to connect labels
to their targets. Using similar techniques, Madsen et al. [23]
studied the effect of label rendering space and update frequency
on locating labels. Both studies used around ten labels for in-view
objects on an AR tablet.

For dynamically changing scenes, Makita et al. [36] studied
view management for annotating a small number of moving
objects (less than five) in wearable AR devices. Orlosky et al. [37]
resolved annotations overlapping with objects in AR using image
detection and halo layout design for up to six labels. Grasset et
al. [12] proposed image analysis to place location-based external
labels on mobile AR browsers for up to 30 labels, but working
best with 10 labels to avoid visual clutter. Furthermore, Tatzgern et
al. [13] proposed dynamic data clustering and filtering to manage
a larger number of annotations with adaptive label displays in AR.

2.3 Out-of-View Object Visualization

While labeling for out-of-view objects has only been prelim-
inary explored, approaches for visualizing out-of-view objects
have been widely studied. A main difference between the two
is that labels generally support a two-way retrieval workflow
(i.e., object-to-label and label-to-object look-up), while out-of-
view object visualization focuses on a one-way retrieval to allow
users to find the object quickly. Out-of-view object visualization
can be classified into overview+detail, focus+context, and detail-
in-context techniques [38]. For AR HMD environments detail-
in-context approaches are most suitable, which includes object
labels. Overview+detail with an extra miniature map can introduce
visual overload on the AR screen and focus+context methods with
view distortions [39] can cause misinterpretation and difficulty in
locating the target [40].
2D visualization. Previous detail-in-context visualization ap-
proaches have used various visual proxies to encode spatial
information for out-of-view objects for large graph navigation and
notifications [41], [42]. Wedge [43], Halo [42], [44], Arrow [44]
and EdgeRadar [45] are well-known 2D visualization techniques
that use abstract shapes as proxies to encode spatial information of
off-screen targets. A comparable concept for designing labels for
out-of-view objects is encoding targets as insets on a map or large
network visualization [46], [47], [48]. Ghani et al. [47] designed
dynamic insets to encode out-of-view targets on the boundary.
AR/VR visualization. Out-of-view object visualization tech-
niques in AR/VR environments build upon 2D visualization tech-
niques, such as 3D Arrows [49], [50], [51], [52], 3D Halo [53],
attention funnel [27], and radar projection [17], [15].

Several user studies have applied and compared these tech-
niques in target searching tasks in AR/VR. Petford et al. [54]
compare wedge visualizations to other attention-guiding tech-
niques such as WIM [55] in a projector-based display environment
for a single out-of-view target. Gruenefeld et al. [56] further
apply Halo [42] and Wedge [43] techniques to AR and VR
HMD and evaluate their performance in multiple (up to eight)
out-of-view target search and direction estimation tasks. Bork

et al. [18] investigate visual guiding techniques for searching
spatial virtual objects in MR with AR HMD. They compared
six out-of-view object visualization techniques in a controlled
user study, including four previous techniques, 3D Arrows [14],
AroundPlot [15], EyeSee360 [17], sidebARs [16], and two novel
techniques, 3D Radar and Mirror Ball, where users are asked to
use the visualization to collect up to eight out-of-view objects that
are spatially distributed. They found that 3D Radar and EyeSee360
are fastest when guiding users to collect objects outside FoV.
Gruenefeld et al. [57] used radar-like visualizations to encode out-
of-view objects on AR HMDs. They compared different methods
for showing locations for in-view objects, out-of-view objects, or
both, but focused on the actual objects and did not use labels. They
evaluated direction guiding and object selection tasks for eight
objects. Most existing out-of-view object visualization techniques
suffer from occlusion and edge clutter with multiple out-of-view
objects, and are not suitable to encode labels. They also primarily
focus on attention guiding and searching for a single or a few
out-of-view targets. Other visual analysis tasks such as value
comparison have not been considered.

In our study, we explore both in-view and out-of-view object
visualization with AR labels to support situated analytic tasks.
Two in-view object labeling techniques (SITUATED and BOUND-
ARY) are based on external labeling techniques. We designed
three out-of-view object labels building upon previous out-of-view
object visualization techniques. HEIGHT label extends the concept
of dynamic insets [47] and Wedge [43] to map an object’s physical
position onto the AR screen boundary. ANGLE label can be seen
as a top-down view of radar projection mapped onto the AR screen
boundary. VALUE label encodes an object’s data value and ranks
labels by values to support situated analysis.

3 LABEL DESIGN SPACE & TASKS

A label is a visual representation of a text-based annotation
attached to an anchor on the target object. In the following,
we discuss the most important properties of label design for
immersive analytics, define goals and tasks for labels in situated
search tasks, and outline some usage scenarios of AR labels.

3.1 Properties of Labels for Situated Analysis
We define four distinct factors of label design in AR for situated
analytics based on the relationship between labels, objects and the
user, shown in Fig. 2. In addition, we identify other considerations
that should be taken into account when designing labels in AR,
such as object attributes and subjective design considerations.

Previous work [12], [58] has outlined rule-based properties
of label layout in AR/VR scenes, such as that labels should be
occlusion-free and placed close to the referred objects. While
these are properties required to create a visually aesthetic and
useful label layout, we focus on label properties that need to be
considered in situated analytics tasks.

Label Proxy. Labels for objects in space need a visual
representation. Proxies can include textual or visual information
of the linked objects. Labels can be shown for visible objects
(in-view), invisible objects (out-of-view), or both. In immersive
environments, a label can be embedded inside the target or linked
to the target through a leader line as an external label. However,
embedding labels accurately into objects can be computationally
expensive due to the heterogeneous visual appearance of real-
world objects and fluctuating view conditions [59]. Furthermore,
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Figure 2: Label design space in immersive analytics. We categorize four factors of label design for situated target search, including label proxy,
proximity, encoding, and interaction.

label embedding cannot be applied to out-of-view objects. In our
study, we focus on external labels to explore a generalizable label
design for real-world situated visual search tasks.

Proximity. Proximity describes the closeness between two
labels or between a label and its object. Traditional AR/VR labels
for in-view objects are optimized for label-object proximity. A
higher proximity between label and object allows easier linking
between the two. However, labels can be designed to prioritize
label-label proximity to support efficient visual comparison, such
as comparing the values on all labels.

Encoding. Label positions can encode additional attributes
such as the lateral or vertical position of an object with respect
to the user’s orientation/gaze. Alternatively, a label position can
also encode the left/right direction (i.e., whether the object is to
the left or to the right of the current view), angle (i.e., the angle
between the user’s view direction and the object), or the data value
of the object.

Interaction. To support spatial search, labels are designed to
respond to a user’s interaction and movement. Label movement
describes if the label placement remains static or updates based
on user movement. On the other hand, to use the labels in visual
search tasks, the user has to perform body or gaze movements.
Body movement reflects the degree of the user’s physical move-
ment required in each label design; gaze pattern classifies the
direction of gaze movement in order to access the labels, including
linear and arbitrary paths. For example, a user’s gaze pattern is
linear if labels are aligned vertically or horizontally, and arbitrary
if labels are situated at the object’s position.

Other Considerations for AR label design. In addition to the
factors outlined above, there are other considerations that influence
the design of efficient labels that focus on object attributes and
subjective measures. Object attributes include the number of
objects (sparse versus dense), the spatial distribution of objects
(full 3D space versus restricted to certain areas such as the
half-space above ground), and object movement (static versus
dynamic). Subjective measures include the user’s familiarity
with a chosen label design as well as the predictability of label
locations. For example, if labels are always located at the lower
screen boundary, users will have an easier time locating them.

3.2 Goals & Tasks

Inspired by previous work in AR information retrieval and situated
analytics [28], [27], [29], [30], we have identified two primary
goals of label design in AR and for situated visual search tasks.
G1 - visualize the spatial relationship between the objects and
the user to support situated spatial search. Users should be able
to explore all objects and locate a target in space more easily with
the provided labels, for in-view as well as out-of-view objects.
G2 - provide extra information for objects to support vi-
sual analysis tasks in the real world that would otherwise be
extremely tedious or impossible to perform. Such visual search
tasks include but are not limited to identifying outliers, comparing
multiple targets, or making overall estimations.

We identify common visualization tasks to support situated
spatial and visual search. Based on the typology of abstract
visualization tasks by Brehmer and Munzner [60] “the user must
find elements of interests in the visualization”. Labels in AR
already encode an object’s identity and point towards the location
of the referred object. Therefore, labels can be seen as the result
of an information retrieval process [61], [29], and situated visual
search requires interpreting available labels in the AR scene.
According to Brehmer and Munzner’s typology [60], labels for
situated analysis need to support the three low-level querying
actions, IDENTIFY, COMPARE, and SUMMARIZE.
T1: IDENTIFY a single target among all objects of interest.
Users need to be able to identify a single target from all objects
of interest in the environment. Typically, users need to physically
examine each object in the environment to decide on a single
target. Labels in AR can provide a quick overview of all objects to
help identify a single target (e.g., a product with the lowest price),
and spatial cues to guide the user to the desired target.
T2: COMPARE between multiple targets. Users need to per-
form comparisons between multiple targets in the environment.
Typically, users have to examine and memorize the object-specific
data for each object. With labels, this task can be done with visual
comparison from the labels, such as comparing the prices and
calories of similar products.
T3: SUMMARIZE data across all targets. To get an overview
of the scene or perform comparisons at a larger scale, users need
to summarize data across targets. This task is very challenging
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in a real-world scenario, such as comparing the average prices
of one brand against another in a store, or house prices in two
neighborhoods. With labels, users can summarize the trend or
identify outliers among all available targets.

3.3 Usage Scenario
We exemplify the identified tasks of Sec. 3.2 with real-world usage
scenarios of AR labels.

Grocery shopping. A person shopping in the supermarket
needs to know the location of each item on the shopping list.
Instead of looking for items aisle by aisle, they look up the labels
on an AR HMD. Labels show the categories of items and encode
the directions of each category that is outside of the current view.
They identify “Fruits” and follow the label to directly locate the
aisle. Similar to Fig. 1 (c), AR labels show the price of different
fruits and varieties with color-coded bar charts. The shopper
compares their prices right in place without having to examine
each item. They also estimate the price difference between apples
and tomatoes by summarizing the prices shown on the labels. With
the labels to support situated analysis, they can make data-driven
decisions without much effort.

Spatial navigation. A traveler standing in front of a tourist
site is deciding where to go for lunch in the surrounding area.
The search results are shown as labels on the AR HMD and are
encoded with directions. Among all labels, the tourist summarizes
the average ratings of Japanese and Italian restaurants. They decide
on Japanese food and use the labels to compare the prices of
individual restaurants. While making a decision, they are able to
continue to explore the surrounding area. Finally, they identify the
target restaurant and follow the label direction to the destination.

4 LABEL PLACEMENT DESIGN

Based on our label design space, we explore different combina-
tions of label placement properties as shown in Table 1, including
two variations of labels for in-view objects – SITUATED and
BOUNDARY, and three variations of labels for out-of-view objects
– HEIGHT, ANGLE and VALUE. Each label design consideration is
discussed below and shown in Fig. 3 and the supplemental video.

4.1 SITUATED

SITUATED is the most common labeling technique in existing
AR/VR applications [8], [35], [12], such as a name tag and health
bar placed above an avatar in a video game. We design SITUATED

labels as a baseline condition in our user study. SITUATED labels
are placed directly above their referred objects with a straight
leader line connecting the object center to the bottom center of
the label (Fig. 3 (1)). When objects are too close, we adjust the
vertical label positions to avoid overlaps. The close proximity
between labels and objects makes it clear to which object a label
is connected to and reduces time and effort to identify the object.
Due to the familiarity of similar SITUATED labels in existing
3D environments, it feels natural to users. Therefore, SITUATED

labels have the advantage of high label-object proximity and
high familiarity.

On the other hand, SITUATED labels require high body move-
ment because the label placement does not encode any spatial
information of the objects. It requires users to do a full-space
scan to search for out-of-view objects. When scanning the entire
surrounding space, it is also difficult to find labels because they

Factor Situated Boundary Height Angle Value
Label

In-View 3 3 3 3 3
Out-of-View 7 7 3 3 3

Proximity
Label-Label low high low/med. high high

Label-Object high med. high med. low
Encoding
Lateral position 3/ - 3/ - 3/ 7 3 7

Vertical position 3/ - 7/ - 3 7 7
Direction 7 7 3 3 3

Angle 7 7 7 3 7
Value 7 7 7 7 3

Interaction
Label movement 7 7 3 3 7
Body movement high high med. low med.

Gaze pattern arb. linear arb./lin. linear linear
Subjective

Familiarity high low med. low med.
Predictability low high low high high

*arb. = arbitrary, lin. = linear, med. = medium

Table 1: Characteristics (rows) of five AR label placement designs
(columns) in our study. The slash indicates different properties of labels
for in-view and out-of-view objects.

appear at different vertical heights and require more arbitrary
gaze patterns. In particular, when comparing multiple spatially
sparse objects, users have to remember the information on the
labels as well as the locations of the corresponding objects.
This low predictability of label locations makes the comparison
between multiple targets error-prone and inefficient.

4.2 BOUNDARY

BOUNDARY labels are an alternative design of in-view labels, with
a focus on visual search and comparison tasks. As shown in Fig. 3
(2), we align BOUNDARY labels horizontally at the bottom edge
of the AR screen and encode the horizontal positions of the linked
in-view objects. We prioritize objects at the center of the view
and push overlapping labels towards the left or right to avoid
overlaps when necessary. The one-dimensional label placement
makes it easy to quickly scan all labels in one direction without
having to change the vertical gaze pattern to find labels. Labels are
also closer together, which makes label-to-label comparison more
efficient. This helps users to get a faster overview and reduces
gaze movement. Label locations are more predictable as labels are
always placed at the bottom.

We originally designed the labels to be aligned at the top, but
initial user feedback suggested that users found it uncomfortable
to constantly have to look up with their eyes. Therefore, we place
boundary labels at the bottom to mimic the conventional task bar
or dock placement on a computer or mobile device. Summarizing,
BOUNDARY labels have the advantage of label-label proximity,
a linear gaze pattern, and high predictability.

Similar to SITUATED, BOUNDARY labels also require high
body movement to complete visual search and comparison tasks.
Furthermore, they require a separate step to link the label to the
object due to lack of label-object proximity. The longer leader
lines make it more difficult for users to retrieve the linked object
and can cause visual clutter when there are multiple objects in
view and lines are overlapping with the objects in the scene.

4.3 HEIGHT

In our study, we use three encodings for out-of-view object labels.
Compared to label design for in-view object labels, they all require
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Figure 3: AR screen views (left) and diagrams (right) of the four label design in Sec. 4. ANGLE design is shown in Fig. 1 (a) and (b).

less body movement and support a linear gaze pattern to track
labels, but more labels also result in higher visual density.

As shown in Fig. 3 (3), HEIGHT labels are placed at the left and
right boundaries of the view, based on the closer lateral direction of
the target object. Furthermore, their y position encodes the relative
height at which the linked object will come into the screen as the
user rotates. Showing labels for all available objects in the scene
allows users to search for and compare targets without physically
moving around. The height-encoded label placement provides cues
to both the lateral direction and vertical position of an object,
and thus users can know immediately which way to turn to when
searching for a single target. For example, seeing a label in the top
left border means the user will turn left and look upward to find
the target. When the object appears in view, the height-encoded
label will become SITUATED and directly lead the users to the
target object. HEIGHT labels provide an encoding for the vertical
position and lateral direction of out-of-view objects and exhibit
high label-object proximity.

Since HEIGHT labels are arranged along the left and right
borders of the view, based on which border the target object is
closer to, their placement on the screen is changing as people
turn. For example, objects that were closer to the left border
might become closer to the right border as the user rotates. While
label movement provides real-time directional cues on objects, it
requires users to search for and constantly track out-of-view labels
(i.e., labels for out of view objects) while rotating and moving their
gaze. Due to the lack of distance information (i.e., how far outside
the field of view an object is), users have to follow a label at all
times to find the object, which can cause higher mental stress and
slightly more body movement. Furthermore, when comparing
multiple out-of-view objects, it takes extra mental effort to search
for and compare labels, as they are not ordered by angles or values.

4.4 ANGLE

ANGLE labels are placed along all four edges of the user’s view
boundary and encode the angular direction of all available objects
as seen from a top-down view, as shown in Fig. 1 (b). The top
boundary represents the front-facing direction (i.e., the direction
the user is currently looking at) and the bottom boundary repre-
sents the area behind the user. Therefore, all labels for in-view
objects are naturally placed along the top boundary and linked
to their target objects with leader lines. Labels for out-of-view
objects are placed along the left, bottom, and right view boundary,
depending on their position in space. As users turn around, the
ANGLE labels rotate along the boundary to reflect the relative

angular direction of the objects to the user. Therefore, ANGLE

provides a precise encoding of the angular distance between the
user and the target object, as well as between objects. This can
increase the spatial awareness of users and reduces mental and
physical efforts when locating objects. Similar to BOUNDARY,
ANGLE label placement is very predictable and aligned vertically
and horizontally, which allows easier label-to-label comparison.
As users move, ANGLE labels rotate in either clockwise or
counter-clockwise direction and hence do not distract users as
much as in the HEIGHT condition. ANGLE labels provide an
encoding for an object’s lateral direction and angle, and exhibit
label-label proximity, and high predictability.

On the other hand, users might have low familiarity with
angle-encoded labels, which can be difficult to interpret without
prior training. When looking for a target object, the longer leader
lines between label and object might cause more cognitive effort to
link the object and the label due to lack of label-object proximity.
Similar to HEIGHT labels, when comparing multiple labels, it
takes time to find and sort the label values.

4.5 VALUE

As shown in Fig. 3 (5), VALUE labels are placed stationary
along the left view boundary and ordered vertically by the label’s
value. In order to stack more labels and allow more direct value
comparisons similar to a horizontal bar chart, we chose a parallel
label layout where the label’s value is shown to the right of the
label’s text. We indicate the direction of the linked objects with
left/right arrow icons on the labels. When the linked object is in
view, the arrow icon disappears and a leader line appears. Label
placement is very predictable as people only have to look at the left
boundary to look for labels and then follow the arrow to find the
object. When comparing multiple labels, VALUE has the advantage
of efficient value comparisons due to the fixed label layout and
implicit ranking. Users only have to move their gazes vertically to
make cross-label comparisons. Therefore, VALUE labels provide
an encoding for an object’s value and direction, and exhibit label-
label proximity, and high predictability.

While VALUE labels have a stable and predictable placement,
it requires an extra step to interpret the arrow icons and follow
the leader line to find the objects due to lack of label-object
proximity. Encoding spatial information in icons is more subtle
than encoding it as label positions, which might require more
mental effort to interpret and more body movement than ANGLE

labels. Furthermore, leader lines of different labels might exhibit
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line crossings due to the label’s vertical position being independent
of the object’s vertical position.

4.6 AR Interface Implementation

We developed and implemented all label designs using Unity
v2020.1.12 [62] and the Mixed Reality Toolkit v2.5.1 [63]. In
order to vary object distribution and achieve higher tracking
fidelity of the objects in the study, we use VR to simulate the real-
world object space and AR screen. Simulating an AR environment
with VR is a common method to create a controlled environment
in a user study [20], [21], [22].

We set up our AR interface as a semi-transparent canvas placed
1.8m in front of the user with a 35◦×25◦ FoV. We display the AR
screen in the users’ FoV at a fixed location, and, therefore, the
labels on the AR screen fall on the periphery of the user’s vision
(see Fig. 1 (a)). Our chosen AR screen size falls within the FoV of
the current state-of-the-art AR HMDs, Magic Leap 1 (40◦×30◦)
and HoloLens (43◦×29◦). We apply the tooltip component of the
Mixed Reality Toolkit UX building block [64]. The leader lines
are designed to curve based on the depth between the object and
the label on the AR screen to provide a sense of depth, such as
in Fig. 3 (5). We place all objects around the user in 360 degrees.
Details on data generation are discussed in Sec. 5.2.

5 USER STUDY

We evaluate the usefulness of our five label designs in supporting
situated visual search tasks in a controlled user study. In particular,
we want to investigate in which situations out-of-view labels are
helpful, whether in-view labels have any advantages, and the trade-
offs between the two.

5.1 Experimental Design

Labeling conditions. We evaluated the five label conditions
described in Sec. 4, including SITUATED, BOUNDARY, HEIGHT,
ANGLE, and VALUE. In all conditions, each label shows the
unique name of the object and a rating ranging from 1 to 5 stars.
Data sizes. We generated datasets with two data sizes – 10 and
20 objects. Previous studies on label design for in-view objects
in tablet AR used around 10 labels [11], [23]. We also constrain
the amount of information in the AR FoV to avoid information
overload and occlusion [33], [34]. 10 and 20 objects are chosen
for different real-world use cases, such as comparing a fixed set of
targets and exploring a broader set of options, respectively.
Experiment Set-Up. We conducted our study in an indoor lab
space of approximately 385 f t2. We used an Oculus Quest virtual
reality headset, with a 96◦× 94◦ FoV, 1440× 1600 pixel resolu-
tion, and a weight of 571g to render objects, labels, and the semi-
transparent AR screen. The headset was connected to a PC through
a 5m USB3 Type-C cable. The PC had an Intel i7-9700F 3.00GHz
processer and NVIDIA GeForce RTX 2070 graphics card.

To reduce motion sickness and maintain orientation in VR,
we rendered a 4× 4m virtual floor and an arrow at the center of
the virtual floor indicating the user’s starting position (i.e., front-
facing direction). The study had a stationary set-up and required
minimum body movement. Users did not need to walk around but
only had to turn, move their head and use one controller to interact
with the question pop-up windows. Participants were required to
return to the front-facing direction before each trial.

Figure 5: Example datasets for all three user tasks showing the spatial
distribution of objects. Each small circle represent the object’s x and y
location in the trial in a top-down view (object height is not shown). The
selected target(s) for each task are highlighted.

5.2 Task & Data

We used three visual search tasks (see Sec. 3.2) based on the typol-
ogy of abstract visualization tasks by Brehmer and Munzner [60].
IDENTIFY: What is the color of the object linked to the green
label? We colored the target object’s label in green and all others
in grey. All objects were randomly colored in either red, yellow,
or blue. Participants had to identify the color of the object linked
to the green label and select the answer in the pop-up menu.
COMPARE: What is the color of the object with the highest
rating? Three labels were colored in green, all others in grey.
All objects were randomly colored in either red, yellow or blue,
while each of the three linked objects was assigned a different
color. Participants had to compare the ratings of the three green
labels and find the color of the object with the highest rating.
SUMMARIZE: In the two colored clusters, which cluster has
a higher average rating? We designed two spatially sepa-
rate clusters, with three objects in the red cluster and four
objects in the blue cluster. Initially, the clusters were not
shown, and all objects were colored in grey. Two selected
labels were colored in red and blue, the others in grey.

Figure 4: Object locations.

Participants first had to locate and
click on the two objects linked to the
blue and red labels to reveal the clus-
ters. The labels and the objects of each
cluster were colored in red and blue.
They then determined which cluster
had the higher average rating: red, blue
or equal. The task represents a poten-
tial user flow of identifying two targets
of interest and expanding the search to
their immediate neighborhood.

We generated a distinct dataset
with 10 or 20 spatially sparse objects for each trial in our
study. Each object is represented as a 20cm× 20cm cube, with
a minimum distance of 40cm between cubes. All objects were
randomly placed within 2.5m to 3.5m from the user at a viewing
height between 0.5m to 2m. To distribute the objects in space, we
divided the circular space around a user into five zones (see Fig. 4)
and ensured that each zone contained a similar number of objects.
Each object’s label was randomly assigned a unique name selected
from a list of items, such as fruits and flowers, and a rating value
between 1 and 5. To control for the different reading speeds of
our participants, we used color to highlight the targets in our tasks
instead of relying on text labels.

We show sample data for each task in Fig 5. For the IDENTIFY

task, we randomly selected an object in zone 2 or 3 as the target
object to avoid showing the target immediately in front of the user.
For the COMPARE task, we randomly selected three objects from
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different zones and assigned a non-repetitive rating value from 1 to
5 and a distinct color from red, yellow and blue. We intentionally
spread out the target objects in space so that no two objects being
compared could be seen in the AR view at the same time. We also
did not assign 5-star ratings to the targets being compared during
the trials to make the task more challenging. For the SUMMARIZE

task, we selected two objects from different zones to be labeled
with red and blue labels at the beginning of the task. We selected
objects close to the red and blue object as the red and blue clusters
respectively, which resulted in three red objects and four blue
objects in each trial. We then assigned rating values to each object
so that the resulting average of each cluster was an integer.

5.3 Participants & Procedures
Participants. We recruited 15 participants from the University
mailing list. Due to the COVID-19 pandemic and restrictions
to campus access, we limited participation to university students
and staff only. Participants ranged in age from 18-34 years. Five
identified as female and ten as male. Seven participants had prior
experience with VR HMDs, and one had experienced AR HMDs.
Procedure. We followed a full-factorial within-subject study de-
sign to account for individual differences between participants.
We balanced the order of label conditions using a Latin square (5
groups), and fixed the task order by increasing task complexity:
IDENTIFY, COMPARE, and SUMMARIZE.

Each condition (label × task) included 2 training trials and
6 timed study trials. Each participant completed 90 study trials:
5 label conditions × 6 trials × 3 tasks. Participants first filled
out a consent form and were introduced to the study procedure
and all five label designs with slides. Next, the instructor helped
participants set up the VR headset and showed them how to
select an answer with the trigger button. Before each task, the
instructor introduced the task and reminded participants to perform
the task as precisely and as quickly as possible during the timed
trials. Participants were encouraged to spend as much time as
needed on training. They could take breaks between each trial
and task. After each task, the instructor collected participants’ oral
feedback. After the final task, participants filled out a post-study
questionnaire. The whole study took 1.5 hours to complete, and
each participant was compensated with a $20 gift card.

5.4 Measures
We recorded the time performance of each trial from starting the
visualization to the time participants double-clicked to input their
answers. For accuracy, we compared their answer to the correct
answer. We also collected participants’ subjective feedback for
each task and their overall evaluation in the end with a post-study
questionnaire, including a standard NASA-TLX survey, qualitative
feedback, and subject rankings for the five labeling conditions. To
extract insights from the qualitative feedback, we derived a set of
codes in an open coding session among three authors for the first
five participant responses. The first author then applied the set of
codes to the feedback of the remaining 10 participants.

5.5 Statistical Analysis
For dependent variables or their transformed values that can
meet the normality assumption (i.e., time), we used linear mixed
modeling to evaluate the effect of independent variables on the
dependent variables [65]. Compared to repeated measure ANOVA,

linear mixed modeling is capable of modeling more than two
levels of independent variables and does not have the constraint of
sphericity [66, Ch. 13]. We modeled all independent variables (i.e.,
label placement techniques and data sizes) and their interactions
as fixed effects. A within-subject design with random intercepts
was used for all models. We evaluated the significance of the
inclusion of an independent variable or interaction terms using
log-likelihood ratio. We then performed Tukey’s HSD post-hoc
tests for pair-wise comparisons using the least square means [67].
We used predicted vs. residual and Q — Q plots to graphically
evaluate the homoscedasticity and normality of the Pearson resid-
uals, respectively. For dependent variables that cannot meet the
normality assumption (i.e., accuracy, NASA-TLX ratings), we
used a Friedman test to evaluate the effect of the independent
variable, as well as a Wilcoxon-Nemenyi-McDonald-Thompson
test for pair-wise comparisons. Significance values are reported
for p < .05(∗), p < .01(∗∗), and p < .001(∗ ∗ ∗), respectively,
abbreviated by the number of stars in parenthesis.

6 RESULTS

We did not find significant effects of label placement techniques
and data sizes on accuracy. User accuracy was similar and high
across all conditions (see supplemental material). Therefore, we
focus our analysis on time (see Fig. 6), subjective ratings, rankings
(see Fig. 7), and qualitative feedback.

6.1 Completion Time
IDENTIFY: We found that label placement techniques had a
significant effect on task completion time in IDENTIFY (∗ ∗ ∗).
VALUE was slower than all other techniques (all ∗∗∗). There was
no difference between label techniques for in-view and out-of-
view objects. We found no significant effect in data size and the
interaction between the two factors (i.e., label placement technique
× data size) in IDENTIFY.
COMPARE: We also found that label placement techniques had a
significant effect on task completion time in COMPARE (∗ ∗ ∗).
Having labels for out-of-view objects (HEIGHT, ANGLE, and
VALUE) was faster than techniques that only provided labels for
in-view objects (SITUATED and BOUNDARY), all ∗∗∗. For labels
of out-of-view objects, ANGLE was faster than VALUE (∗), and
ANGLE tended to be faster than HEIGHT, but not statistically
significant (p = 0.060). For labels of in-view objects, there was no
difference between SITUATED and BOUNDARY. Data sizes had a
significant effect on time in the COMPARE task (∗ ∗ ∗) with large
data sizes increasing completion time. No significant effect was
found in the interaction between the two factors.
SUMMARIZE: Label placement techniques had a significant effect
on task completion time in SUMMARIZE (∗∗∗). Like in IDENTIFY,
VALUE was slower than other techniques (all ∗ ∗ ∗). We also
found HEIGHT was slower than SITUATED (∗∗∗) and ANGLE (∗).
No significant effect was found in data size, and the interaction
between the two factors was marginally significant (p = 0.057).

6.2 Subjective Ratings and Ranking
Our NASA-TLX results (Fig. 7 (a)) show that label placement
techniques had a significant effect on the perceived satisfaction
(∗∗), difficulty (∗), and frustration (∗). ANGLE received higher
satisfaction ratings than SITUATED, BOUNDARY, and VALUE
(∗∗). SITUATED was rated more difficult than ANGLE (∗). VALUE
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Figure 6: Results of task completion time by tasks. Confidence intervals
indicate 95% confidence for mean values. Dashed lines in all charts
indicate statistical significance for p < .05. All out-of-view labels outper-
formed in-view labels in the COMPARE task.

Figure 7: (a) NASA-TLX ratings. The percentage of negative (pink) and
positive ratings (green) is shown next to the bars. (b) User preference
ranking for each labeling condition. All dashed lines indicate p < .05.

was rated more frustrating than ANGLE (∗). We also found that
placement techniques had a significant effect on a user’s overall
ranking (Fig. 7 (b)). ANGLE was more preferred than SITUATED,
BOUNDARY, and VALUE (all ∗).

6.3 User Strategies for each Task
We observed substantial differences in user strategies for different
label conditions apart from the task performance.
IDENTIFY. Participants used different strategies for in-view and
out-of-view object labeling conditions. In SITUATED and BOUND-
ARY, all 15 participants chose an arbitrary direction to start a full-
space search to find the target object. In HEIGHT, ANGLE, and
VALUE, all participants scanned the AR screen for the target label
before following the directional cues on the label to find the target.
COMPARE. In SITUATED and BOUNDARY, participants had to
physically locate all target objects and memorize the label values
when moving around. There was also a slight difference between
them, where In SITUATED, participants had to constantly move
their gaze up and down as they turned to find labels. In BOUND-
ARY, participants only moved their gaze horizontally to scan for
labels and vertically to link to the object. With labels for out-of-
view objects, users first compared labels and directly decided on
the final target without having to physically turn around.
SUMMARIZE. In label conditions for in-view objects, all par-
ticipants sequentially found clusters and calculated their group
average one by one, which required them to remember the average
of the previous cluster. Sometimes participants had to return to the

first cluster to double-check their answer. In out-of-view object
labeling conditions, users directly looked at the labels to check the
values of both clusters and estimate cluster averages. However,
for the HEIGHT condition, four participants reported that finding
labels on the screen took more work than physically turning back
to the other cluster because label positions were less predictable
and not grouped into clusters. They performed the task exactly the
same as with SITUATED.

6.4 Overall Qualitative Feedback
Participants commented on the overall usefulness of each label
condition for visual search in the post-study questionnaire.
Labels for In-View Objects. With SITUATED, 9 out of 15
participants commented that it was easy to link label to object. 3 of
them also appreciated the lower visual density. With BOUNDARY,
participants cited various advantages, including predictable label
locations (4), easy matching from label to in-view objects (4),
being good for comparison (3), label-to-label proximity (2), and
being good for summarize tasks (2). The major downside of
labels for in-view objects was that they require a full spatial
scan, which was reported by 13 (SITUATED) and 7 (BOUNDARY)
participants. Participants found that it was physically demanding
(6 and 3), had a high load on memory (5 and 3), and was bad for
compare tasks (4 and 2) and summarize tasks (3 and 2). They also
mentioned that is was difficult to find objects for SITUATED (2)
and leader line clutter for BOUNDARY (5).
Labels for Out-of-View Objects. Getting an immediate overview
of objects and ratings was reported as an advantage in all three out-
of-view object labeling conditions, with 5, 4, and 6 participants
for HEIGHT, ANGLE, and VALUE, respectively. Good directional
cues was the major advantage for HEIGHT and ANGLE
labels, which was reported by 7 and 9 participants, respectively.
In particular, 5 out of those 9 appreciated the precise directional
cues provided by ANGLE labels. Participants also found it is easy
to go from label to object in both conditions, 3 in HEIGHT and
6 in ANGLE. For the HEIGHT condition, participants reported
predictable height locations of objects (2) and being good for
comparisons (2). ANGLE was also preferred for its predictable
label locations (1), similar to BOUNDARY. VALUE was found
most beneficial for comparison tasks. Participants found VALUE

good for comparisons (6), and good for compare tasks (3) and
summarize tasks (6), and for providing good directional cues (2).
Leader line clutter was a common disadvantage reported for
BOUNDARY, ANGLE, and VALUE. The three conditions with
longer leader line were reported to have leader line clutter, 5
in BOUNDARY and ANGLE, and 7 in VALUE. Participants also
reported that it took time in the ANGLE condition to learn how to
interpret the label placement (5). Unlike ANGLE, which showed
the precise direction of objects, participants reported that disad-
vantages for the HEIGHT and VALUE conditions were subtle
directional cues (2 and 4), having to move slowly (2 and 2), and
getting no distance information (3 and 2). Furthermore, HEIGHT

was reported to suffer from label clutter (3), unpredictable label
locations (2), and being bad for summarize tasks (2). Another
major disadvantage for VALUE was the difficulty of going from
label to object (5).

6.5 Key Findings
General findings. Based on the quantitative and qualitative re-
sults, we summarize our key findings. In-view labels are good for
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simple identify tasks; however, they do require a full spatial scan
by the user. The main advantages of out-of-view labels are that
they achieve high performance in visual comparison tasks, provide
a fast overview of all objects, and can give immediate spatial cues
to their linked object’s location. However, when labeling many
out-of-view objects, visual clutter can become a problem. We
consider this an important topic for future work.
Task-specific findings. (1) ANGLE was the overall winner.
ANGLE was one of the best in all three visual search tasks, and
achieved the highest level of satisfaction compared to all other
labels. (2) Out-of-view labels were beneficial in COMPARE
tasks. All three out-of-view object labels performed better than
labels for in-view objects in COMPARE tasks, for multiple spatially
sparse objects. (3) VALUE was not good for IDENTIFY and
SUMMARIZE. VALUE performed the worst in IDENTIFY and
SUMMARIZE tasks, which was due to the difficulty to link leader
lines to their objects. (4) SITUATED and BOUNDARY had very
similar performances. In all task performance and subjective
ratings, there is no significant difference between SITUATED and
BOUNDARY. Finally, (5) Data size only affected the perfor-
mance in COMPARE.

7 DISCUSSION

Our study aims to answer how to best place labels in AR to
support situated visual search. Based on our study results with
five representative label placing techniques, a short answer to
the question is that placing the labels according to the angular
direction of the object is overall the best option. Across all tasks,
ANGLE performed as well as or better than other tested techniques.
In addition to identifying the best performing technique, in this
section, we discuss finer-grained findings.

7.1 AR Label Properties and Considerations
Visual search is a complicated process, which includes multiple
components [68], [69], [70], [71]. To provide a more nuanced
understanding of designing AR labels for situated visual search,
we discuss the potential explanation and implications of our results
with four different components in visual search as compiled by
Yang et al [71]: (a) Wayfinding is the process of finding the
destination. (b) Travel refers to the motor part of moving to the
destination (i.e., walking, rotating). (c) Context-switching refers
to the extra mental effort that is required to re-interpret a changed
view. (d) Number-of-travels costs occur when completing a task
may involve more than one travel, due to different capabilities of
visual representations, or limited working memory.
Providing labels for out-of-view objects reduces the number
of travels in comparison tasks. In COMPARE, all conditions
with out-of-view object labels were faster than the conditions
with only in-view object labels. We conjecture that a potential
reason is that providing out-of-view object labels can reduce
the number-of-travels when comparing multiple spatially sparse
targets. The COMPARE task asked participants to search for the
object with the highest value. With out-of-view object labels, all
objects’ values were accessible in the FoV, so users could first
identify the target within the FoV and travel only once. In contrast,
with labels only for in-view objects, participants needed to iterate
through the candidates with multiple times of travel increasing
the participants’ memory load to keep track of all candidates’
information. Our finding also aligns with the famous Shneiderman
Information Seeking Mantra of “Overview first, filtering and

details on demand”, which suggests the use of overviews to
provide guided search [72]. Participants’ comments support this
hypothesis, as 13 participants complained that labels for only in-
view objects required a full-spatial scan. Although the NASA-
TLX physical demand rating was not statistically significant, we
can see a trend of higher physical demand with labels for only in-
view objects (Fig. 7 (a)). One may argue that automatic filtering
can be used to reduce the number of candidates. However, in many
cases, coming up with informed criteria for automatic filtering can
be challenging due to a wide range of user goals [60]. Providing
an overview of the entire information to guide the visual search is
important for those scenarios.
Precise spatial cues reduce the costs in wayfinding and travel.
ANGLE was as good or better than other techniques across
all tasks. In situated visual search tasks, the most fundamental
interaction for users is to physically turn to face the target object.
We believe that ANGLE provides the most precise spatial cue
among the five tested conditions. It shows the angular direction
of all objects, which allows users to estimate how much and
in which direction they need to turn to face the target object.
On the other hand, HEIGHT places labels on the left or right
boundary of the FoV to indicate the turning direction, but users
cannot estimate the turning angle. VALUE uses a more subtle
cue to indicate the turning direction by placing an arrow on the
labels. As a result, in HEIGHT and VALUE, users need to slowly
turn towards the indicated direction and frequently check if the
target object is already within their FoV. Label conditions for
only in-view objects did not provide any spatial cues, and users
had to fully scan the surrounding space. In summary, the ranking
for spatial cue preciseness is: ANGLE > HEIGHT > VALUE >
BOUNDARY = SITUATED. This ranking aligns with the good
performance of ANGLE. However, HEIGHT and VALUE performed
worse than BOUNDARY and SITUATED, which is not expected
from the ranking. We believe their poor performance is mainly
due to proximity factors, which we discuss later in this section.
Well-designed techniques reduce context-switching costs. To
utilize the precise spatial cue in ANGLE, participants needed to
mentally map the spatial information from the AR FoV to the
surrounding physical environment. According to the VR study by
Yang et al. [71], such operations are likely to introduce a high
context-switching cost. However, their results were not reflected
in our study, where we found ANGLE to be the best performing
technique. One potential reason is that, in ANGLE, we used a top-
down view to show the spatial distribution of objects with the
user’s AR FOV always facing up. We believe this design allows
the user to easily interpret the “overview” provided by ANGLE,
thus reduce the context-switching cost. Participants’ ranking aligns
with our finding, where ANGLE was ranked first by 60% of
participants. Participants’ comments also support this finding, as
9 participants found ANGLE easy to navigate.
Label-object proximity is important for spatial search. Despite
providing a spatial cue, VALUE was the slowest condition for
IDENTIFY and SUMMARIZE tasks. In VALUE, labels were placed
in fixed positions on the left side of AR FoV. As a result, they were
usually far away from the objects shown within the FoV, resulting
in the lowest label-object proximity among all conditions. We
believe that this far distance introduced difficulties for users to
follow labels to objects. Furthermore, with increasing distance,
the leader lines for connecting labels and objects become longer
and can potentially introduce more line-crossings on the screen,
making tracing leader lines even more difficult. This is also
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reflected in the participants’ comments, where 5 participants found
it difficult to link between objects and labels, and 7 mentioned the
line-crossings hindering them from completing the tasks.
Neighborhood consistency facilitates summarizing values by
groups. In SUMMARIZE, participants needed to compare the aver-
age values to two clusters. Neighborhood consistency means that
when objects are neighbors, their labels should also be neighbors
to each other. This property can be shown as the lateral position
encoding in Table. 1. SITUATED, BOUNDARY and ANGLE all
preserve neighborhood consistency. HEIGHT only encodes lateral
positions for in-view objects, and VALUE does not encode lateral
positions at all. As objects in each target cluster are closer together,
a condition with higher neighborhood consistency can potentially
take less time for summarizing the values of that cluster. The col-
lected performance data confirmed our analysis, where SITUATED,
BOUNDARY, and ANGLE had a similar performance, and were
faster than HEIGHT. VALUE had the worst performance.
Boundary labels did not demonstrate advantages over situ-
ated labels. We found a similar performance of SITUATED and
BOUNDARY across all tasks. In 2D visualizations, boundary label-
ing is a standard way to reduce visual clutter in many scenarios,
and was found to be beneficial [1]. However, we could not confirm
the advantage of boundary labels in our AR study. One possible
explanation is the limited FoV in AR, which makes these two
conditions very similar to each other. We also did not formally
control for the visual clutter or occlusions in our study. Future
studies are needed to investigate the effectiveness of these two
conditions for other scenarios.

7.2 Implications for Visual Search with AR Labels

Based on the above discussion, label designs for only in-view
objects are suitable for applications where targets are located in
the same direction, requiring less physical movement, such as
browsing products on the same shelf. Furthermore, BOUNDARY

is a good alternative for SITUATED when less visual clutter in
the center of the FoV is desired, and tasks require more value
comparison, such as comparing the prices of books on the shelf.

Labels for out-of-view objects are suitable for situated visual
search when multiple targets of interest are scattered in space. In
particular, ANGLE supports location navigation tasks well when
precise directional cues are desired, such as searching for coffee
shops in the area. As an alternative, HEIGHT provides better
guidance when the height information is important for searching
targets, such as books on a multiple-layer shelf, paintings hung
at various heights in the gallery, and targets located at multiple
floors. On the other hand, when knowing the precise locations
is not as important as value comparison on the objects, VALUE

is a good option for both in-view and out-of-view objects. Use
cases include comparing data attributes of dynamically changing
targets in real-time, such as players’ scores in a live sports game.
Furthermore, combining different label placement strategies in a
single application can better support specific tasks. For example,
after comparing menu items with VALUE labels, users might
switch to ANGLE to locate the targets.

7.3 Limitations, Generalization and Future Work

While we have followed the guidance and practice from previous
work [20], [21], [22], simulating AR interactions in VR might not
be fully representative of a real-world use scenario.

Visually complex backgrounds. Real-world applications may
have more visually complex backgrounds, which are likely to
affect the ability to precisely perceive visual information (e.g.,
color [73]). To minimize the influence from the background, we
suggest using visual cues that do not require precise perception
in labels (e.g., we used the unit visualization method [74] in
our study). We believe with effective encoding, people can still
easily perceive simple visual information even with complex
backgrounds. Thus, our results can largely transfer to these
scenarios. However, there are cases where one would want to
encode multivariate data in labels. Further studies are required
to investigate the influence of complex backgrounds for these
scenarios. Alternatively, we can show the most critical information
in a simple and effective design, like ours, and provide on-demand
interactions for users to selectively investigate objects of interest.

Real-world objects. Objects in the real world can be more
complicated than our controlled environment. In our study, we
did not control for objects’ sizes and occlusion. Therefore, targets
were relatively easy to find, which might have led to ceiling
effects in accuracy. Real-world objects may vary largely in size
and shape in some cases. Larger objects with unique shapes may
easily attract people’s attention, which possibly will influence the
performance in identifying the target objects. We also did not
explicitly control the occlusion between objects, as this would
have resulted in too many testing factors. We have conducted a
post hoc investigation of the trials with occluded targets and did
not find a significant difference in performance. We conjectured
that is because participants can easily move in space to find a
viewpoint that avoids occlusion. However, in the case of AR
labels, with explicit leader lines to direct the user’s attention, such
influence can be limited. Further studies are required to verify this
expectation with varying difficulty in the real-world settings.

Dynamic objects and participants. Another important prop-
erty for some real-world objects is that they are actively moving
(e.g., players on a basketball court). Labeling dynamic objects
requires further design considerations. For example, situated labels
should move with the objects; therefore, we need to consider
peoples’ cognitive capacity to track dynamic visual elements [75],
e.g. , by stabilizing label movement.

Although we did not limit participants’ movement, we ob-
served limited body movements in the study, possibly due to the
nature of our tested tasks. In real-world scenarios, we believe
users may move more frequently in some scenarios, but they move
mostly to get close to one specific target. As a result, the user does
not need to analyze the entire view all the time. Substantially, our
results can still largely apply to these scenarios.

Scalability. There can be cases that have a larger amount of
objects to be labeled. We believe our study has tested represen-
tative amounts of objects (e.g., a basketball game has 10 players,
and a soccer game has 22 players). Considering the limited size of
current AR displays, it is challenging to display a larger amount
of labels while still keeping the FoV uncluttered. One potential
solution is to use focus+context technique to selectively enlarge
more important labels, which can be determined by the user’s
position, facing direction, and object properties. Further study is
needed to evaluate the effectiveness of such designs.

In addition to the aforementioned designs and studies, prop-
erties of AR labels other than label placement and interaction,
such as a label’s visual properties [8], leader line design [12], [11]
and update frequency [23], are essential in applying AR labels to
real-world applications but are not within the scope of this study.
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8 CONCLUSION

We presented a thorough design space exploration of AR labels for
out-of-view objects to support situated visual search tasks. Based
on our classification of the design space, we compared five AR
label conditions in a user study, focusing on the aspect of label
placement. Our conditions included SITUATED and BOUNDARY

for in-view objects, and HEIGHT, ANGLE, and VALUE for out-of-
view objects. Our main results suggest that (1) Labels for out-of-
view objects are beneficial for compare tasks. (2) Angle-encoded
labels showed the best performance overall in supporting situated
visual searching and were preferred by participants. (3) Value-
encoded labels have strengths in compare tasks but are weak in
identify and summarize tasks.

We hope that our classification and quantitative evaluation
of AR out-of-view label design will help researchers to design
effective labels and interactions for real-life tasks and applications.
We envision future AR systems that integrate AR labels into their
information retrieval systems, thereby enabling users to perform
object-based search or to explore multiple levels of details in data
in a truly situated setup.
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