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Visual Cue Effects on a Classification Accuracy
Estimation Task in Immersive Scatterplots

Fumeng Yang, James Tompkin, Lane Harrison, and David H. Laidlaw

Abstract—Immersive visualization in virtual reality (VR) allows us to exploit visual cues for perception in 3D space, yet few existing
studies have measured the effects of visual cues. Across a desktop monitor and a head-mounted display (HMD), we assessed scatterplot
designs which vary their use of visual cues—motion, shading, perspective (graphical projection), and dimensionality—on two sets of data.
We conducted a user study with a summary task in which 32 participants estimated the classification accuracy of an artificial neural
network from the scatterplots. With Bayesian multilevel modeling, we capture the intricate visual effects and find that no cue alone
explains all the variance in estimation error. Visual motion cues generally reduce participants’ estimation error; besides this motion, using
other cues may increase participants’ estimation error. Using an HMD, adding visual motion cues, providing a third data dimension, or
showing a more complicated dataset leads to longer response times. We speculate that most visual cues may not strongly affect
perception in immersive analytics unless they change people’s mental model about data. In summary, by studying participants as they
interpret the output from a complicated machine learning model, we advance our understanding of how to use the visual cues in
immersive analytics.

Index Terms—virtual reality, cluster perception, information visualization, immersive analytics, dimension reduction, classification
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1 INTRODUCTION

T ECHNOLOGIES such as virtual and augmented reality
(VR/AR) allow immersive approaches to data visualiza-

tion and decision-making [1]. While suitable for displaying
inherently spatial 3D data (e.g., digital elevation models
or isosurfaces), more abstract data raise questions about
designing, presenting, and interacting with information
visualization in 3D space.

One challenge here is assessing the effects of visual cues—
global or local properties that perceptually prioritize objects
or regions [2], [3]. There are two fundamental classes of
visual cues: primary cues providing physiological percepts
(e.g., stereopsis and accommodation), and pictorial cues used
to depict 3D depth in 2D pictures (e.g., occlusion, perspective,
texture, and shading) [2]. Different visual cues affect many
aspects of visual perception and cognition, such as depth
perception [4]–[6], spatial judgments [7], [8], and shape
understanding [9]–[11]. As such, understanding visual cue
effects in immersive analytics could facilitate the broader and
more appropriate use of VR/AR techniques.

Prior work has not focused on visual cue effects in
immersive analytics [12]–[14]. For example, some research
used inconsistent colors and shading across the desktop
monitor and VR [15], [16], and neglected to consider how
pictorial cues affect depth and spatial perception. To further
complicate matters, similar studies from other domains may
not directly apply to information visualization. These studies
relied on tasks like navigating a simulated 3D world or
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comparing a handful of virtual objects in an elementary task
[17], which is categorically different from visualization tasks
performed on thousands of visual elements representing
different data points [8].

To this end, we explicitly study visual cue effects on peo-
ple’s task performance in immersive analytics. Specifically,
we examined four visual cues: visual motion, perspective
(graphic projection), shading, and dimensionality. We chose
these cues because they added minimal visual clutter but
showed strong effects on perception in the literature [1],
[5], [7]. We compared these cues on both an immersive VR
environment using a head-mounted display (HMD) and a
non-VR environment using a desktop monitor, and on two
sets of data (called “data models,” see Sec. 2.2). These visual
cues and datasets cover typical and common parameters of
immersive visualizations.

We used scatterplots as the central visualization. Scatter-
plots support both low-level object-centric tasks [18] and
high-level visual aggregation [18], [19]. They show data
features such as correlation [20], anomalies [21], clusters [22],
[23], and dimension-reduction results [24]–[27]. Scatterplots
encode data points into spatial coordinates [28]–[30], making
them suitable to examine visual cues where surrounding
spatial coordinates can affect the perception of a data point.
Scatterplots can also be shown across different devices such
as a desktop monitor [31]–[34], VR [35]–[40], and AR [12],
[41]. Thus, using scatterplots offer insights into a variety of
visualization tasks and visual cue effects.

We designed a task in which participants assessed a
neural network’s classification performance from a scatter-
plot of the last hidden layer’s outputs (see Fig. 1) [42]–[44].
These high-dimensional outputs contain necessary informa-
tion about classification performance and were reduced
to 2D or 3D space for interpretation. This task requires
an interpretation of visualization and is a mid-level task:

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3192364

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Brown University. Downloaded on August 19,2022 at 14:27:36 UTC from IEEE Xplore.  Restrictions apply. 



2

Figure 1. Examples of last hidden layer outputs and classification accuracy. In training the neural network, the visual properties of the
last hidden layer outputs change systematically with the classification accuracy. a© The top row shows examples of the experimental condition
Orthographic • Flat Shading • Image Data • 2D Embedding. b© The bottom row shows examples of the experimental condition Perspective
• Ambient Occlusion • Image Data • 3D Embedding. Each column shows 2D or 3D embedding results for the same high-dimensional dataset.

it includes low-level perceptual processes (e.g., reading a
value, judging groupings) that are possible to generalize, and
also reflects real-world practitioners’s analytical processes
that are possible to be evaluated. Participants were simply
asked to provide a number—classification accuracy—as their
final assessment. This task connects the huge gamut of
choices in visual-cue design to their effects on visualization
interpretation.

There are two main research contributions in this paper:
Contribution 1 Measurement of the quantitative effects of
four commonly-used visual cues across a desktop monitor
and in a VR HMD on two sets of data. These cues generally
had small effects on estimation error; device and visual
motion had large effects on response time.
Contribution 2 Measurement of the quantitative interaction
effects between cues, supporting cue-integration theory. That
is, people combine multiple cues to improve their estimate
of a property [45]. Visual cues interacted with each other in
complicated and subtle ways, especially for estimation error.

Our experimental materials, data, and analysis scripts are
posted at https://doi.org/10.17605/OSF.IO/PKUVZ.

2 BACKGROUND AND MOTIVATION

2.1 Past studies on visual cues

A number of studies compared stereoscopic and non-
stereoscopic devices. These reported mixed results for differ-
ent tasks. Several surveys [46]–[49] agreed that a stereoscopic
display may improve participants’ performance over a desk-
top (e.g., [50]–[52]), especially for more difficult tasks [53].
Others reported mixed [54]–[58] or negative results [59], and
the effects were subject to individual differences [60]–[62]
and choice of tasks [46]–[48]. Yet few studies focused on
visual cue effects.

Perceptual science also investigated visual cue effects
extensively, but did not concentrate on visualization. Visual
cues were found to affect many aspects of visual perception
and cognition, like 2D visual comparison [63], [64], depth

perception [4]–[6], 3D length [65], spatial relationships [2], [8],
[66], spatial judgments [7], [8], and shape understanding [9]–
[11]. Most of these studies examined a small number of
objects (e.g., one mesh object). On the contrary, studies from
computer graphics often cope with complex scenes, and
improving shading is a general theme for showing more
details and enhancing user experience [28]–[30], [67], [68].
These studies were conducted without regard to an analytical
or reasoning task with users.

On visualization and visual analytics, previous studies
compared different devices and reported moderate effects
of visual cues. The studies on graph visualization showed
that a VR environment might have positive [69], [70] or
neutral effects [13], [71], [72] on task performance and
completion time compared to a desktop monitor. Similar
studies compared scatterplots across a desktop monitor
and an HMD on tasks of selecting a cluster and identify-
ing outliers, reporting mixed results [15], [16], [73]. These
studies used inconsistent colors and shading across the
desktop monitor and VR [15], [16]. Other studies have
similar issues of using different visualization forms, like
presenting 2D scatterplot matrices and 3D scatterplots for
different devices [14]. A few other studies examined visual
motion (interaction techniques) [12], [40], [74] and different
encoding channels [58] in VR. However, these studies have
not systematically investigated the impacts of visual cues,
particularly pictorial cues applying to all data points, in a
task of making sense of complex data [75].

2.2 Current study on visual cues

Given the literature, we selected two viewing devices, four
visual cues, and two sets of data for our experiment. These
variables and their manipulations typify commonly-seen
visual cues.

Device Previous studies and surveys reported mixed results
for comparison between stereoscopic and non-stereoscopic
displays. It is necessary to test different devices to disen-
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Figure 2. Task overview. In each trial, participants estimated classifica-
tion performance from a scatterplot of the last hidden layer’s output of a
neural network.

tangle the intrinsic properties of an immersive environment
(e.g., stereopsis).

Visual motion Motion alone shows stronger effects than
stereoscopy alone [76], [77], but it is less effective than
stereoscopy with head-tracking [51], [78]; motion and stere-
oscopy might be of the same effectiveness [79]. Motion allows
people to vary their vantage point to gain more information,
which may help make sense of dimension reduction results
orienting differently in the low-dimensional space.

Shading Shading affects perception of shape, depth, and
spatial relationships [4] in a 3D space. In an immersive
environment, illumination improved completion time for
graph path tracing [70], while visual realism might hurt
task performance [80], [81]. Information visualization often
shows abstract data [82] and commonly uses solid untextured
colors. However, if data is in 3D space, varying shading may
improve depth perception [83] and then task performance.

Graphical projection Previous studies also show the impact of
different graphical projection methods [7], [84]. Perspective
projection alters an object’s depicted size with its distance
from the projection center, often used in VR to generate
stereoscopy and immersiveness to improve spatial judg-
ment [2] and distance perception [7], [84]. Orthographic
projection preserves size and uses lines orthogonal to the
projection plane. It is widely used in computer-aided design
(CAD), 3D modeling software (e.g., Autodesk 3ds Max), and
desktop-based visualizations of 3D data [22] for more precise
presentation. Less studied in VR, the effect of orthographic
projection on immersive analytics is unclear.

Dimensionality Reducing a high-dimensional dataset to a 3D
space is necessary to generate an immersive visualization,
and a 3D data projection is also often more precise than a 2D
data projection (e.g., the Kullback-Leibler divergence [85]
is smaller). However, visualization in a 3D space often
causes perception discrepancies (e.g., [42]–[44]). To precisely
understand visual cue effects and to establish a fair baseline,
the present study incorporated both 2D and 3D datasets.

Data model To understand the generalizability of the results,
we considered different data properties. Data properties
like the number of data points [86], [87], the complexity
of a graph visualization (e.g., the number of nodes) [69],
[88] or a scene [81], and the shape of clusters [89] may
affect task performance. We termed the collection of these
properties “data model” to encompass the differences in
data distribution, complexity, cluster shape, and other data
properties (e.g., Figs. 1 and 6).

Training set Test set

Neural network
architecture

Last hidden
layer outputs

Dimension 
reduction

visual representationapproximation

Neural network
instances Scatterplots

ⓐ

ⓑ

Input 
accuracy

estimation
Figure 3. Stimuli generation. We first trained a neural network on the
training set and saved the intermediate neural network after each epoch.
For each intermediate neural network, we used the test set as the input
and calculated its last hidden layer output, which was then dimension
reduced and used to render a scatterplot. Participants were presented
with the scatterplot and assessed the classification accuracy of the neural
network on the test set. They press the mouse/controller to input a
percentage as their answer, which was compared to the ground truth
accuracy to derive their task performance (see Sec. 6.7).

3 TASK DESIGN

To derive a measurable task to provide insights into immer-
sive analytics, we drew inspiration from recent successes
that examined the last hidden layer output of a neural
network [42] to identify misclassified instances, training
effects, and hidden structures [43], [44]. Visualizing the
last hidden layer’s output conveys the model’s internal
representations and its likely classification performance. As
such, the task we chose was for participants to estimate
a model’s classification accuracy based on a scatterplot of
the last hidden layer’s output (see Figs. 2 and 3). This task
combines low-level perception with more open-ended high-
level model assessments, and lands on a mid level.

3.1 Justification

The task supports internal, construct, external, and ecological
validity [90], [91] in the following ways.

This task reflects how people perceive classification
results, and therefore helps establish a relationship between
visual cues and classification perception. To measure the
perceived classification performance, we sought a quantita-
tive metric (e.g., accuracy, precision, and loss [92]) and used
accuracy for simplicity; accuracy is defined as the percentage
of correctly classified instances.

To ensure construct validity, we conducted a pilot study
and confirmed that participants could estimate accuracies
near the true classification accuracy. Further, we requested
participants have at least passing knowledge of machine
learning and visualization (Sec. 6.6) and included both
training and practice sessions to ascertain an association
between classification accuracy and scatterplots (Sec. 6.3).

This task supports external validity because it resembles
cluster perception in multi-class scatterplots. Assessing
classification performance visually can be considered cluster
detection under uncertainty. Factors such as data properties
(e.g., outliers and cluster distance), cognition (e.g., expertise),
and primarily perceptual components (e.g., visual cues) could
systematically affect participants’ estimates.

This task also partly supports ecological validity because
it could be an example of similar tasks that users plausibly
undertake in real-world visual analytics. While estimating
classification accuracy is a manufactured task, inspecting
the last hidden layers’ outputs facilitates the understanding
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Figure 4. Device, visual motion, and movements involved. We designed both Desktop ( a© b©) and HMD ( c© d©) conditions. Participants saw fixed
scatterplots in Static conditions ( a© c©); and in Dynamic conditions, they interacted and rotated the scatterplots via a mouse and a keyboard
(Desktop, b©) or by walking and using the VR controller (HMD, d©). Participants could move their pupils, head, hands, feet, or they could move
virtually using a keyboard or a mouse; between Static and Dynamic, a movement may or may not trigger a change of the stimuli on the display.

of the neural network’s performance and assists in model
diagnostics [42]–[44].

3.2 Task limitations
Designing psychophysical tasks that elicit measurable and
separable responses is an ongoing challenge for immersive
analytics [93], which we aim to address in part through this
study. We reduce a realistic task combining multiple facets of
perceiving clusters. However, this realism also brings costs to
the experimental framework in terms of indirect or difficult-
to-control factors. These indirections may span from data
generation to participants’ interpretation. Approximation
errors in each step may propagate along the visual inspection
pipeline: in the present task, the model’s internal represen-
tation is approximated by the high-dimensional last hidden
layer’s output, which is further approximated by dimension-
reduction result, which is then visually encoded into a
scatterplot and presented to error-prone participants (Fig. 3b).
These intermediate steps combined with visual cues under
question are likely to affect participants’ estimation accuracy
in complex ways. While it is difficult, if not impossible, to
completely separate and gauge these indirect effects, the task
can measure participants’ performance with approximation
error.

4 VISUAL CUES

As described in Sec. 2.2, we manipulated six variables in total:
(1) device, (2) visual motion, (3) graphical projection, (4)
shading, (5) dimensionality, and (6) data model. We also
discussed all possible visual cues collected from the literature
as a table in Appx. C.

4.1 Device
We used two devices (see Fig. 4): a desktop with a monitor,
and the same desktop with an HMD (HTC Vive Pro), denoted
as Desktop and HMD, respectively. Certain visual cues only
present in an immersive environment (e.g., immersiveness
and presence [94], [95]); and we regarded them as contextual
cues for the immersive environment.

4.2 Visual motion
We had two visual motion levels: the first level used static
stimuli, denoted by Static Stimuli (or Static); and the
second level allowed participants to update the stimuli
via movement and rotation, denoted by Dynamic Stimuli
(or Dynamic). The difference between Static and Dynamic
is if participants can alter a stimulus on the display. In
Static conditions, participants saw static images on both
Desktop and HMD. They sat in a chair when using the HMD
(Fig. 4c). This discouraged moving and avoided further
issues arising from motion sickness or nausea. In Dynamic
conditions, participants varied their camera position using a
keyboard and a mouse (Desktop, Fig. 4b) or via head tracking
and walking in the room (HMD, Fig. 4d). Participants could
also rotate a scatterplot around its center by dragging a
mouse (Desktop, Fig. 4b) or moving a VR controller (HMD,
Fig. 4d).

Discussion Our experiment focused on visual motion cues
that could trigger a change in the visualization. Motion as a
sensory cue can be detected beyond the human vision system;
for example, walking and moving one’s head may activate
the proprioceptive and vestibular systems. Proprioceptive
and vestibular systems were unlikely to alter the stimuli
nor consequently affect their appearance. We ignored these
non-visual motion effects (e.g., proprioceptive and vestibular)
which are not directly related to a visualization task. It
might be impossible to eliminate these intrinsic properties
of an HMD or to approximate them precisely on a desktop.
However, we could still quantify the plausible effects of these
additional non-visual cues by measuring each combination
of device and visual motion, and their effects were captured
as interaction effects between the two variables. Also, motion
as a depth cue can be generated from motion parallax, motion
perspective, or kinetic effect [96], and both Desktop and HMD can
provide all three.

4.3 Shading
Our experiment had three shading levels: the first level used
solid colors, denoted as Flat Shading (Fig. 5c). The second
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level utilized the commonly-used Phong lighting model
(the ambient and diffuse terms), denoted as Simple Shading
(Fig. 5d). The third level used the Phong lighting model
with ambient occlusion, a more advanced rendering tech-
nique [17], denoted as Ambient Occlusion or A.O. (Fig. 5e).
Here Ambient Occlusion conditions implemented screen-
space ambient occlusion (SSAO) [30] and normal reconstruction
from the depth buffer. Many techniques have been developed
to compute ambient occlusion, especially for scatterplots
(or particle visualization) [30], but screen-space ambient
occlusion is known for its efficiency and acceptable results,
making it suitable for a VR HMD [97] requiring 90 frames
per second for both eyes [98].

4.4 Graphical projection
Our experiment explored both orthographic and perspective
projections, denoted by Orthographic and Perspective, re-
spectively (see Fig. 6). The implementation of perspective
projection was straightforward. The implementation of or-
thographic was conducted with preservation of binocular
disparity in VR, including an additional perspective pro-
jection. Further explanations for this implementation are
available in Appx. A.

4.5 Dimensionality
We used the same t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) procedure to reduce high-dimensional hidden
layer outputs to 2D Embedding and 3D Embedding (see Sec.
5.1). The 2D Embedding results are semantically similar to
the 3D Embedding results (Figs. 1a-b, 6a-b), sharing the same
visual properties such as cluster shape and local structure.

Discussion This comparison across 2D and 3D embeddings
were similar to the study by Sedlmair et al. [22], and it
improved compatibility between the two devices, compared
to the approach of using scatterplot matrices as a baseline by
Kraus et al. [14]. Additionally, 2D Embedding was only used
with Static • Orthographic • Flat Shading, which looked

Figure 5. Shading and graphic projection. a© The top row shows
examples of Orthographic projection for three different shading
levels: Flat Shading, Simple Shading, and Ambient Occlusion.
b© The bottom row shows examples of Perspective projection. All

six scatterplots show the same underlying last hidden layer output and
dimension reduction procedure.

very similar to commonly seen information visualizations
using simple and flat colors (Figs. 1a and 6a). A 2D dataset
does not have the third dimension for computing depth.
It was possible to add a synthetic third dimension to a
2D dataset (e.g., setting z to 0), yet this caused serious z-
buffer fighting or strongly hinted the drawing order as a
third, non-existent dimension. Thus, we ruled out these other
alternatives to avoid confusing participants.

4.6 Data model

Within this study, a data model consists of a training set
and a neural network architecture; optimizing such a pair
produces a set of hidden-layer embeddings with various
classification accuracies (Fig. 3).

We used two data models: (1) Text Data, defined in
training the text dataset bAbI [99] on a memory neural
network (MemNN) [100], and (2) Image Data, defined in
training the image dataset CIFAR-10 [101] on a residual
neural network [102]. For Text Data, we used the training
set with 10,000 samples (called “single supporting fact”) and
200 epochs; we used the test set of 1,000 samples (6 classes)
as the input to the trained neural networks. For Image Data,
we used the training set with 50,000 images and 150 epochs.
We randomly split the test set with 10,000 images into two
folds with 5,000 images (10 classes) for each as the input of
the trained neural networks. The statistics of classification
accuracies are available in Figs. 7b and c.

Discussion These two data models vary in the number of
data points, the number of classes, the shape of resulting
clusters, and the neural network architecture. Furthermore,
both models yielded a range of classification accuracies that
are suitable for experimental purposes. Finally, the two sets
were not used widely in education, such that the potential
participants had not seen them before the experiment.
Other commonly-seen data models like MNIST [103] or
Fashion-MNIST [104] trained on a convolutional neural
network (e.g., CNN) were used extensively in education,
and the resulting range of accuracy was very small (Fig. 7a).

Figure 6. Examples of Text Data. a© The top row shows examples
of 2D Embedding across different accuracy levels. b© The bottom row
shows examples of 3D Embedding of the same hidden layer output
across different accuracy and shading levels.
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0 10 20 30 40 50 60 70 80 90 100
ⓐ Fashion-MNIST + CNN

ⓒ Image (CIFAR-10 + ResNet-20)
ⓑ Text (bAbI + MemNN)

1 2 3 4

Classification Accuracy (pt)

ⓓ Trials (randomized)

Figure 7. Classification accuracy ranges of different data models.
a© The first row shows that a common dataset and neural network

architecture generate only very high classification accuracies. b©- c©
The second and third rows show that the classification accuracy ranges
of the two data models used in this study, and d© the last row shows our
sampling process to select four trials for each condition.

5 CONTROL VARIABLES

Other differences between a desktop monitor and an immer-
sive environment may also affect participant’s task perfor-
mance. We inspected and controlled a set of control variables.
Here we discuss three: (1) dimension-reduction process, (2)
visual content, and (3) interactions. We believe these three
variables were most important for our experiment and would
be interesting to readers.

5.1 Dimension-reduction process

As described in Sec. 4.5, we used the prevalent t-SNE
algorithm to reduce the dimensionality of the last hidden
layers’ outputs. t-SNE preserves cluster information and the
local structure of the original dataset. The results of 2D and
3D t-SNE on the same data are the optimal approximations in
their own low-dimensional spaces constrained by the same
distance function. We generated all the datasets using the
same parameter settings (perplexity = 30, learning rate =
150, steps = 600, and fixed random seeds) that guarantee
convergence. We also manually reviewed all the resulting
datasets for convergence and confirmed that the layout of a
2D dataset can be empirically viewed as the corresponding
flattened 3D dataset. All the datasets and images are available
in supplementary materials.

We had evaluated other dimension reduction techniques,
such as Uniform Manifold Approximation and Projection
(UMAP) [105] and Principal Component Analysis (PCA), but
t-SNE was the best fit. UMAP preserves more global structure
than t-SNE, but it arranges data points in the same class very
close to each other, which causes cluttering. Similarly, PCA
resulted in indistinguishable clusters for both data models.

5.2 Visual content

Our experimental system preserves the consistency of visual
content across different experimental conditions. All the
conditions shared the same building and compiling processes
and the same parameters for Vertex Array Objects (VAOs),
Vertex Buffer Objects (VBOs), vertex and fragment shaders,
as well as OpenGL context. We only varied the rendering
process (e.g., shading), the target device (the screen or the VR
compositor), and the camera position (e.g., fixed or changing)
in different conditions.

5.3 Interactions

We also calibrated interaction techniques, important for
understanding space and depth in an immersive environ-
ment [12], [106], [107]. Interaction techniques support visual

motion cues (Sec. 4.2). In our experiment, rotation interaction
provides motion parallax; head movement, physical, or virtual
navigation provides motion perspective; each provides kinetic
depth perception. Both devices ought to support these in a
consistent manner, described as follows.

Metaphor The metaphor was the same in all conditions:
participants moved the mouse on the xz-plane in Desktop
conditions (Fig. 4b); or they moved the controller on the
xy-plane in HMD conditions (Fig. 4d).

Rotation The rotation operations were implemented based
on the Arcball technique [108] and movements. Desktop
conditions allowed mouse movements (Fig. 4b), and HMD
conditions used the movements projected on the 2D view
plane (Fig. 4d) as the analogy. We chose a scale factor so that
a long stroke drawn using the VR controller roughly matched
a long stroke drawn using the mouse for an average-sized
participant.

Navigation We approximated head movement and physical
navigation in VR for a desktop monitor. We allowed virtual
movement where participants could move along the xz-plane
using a keyboard (the WASD keys, see Fig. 4b), which was
common in the research across modalities [109], [110]. One
keystroke was mapped to a change of 0.02 units, resulting in
a speed of 0.6 units per second if a participant was constantly
holding the key (∼30Hz); this corresponded to a speed of .60
meters per second in VR, similar to a slow walking speed for
an average-sized participant.

6 STUDY DESIGN

With the task design (Sec. 3) and the experimental variables
(Secs. 4 and 5), our research question is

Research question: What are the effects of visual cues
and the relationships between them in a task of visually
assessing classification performance?

We reflected this research question in our experimental
design as follows.

6.1 Experimental design

We used a mixed factorial design with repeated measures. A
mixed design is one of the basic and the most widely used
designs in human-subjects experiments [111]. The between-
subjects variable was data model, and each participant fin-
ished Text Data or Image Data. The other four variables were
within-subjects and assigned in the following order: device,
dimensionality, graphical projection, shading, and all par-
ticipants finished all valid combinations of them.

All the combinations of the visual cues and devices
were compatible with 3D Embedding, resulting in 48 different
experimental conditions = 2 devices × 2 motion levels ×
3 shading levels × 2 graphical projection methods × 2
data models. There were four 2D Embedding conditions for
different devices and datasets, resulting in 52 = (48 + 4)
conditions (combinations). For example combinations, see
Fig. 1 or 4 above; for a list of all combinations, see Fig. 9
below. Each participant finished 26 combinations.

This mixed design was favored over a complete within-
subjects experiment for two reasons: (1) both data models did
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not provide enough datasets of different accuracies to cover
a full combination of visual cues (Fig. 7); (2) using the same
data model throughout hundreds of trials may lead to strong
learning and practice effects [112]. This design leveraged
the within-subjects component to reduce the impacts of
individual differences, allowed an inference of interaction
effects and required fewer participants. It partially captured
uncertainty and the relationships between visual cues.

6.2 Procedure
Participants started with a consent form and then took part in
the introduction session with one and the same experimenter.
In the experiment, they first saw an overview and filled in a
pre-experiment questionnaire, including demographics ques-
tions and their self-assessment of familiarity with machine
learning. They then finished four estimation sessions with
a two-minute mandatory break between sessions; longer
breaks were allowed. At the end of each session, they
answered two open-ended questions to record their strategies
(e.g., “Any visual features or patterns you looked for?”)
and additional comments. After completing all estimation
sessions, they filled in a post-experiment questionnaire to
briefly assess motion sickness in the experiment and to report
their familiarity with the datasets. Participants typically took
60 to 90 minutes to accomplish the experiment.

In each trial, participants first saw a blank white screen.
After one second, they saw the scatterplot and could explore
the scatterplot for up to 60 seconds. When participants felt
ready, they could proceed by pressing the space key (Desktop)
or pulling the trigger on the controller (HMD). Participants
then saw another blank screen for one second, immediately
followed by the input interface, where they adjusted a
number (0 to 100) using the mouse or the controller to
provide their answers. In HMD conditions, participants were
asked to move back to the initial position before a new trial.

6.3 Training and practice
To ensure that participants understood the task and met our
expectations, we included introduction and training sessions
at the beginning of the experiment and designed practice
trials at the beginning of each estimation session.

In the introduction session, participants were shown
how to wear the headset, use the controller, and move
in the room. In the training session, participants learned
the task and interaction techniques; they were given the
following instructions to estimate classification accuracy
from scatterplots: “The scatterplots show the outputs of machine
learning classifiers for test datasets. Each dot represents an
instance. The color of a dot represents the ground truth class
of that instance...For each scatterplot, we ask you to estimate the
classification accuracy for that dataset.” Participants were also
presented with eight examples of four accuracy levels. The
full instructions and the examples are available in Appx. D.

At the beginning of an estimation session, partici-
pants practiced each assigned condition once but twice
for 2D Embedding because there were fewer 2D Embedding
conditions. Practice trials were grouped and conduced in the
same fashion as the main trials, sampling from the datasets
similarly (Fig. 7d), but without the true classification accuracy
at the end of the trial.

6.4 Experimental setup

The scale of the immersive environment was about 3.10
× 3.00 meters in a physical room of 6.00 × 4.40 meters;
the room was constantly quiet and had an unobstructed
floor. The near and far clipping planes were fixed to 0.018
and 75.0, respectively, so that all the visual elements were
visible, of a similar size, and similar to an overview [74]
when viewed at the default (initial) camera position. The
default (initial) camera position and other camera parameters
were determined based on the following rules. First, the
scatterplots shown in the HMD • Static conditions roughly
fell into central vision. Second, orthographic and perspective
projections generated scatterplots of a similar size in pixels.
Third, the camera position was slightly higher than the center
of the scatterplot, matching the angle of viewing a monitor
on a physical desk [73]. Fourth, participants could see the
reference frames even in Static conditions.

All the scatterplots were placed surrounding the center
of the space extending about 1 meter (one unit) in each of
the xyz dimensions. Consequently, on average, a scatterplot
was approximately 540 pixels subtending an angle of 12.64◦

(43.51 pixels per degree) for Desktop, assuming a viewing
distance of 0.65 meters. A scatterplot was about 735 pixels
subtending an angle of 34.19◦ (21.50 pixels per degree) for
HMD assuming a default viewing distance of 1.626 meters
between a participant and the center of the scatterplot. Each
sphere in the scatterplot was about 0.0017 meters (7.5 pixels)
for Desktop or 0.015 meters for HMD in radius. The scatterplots,
reference frames, and other visual elements were adjusted
to match each participant’s body height so that their center
was 0.30 meters below their eyes.

6.5 Implementation and apparatus

The two neural networks were implemented and trained
using TensorFlow 1.12, Keras 2.2.4, and Python 3.5. All
the 2D and 3D embeddings were pre-computed using
Python 3.5 and the scikit-learn library. All the interfaces,
visualizations, and interactions were implemented based on
OpenGL 4.5, GSLS 4.50, Qt 5.12.1, C++14, OpenVR 1.2.10, and
SteamVR 1.2.10; they were rendered using four sub-samples
for anti-aliasing. The desktop was equipped with an AMD
Ryzen 2700X 8-core processor, an NVIDIA GeForce GTX 1080
Ti graphics card, a 32GB RAM, and an ASUS PA248 monitor
(24”, 1920× 1200, 60 Hz). The same desktop drived the HMD
(HTC Vive Pro, 2018 model, 2299 × 2554 pixels per eye, 90
Hz); only one handheld controller was used to interact with
the scatterplots and control the flow of the experiment; and
the two base stations (the Lighthouse tracking system) stayed
in the same locations throughout the experiment.

6.6 Participants

We recruited 32 participants (16 female and 16 male) from
our institution and others nearby. We paid participants $10
per hour as compensation for their time.

We used a recruiting criterion where participants claimed
that they had taken or were taking at least one of the
following graduate-level courses: machine learning, deep
learning, computer vision, or data science, or that they used
machine learning techniques in their research. As a result, we
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Figure 8. Participants’ background. Most participants were familiar
with visualization and machine learning, while their familiarity with virtual
reality devices varied.

recruited undergraduates, masters, doctoral students, and
postdoctoral researchers from the areas of computer science,
data science, solid mechanics, applied mathematics, electrical
engineering, engineering physics, brain science, neuroscience,
biostatistics, economics, humanities and education, digital
and media, and liberal arts. All the participants were between
18 and 65 years old (µ = 23.25, σ = 3.20), having normal or
corrected-to-normal vision, and not colorblind. The detailed
demographics and self-assessments are reported in Fig. 8.

All the experimental sessions were finished before the
COVID-19 pandemic and proctored by the same author and
experimenter using the same experimental protocol (see
Appx. B), setups, and the apparatus.

6.7 Dependent variables (measures)

We recorded two measures for each trial:
Error magnitude is defined as the amount of difference be-
tween participants’ estimation and the actual classification
accuracy. We used the difference between the two percentage
numbers (integers) because the participants were trained,
practiced, and responded in the same way.
Response time is defined as the time interval between when
a scatterplot was first shown and then removed. The scat-
terplot might be removed because of participants actively
proceeding or a timeout (60 seconds).

Between these two measures, we are more interested in
error magnitude. The response time was affected by the
unexpected noise, especially in HMD • Dynamic conditions:
the HTC Vive Pro headset might show a flashing screen
occasionally [113], increasing wait times.

In total, we collected 4,224 trials = 3,328 main + 896
practice trials = (26 × 4 + 28) trials per participant × 32
participants. We excluded practice trials and the five trials
that participants claimed they skipped accidentally. We also
manually excluded three error trials, of which the response
was very close to the default answer, but the estimation error
was extremely large (>50 points); we think that these trials
were also skipped but not reported. As a result, we based
our analysis on the remaining 3,320 trials.

7 ANALYSIS METHODS

To understand visual cue effects in immersive analytics, we
use three questions to guide our analysis.

7.1 Guiding questions (GQs)

Our guiding questions [114] are as follows:

GQ1 How do the six manipulated variables affect participants’
performance? This research question was inspired by previ-
ous studies on examining dominant pictorial cues in a 3D
space [2], [10], but our context is immersive analytics.

GQ2 How do the experimental variables interact with each
other? The literature suggests that depth cues interact in
complicated ways [17], [40]. We wish to understand the
interaction effects of the selected cues (e.g., across different
devices [14]). In contrast to these studies, we used an
analytical task and selected a broader range of cues.

GQ3 How do participants interpret classification accuracy from
a scatterplot? Participants’ perception of classification perfor-
mance was measured in the unit of accuracy estimation. We
aim to understand participants’ interpretation based on their
answers to the open-ended questions.

The results of GQ 1 support Contribution 1 declared in
Sec. 1; the results of GQs 2 and 3 support Contribution 2.

7.2 Quantitative analysis

We used Bayesian inference for GQs 1 and 2 and focused
on reporting effect sizes. Bayesian inference is more suitable
for our experiment than significance tests in the following
ways. Our research question concerns the visual cue effects
in the current experimental setup (see Sec. 6). Therefore, a
method like Bayesian inference that focuses on quantifying
the effect sizes is suitable for answering this question. Our
experiment had a set of variables and conditions, raising
concerns about multiple comparisons. Bayesian inference
mitigates multiple comparison issues [115] by calibrating all
assessments to prior distributions. The current movement
to avoid dichotomous thinking [116] (i.e., significant or not
based on if p < 0.05) further prompted our consideration of
Bayesian inference. Last, the literature on sensory cues also
suggests that a Bayesian approach to incorporate uncertainty
and prior knowledge [45] is appropriate.

We built a Bayesian multilevel model for each measure
using a gamma distribution as the likelihood. In particular,
we used a hurdle gamma distribution for error magnitude
because of the zero values (no error) [117]. As such, in brm’s
extension of Wilkinson-Rogers-Pinheiro-Bates notation [118]–
[120], the error magnitude model is
error magnitude ∼ hurdle gamma(µ, shape, hu)
log(µ) = device ∗ visual motion ∗ shading ∗ projection ∗ data model

+ device ∗ dimensionality ∗ data model
+ (1 + dimensionality ∗ data model | participantID)
+ (1 | trial true accuracy)

where µ, shape and hu are parameters of the gamma
distribution, projection is short for graphical projection,
and trial true accuracy is the ground truth classification
accuracy in a trial. This model reflects our experimental
design: the first two terms define that the logarithm of the
mean of error magnitude in a joint linear function of all
six experimental variables, based on possible interaction
effects. We modeled participants and the true accuracy
as the random intercepts to acknowledge the similarity
in data from participant and an accuracy level. We also
modeled dimensionality and data model as group-level
effects (random slopes) to improve comparability across
dimensionality and data models.
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Similarly, the response time model is

response time | cens(cen) ∼ gamma(µ, shape)
log(µ) = device ∗ visual motion ∗ shading ∗ projection ∗ data model

+ device ∗ dimensionality ∗ data model

+ (1 + device ∗ visual motion | participantID),

shape = device ∗ visual motion

where cens(cen) specifies which observations were beyond
the 60 seconds upper boundary (called “left-censored” [121]).
This model is different from the first model in the group-
level effects (random slopes) and the inclusion of a submodel.
Response time is likely to be affected by different device and
visual motion other than dimensionality and data model.
The distributions of response time could be very different
in shape across device and motion levels. We thus used
a submodel with population-level effects for these shape
parameters (adding group-level effects to this submodel will
make the model not converge).

We used weakly informative priors that capture most of
the observations within 2 standard deviations. We recoded
each variable using orthogonal contrast coding (e.g., Desktop
7→ -0.5, HMD 7→ 0.5; Static 7→ -0.5, Dynamic 7→ 0.5) such that
the model coefficients were comparable. We also checked
convergence, effective sample size, and posterior predic-
tion to ensure that the models are appropriate. We imple-
mented these using R packages rstan [122], brms [118], and
tidybayes [123]. The details of modeling and diagnostics
are available in supplementary materials.

It is likely that the imbalance between 2D and 3D trials
may shift the results towards 3D trials. We will show the
results of these different trials by conditioning on one and
reporting the conditional probability.

7.3 Qualitative analysis
We followed thematic analysis to analyze participants’ strate-
gies and answer GQ3. This analysis was based on their

answers to the open-ended question. Two experienced
researchers (one author and one other coder) extracted the
strategies separately, coded all answers independently, and
merged the codings via discussion.

8 RESULTS

Following our guiding questions, we extract posterior distri-
butions for each variable and interaction terms to understand
effect sizes. We interpret the results based on the probability
of observing an increase in error magnitude (or response
time) and how large the increase is. We report a summary
of posterior medians and 95% quantile credible intervals
(Bayesian analogy to confidence intervals) in Fig. 9. Overall,
the interaction effects between variables very subtle and
complicated for error magnitude, but Dynamic (e.g., having
visual motion) or HMD may largely increase response time.

8.1 GQ1: The effects of each variable

To the first guiding question, we reported the model co-
efficients of each experimental variable (Fig. 10). These
population-level coefficients tell the overall “weight” of each
variable for an average participant. If the model coefficient is
greater than 1, we know that this variable may increase error
magnitude or response time.

8.1.1 Results

Error magnitude (Fig. 10a) À Adding visual motion can
surely reduce mean error magnitude by a factor in the range
of [0.81x,0.94x]. Á Changing shading, dimensionality, or
data model could affect mean error magnitude about 70% to
90% of the time by a factor around 1.10x or 0.90x (or about
10%), but the possible effect sizes for the latter two vary a lot.
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Figure 9. This figure summarizes all the effects. We dual-encode posterior median as both color and size and encode the lower and upper bounds
of 95% credible intervals (CIs) as radii to show uncertainty in posterior estimates. The detailed numeric results are available in Appx. E. Example
interpretation: À Between the two measures, the differences in error magnitude are smaller; the interaction effects among error magnitude
are also subtle and more complicated. Static scatterplots, different shading, graphical projection, and data model could have small
effects on error magnitude. More advanced shading generally reduces errors, Á especially for a more complicated dataset like Image Data. Â
Pers. may show opposite effects on error magnitude. With Dynamic scatterplots, these subtle effects fade out, and Ã more advanced shading
could slightly increase errors, but this effect is very small. Æ The differences in response time are dominated by the interaction effects between
device and visual motion—using Dynamic or HMD is very likely to lead to a much longer response time, especially when doing both. (Orth is
Orthographic Projection, and Pers is Perspective Projection)
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Figure 10. GQ1: The population-level effects of each manipulated variable. We show posterior distributions, 95% quantile credible intervals (CIs),
median for the model coefficients, and the probability of a coefficient being greater than 1 (increasing). Example interpretation: when averaging
other factors, changing from Static to Dynamic À is very likely to reduce an average participant’s estimation error by a factor in the range of
[0.81x, 0.94x], Ã and also to let the participant respond more slowly by a factor of in the range of [1.63x, 2.02x], but the actual effect size varies a lot.
(Orth is Orthographic Projection, Pers is Perspective Projection, and AO is Ambient Occlusion)

Â Switching device or graphical projection, on average,
seems to only affect error magnitude by chance.

Response time (Fig. 10b) Ã Ä Varying device (Desktop →
HMD) or visual motion (Static → Dynamic) could largely
increase mean response time for sure (e.g., it may double
mean response time in the worst case). Å Manipulating
graphical projection, dimensionality, or data model also
increase response time almost for sure, by a smaller factor
in ranges up to 1.32x. Æ Manipulating shading only affects
response time by chance.

8.1.2 Discussion: Individual cues
There seems to be a tradeoff between error magnitude and
response time for individual cues. This observation aligns
with the findings from previous studies comparing a desktop
monitor with a VR/AR device [15], [16], [46]–[48], [59], [73].
With two exceptions, we summarize the key findings and
implication from GQ 1 as follows:

Key finding 1: In this classification accuracy estimation
task, visual cues in order from strongest to weakest ef-
fects are visual motion, dimensionality, shading, and
projection, but shading may not affect response time.

Implication 1: Manipulating any cue could show—
sometimes nearly imperceptible—effects on estimation
error and response time; this is possibly because that
each cue could improve a part of people’s perception in
3D space but also force people to take a longer time to
process and examine the cue.

The first exception is that the commonly-used perspective
projection may slightly increase both error magnitude and
response time This is shown in Fig. 9 Â as an increase in
error magnitude from [7.68pt,12.00pt] to [8.43pt,13.12pt] for
perspective projection. Perspective projection alters size to
depict depth. According to Gestalt psychology [124], [125],
people seek similarity in elements (e.g., size, movement) to
form groups visually. However, if the spheres from the same
group (e.g., the spheres with the same color) are of different
sizes, this conflict may prevent people from grouping them.
As such, perspective projection may sometimes have caused
a decline in task performance, and therefore orthographic
projection occasionally showed better performance. The

second exception is that 3D embedding can both increase and
reduce errors, and increase response time. This is shown
in Fig. 10 Á as errors changed by a factor in the range of
[0.96x,1.28x], and in Fig. 10 Å as response time increased
by a factor in the range of [1.03x,1.24x]. 3D embedding has
the third dimension as a cue. While 3D embedding better
resembles the original high-dimensional data and provide
more information than 2D embedding, this extra information
still has to be presented carefully.

There are a few explanations for the moderate effects and
the tradeoff. Given the dense experiment, carryover effects
may have negatively affected participants. Further, using an
HMD usually requires longer moving distances (e.g., walking
vs. pressing keys, moving an arm vs. moving a mouse) to
examine a scatterplot at different perspectives; participants
were less familiar with an HMD; also, the HMD provides
more pixels but fewer pixels per degree. Visual motion causes
more time for examining the stimuli. The chosen dimension-
reduction technique (t-SNE) preserves cluster structure well,
and this may have dominated over the tested visual cues [22].

8.2 GQ2: The interaction effects
For our second guiding question, we reported the model
coefficients to examine the interaction effects between vari-
ables (see Fig. 11). We considered only two-way interaction
effects for simplicity; more complicated interaction effects
are implied in Fig. 9 above.

8.2.1 Results
Error magnitude (Fig. 11a) À Most of the variable pairs
suggest a two-way interaction effect happening about 70%
to 90% of the time, except that Á device seems to only
interact with visual motion or shading by chance. Â For
instance, changing visual motion and further changing
shading increases errors 89% of the time by a factor in the
range of [0.95x,1.24x].

Response time (Fig. 11b) We find three two-way interac-
tion effects that can almost affect response time for sure.
Ã Ä Changing device and then visual motion increase

response time by a factor in the range of [1.10x,1.92x] or
[1.00x,1.20x]; Å changing device or visual motion, and
further changing shading increase response time by a
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Figure 11. GQ2: The two-way interaction effects. We report posterior distributions, 95% quantile credible intervals, and medians of two-way
interaction coefficients, and the probability of a coefficient being greater than 1 (increasing). For error magnitude, most variables interact with each
other moderately. For response time, there is a strong interaction effect between device and visual motion, and several small to moderate
interaction effects. Example interpretation: when averaging other factors, if we change from Desktop to HMD, further changing from Flat Shading
to Ambient Occlusion Á affects an average participant’s estimate error by chance; Ä however, it lets the average participant respond slightly
more slowly, typically by a factor in the range of [1.00x, 1.20x].

factor in the range of [1.05x,1.27x]. Æ The other vari-
able pairs indicate interaction effects happen about 70%
to 90% of the time (e.g., device:shading) or by chance
(e.g., visual motion:data model).

8.2.2 Discussion: Cue integration
Our results hint at a connection to cue-integration theory [7],
[126]; that is, people can make more accurate estimates of
environment properties by integrating multiple sources of
information [45]. In our experiment, visual cues interact with
each other in complicated ways, similar to the findings from
prior AR studies [17]. Each cue may facilitate or impede part
of the perception, and combining cues may cause conflicts.
For example, perspective projection and ambient occlusion
together generate a decent sense of depth, and combining
them was very effective on a desktop monitor. However,
perspective projection and ambient occlusion may not always
be beneficial, and participants may have used more than one
cue, and cue integration is occurring. We summarize the key
findings and implications from GQ 2 as follows.

Key kinding 2: Visual motion and shading, and
projection and data model show relevantly strong
interaction effects on error magnitude; but these vi-
sual cues (e.g., visual motion and others) show much
stronger interaction effects on response time.

Implication 2: Besides the differences in devices and
physical movements, manipulating multiple visual cues
may aid in assessing classification performance.

For example, advanced shading (e.g., ambient occlusion) on
both devices generally improves participants’ performance;
they reduced estimation error without causing a substantially
longer response time. This is shown in Fig. 9 Ä as error
magnitude reduced from [4.82pt, 7.79pt] to [5.24pt, 7.81pt],

and in Fig. 9 Ä as response time reduced from [7.54s, 13.33s]
to [8.12s, 13.94s].

The intricate interaction effects between visual cues also
lead to another implication.

Implication 3: However, combining many individually
beneficial cues may cause a decline in performance:
participants made worse estimates and spent more
time, especially when they were working on a more
complicated dataset.

For example, when assessing a dataset from Image Data with
Dynamic and HMD, participants’ performance declined slightly
if further adding perspective projection. This is shown in
Fig. 9 Å as error magnitude increased from [5.91pt, 9.63pt]
to [6.81pt,10.89pt].

We have a few explanations. The first relates to visual
complexity. Multiple visual cues together aid 3D perception,
but they also increase visual complexity, preventing partic-
ipants from using visual similarity to group elements. The
second is that cues may conflict with each other [45]. For
example, our shading models use darker colors to indicate
a more distant position in 3D space, while perspective
projection uses smaller sizes to indicate further. However, a
more distant smaller sphere may not necessarily be darker
than a near one, and this is likely to cause a conflict in
perception. The third one is that adding more cues demands
a precise implementation for each; a small discrepancy in any
implementation may hinder the overall perception. In our
case, the screen-based ambient occlusion algorithm generates
imperfect results such as black edges and aliasing, which are
salient in VR, possibly explaining that ambient occlusion is
not always as effective as a simple shading model.
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8.3 GQ3: Participants’ strategies
Last, we present the results from thematic analysis and report
participants’ strategies in Fig. 12.

8.3.1 Results
The most common two strategies are seeking “class sep-
aration” (53.13%) or looking for “degree of mixing col-
ors/overlapping” (65.13%); other common strategies include
estimating “portion (percentage) of colored points” (37.50%),
inspecting “density/distance between points” (25.00%), and
examining “class boundary” (21.88%). A unique strategy
reported by only one participant is considering “continuous
color blocks” (3.13%).

Participants’ strategies varied across different sessions
(Fig. 12b). Only four (12.50%) participants reported one single
strategy, and the remaining twenty-eight (87.50%) developed
more than one strategy in the experiment. Sixteen (50.00%)
participants used consistent strategies across sessions, and
the rest used different strategies in different sessions.

A few participants reported the interaction techniques
they used (Fig. 12c), with rotation being the most helpful one
(28.13%). In their anecdotal feedback (Fig. 12d), participants
found occlusion harmful and reported that VR could be
distracting or causing physical discomfort (37.50%), but VR
also could be entertaining or helpful for the task (37.50%). In
sum, the key finding from this qualitative study is as follows.

Key finding 4: Participants use different strategies
when different visual cues are presented, even with
the same device or dataset.

8.3.2 Discussion: Strategy consistency
All these strategies appear to be feasible for assessing classi-
fication performance and estimating accuracy from the scat-
terplots. The two dominating strategies suggest that the task
was correctly interpreted as visually distinguishing classes.
The presence of less commonly used strategies suggests that
other factors (e.g., visual cues and outliers) may have affected
participants’ strategies and understandings. The results also
suggest that half of the participants interpreted the task
consistently across different combinations of visual motion
and device, and others used different strategies across these
combinations. Different visual cues may aid or hinder the
use of a certain strategy, and more effective combinations
of cues might assist in a more commonly used strategy.
Manipulating cues to facilitate the dominating strategies
may improve participants’ performance on average, but the
optimal may be to query individual’s strategies on different
devices and datasets and then personalize the visualizations.

9 GENERAL DISCUSSION

In this study, we find that most of visual cues have subtle
effects on classification accuracy estimation, and combin-
ing them can result in perceptual improvements, conflicts
and various participant strategies. Following this line, we
speculated that perceiving classification accuracy may be
regarded as a combination of multiple low-level abstract
tasks. The literature supports that multiple low-level tasks
could constitute a mid-level perception task, similar to using

class separation

Themes %

53.13
class boundary 21.88
cluster shape/distribution 18.75
cluster size 12.50
distance between clusters 9.38
cluster centroid 18.75
cohesiveness/uniformity 15.63
continuous color blocks 3.13
degree of mixing colors/overlapping 65.63
portion (percentage) of colored points 37.50
density/distance between points 25.00
mental imagining 15.63
outliers 18.75

ⓑ Strategies Statistics

ⓐ Visual Features/Patterns

a single strategy for all sessions 12.50
consistent strategy[ies] across sessions 50.00

ⓒ Interaction (Motion) Mentioned
rotation/different angles 28.13
walking/moving 9.38
zoom-in and out 9.38

ⓓ Anecdotal Feedback
occlusion being harmful 28.13
rotation being distracting 3.13
shading being less effective 6.25
walking being  less effective 6.25
VR being distracting or uncomfortable 37.50
rotation being helpful 37.50
shading being helpful 6.25
walking being helpful 3.13
VR being helpful or entertaining 37.50

Participants (P1, ..., P32)

Figure 12. GQ3: Participants’ strategies. Each dot represents a par-
ticipant, and a darker dot indicates that a theme appeared in that
participant’s answers.

low-level visual proxies to summarize mean values in bar
charts [127] and processing multiple cues in parallel in visual
search [128]. To prove this speculation requires systematic
manipulating each subtask and knowing which subtask
dominates perception, which could be a promising extension
of the present work.

Given the conjecture above, our results might be specific
to this task related to machine learning. For example, this
task may rely on three subtasks: class separation, proportion
estimation, and outlier detection. Visual motion is likely
to aid all three, shading may facilitate class separation,
graphical projection and dimensionality may not have a clear
effect on any. Therefore, we observed the corresponding
effect sizes that range from strong to weak. Also, while the
student participants were still relative novices in machine
learning, their behavioral data demonstrated the potential
of using virtual reality for understanding and debugging a
machine learning model; their feedback will help enhance
the design and use of visualizations for similar tasks.

This mid-level task with a complex experimental design
may not produce clear results in an absolute sense. However,
this complexity likely resembles the randomness in the real-
world. Our results suggest that visual cues might not
strongly affect perception in a realistic analytical task,
unless they change how people think about the data. Visual
motion is an example of this. It shows people different
perspectives of a dataset and alters people’s mental model
about the classification performance.

We tested a subset of important visual cues and controlled
as many factors as possible, but there is still room for
improvement. For example, in our designing process, we
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noticed that the direction of light could be another important
factor because it affected shading, but we did not find enough
literature to suffice the speculation. We designed for an
averaged-size participant, and part of our configuration can
be further adjusted for different participants. In addition,
other non-visual cues, such as haptic vibration feedback [40],
body awareness (proprioception), and balance (the vestibular
sense), may affect the task performance and could be
incorporated with visual cues to improve the effectiveness of
immersive analytics further.

Finally, as reflected in the manuscript, a comparison
across modalities for compound visual cues is innately
difficult. We endeavored to disentangle the predicament
by broadly consulting the literature and cautiously designing
the experiment. Though imperfect, there are valuable lessons
from this study. While the delicate experimental design and
the variance in a virtual reality system raise challenges in
quantifying visual cue effects, we find Bayesian inference is
particularly suitable and powerful.

10 CONCLUSION

We assessed the visual cue effects on the task of estimating
the classification accuracy of a deep neural network based
on its last hidden layer’s output and t-SNE. We found that
participants’ estimation was affected by the device used,
the combination of cues shown, and the data they worked
with. Among all of the cues, adding visual motion shows
strong effects on reducing estimation error but increasing
response time. Compared to a desktop monitor, an HMD
can lead to better, worse, or similar performance depending
on the combination of cues (e.g., whether visual motion
is available). Improving shading reduces estimation error
slightly, but this effect interacts with the choices of device
and graphical projection. The relationships between cues are
complicated and depend on data properties and participants’
strategies, and our results provide weak evidence that using
more cues may cause a decline in participants’ performance.
We speculate that visual cues might not strongly affect
perception in a realistic analytical task, unless they change
people’s mental model about data. Our work advances the
understanding and modeling of the effects of visual cues
on visualization perception, provides insights for immersive
analytics, and validates the use of visualizations for assessing
the performance of a deep neural network.
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