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ABSTRACT21

Domain-specific architectures of artificial neural networks (ANNs) have been developed to22

estimate salinity levels for planning at key monitoring stations in the Sacramento-San Joaquin23
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Delta (Delta), California. In this work, we propose three major enhancements to existing ANN24

architectures for purposes of training time reduction, estimation error reduction and better feature25

extraction. Specifically, we design a novelmulti-taskANNarchitecturewith shared hidden layers for26

joint salinity estimation at multiple stations, achieving a reduction of 90% training and inference27

time. As another major structural redesign, we replace pre-determined pre-processing on input28

data by a trainable convolution layer. We further enhance the multi-task ANN design and training29

for salinity forecasting. Test results indicate that these enhancements substantially improve the30

efficiency and expand the capacity of the current salinitymodelingANNs in theDelta. Our enhanced31

ANN design methodologies have the potential for incorporation into the current modeling practice32

and provide more robust and timely information to guide water resource planning and management33

in the Delta.34

INTRODUCTION35

The Sacramento-San Joaquin Delta consists of a maze of interconnected channels that are36

central to California’s water supply systems. Major streams like the Sacramento River, San Joaquin37

River, and eastside tributaries enter the Delta (Fig. 1) and the waters flow through the Delta in a38

complex network of intersecting channels which ultimately flowwest out to the Pacific Ocean or are39

diverted for agricultural and municipal use inside and outside of the Delta. The salinity of water in40

the channels (concentration of salt measured, for example, in milligrams of salt per liter of stream41

water) determines the suitability for fish and wildlife, growing crops (the Delta has approximately42

420,000 acres of prime agricultural lands), and urban indoor/outdoor use. Water salinities in the43

Delta channels are affected by many factors including ocean tides, inflows to the Delta from inland44

rivers and streams, and agricultural activities/practices within the Delta. Also, human actions45

related to water usage such as diverting to the Delta islands for Agricultural and urban use, or46

exports from the Delta through the State Water Project (SWP) and Central Valley Project (CVP)47

pumping plants would also change flows and salinities through the mixing process. To ensure safe48

water use, ecosystem sustainability, and economic viability, State and federal regulatory agencies49

have established several salinity criteria (maximum concentrations not to be exceeded) spatially50
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and temporally within the Delta. One such regulatory example is the Water Right Decision 164151

(D1641) of the California State Water Resources Control Board ((SWRCB) 2000) which specifies52

the threshold salinity values at certain compliance locations during certain periods in a year. To53

assist in the planning andmanagement of thewater resources in theDelta, the CaliforniaDepartment54

of Water Resources (CDWR) has developed two key simulation models for use in planning studies:55

(1) CalSim, awater allocationmodel of the SWPandCVP systems (Draper et al. 2004), and (2)Delta56

SimulationModel 2 (DSM2), a hydrodynamics andwater qualitymodel (DWR-DSM22019), which57

is developed based upon the mathematical flow-salinity relationship model presented in (Denton58

1993; Denton and Sullivan 1993). We refer interested readers to an earlier paper (Jayasundara et al.59

2020) on detailed discussions of CalSim and DSM2 as tools used in water resource management60

and their functionalities. There are 12 key water quality monitoring stations in the Delta: Emmaton,61

Jersey Point, Collinsville, Rock Slough, Antioch, Mallard Island, Old River at HWY 4, Martinez,62

Middle River Intake, Victoria Intake, CVP Intake and Clifton Court Forebay (CCFB) Intake (see63

Fig. 1). However, computational runtimes and other programming factors limit simulations of64

CalSim and DSM2 concurrently during a planning.65

ANNs have been developed and applied extensively in the field of water resources engineering66

to model (Ranjithkumar and Robert 2021; Tung et al. 2020; Tealab 2018; Kang et al. 2017), for67

instance, groundwater level (Chen et al. 2011), surface runoff (Swain et al. 2017), reservoir opera-68

tions (Chandramouli and Raman 2001), water demand (Bata et al. 2020), leak detection(Bohorquez69

et al. 2020), and water system control (Hajgató et al. 2020). ANNs have also been explored in70

modeling salinity in groundwater (Banerjee et al. 2011), soil (Dai et al. 2011; Jiang et al. 2019),71

Oceans (Bhaskaran et al. 2010; Chen and Hu 2017), rivers (Bowden et al. 2005; Hunter et al. 2018;72

Maier and Dandy 1999), and estuarine environments (DeSilet et al. 1992; Huang and Foo 2002;73

Sreekanth and Datta 2010; Le et al. 2019; Zhou et al. 2020). ANNs have only been applied recently74

in salinity modeling in the Delta (Chen et al. 2018; Rath et al. 2017; He et al. 2020; Jayasundara75

et al. 2020). Specifically, Chen et al. (2018) proposed a one-dimensional hydrodynamic model76

emulator to represent estuarine mixing and water quality in the northern reach of the San Francisco77
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Bay-Delta estuary, California, while Rath et al. (2017) developed an ANN-incorporated hybrid78

model of salinity in the same estuary. He et al. (2020) investigated the use of MLP ANNs in79

estimating boundary salinity in the Delta based on water flow and tidal stage.80

Jayasundara et al. (2020), for the first time, have developed and applied individual MLP ANNs81

consisting of one input layer, two hidden layers, and one output layer, in simulating salinity based82

on seven variables in the Delta, including water control gate operations, water exports, tidal stage,83

as well as flow and salinity boundaries, to emulate DSM2 within CalSim 3, making runtimes much84

more practical. However, it is not efficient to train and inference those 12 separate ANNs. In the85

context of our objective for simultaneously estimating salinity levels at multiple monitoring stations86

based on the same set of inputs, we can view this problem as a special case of multi-task learning87

(MTL). This formulation is motivated by the fact that the salinities at the multiple monitoring88

stations are all affected by the same set of hydrological measurements within the same regional89

ecosystem.90

MTL, in contrast to single-task learning (STL), is a machine learning strategy where multiple91

tasks sharing commonalities are solved simultaneously. As shown in (Caruana 1993; Caruana92

1995; Ruder 2017), the domain-specific information contained in input data may allow one task to93

“eavesdrop" on features discovered for other related tasks and may lead the model to prefer some94

hypotheses over others. By leveraging the domain-specific information, MTL helps improve neural95

networks’ efficacy and generalizability. One of the most commonly used MTL methods is known96

as hard parameter sharing, which is achieved by a joint architecture that requires multiple tasks to97

share some hidden layerswhile keeping several task-specific layers towards the end ofmodel for each98

task (Caruana 1993). The idea of hard parameter sharing has been applied to time series prediction99

such as energy flux prediction (Guijo-Rubio et al. 2020), rainfall amount prediction(Qiu et al.100

2017) and water quality forecasting(Liu et al. 2016). We design the MTL ANN for simultaneous101

estimation of salinity at multiple monitoring stations and this new paradigm enables the ANN to102

better extract the underlying data features and generate better overall performance than the current103

STLmodel individually trained and optimized for eachmonitoring station (Jayasundara et al. 2020).104
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In addition, as MTL has been successfully applied to time series prediction tasks in (Guijo-Rubio105

et al. 2020; Qiu et al. 2017; Liu et al. 2016), we test and analyze the prediction capability of our106

proposed ANNs.107

Generally, the current study stems from the Jayasundara et al. (2020) study but extended all108

those previous studies in the Delta in terms of:109

1. Improved ANN training efficiency by applying a joint MTL approach.110

2. Exploration of ANN-based salinity forecasting efficacy for the Delta.111

3. Improved ANN performance through systematic pre-processing of input time series by112

using a trainable convolution layer.113

4. Expansion of ANN to discover the relationship between performance and their size.114

METHODS115

Similar to the approach described in (Jayasundara et al. 2020), we aim to improve salinity116

estimation by leveraging the seven hydrological, water quality and operation parameters, namely117

Northern Net flows (Sacramento River and East side Streams); San Joaquin river flows; Delta118

cross-channel gate operation; net Delta consumptive use; tidal energy; San Joaquin River inflow119

salinity at Vernalis; SWP and CVP exports via Banks pumping plant, Jones pumping plant, and120

Contra Costa canal (see Fig. 2). We will estimate salinities at a number of measurement points121

which include Emmaton, Jersey Point, Collinsville and Rock Slough, among others. The input122

data are the (pre-processed) seven input variables. Following (Jayasundara et al. 2020), each of the123

seven variables is pre-processed via an empirical convolution process that converts the values of124

the input at the current day plus the antecedent 117 days into 18 values, including one value from125

each of the current day plus the most recent seven antecedent days along with 10 non-overlapping126

11-day averages. Fig. 3 outline the pipeline to obtain the estimated salinity levels in (Jayasundara127

et al. 2020).128
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Network Inputs and Outputs129

The complete pipeline in mathematical notation is given in Fig. 4. We use subscript for matrix130

and vector indexing and superscript to denote the variable. For example, x (<)=,CA
is the CA-th value131

for <-th input parameter in ANN’s input vector for day =. As explained in Section 1, there are132

seven input parameters and 12 output parameters. For training and validation, we have access to133

monthly input data and daily salinity data covering water years 1941-2015. In California, each water134

year cycle runs from October 1 to September 30 of the following calendar year. As described in135

(Jayasundara et al. 2020), CalSim can refine monthly data record into daily by spline interpolation.136

There is a total of # data samples (or days) in the dataset. In our problem, we select " = 7137

observation variables. Same as in CalSim (Jayasundara et al. 2020), we pick ) = 118 and )A = 18138

in the baseline case and pre-process the data as denoted in Fig. 5.139

For input variable < on day =, we extract 8 daily values:140

x (<)
=,8

= z(<)
=−8+1, (1)141

where 8 ∈ {1, . . . , 8}. We also compute a total of 10 successive but non-overlapping 11-day moving142

averages before the first daily data x (<)
=,8

, 8 ∈ {1, . . . , 8} to be stored in143

x (<)
=,8+8 =

1
11

11∑
9=1

z(<)
=−118− 9+4, (2)144

where 8 ∈ {1, . . . , 10}. Altogether, for the" variables in each day =, we form"×)A = 7×18 = 126145

values as the " × )A input matrix x= to the ANNs.146

Later for exploring a different ANN architecture to bypass this rather ad hoc pre-processing,147

we would form a trainable convolution layer instead of applying the above pre-determined pre-148

processing steps. In that case, those 118 daily values of each of the seven variables are directly149

provided to the convolution layer. The corresponding details will be described in Section 2.150

The target outputs of ANNs are the salinity levels at one or more monitoring stations. Each STL151
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ANN’s output is salinity level at one single monitoring station, while each MTL ANN’s outputs152

are salinity levels at all 12 monitoring stations.153

Different from the previous study (Jayasundara et al. 2020), the current work randomly split154

80% and 20% of this dataset for training and validation, respectively.155

Multi-Task Learning156

The goals of ANNs are to predict salinity at multiple monitoring stations which are physically157

related to one another in the Delta. It is therefore natural that these ANNs can share some of the158

same features of the underlying data inputs. To improve the ANN for individual monitoring stations159

(Jayasundara et al. 2020), we explore the MTL approach for the 12 monitoring stations under study.160

As described in (Caruana 1995), these inter-related multiple tasks may be learned jointly by161

training a single ANN. The output layers shall include more neurons whereas the hidden layers162

are shared by the monitoring stations. These hidden layers together serve as a joint mechanism163

for feature extractions that can be used more consistently to generate salinity estimates at different164

monitoring stations. With MTL, an ANN can show better general performance over multiple165

disjoint single-task ANNs. As shown in Fig. 6, the MLP architecture proposed in (Jayasundara166

et al. 2020) consists of two fully connected (FC) hidden layers and one output layer, with each layer167

containing 8 neurons, 2 neurons and 1 neuron, respectively.168

Based on the model in previous successful STL ANNs in Fig. 6, we build the multi-task169

ANN architecture, which is an MLP network containing two hidden layers with sigmoid activation170

functions and one output layer with a Leaky ReLU (Maas et al. 2013) activation function. As171

illustrated in Fig. 7, we increase number of neurons by a factor of 12, which coincides with the172

number of monitoring stations, for all layers to build the multi-task ANN, that is, the two hidden173

layers and output layer in multi-task ANN contain 96, 24 and 12 neurons respectively. We also174

explored various ANN sizes in Section “ANN Size".175

Trained Input Pre-processing via a Convolution Layer176

As discussed earlier, the authors of (Jayasundara et al. 2020) utilized 8 newest daily values177

together with 10 non-overlapping moving averages of the daily values immediately before the 8178
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daily values as input data for salinity estimation (Fig. 5).179

It should be recognized that the reported direct daily mappings and moving window averages180

are special cases of convolution processing, except that the existing pre-processing is not optimized181

through data training. Understanding the shortcomings of such a heuristic pre-processing, we182

propose instead to include a trainable convolution layer for data pre-processing in our novel ANN183

architecture. Mathematically, the convolution layer would implement the following data processing184

through the training weights 5
(<)
9 ,8

:185

x (<)
=,8

=

)∑
9=1

z(<)
=− 9+1 × f (<)

9 ,8
, (3)186

where = ∈ {1, . . . , #}, < ∈ {1, . . . , "} and 8 ∈ {1, . . . , )A}. Clearly, by appropriately setting187

the convolution weights 5
(<)
9 ,8

, the convolution layer is capable of delivering daily value mapping188

and sliding window averaging. Moreover, this convolution layer is trainable in conjunction with189

the additional layers in the ANN. The inclusion of the convolution layer within the ANN allows190

the weights in this layer and other ANN layers be jointly optimized to achieve better overall191

performance.192

By including the convolution layer, the two respective novel architectures of single-task and193

multi-task ANNs with a convolution layer are shown in Fig. 8. There are )A = 18 filters in a194

convolution layer such that the convolution layers are able to extract at least the same 8 daily values195

and 10 average values in the pre-determined pre-processing. The complete pipeline with proposed196

convolution layer and the MTL ANN can be found in Fig. 9.197

Salinity Forecasting198

The ability to forecast salinity at key monitoring stations with lead time up to several days can199

present an important opportunity and advantage to the water operations in the Delta. This can be200

especially important for real-time operators of the SWP and CVP reservoirs to ensure that adequate201

released water reaches the Delta to ensure regulatory compliance at the salinity monitoring stations;202

for example, it takes approximately five days for water released from the Shasta reservoir (a CVP203
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facility) and three days for water released from the Lake Oroville reservoir (a SWP facility) to204

reach the Delta. The existing ANN studies have not tackled this challenging problem. From a205

physical point of view, the dynamics between the input hydrological parameters and the salinity level206

measurements provide a strong motivation to suggest the possible success of salinity forecasting.207

Successful forecasting can also provide vital insight into the development of future models.208

In this work, we investigate and explore the proposed MTL ANN for salinity forecasting at209

the 12 monitoring stations. We utilize the same architecture to test the performance on salinity210

prediction tasks. In this case, with a set of inputs for day =, a MTL ANN learns to predict the211

salinity levels y=+8, 8 ∈ {1, . . . , 7} on day = + 8.212

Optimizer213

In (Jayasundara et al. 2020), the authors adopt both Levenberg-Marquardt (LM) (Marquardt214

1963; Levenberg 1944) optimization algorithm and Bayesian regularization (Foresee and Hagan215

1997) to update weights and biases in ANNs. However, as mentioned in (Wilamowski et al. 2001),216

the demand for large memory to compute Jacobian matrices and the need for inverting matrices217

are the major drawbacks of the LM algorithm. When the number of trainable parameters in ANN218

increases, the computational complexity of LM algorithm grows exponentially. In this paper, we219

utilize one of the modern optimizers, the Adam optimizer (Kingma and Ba 2014), to train the220

ANNs. The Adam optimizer is computationally efficient and requires little memory. As a result,221

the Adam optimizer is well suited for machine learning problemswith complex network architecture222

(as proposed in this paper) and/or large datasets.223

ANN Size224

The number of hidden layers and neurons in these layers determines the number of trainable225

parameters and the potential capability of an ANN. There is a trade-off between ANN complexity226

and performance. Generally, performance on the training dataset usually improves with the increase227

of the ANN size before the problem of overfitting occurs due to limited data, because a larger ANN228

is capable of learning a more complex non-linear function. Meanwhile, as the ANN gets deeper229

and/or wider, the probability of overfitting increases, and the computation complexity grows. To230
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find the architecture that fits this specific problem, we vary the depth and width of multi-task ANNs231

and observe how their performance changes on the test dataset.232

RESULTS AND ANALYSIS233

Implementation234

We implement the newly developed ANNs using the popular open source library, Tensorflow235

2.2.0 (Abadi et al. 2015), with Python 3.6.9. We conduct the experiments through web-browser on236

Google Colaboratory, which is a cloud-based Jupyter notebook environment with a Tesla T4 GPU.237

We normalize inputs and outputs to the range [0.1, 0.9] by linearly converting the 8-th daily value238

of the :-th input variable in the =-th data sample x (<)
=,8

to239

x̂ (<)
=,8

=

x (<)
=,8
−

(
min

:=1,...,#
x (<)
:,8

)
(

max
:=1,...,#

x (<)
:,8

)
−

(
min

:=1,...,#
x (<)
:,8

) × 0.8 + 0.1. (4)240

We apply the same normalization to outputs y= representing the salinity at a monitoring station on241

day =.242

ŷ= =

y= −
(

min
:=1,...,#

y:

)
(

max
:=1,...,#

y:

)
−

(
min

:=1,...,#
y:

) × 0.8 + 0.1. (5)243

The cost function used for training is the Mean Squared Error (MSE). For the LM optimizer, we244

adopt the same settings as (Jayasundara et al. 2020), where the starting learning rate is 0.005 and245

decay factor is 10 and the training takes 150 epochs. For the Adam optimizer, the learning rate246

is determined using a grid search. The starting learning rate is 0.01, and it is scaled by 0.1, 0.01,247

0.001 and 0.0005 at epochs 80, 120, 160 and 180, respectively, and the training takes 200 epochs.248

Experimental Results and Discussions249

We evaluate the performance of the newly proposed ANN models by calculating the unitless250

normalized mean square error (NMSE), which is computed on the normalized salinity outputs Ĥ=251

based on the validation dataset. We compare the performance of several ANN architectures.252
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To begin, the basic model is a 3-layer STL ANN with pre-processed input data, consisting of253

two hidden layers and one output layer, as shown in Fig. 6. We train this baseline ANN using254

both the LM algorithm (STL-LM) and the Adam optimizer (STL-Adam), to illustrate the effects255

of optimizers. Both “STL-LM” and “STL-Adam” configurations are used as baseline results for256

comparison.257

In our proposedANNs based on the novelMTL strategy, we consider two different architectures:258

(a) a basic 3-layer MTL ANN with the pre-determined data pre-processing used in the baseline259

model using the Adam optimizer (3-MTL) for training; and (b) a 4-layer MTL ANNwith a replace-260

ment of fixed data pre-processing by a trainable convolution layer. We consider two initializations261

for the trainable convolution layer parameters: random (4-MTL-R) and using the pre-determined262

pre-processing parameters (4-MTL-P) according to equations 1, 2 and 3.263

Results from each of the five configurations are labeled, respectively, by “STL-LM”, “STL-264

Adam”, “3-MTL”, “4-MTL-R”, and “4-MTL-P”. Table 1 presents the NMSE results of the five265

different ANN configurations. Correspondingly, Table 2 evaluates their respective training and266

inference time (complexity). From the performance comparison, we make the following observa-267

tions.268

• With pre-determined data processing, the LM algorithm outperforms the Adam optimizer269

in training STL ANN to generate lower NMSE values than STL-Adam and 3-MTL do at270

all study stations, as shown in Table 1. However, the LM algorithm requires 8 times longer271

training time (complexity) when compared with both STL and MTL trained with the Adam272

optimizer as shown in Table 2.273

• Using our newly proposed MTL architectures with a trainable convolution layer, training274

with the Adam optimizer can substantially improve the NMSE performance over STL.275

In particular, the 4-MTL-P results are distinctly better (with smaller NMSE values) when276

comparing with STL-Adam at all 12 stations. The 4-MTL-P scenario outperforms STL-LM277

at 9 out of the 12 stations.278

• The proposed 4-MTL architecture not only improves the salinity estimation performance in279
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providing generally lower NMSE values, but also requires much shorter training time (from280

8.31 hours of STL-LM to 319 seconds of 4-MTL-P) as well as much faster inference (from281

8.52 ms to 1.3 ms). Therefore, applying MTL to multi-station salinity estimation tasks can282

clearly improve training and inference efficiency.283

• In 4-MTL, a trainable convolution layer significantly reduces NMSE as this data processing284

layer can learn to extract data features and adapt to wider MTL ANN architecture through285

training. Our pre-determined initialization helps reduce the probability of being trapped in286

a local minimum.287

• From Table 1, Antioch, Mallard Island and Martinez are the 3 outliers in 4-MTL-P with288

slightly higher NMSE values than their counterparts from the STL-LM scenario. The reason289

is that stations located further west are more influenced by ocean tides of high salinity and290

are less effected by the input flows. Indeed, we can see from Fig. 1 that all these three291

stations are in the western part of the Delta.292

Further ANN Structure Considerations293

We further investigate the effect of the proposed MTL ANN size and depth. Given the success294

of the 4-layer MTL ANNs, we increase its depth and width.295

Starting with the 4-MTL-P ANN consisting of 1 convolution layer, 2 hidden layers and 1 output296

layer, we design 10 sets of neuron partitions in the hidden layers, while output layer contains 12297

neurons in all cases. For the 4-layer configuration, the 10 sets of neuron partitions for the two298

hidden layers are provided in Fig. 10.299

We further increased the number of hidden layers to the MTL ANN by one to obtain a 5-layer300

ANN architecture (5-MTL-P) and select 9 sets of partitions for the 3 hidden layers in 5-MTL-P. In301

another test, we add yet another hidden layer to form a 6-layer MTL ANN (6-MTL-P). We select 3302

sets of neuron partitions for the 4 hidden layers in 6-MTL-P. The detailed neuron partitions among303

the hidden layers are also shown in Fig. 10.304

The NMSE results for the 4-MTL-P, 5-MTL-P and 6-MTL-P ANNs are illustrated in Fig. 11.305

We observe that, in general, the NMSE performance improves with increasing neural network size.306
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However, for the 12 monitoring stations, deeper ANNs with more fully connected layers in both307

5-layer and 6-layer ANNs do not necessarily outperform a 4-layer ANN, using similar number of308

parameters. Fig. 11 also illustrates that an expandedMTLmodel achieves comparable performance309

to the STL-LM baseline model for all monitoring stations.310

Salinity Forecasting311

Physically, the salinity levels at the monitoring stations are impacted by antecedent (up to312

months) Delta inflows. Therefore, it would be probable that one can forecast the salinity levels313

based on current and antecedent inflow data. Hence, in addition to the same day salinity estimation314

results obtained thus far, we further explore the efficacy of our ANN model for salinity forecasting315

days ahead in time at the monitoring stations.316

To investigate the prediction accuracy of our proposed 4-MTL ANN, we train seven forecasting317

models based on the 4-MTL-P architecture as in Fig. ??. The implementation is similar to the318

salinity estimation model and is very simple. We apply the same MTL ANN architectures except319

that their training is based on the forecasting error. Specifically, to train a MTL ANN to forecast320

salinity levels by 8 day(s), we simply train the ANN model by using the same input measurement321

data but by advancing the output salinity level by 8 day(s) when calculating the MSE cost function.322

Changing the same simple training model by advancing the output measurement by 8 day(s) for323

8 = 1, . . . , 7, we can test the efficacy of an 8−day forecasting model.324

The best experimental results are obtained using the 4-MTL-P configuration. The forecasting325

results from 4-MTL-P are depicted in Fig. 12 as we vary 8 = 0, 1, . . . , 7 using the red line.326

The baseline 8 = 0 estimation results from 4-MTL-P is also highlighted as a blue dashed line for327

comparison. From the results, we make the following observations respecting the forecasting ANN.328

• Our 4-MTL-P ANN forecasting tends to show more accurate forecasting in short term,329

typically in 1-day or 2-day forecasting. Such result implies that there is a decent correlation330

between upstream inflows and Delta salinity up to two days. After that, the correlation331

tends to weaken. This is most likely because of physical distance between where flows are332
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measured and salinity monitoring stations.333

• In most cases with the exception of Emmaton, the NMSE values of forecasts with lead time334

one day are smaller than or fairly close to their corresponding counterparts of the same335

day salinity estimation. Emmaton differs from other stations in that it is located on the336

Sacramento River which has significantly high runoff than other rivers (e.g., San Joaquin337

river and eastern tributaries). The lasting impacts of flow on salinity in the Sacramento338

River is not as obvious as those on other rivers.339

Adaptive Estimation and Forecasting Models340

Our test results suggest a novel adaptive hybrid ANN model in which the forecasting objectives341

can be set uniquely for different monitoring stations, according to their physical response times. In342

other words, depending on the geophysical distance between input and output locations, the training343

objective function should consist of forecasting errors defined with different forecasting lead times344

for different monitoring stations.345

Such an adaptive ANN model can be fully incorporated within the proposed MTL framework.346

In fact, the only adaptive parameters that we need to adjust are the lead times used in the MSE347

cost function when training the ANN. Based on the results in Fig. 12, for each monitoring station348

location, we vary the number of days to forecast based on their base forecasting performance.349

With the 4-MTL-P ANN architecture as defined in Fig. ??, we manually initialize the convolution350

filters in an ANNmodel during training to estimate salinity at Emmaton and forecast the remaining351

11 stations. The final test results of the adaptive hybrid ANN model are given in Table 3. As352

expected, 8 of the 12 monitoring stations achieved improved performance. The sum NMSE of all353

12 monitoring stations is also lower than the pure estimation.354

It would be natural to adjust the forecasting lead times for different monitoring stations to drive355

down the sum NMSE further. Such fine-tuning would require a large number of experiments but356

do not change the basic principles and the contributions of our work reported here.357

DISCUSSIONS AND CONCLUSIONS358

14 Qi, May 28, 2021



Implications359

This study has both scientific and practical implications. From a scientific standpoint, we360

propose the following outcomes:361

1. The study introduces the concept of MTL into salinity modeling via ANNs in the Delta362

for the first time. This enables estimation of salinity at multiple locations in a single363

ANN model, with no need to develop different STL ANNs for different locations as in364

(Jayasundara et al. 2020).365

2. In addition, this study is the first to examine and demonstrate the capability of ANNs in366

salinity forecasting in the Delta. This lays the foundation for further methodical exploration367

on this front.368

3. This study proposes a novel way of pre-processing ANN input data via a trainable convolu-369

tion layer. Compared to the current empirical pre-processing method in (Jayasundara et al.370

2020), this new method is modular and thus portable to additional input data.371

Those scientific advances are not only applicable in modeling salinity, but also other important372

environmental variables in the Delta including turbidity, dissolved oxygen concentration, water373

temperature, among others. Additionally, their potential applications are not only limited to the374

Delta area, but also to other estuarine environments worldwide.375

Meanwhile, from a practical point of view, we present the following implications:376

1. The study indicates that the MTL-based ANN proposed in this study is much more efficient377

compared to the traditional STL-based ANNs in terms of training time and inference time378

(Table 2). This is particularly appealing to CDWR’s current modeling practice in water379

resources planning studies. In a specific planning scenario, the current modeling practice380

involves a process of iteratively running the planning model and the salinity emulator (i.e.,381

current ANNs) till all salinity compliance objectives are met. Using a faster emulator382

instead is expected to expedite the modeling process and allows more inclusive planning383

scenarios to be assessed.384
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2. The study exemplifies the feasibility applying the proposed ANNs in salinity forecasting. In385

practice, DSM2 is routinely utilized in forecasting salinity in the Delta to inform decision-386

making. The proposed ANNs have the potential to supplement the current forecasting387

practice for that purpose.388

Future Work389

This study indicates that the proposed MTL-based ANN outperforms the current STL-based390

ANNs in most cases (Table 1). However, for three stations in western Delta (Martinez, Mallard391

Island and Antioch), the STL-based ANNs yield slightly better estimation. We attribute the392

probable cause to that the tide plays a more important role than upstream freshwater inflows at393

these stations. Currently, the tidal energy (the difference between daily maximum and minimum394

stages at Martinez) serves as the proxy for tidal impact in the input data. However, it is not a direct395

measurement of the salinity level. As illustrated previously (He et al. 2020), sea level at the Golden396

Gate Bridge (the downstream end of the Bay-Delta Estuary in Figure 1) is a better surrogate for397

the salinity source of the Delta. It is also shown that incorporating sea level as an additional input398

feature to ANNs can improve salinity estimation at Martinez (He et al. 2020). One potential future399

enhancement to the proposed ANN is to incorporate sea level at the Golden Gate Bridge as an400

additional input.401

The study also shows that the forecasting skill of the proposed ANN decreases with increasing402

lead time (Fig. 12). This is expected as the lasting influence of current day’s input data (predictors)403

on salinity (predictand) becomes weaker further into the future. To improve forecasting skills,404

forecasted input information (e.g., forecasts on flows, tidal energy, and gate operations) can be405

applied to drive the proposed ANN. This is a potential future direction to be explored.406

Additionally, the ANNs examined in the current study use input data in the past 118 days since407

salinity relates to antecedent (up to months) flows in the Delta. The deep learning architecture Long408

Short-Term Memory (LSTM) architecture has shown special potential in simulating variables with409

such a long memory with their predictors (He et al. 2020). This type of deep learning networks410

will be considered in our future work.411
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Finally, this study showcases the success of applying proposed ANNs in salinity modeling in412

the Delta. There are a wide range of other variables (e.g., precipitation, runoff volume, snow melt,413

river stage, water temperature, turbidity) elsewhere that are critical to water resources planning414

and management practices. The ANNs developed in the current study can be readily adapted to415

simulate or forecast those variables in the future.416

Concluding Remarks417

This study develops enhancements to the Delta salinity modeling ANNs for the purposes of418

training time reduction, estimation error reduction, and better feature extraction. The enhancements419

include structural redesign on two fronts: 1) incorporation of the MTL architecture and 2) addition420

of a convolution layer in input data pre-processing. The updated ANNs are further adapted to421

conduct salinity forecasting which is rarely investigated previously. The enhanced ANNs have the422

potential to be incorporated into the current modeling practice and provide more robust and timely423

information to guide water resources planning and management in the Delta.424
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NOTATIONS433

The following symbols are used in this paper:434
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" = Number of input hydrological variables denoted in Fig. 2.

# = Number of data samples, or days, in dataset.

) = Number of days’ data used for estimation.

)A = Dimension of data after pre-processing.

z= = Time series used for estimating salinity level on day =, size is IR"×) .

x= = Pre-processed time series with size IR"×)A for day =.

y= = ANN-estimated salinity level for one or more locations on day =.
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TABLE 1. Resulting NMSE×104 of different ANN architectures for salinity estimation. Both
inputs and outputs of ANNs are normalized.

STL-LM STL-Adam 3-MTL 4-MTL-R 4-MTL-P(baseline) (baseline)

Optimizer LM Adam Adam Adam Adam
Emmaton 3.2 9.03 10.03 4.25 2.63
Jersey Point 5.35 14.78 16.18 5.74 3.28
Collinsville 5.09 15.92 15.56 6.20 3.86
Rock Slough 5.34 13.33 17.95 6.55 3.69
Antioch 1.84 7.85 9.73 3.50 2.60

Mallard Island 2.18 8.25 9.59 3.28 2.68
Old River at HWY 4 5.01 18.99 21.03 5.27 2.71

Martinez 0.61 3.15 6.66 2.53 1.63
Middle River Intake 5.21 16.71 17.72 5.20 2.66

Victoria Intake 6.12 15.41 16.47 5.33 2.88
CVP Intake 5.11 21.32 18.95 6.97 3.94

CCFB Intake Gate 5.64 20.57 19.38 6.23 3.32
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TABLE 2. Training time and inference time of different ANN architectures

Model Information Architecture
STL-LM STL-Adam 4-MTL-P

Number of parameters 981 981 16962
Optimizer LM Adam Adam

Training time (sec. per model) 2493 315 319
Inference time (ms. per sample) 0.71 0.71 1.3

Number of models needed 12 12 1

Total training time 8.31 hrs 1.05 hrs 319 secs
Total inference time for all 12 stations 8.52 8.52 1.3(ms. per day)
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TABLE 3. Resulting NMSE×104 of 4-MTL-P ANNs for salinity estimation with/without fore-
casting, numbers in parentheses represent the forecast time in days for that station.

Monitoring Station Estimation only Joint estimation and forecast
Emmaton 2.63 (0) 2.69 (0)
Jersey Point 3.28 (0) 3.25 (1)
Collinsville 3.86 (0) 3.94 (1)
Rock Slough 3.69 (0) 3.52 (1)
Antioch 2.60 (0) 2.68 (2)

Mallard Island 2.68 (0) 2.65 (1)
Old River at HWY 4 2.71 (0) 2.68 (1)

Martinez 1.63 (0) 1.54 (1)
Middle River Intake 2.66 (0) 2.65 (1)

Victoria Intake 2.88 (0) 2.79 (2)
CVP Intake 3.94 (0) 3.90 (1)

CCFB Intake Gate 3.32 (0) 3.34 (1)
Total 35.87 35.64
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TABLE 4. Numbers of neurons for expanded ANNs. Activation functions are not included in the
diagrams.

ANN Depth Numbers of Neurons Diagram(Including Conv Layer) in hidden layers

4 Layers

n1 = 96, n2 = 24

Conv18

n1

n2

12

Input

Output

n1 = 96, n2 = 48
n1 = 126, n2 = 48
n1 = 192, n2 = 24
n1 = 192, n2 = 48
n1 = 192, n2 = 96
n1 = 384, n2 = 24
n1 = 384, n2 = 48
n1 = 384, n2 = 96

n1 = 384, n2 = 192

5 Layers

n1 = 96, n2 = 48, n3 = 24

Conv18

n2

n3

n1

12

Input

Output

n1 = 192, n2 = 96, n3 = 24
n1 = 192, n2 = 96, n3 = 48
n1 = 384, n2 = 48, n3 = 24
n1 = 384, n2 = 96, n3 = 24
n1 = 384, n2 = 96, n3 = 48

n1 = 384, n2 = 192, n3 = 24
n1 = 384, n2 = 192, n3 = 48
n1 = 384, n2 = 192, n3 = 96

6 Layers

n1 = 192, n2 = 96, n3 = 48, n4 = 24
Conv18

n3

n4

n2

n1

12

Input

Output

n1 = 384, n2 = 192, n3 = 96, n4 = 24

n1 = 384, n2 = 192, n3 = 96, n4 = 48

26 Qi, January 28, 2021

Fig. 10. Numbers of neurons for expanded ANNs. Activation functions are not included in the
diagrams.
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Fig. 11. NMSE values for 12 monitoring stations versus number of parameters in threeMTLANNs
with different layers. Red dashed lines mark NMSE obtained by the STL-LM baseline in Table 1.
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Fig. 12. NMSE values for 12 monitoring stations versus lead time (in days) with a 4-MTL-P ANN.
Blue dashed lines mark NMSE obtained by the 4-MTL-P case in Table 1.
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