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ABSTRACT
Domain-specific architectures of artificial neural networks (ANNs) have been developed to

estimate salinity levels for planning at key monitoring stations in the Sacramento-San Joaquin
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Delta (Delta), California. In this work, we propose three major enhancements to existing ANN
architectures for purposes of training time reduction, estimation error reduction and better feature
extraction. Specifically, we design a novel multi-task ANN architecture with shared hidden layers for
joint salinity estimation at multiple stations, achieving a reduction of 90% training and inference
time. As another major structural redesign, we replace pre-determined pre-processing on input
data by a trainable convolution layer. We further enhance the multi-task ANN design and training
for salinity forecasting. Test results indicate that these enhancements substantially improve the
efficiency and expand the capacity of the current salinity modeling ANNs in the Delta. Our enhanced
ANN design methodologies have the potential for incorporation into the current modeling practice
and provide more robust and timely information to guide water resource planning and management

in the Delta.

INTRODUCTION

The Sacramento-San Joaquin Delta consists of a maze of interconnected channels that are
central to California’s water supply systems. Major streams like the Sacramento River, San Joaquin
River, and eastside tributaries enter the Delta (Fig. 1) and the waters flow through the Delta in a
complex network of intersecting channels which ultimately flow west out to the Pacific Ocean or are
diverted for agricultural and municipal use inside and outside of the Delta. The salinity of water in
the channels (concentration of salt measured, for example, in milligrams of salt per liter of stream
water) determines the suitability for fish and wildlife, growing crops (the Delta has approximately
420,000 acres of prime agricultural lands), and urban indoor/outdoor use. Water salinities in the
Delta channels are affected by many factors including ocean tides, inflows to the Delta from inland
rivers and streams, and agricultural activities/practices within the Delta. Also, human actions
related to water usage such as diverting to the Delta islands for Agricultural and urban use, or
exports from the Delta through the State Water Project (SWP) and Central Valley Project (CVP)
pumping plants would also change flows and salinities through the mixing process. To ensure safe
water use, ecosystem sustainability, and economic viability, State and federal regulatory agencies

have established several salinity criteria (maximum concentrations not to be exceeded) spatially
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and temporally within the Delta. One such regulatory example is the Water Right Decision 1641
(D1641) of the California State Water Resources Control Board ((SWRCB) 2000) which specifies
the threshold salinity values at certain compliance locations during certain periods in a year. To
assist in the planning and management of the water resources in the Delta, the California Department
of Water Resources (CDWR) has developed two key simulation models for use in planning studies:
(1) CalSim, a water allocation model of the SWP and CVP systems (Draper et al. 2004), and (2) Delta
Simulation Model 2 (DSM2), a hydrodynamics and water quality model (DWR-DSM2 2019), which
is developed based upon the mathematical flow-salinity relationship model presented in (Denton
1993; Denton and Sullivan 1993). We refer interested readers to an earlier paper (Jayasundara et al.
2020) on detailed discussions of CalSim and DSM2 as tools used in water resource management
and their functionalities. There are 12 key water quality monitoring stations in the Delta: Emmaton,
Jersey Point, Collinsville, Rock Slough, Antioch, Mallard Island, Old River at HWY 4, Martinez,
Middle River Intake, Victoria Intake, CVP Intake and Clifton Court Forebay (CCFB) Intake (see
Fig. 1). However, computational runtimes and other programming factors limit simulations of
CalSim and DSM2 concurrently during a planning.

ANNSs have been developed and applied extensively in the field of water resources engineering
to model (Ranjithkumar and Robert 2021; Tung et al. 2020; Tealab 2018; Kang et al. 2017), for
instance, groundwater level (Chen et al. 2011), surface runoff (Swain et al. 2017), reservoir opera-
tions (Chandramouli and Raman 2001), water demand (Bata et al. 2020), leak detection(Bohorquez
et al. 2020), and water system control (Hajgat6 et al. 2020). ANNSs have also been explored in
modeling salinity in groundwater (Banerjee et al. 2011), soil (Dai et al. 2011; Jiang et al. 2019),
Oceans (Bhaskaran et al. 2010; Chen and Hu 2017), rivers (Bowden et al. 2005; Hunter et al. 2018;
Maier and Dandy 1999), and estuarine environments (DeSilet et al. 1992; Huang and Foo 2002;
Sreekanth and Datta 2010; Le et al. 2019; Zhou et al. 2020). ANNs have only been applied recently
in salinity modeling in the Delta (Chen et al. 2018; Rath et al. 2017; He et al. 2020; Jayasundara
et al. 2020). Specifically, Chen et al. (2018) proposed a one-dimensional hydrodynamic model

emulator to represent estuarine mixing and water quality in the northern reach of the San Francisco
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Bay-Delta estuary, California, while Rath et al. (2017) developed an ANN-incorporated hybrid
model of salinity in the same estuary. He et al. (2020) investigated the use of MLP ANNSs in
estimating boundary salinity in the Delta based on water flow and tidal stage.

Jayasundara et al. (2020), for the first time, have developed and applied individual MLP ANNs
consisting of one input layer, two hidden layers, and one output layer, in simulating salinity based
on seven variables in the Delta, including water control gate operations, water exports, tidal stage,
as well as flow and salinity boundaries, to emulate DSM2 within CalSim 3, making runtimes much
more practical. However, it is not efficient to train and inference those 12 separate ANNs. In the
context of our objective for simultaneously estimating salinity levels at multiple monitoring stations
based on the same set of inputs, we can view this problem as a special case of multi-task learning
(MTL). This formulation is motivated by the fact that the salinities at the multiple monitoring
stations are all affected by the same set of hydrological measurements within the same regional
ecosystem.

MTL, in contrast to single-task learning (STL), is a machine learning strategy where multiple
tasks sharing commonalities are solved simultaneously. As shown in (Caruana 1993; Caruana
1995; Ruder 2017), the domain-specific information contained in input data may allow one task to
“eavesdrop" on features discovered for other related tasks and may lead the model to prefer some
hypotheses over others. By leveraging the domain-specific information, MTL helps improve neural
networks’ efficacy and generalizability. One of the most commonly used MTL methods is known
as hard parameter sharing, which is achieved by a joint architecture that requires multiple tasks to
share some hidden layers while keeping several task-specific layers towards the end of model for each
task (Caruana 1993). The idea of hard parameter sharing has been applied to time series prediction
such as energy flux prediction (Guijo-Rubio et al. 2020), rainfall amount prediction(Qiu et al.
2017) and water quality forecasting(Liu et al. 2016). We design the MTL ANN for simultaneous
estimation of salinity at multiple monitoring stations and this new paradigm enables the ANN to
better extract the underlying data features and generate better overall performance than the current

STL model individually trained and optimized for each monitoring station (Jayasundara et al. 2020).
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In addition, as MTL has been successfully applied to time series prediction tasks in (Guijo-Rubio
et al. 2020; Qiu et al. 2017; Liu et al. 2016), we test and analyze the prediction capability of our
proposed ANNSs.

Generally, the current study stems from the Jayasundara et al. (2020) study but extended all

those previous studies in the Delta in terms of:

1. Improved ANN training efficiency by applying a joint MTL approach.

2. Exploration of ANN-based salinity forecasting efficacy for the Delta.

3. Improved ANN performance through systematic pre-processing of input time series by
using a trainable convolution layer.

4. Expansion of ANN to discover the relationship between performance and their size.

METHODS

Similar to the approach described in (Jayasundara et al. 2020), we aim to improve salinity
estimation by leveraging the seven hydrological, water quality and operation parameters, namely
Northern Net flows (Sacramento River and East side Streams); San Joaquin river flows; Delta
cross-channel gate operation; net Delta consumptive use; tidal energy; San Joaquin River inflow
salinity at Vernalis; SWP and CVP exports via Banks pumping plant, Jones pumping plant, and
Contra Costa canal (see Fig. 2). We will estimate salinities at a number of measurement points
which include Emmaton, Jersey Point, Collinsville and Rock Slough, among others. The input
data are the (pre-processed) seven input variables. Following (Jayasundara et al. 2020), each of the
seven variables is pre-processed via an empirical convolution process that converts the values of
the input at the current day plus the antecedent 117 days into 18 values, including one value from
each of the current day plus the most recent seven antecedent days along with 10 non-overlapping
11-day averages. Fig. 3 outline the pipeline to obtain the estimated salinity levels in (Jayasundara

et al. 2020).
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Network Inputs and OQutputs
The complete pipeline in mathematical notation is given in Fig. 4. We use subscript for matrix

(m)

ns, is the 7,-th value

and vector indexing and superscript to denote the variable. For example, x
for m-th input parameter in ANN’s input vector for day n. As explained in Section 1, there are
seven input parameters and 12 output parameters. For training and validation, we have access to
monthly input data and daily salinity data covering water years 1941-2015. In California, each water
year cycle runs from October 1 to September 30 of the following calendar year. As described in
(Jayasundara et al. 2020), CalSim can refine monthly data record into daily by spline interpolation.

There is a total of N data samples (or days) in the dataset. In our problem, we select M = 7
observation variables. Same as in CalSim (Jayasundara et al. 2020), we pick 7 = 118 and 7, = 18

in the baseline case and pre-process the data as denoted in Fig. 5.

For input variable m on day n, we extract 8 daily values:

(m) _ _(m)
Yni = Lnoiv1 (1)
wherei € {1,...,8}. We also compute a total of 10 successive but non-overlapping 11-day moving

("’;), i€ {l,...,8}tobe stored in

averages before the first daily data x,

w1

m m

T n—11i-j+4° 2
=1

wherei € {1,..., 10}. Altogether, for the M variables in each day n, we form M xT, = 7x18 = 126
values as the M X T, input matrix x, to the ANNSs.

Later for exploring a different ANN architecture to bypass this rather ad hoc pre-processing,
we would form a trainable convolution layer instead of applying the above pre-determined pre-
processing steps. In that case, those 118 daily values of each of the seven variables are directly
provided to the convolution layer. The corresponding details will be described in Section 2.

The target outputs of ANNSs are the salinity levels at one or more monitoring stations. Each STL
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ANN’s output is salinity level at one single monitoring station, while each MTL ANN’s outputs
are salinity levels at all 12 monitoring stations.
Different from the previous study (Jayasundara et al. 2020), the current work randomly split

80% and 20% of this dataset for training and validation, respectively.

Multi-Task Learning

The goals of ANNSs are to predict salinity at multiple monitoring stations which are physically
related to one another in the Delta. It is therefore natural that these ANNs can share some of the
same features of the underlying data inputs. To improve the ANN for individual monitoring stations
(Jayasundara et al. 2020), we explore the MTL approach for the 12 monitoring stations under study.

As described in (Caruana 1995), these inter-related multiple tasks may be learned jointly by
training a single ANN. The output layers shall include more neurons whereas the hidden layers
are shared by the monitoring stations. These hidden layers together serve as a joint mechanism
for feature extractions that can be used more consistently to generate salinity estimates at different
monitoring stations. With MTL, an ANN can show better general performance over multiple
disjoint single-task ANNs. As shown in Fig. 6, the MLP architecture proposed in (Jayasundara
et al. 2020) consists of two fully connected (FC) hidden layers and one output layer, with each layer
containing 8 neurons, 2 neurons and 1 neuron, respectively.

Based on the model in previous successful STL ANNs in Fig. 6, we build the multi-task
ANN architecture, which is an MLP network containing two hidden layers with sigmoid activation
functions and one output layer with a Leaky ReLU (Maas et al. 2013) activation function. As
illustrated in Fig. 7, we increase number of neurons by a factor of 12, which coincides with the
number of monitoring stations, for all layers to build the multi-task ANN, that is, the two hidden
layers and output layer in multi-task ANN contain 96, 24 and 12 neurons respectively. We also

explored various ANN sizes in Section “ANN Size".

Trained Input Pre-processing via a Convolution Layer
As discussed earlier, the authors of (Jayasundara et al. 2020) utilized 8 newest daily values

together with 10 non-overlapping moving averages of the daily values immediately before the 8
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daily values as input data for salinity estimation (Fig. 5).

It should be recognized that the reported direct daily mappings and moving window averages
are special cases of convolution processing, except that the existing pre-processing is not optimized
through data training. Understanding the shortcomings of such a heuristic pre-processing, we
propose instead to include a trainable convolution layer for data pre-processing in our novel ANN
architecture. Mathematically, the convolution layer would implement the following data processing

through the training weights f] .('l."):

x5 = Zzi’% s 3)

where n € {1,...,N}, m € {l,...,M}and i € {1,...,T,}. Clearly, by appropriately setting
the convolution weights f] .("31), the convolution layer is capable of delivering daily value mapping
and sliding window averaging. Moreover, this convolution layer is trainable in conjunction with
the additional layers in the ANN. The inclusion of the convolution layer within the ANN allows
the weights in this layer and other ANN layers be jointly optimized to achieve better overall
performance.

By including the convolution layer, the two respective novel architectures of single-task and
multi-task ANNs with a convolution layer are shown in Fig. 8. There are 7, = 18 filters in a
convolution layer such that the convolution layers are able to extract at least the same 8 daily values
and 10 average values in the pre-determined pre-processing. The complete pipeline with proposed

convolution layer and the MTL ANN can be found in Fig. 9.

Salinity Forecasting

The ability to forecast salinity at key monitoring stations with lead time up to several days can
present an important opportunity and advantage to the water operations in the Delta. This can be
especially important for real-time operators of the SWP and CVP reservoirs to ensure that adequate
released water reaches the Delta to ensure regulatory compliance at the salinity monitoring stations;

for example, it takes approximately five days for water released from the Shasta reservoir (a CVP
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facility) and three days for water released from the Lake Oroville reservoir (a SWP facility) to
reach the Delta. The existing ANN studies have not tackled this challenging problem. From a
physical point of view, the dynamics between the input hydrological parameters and the salinity level
measurements provide a strong motivation to suggest the possible success of salinity forecasting.
Successful forecasting can also provide vital insight into the development of future models.

In this work, we investigate and explore the proposed MTL ANN for salinity forecasting at
the 12 monitoring stations. We utilize the same architecture to test the performance on salinity
prediction tasks. In this case, with a set of inputs for day n, a MTL ANN learns to predict the

salinity levels y,,;, i € {1,...,7} onday n +i.

Optimizer

In (Jayasundara et al. 2020), the authors adopt both Levenberg-Marquardt (LM) (Marquardt
1963; Levenberg 1944) optimization algorithm and Bayesian regularization (Foresee and Hagan
1997) to update weights and biases in ANNs. However, as mentioned in (Wilamowski et al. 2001),
the demand for large memory to compute Jacobian matrices and the need for inverting matrices
are the major drawbacks of the LM algorithm. When the number of trainable parameters in ANN
increases, the computational complexity of LM algorithm grows exponentially. In this paper, we
utilize one of the modern optimizers, the Adam optimizer (Kingma and Ba 2014), to train the
ANNs. The Adam optimizer is computationally efficient and requires little memory. As a result,
the Adam optimizer is well suited for machine learning problems with complex network architecture

(as proposed in this paper) and/or large datasets.

ANN Size

The number of hidden layers and neurons in these layers determines the number of trainable
parameters and the potential capability of an ANN. There is a trade-off between ANN complexity
and performance. Generally, performance on the training dataset usually improves with the increase
of the ANN size before the problem of overfitting occurs due to limited data, because a larger ANN
is capable of learning a more complex non-linear function. Meanwhile, as the ANN gets deeper

and/or wider, the probability of overfitting increases, and the computation complexity grows. To
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find the architecture that fits this specific problem, we vary the depth and width of multi-task ANN's

and observe how their performance changes on the test dataset.

RESULTS AND ANALYSIS

Implementation

We implement the newly developed ANNs using the popular open source library, Tensorflow
2.2.0 (Abadi et al. 2015), with Python 3.6.9. We conduct the experiments through web-browser on
Google Colaboratory, which is a cloud-based Jupyter notebook environment with a Tesla T4 GPU.
We normalize inputs and outputs to the range [0.1, 0.9] by linearly converting the i-th daily value
of the k-th input variable in the n-th data sample xi';') to

(m) : (m)
X .- min Xx, .
~(m) _ i (k=1 ..... N ki )

xn,i -
max x| | min x™
ki k,i
k=1,...N K k=1,..N ks

x0.8+0.1. 4

We apply the same normalization to outputs y, representing the salinity at a monitoring station on

day n.
R Yn— (ki{f}ENYk)

IYn =
[z, i) = (im0

The cost function used for training is the Mean Squared Error (MSE). For the LM optimizer, we

x0.8+0.1. 5)

adopt the same settings as (Jayasundara et al. 2020), where the starting learning rate is 0.005 and
decay factor is 10 and the training takes 150 epochs. For the Adam optimizer, the learning rate
is determined using a grid search. The starting learning rate is 0.01, and it is scaled by 0.1, 0.01,

0.001 and 0.0005 at epochs 80, 120, 160 and 180, respectively, and the training takes 200 epochs.

Experimental Results and Discussions
We evaluate the performance of the newly proposed ANN models by calculating the unitless
normalized mean square error (NMSE), which is computed on the normalized salinity outputs $,

based on the validation dataset. We compare the performance of several ANN architectures.
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To begin, the basic model is a 3-layer STL ANN with pre-processed input data, consisting of
two hidden layers and one output layer, as shown in Fig. 6. We train this baseline ANN using
both the LM algorithm (STL-LM) and the Adam optimizer (STL-Adam), to illustrate the effects
of optimizers. Both “STL-LM” and “STL-Adam” configurations are used as baseline results for
comparison.

In our proposed ANN s based on the novel MTL strategy, we consider two different architectures:
(a) a basic 3-layer MTL ANN with the pre-determined data pre-processing used in the baseline
model using the Adam optimizer (3-MTL) for training; and (b) a 4-layer MTL ANN with a replace-
ment of fixed data pre-processing by a trainable convolution layer. We consider two initializations
for the trainable convolution layer parameters: random (4-MTL-R) and using the pre-determined
pre-processing parameters (4-MTL-P) according to equations 1, 2 and 3.

Results from each of the five configurations are labeled, respectively, by “STL-LM”, “STL-
Adam”, “3-MTL”, “4-MTL-R”, and “4-MTL-P”. Table 1 presents the NMSE results of the five
different ANN configurations. Correspondingly, Table 2 evaluates their respective training and
inference time (complexity). From the performance comparison, we make the following observa-

tions.

* With pre-determined data processing, the LM algorithm outperforms the Adam optimizer
in training STL ANN to generate lower NMSE values than STL-Adam and 3-MTL do at
all study stations, as shown in Table 1. However, the LM algorithm requires 8 times longer
training time (complexity) when compared with both STL and MTL trained with the Adam
optimizer as shown in Table 2.

* Using our newly proposed MTL architectures with a trainable convolution layer, training
with the Adam optimizer can substantially improve the NMSE performance over STL.
In particular, the 4-MTL-P results are distinctly better (with smaller NMSE values) when
comparing with STL-Adam at all 12 stations. The 4-MTL-P scenario outperforms STL-LM
at 9 out of the 12 stations.

* The proposed 4-MTL architecture not only improves the salinity estimation performance in
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providing generally lower NMSE values, but also requires much shorter training time (from
8.31 hours of STL-LM to 319 seconds of 4-MTL-P) as well as much faster inference (from
8.52 ms to 1.3 ms). Therefore, applying MTL to multi-station salinity estimation tasks can
clearly improve training and inference efficiency.

* In4-MTL, a trainable convolution layer significantly reduces NMSE as this data processing
layer can learn to extract data features and adapt to wider MTL ANN architecture through
training. Our pre-determined initialization helps reduce the probability of being trapped in
a local minimum.

e From Table 1, Antioch, Mallard Island and Martinez are the 3 outliers in 4-MTL-P with
slightly higher NMSE values than their counterparts from the STL-LM scenario. The reason
is that stations located further west are more influenced by ocean tides of high salinity and
are less effected by the input flows. Indeed, we can see from Fig. 1 that all these three

stations are in the western part of the Delta.

Further ANN Structure Considerations

We further investigate the effect of the proposed MTL ANN size and depth. Given the success
of the 4-layer MTL ANNSs, we increase its depth and width.

Starting with the 4-MTL-P ANN consisting of 1 convolution layer, 2 hidden layers and 1 output
layer, we design 10 sets of neuron partitions in the hidden layers, while output layer contains 12
neurons in all cases. For the 4-layer configuration, the 10 sets of neuron partitions for the two
hidden layers are provided in Fig. 10.

We further increased the number of hidden layers to the MTL ANN by one to obtain a 5-layer
ANN architecture (5-MTL-P) and select 9 sets of partitions for the 3 hidden layers in 5-MTL-P. In
another test, we add yet another hidden layer to form a 6-layer MTL ANN (6-MTL-P). We select 3
sets of neuron partitions for the 4 hidden layers in 6-MTL-P. The detailed neuron partitions among
the hidden layers are also shown in Fig. 10.

The NMSE results for the 4-MTL-P, 5-MTL-P and 6-MTL-P ANNs are illustrated in Fig. 11.

We observe that, in general, the NMSE performance improves with increasing neural network size.
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However, for the 12 monitoring stations, deeper ANNs with more fully connected layers in both
5-layer and 6-layer ANNs do not necessarily outperform a 4-layer ANN, using similar number of
parameters. Fig. 11 also illustrates that an expanded MTL model achieves comparable performance

to the STL-LM baseline model for all monitoring stations.

Salinity Forecasting

Physically, the salinity levels at the monitoring stations are impacted by antecedent (up to
months) Delta inflows. Therefore, it would be probable that one can forecast the salinity levels
based on current and antecedent inflow data. Hence, in addition to the same day salinity estimation
results obtained thus far, we further explore the efficacy of our ANN model for salinity forecasting
days ahead in time at the monitoring stations.

To investigate the prediction accuracy of our proposed 4-MTL ANN, we train seven forecasting
models based on the 4-MTL-P architecture as in Fig. ??. The implementation is similar to the
salinity estimation model and is very simple. We apply the same MTL ANN architectures except
that their training is based on the forecasting error. Specifically, to train a MTL ANN to forecast
salinity levels by i day(s), we simply train the ANN model by using the same input measurement
data but by advancing the output salinity level by i day(s) when calculating the MSE cost function.
Changing the same simple training model by advancing the output measurement by i day(s) for
i=1, ..., 7, wecan test the efficacy of an i—day forecasting model.

The best experimental results are obtained using the 4-MTL-P configuration. The forecasting
results from 4-MTL-P are depicted in Fig. 12 as we vary i = 0, 1, ..., 7 using the red line.
The baseline i = 0 estimation results from 4-MTL-P is also highlighted as a blue dashed line for

comparison. From the results, we make the following observations respecting the forecasting ANN.

* Our 4-MTL-P ANN forecasting tends to show more accurate forecasting in short term,
typically in 1-day or 2-day forecasting. Such result implies that there is a decent correlation
between upstream inflows and Delta salinity up to two days. After that, the correlation

tends to weaken. This is most likely because of physical distance between where flows are
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measured and salinity monitoring stations.

* In most cases with the exception of Emmaton, the NMSE values of forecasts with lead time
one day are smaller than or fairly close to their corresponding counterparts of the same
day salinity estimation. Emmaton differs from other stations in that it is located on the
Sacramento River which has significantly high runoff than other rivers (e.g., San Joaquin
river and eastern tributaries). The lasting impacts of flow on salinity in the Sacramento

River is not as obvious as those on other rivers.

Adaptive Estimation and Forecasting Models

Our test results suggest a novel adaptive hybrid ANN model in which the forecasting objectives
can be set uniquely for different monitoring stations, according to their physical response times. In
other words, depending on the geophysical distance between input and output locations, the training
objective function should consist of forecasting errors defined with different forecasting lead times
for different monitoring stations.

Such an adaptive ANN model can be fully incorporated within the proposed MTL framework.
In fact, the only adaptive parameters that we need to adjust are the lead times used in the MSE
cost function when training the ANN. Based on the results in Fig. 12, for each monitoring station
location, we vary the number of days to forecast based on their base forecasting performance.
With the 4-MTL-P ANN architecture as defined in Fig. ??, we manually initialize the convolution
filters in an ANN model during training to estimate salinity at Emmaton and forecast the remaining
11 stations. The final test results of the adaptive hybrid ANN model are given in Table 3. As
expected, 8 of the 12 monitoring stations achieved improved performance. The sum NMSE of all
12 monitoring stations is also lower than the pure estimation.

It would be natural to adjust the forecasting lead times for different monitoring stations to drive
down the sum NMSE further. Such fine-tuning would require a large number of experiments but

do not change the basic principles and the contributions of our work reported here.

DISCUSSIONS AND CONCLUSIONS
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Implications
This study has both scientific and practical implications. From a scientific standpoint, we

propose the following outcomes:

1. The study introduces the concept of MTL into salinity modeling via ANNs in the Delta

for the first time. This enables estimation of salinity at multiple locations in a single
ANN model, with no need to develop different STL ANNs for different locations as in
(Jayasundara et al. 2020).

In addition, this study is the first to examine and demonstrate the capability of ANNSs in
salinity forecasting in the Delta. This lays the foundation for further methodical exploration
on this front.

This study proposes a novel way of pre-processing ANN input data via a trainable convolu-
tion layer. Compared to the current empirical pre-processing method in (Jayasundara et al.

2020), this new method is modular and thus portable to additional input data.

Those scientific advances are not only applicable in modeling salinity, but also other important
environmental variables in the Delta including turbidity, dissolved oxygen concentration, water
temperature, among others. Additionally, their potential applications are not only limited to the
Delta area, but also to other estuarine environments worldwide.

Meanwhile, from a practical point of view, we present the following implications:

1. The study indicates that the MTL-based ANN proposed in this study is much more efficient

compared to the traditional STL-based ANNs in terms of training time and inference time
(Table 2). This is particularly appealing to CDWR’s current modeling practice in water
resources planning studies. In a specific planning scenario, the current modeling practice
involves a process of iteratively running the planning model and the salinity emulator (i.e.,
current ANNSs) till all salinity compliance objectives are met. Using a faster emulator
instead is expected to expedite the modeling process and allows more inclusive planning

scenarios to be assessed.
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2. The study exemplifies the feasibility applying the proposed ANNS in salinity forecasting. In
practice, DSM2 is routinely utilized in forecasting salinity in the Delta to inform decision-
making. The proposed ANNs have the potential to supplement the current forecasting

practice for that purpose.

Future Work

This study indicates that the proposed MTL-based ANN outperforms the current STL-based
ANNSs in most cases (Table 1). However, for three stations in western Delta (Martinez, Mallard
Island and Antioch), the STL-based ANNs yield slightly better estimation. We attribute the
probable cause to that the tide plays a more important role than upstream freshwater inflows at
these stations. Currently, the tidal energy (the difference between daily maximum and minimum
stages at Martinez) serves as the proxy for tidal impact in the input data. However, it is not a direct
measurement of the salinity level. As illustrated previously (He et al. 2020), sea level at the Golden
Gate Bridge (the downstream end of the Bay-Delta Estuary in Figure 1) is a better surrogate for
the salinity source of the Delta. It is also shown that incorporating sea level as an additional input
feature to ANNs can improve salinity estimation at Martinez (He et al. 2020). One potential future
enhancement to the proposed ANN is to incorporate sea level at the Golden Gate Bridge as an
additional input.

The study also shows that the forecasting skill of the proposed ANN decreases with increasing
lead time (Fig. 12). This is expected as the lasting influence of current day’s input data (predictors)
on salinity (predictand) becomes weaker further into the future. To improve forecasting skills,
forecasted input information (e.g., forecasts on flows, tidal energy, and gate operations) can be
applied to drive the proposed ANN. This is a potential future direction to be explored.

Additionally, the ANNs examined in the current study use input data in the past 118 days since
salinity relates to antecedent (up to months) flows in the Delta. The deep learning architecture Long
Short-Term Memory (LSTM) architecture has shown special potential in simulating variables with
such a long memory with their predictors (He et al. 2020). This type of deep learning networks

will be considered in our future work.
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Finally, this study showcases the success of applying proposed ANNs in salinity modeling in
the Delta. There are a wide range of other variables (e.g., precipitation, runoft volume, snow melt,
river stage, water temperature, turbidity) elsewhere that are critical to water resources planning
and management practices. The ANNs developed in the current study can be readily adapted to

simulate or forecast those variables in the future.

Concluding Remarks

This study develops enhancements to the Delta salinity modeling ANNs for the purposes of
training time reduction, estimation error reduction, and better feature extraction. The enhancements
include structural redesign on two fronts: 1) incorporation of the MTL architecture and 2) addition
of a convolution layer in input data pre-processing. The updated ANNs are further adapted to
conduct salinity forecasting which is rarely investigated previously. The enhanced ANNs have the
potential to be incorporated into the current modeling practice and provide more robust and timely

information to guide water resources planning and management in the Delta.
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NOTATIONS

The following symbols are used in this paper:
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M = Number of input hydrological variables denoted in Fig. 2.
N = Number of data samples, or days, in dataset.
T = Number of days’ data used for estimation.

T, = Dimension of data after pre-processing.

z,, = Time series used for estimating salinity level on day n, size is R¥*T

RMXTr

x, = Pre-processed time series with size for day n.

¥, = ANN-estimated salinity level for one or more locations on day n.
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TABLE 1. Resulting NMSEx10* of different ANN architectures for salinity estimation. Both
inputs and outputs of ANNs are normalized.

STL-LM STL-Adam

(baseline)  (baseline) MTL 4MTLR 4-MTL-P

Optimizer LM Adam Adam Adam Adam
Emmaton 3.2 9.03 10.03 4.25 2.63
Jersey Point 5.35 14.78 16.18 5.74 3.28
Collinsville 5.09 15.92 15.56 6.20 3.86
Rock Slough 5.34 13.33 17.95 6.55 3.69
Antioch 1.84 7.85 9.73 3.50 2.60
Mallard Island 2.18 8.25 9.59 3.28 2.68
Old River at HWY 4 5.01 18.99 21.03 5.27 2.71
Martinez 0.61 3.15 6.66 2.53 1.63
Middle River Intake 5.21 16.71 17.72 5.20 2.66
Victoria Intake 6.12 15.41 16.47 5.33 2.88
CVP Intake 5.11 21.32 18.95 6.97 3.94
CCFB Intake Gate 5.64 20.57 19.38 6.23 3.32
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TABLE 2. Training time and inference time of different ANN architectures

Model Inf. i Architecture
odel Hrormation STL-LM STL-Adam 4-MTL-P
Number of parameters 981 981 16962
Optimizer LM Adam Adam
Training time (sec. per model) 2493 315 319
Inference time (ms. per sample) 0.71 0.71 1.3
Number of models needed 12 12 1
Total training time 8.31 hrs 1.05 hrs 319 secs
Total inference time for all 12 stations 252 252 13

(ms. per day)
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TABLE 3. Resulting NMSEx10* of 4-MTL-P ANNS for salinity estimation with/without fore-
casting, numbers in parentheses represent the forecast time in days for that station.

Monitoring Station  Estimation only Joint estimation and forecast

Emmaton 2.63 (0) 2.69 (0)
Jersey Point 3.28 (0) 3.25(1)
Collinsville 3.86 (0) 3.94 (1)
Rock Slough 3.69 (0) 3.52 (1)

Antioch 2.60 (0) 2.68 (2)
Mallard Island 2.68 (0) 2.65 (1)
Old River at HWY 4 2.71 (0) 2.68 (1)
Martinez 1.63 (0) 1.54 (1)
Middle River Intake 2.66 (0) 2.65 (1)
Victoria Intake 2.88 (0) 2.79 (2)
CVP Intake 3.94 (0) 3.90 (1)
CCFB Intake Gate 3.32 (0) 3.34 (1)
Total 35.87 35.64
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Salinity Stations |
1. Martinez 7. Old River at HWY 4 s
2. Mallard Island 8. Rock Slough

3. Collinsville 9. Middle River Intake
4. Antioch 10. Victoria Intake

5. Emmaton 11. CCFB Intake

6. Jersey Point 12. CVP Intake
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Fig. 1. Locations of the 12 Study Salinity Stations in the San Francisco Bay and Sacramento-San
Joaquin Delta Estuary (Bay-Delta Estuary). The insert map shows the location of the Bay-Delta
Estuary in California. (Sources: Esri, DeLorme, HERE, TomTom, Intermap, increment P Corp.,
GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan,
METI, Esri China (Hong Kong), swisstopo, MapmylIndia, and the GIS User Community; Data
from ((SWRCB) 2000).)
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Fig. 2. ANN inputs and input locations. (Sources: Esri, DeLorme, HERE, TomTom, Intermap,
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Fig. 11. NMSE values for 12 monitoring stations versus number of parameters in three MTL ANNs
with different layers. Red dashed lines mark NMSE obtained by the STL-LM baseline in Table 1.
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Fig. 12. NMSE values for 12 monitoring stations versus lead time (in days) with a 4-MTL-P ANN.
Blue dashed lines mark NMSE obtained by the 4-MTL-P case in Table 1.
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