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Abstract— We present a method for cooperative transporta-
tion using two catenary robots. Each catenary robot is com-
posed of two quadrotors connected by a hanging cable. Unlike
other methods in the literature for aerial transportation using
cables, we do not assume that the cables are attached to
the object. Instead, the quadrotors wrap cables around the
object and pull. Since the cable is not attached to the object,
the quadrotors need to avoid slipping by maintaining friction
between the cable and the object. In this work, we focus on
manipulating objects with cuboid shapes or boxes. We use two
catenary robots to pull the box from two opposite edges. Once
the robots are in contact with the box, they do not know the
contact points between the cable and the object. We propose
an adaptive controller to track a reference trajectory without
information about the box’s contact points, mass, and inertia
tensor. We validate our approach through simulations.

I. INTRODUCTION

In recent years, aerial transportation using micro aerial

vehicles has become popular in industry and academia.

Aerial vehicles offer a fast and low-cost solution for object

transportation in urban and rural scenarios [1], [2]. However,

one of the main problems of aerial vehicles is their lack of

versatility. For instance, in object transportation, the robot

depends on the weight and dimensions of the object. On the

one hand, large vehicles can carry many objects in contrast to

small vehicles carrying light-weight payloads only; however,

large vehicles have motion limitations in cluttered environ-

ments. On the other hand, Multiple micro aerial vehicles

working cooperatively can get over payload restrictions while

grasping and manipulating objects. A sub-problem of object

transportation is box transportation, specifically for package

transportation and drone delivery [3]. In this way, we focus

our work on transporting cuboid objects without requiring

any additional customization.

Recently, quadrotors using cables and tethers have been

shown as a versatile solution to manipulate objects [4], [5],

[6]. Multiple approaches [7], [8], [9], [10] model the cable

as a rigid link that is previously attached to the object.

However, attaching the cable to the object requires human
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Fig. 1: Cooperative aerial transportation using two catenary

robots. https://youtu.be/MeEGL_PUBx4

intervention that slows down a process that can be fully

automated. In our previous work [11], we showed that a

catenary robot, composed of two quadrotors connected with

a cable, can be used to transport objects with a hook-shaped,

e.g., an umbrella or a bicycle. Then, in the extended work, we

showed how to transport an object that does not require hook-

shaped objects like a box by dragging or rolling in a planar

surface [12]. Here, there are additional factors to take into

account in the transportation, such as slipping conditions,

type of contacts, contact forces, and friction [13]. This work

also considers a box that does not have any hook shape.

Manipulation only depends on the friction between the box

and cables.

It is worth mentioning that cable-suspended loads [14],

[15], [16], quadrotors attached by a rod [17], are not the

only approaches for aerial manipulation. For example, The

aerial snake robot manipulates the object surrounding it

with the body while changing the direction of its propellers

[18]. In [19] multiple quadrotors are used pushing an object

from different locations and generating opposing forces that

collaboratively grasp and allows the transport of the object.

Also, articulated aerial-type manipulators [20], [21] that can

be modified to lift objects, a robot arm, or gripper [22] are

effective when manipulating objects, but the size and shape

of the objects they can manipulate depends directly on the

capacity of the end effector. Furthermore, these systems’

increase in weight decreasing the payload capacity while

spending a higher amount of energy and requiring more

space to operate. In contrast, the catenary robot uses a
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cable that adapts to any object’s shape while maintaining

the payload capacity.

Additionally, when considering more realistic scenarios

while manipulating an object, the knowledge of the object

that will be transported is partially or entirely unknown,

causing many parameters in the quadrotors or objects to be

uncertain. Adaptive control of a quadrotor to compensate

for changes in the center of gravity is proposed in [23], also

for unknown cooperative forces and external disturbances

in [24]. Authors in [25] proposed an energy-based adaptive

control design for a quadrotor transporting a suspended load,

assuming that the length of the cable connecting the payload

and the UAV is unknown. Furthermore, the authors in [26]

propose a decentralized Model Reference Adaptive Control

MRAC to manipulate an object on a planar surface. However,

all of these works consider the object physically attached to

the quadrotors or knowing apriori the contact points in which

the forces will be applied. In contrast, this work does not

consider knowing the location of contact points and some

box parameters while tracking a trajectory.

The main contribution of this paper is threefold. First, we

propose a versatile, cooperative, and autonomous algorithm

for two catenary robots to manipulate a box and track the

desired trajectory without human intervention in the previous

stage or during the manipulation. Second, we design an

algorithm that considers the restrictions of the cable, meaning

cables that cannot have arbitrary angles. We constraint cables

to stay within a designed threshold to guarantee that the cable

will not slip with the box. Finally, we design an adaptive

controller that is able to track a trajectory while ignoring not

only some box parameters but also the contact point positions

needed to compute control forces for the box.

II. PROBLEM STATEMENT

The goal of this work is to manipulate objects using two

catenary robots. We define the catenary robot as follows.

Definition 1 (Catenary robot, [11]). A catenary robot is

composed of two quadrotors connected by a cable. The cable

is non-stretchable with neglected mass, and it is attached to

the center of mass of each quadrotor.

We use the force of the quadrotors to pull objects. One

cable with two quadrotors can generate two forces to pull the

object, but that is not enough to control the six degrees of

freedom of the rigid object. In the case of attached cables,

the minimum is three, as described in [4]. Therefore, we

need at least two catenary robots to manipulate the object.

In Fig. 2, we illustrate two catenary robots pulling a box

from two opposite edges with a blue cable and red cable.

We focus on manipulating objects with cuboid shapes.

Definition 2 (Box). A box is an object with cuboid shape,

mass mb ∈ R>0, and inertia around the x-axis Jb ∈ R. Its

length, width and high are w, l, h ∈ R>0 respectively.

We first move the cable of each catenary robot and place it

in the desired location on the box, creating an initial contact

Fig. 2: Side view of a box being transported by forces

generated by two catenary robots. Note that faded quadrotors

and cables in the image are just a representation that each

catenary robot has two quadrotors pulling the box.

between the box and each cable. Then, the quadrotors move

around the box to surround it with the cable.

In our previous work [11], we designed a navigation con-

troller for the catenary robot without considering interaction

with external objects. Then we extended to use one catenary

robot to transport one box by performing dragging, and

rolling actions on planar surface [12]. However, this work

focuses on transporting objects using two catenary robots,

adding the possibility to lift the box. We study the two-

dimensional case assuming that both quadrotors in the same

catenary robot maintain the same pose as illustrated in Fig.

2. Additionally, we try to avoid slipping conditions by using

the friction between the cable and the box, restricting the

cable’s angle.

Each quadrotor has mass and inertia tensor denoted by m ∈
R>0 and Jxx ∈ R respectively. Each cable that connects a pair

of quadrotors has length ℓ. The position of each quadrotor in

the inertial reference frame, {W}, is ri = [yi, zi]⊺ ∈ R2 with

i = 1, ...,4. The orientation and angular velocity are denoted

by θi ∈ R, and ωi ∈ R. Each quadrotor can use its propellers

to generate a force magnitude fi ∈ R (direction of the force

is given by the pose of quadrotors since rotors are fixed) and

a moment τi ∈ R.

The position of the box in {W} is denoted by rb =
[yb, zb]⊺ ∈ R2, the orientation is θb, and the angular velocity

is ωb. The contact points between the box and the cables in

{B} are p1 and p2. The rotation matrix from {B} to {W}
is wRb ∈ SO(2) .

A. Box Dynamics

Each quadrotor i = 1, ...,4 generates a tension Ti with

respect to {B}. In this work, we study the planar case,

assuming that the box is aligned with the yz-plane, and

the two quadrotors in the back mimic the behavior of the

quadrotors on the front, i.e., T3 = T1 and T4 = T2, see

Fig. 2. We describe the dynamics of the box using the
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Newton-Euler equations

mbr̈b = −mbgez + 2
2

∑
i=1

wRbTi,

Jbω̇b = τb,
(1)

where g is the gravity constant, and ey = [1,0]⊺ and

ez = [0,1]⊺ are unitarian vectors along the y- and z-axis

respectively. To simplify the notation, we will consider T1

and T2 containing the forces of T3 and T4 respectively,

instead of writing 2T1 and 2T2. Then we can expand the

dynamics as,
mbÿb = T

y
2
− T y

1
,

mbz̈b = T z
1
+ T z

2
−mbg,

Jbω̇b = τb,

(2)

where wRbT1 = [T
y
1
, T z

1
], wRbT2 = [T

y
2
, T z

2
] are the

tension components that the cables exert on the box in {W},
and τb is the torque generated by the two cables in the box

which is defined by

τb = p1 ×T1 + p2 ×T2,

= (py
1
T z
1
− pz

1
T

y
1
) + (py

2
T z
2
− pz

2
T

y
2
).

Let us define a pose vector as q = [yb, zb, θb]⊺. We can

represent the system in (2) using the Lagrangian for robot

motion [27], [28], also called the “manipulator equation”,

M(q)q̈ +C(q, q̇)q̇ + g =w, (3)

where M(q) ∈ R3×3 is the matrix that collects the mass and

the inertia tensor,

M =

⎡⎢⎢⎢⎢⎢⎣

mb 0 0

0 mb 0

0 0 Jb

⎤⎥⎥⎥⎥⎥⎦

,

C(q, q̇) = 03×3 is the Coriolis matrix that does not appear in

the planar case, g = [0,−mbg,0]⊺ is a gravitational vector,

and w = [wfy

b
,wfz

b , τb]
⊺ is the wrench, a combination of

the forces and torques applied by the catenary robots to the

box. Based on the contact points, we can compute the total

wrench as follows,

⎡⎢⎢⎢⎢⎢⎣

wf
y

b
wfz

b

τb

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

w

=

⎡⎢⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

−pz
1

p
y
1
−pz

2
p
y
2

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T
y
1

T z
1

T
y
2

T z
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
²

T

. (4)

Based on the dynamics in (3), our transportation problem is

stated as follows.

Problem 1. Given a desired trajectory qd
b(t) for a box with

with known mass, inertia, contact points, design a control

policy for (T1,T2) such that the box asymptotically tracks

qd
b(t), ∥qb(t) − qd

b(t)∥→ 0as t→∞.

Given a desired trajectory qd
b(t) for a box with with

known mass, inertia, contact points, design a control policy

for (T1,T2) such that the box asymptotically tracks qd
b(t),

∥qb(t) − qd
b(t)∥ → 0 as t → ∞. Our approach to solving

Fig. 3: Planar quadrotor modeling.

Problem 1 is presented in Section III. Solving this problem

is the first step before involving the quadrotor control and

unknown information.

B. Planar Quadrotor Modeling

Consider a planar quadrotor (illustrated in Fig. 3) with

state vector qi = [yi, zi, θi]⊺ with i = 1,2. The quadrotor

dynamics is described by Newton-Euler equations

⎡⎢⎢⎢⎢⎢⎣

ÿi
z̈i
ω̇i

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

T
y

i

m
T z
i

m
− g
0

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎣

− 1

m
sin θi 0

1

m
cos θi 0

0
1

Jxx

⎤⎥⎥⎥⎥⎥⎦

[
fi
τi
] . (5)

Then, our problem is finding the control inputs fi, τi to

manipulate a box with unknown information.

Problem 2. Given two catenary robots attached to a box

with unknown mass mb, unknown inertia Jb, unknown di-

mensions (l, h), design a control policy for the quadrotors

u = (f1, f2, τ1, τ2), such that without knowing the contact

points (p1,p2), the tension in the cables (T1,T2) lead the

box to asymptotically track a desired trajectory qd
b(t), that

is ∥qb(t) − qd
b(t)∥→ 0 as t→∞.

Although the contact points pi are unknown, the range of

possible values is bounded. In Fig. 2, it is shown in blue

the threshold in which the contact points can be located.

Note that the position of the contact points affects the box

dynamics.

For the control design, we consider Problem 1 and Prob-

lem 2, respectively. First, we find the wrench necessary for

the box to track a trajectory. Here we assume we know all

the parameters in the model. This wrench is then translated

into the quadrotor dynamics to generate the desired wrench.

Finally, we assume that the contact points between the box

and the cables, mb and Jb, are unknown, and using an

adaptive controller the box can still track asymptotically the

desired trajectory.

III. WRENCH BASED CONTROL

Let eb = rdb(t)−rb(t) and ėb = ṙdb − ṙb be the position and

velocity errors regarding the desired trajectory. We use the
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errors to find the tensions on the box that track the desired

trajectory as a feedforward term,

fdw =Kpep +Kvėp +mbgez, (6)

where Kp and Kv are gain matrices of a PD controller with

appropriate dimensions. We design an attitude controller by

defining errors in orientation and angular velocity as eθ =
θdb − θb and eω = θ̇db − θ̇b, and then based on this attitude

errors, the PD controller is defined by

τdb = kθeθ + kωeω, (7)

where kθ and kω are positive constants. Then, based on the

desired force in {W}, we transform it to the frame {B},

fdb =
wRotx(θb)⊺b f

d
w, (8)

Therefore, the desired wrench on the box is w = [fdb , τ
d
b ]
⊺.

To find the desired tension in the cables, we compute T

the pseudo-inverse of the matrix D and multiply it by

w. However, our system has some constraints, and not all

desired forces in the box can be generated. The angles of

the tension are constrained by θi,min and θi,max. Hence,

this problem can be modeled as a least-square minimization

problem with linear constraints,

min ∥T∥

s.t. w =DT,

T z
1
≥ k1T

y
1
,

T z
1
≤ k2T

y
1
,

T z
2
≥ k3T

y
2
,

T z
2
≤ k4T

y
2
,

(9)

where k1 = tan(θ1,min), k2 = tan(θ1,max), k3 = tan(θ2,min),
and k4 = tan(θ2,max).

IV. ADAPTIVE CONTROLLER WITH UNKNOWN CONTACT

POINTS

In the previous section, we assumed that all system pa-

rameters are known, including the contact points. However,

the desired contact point is not always the actual point. As

it can be seen in Fig. 4, there is an error in the desired

contact points and the actual contact points due to the natural

shape of the cable and the displacement of the lowest point

when the cable is transitioning from being slack to tightening

the box. We denote the displacement in the contact points

by ∆pi. This displacement causes additional error in the

actuation during the trajectory tracking. Note that we do not

have any active sensor in the cable or box that can provide

any feedback on the contact points.

The main problem is that (4) cannot be correctly computed

since the contact points are inaccurate. Additionally, mb and

Jb are unknown in (3). However, we overcome this issue by

similarly proposing an adaptive controller as in [27], [29].

Based on (3), when all the information is known, we have

q̈ =M−1(q)(w −C(q, q̇)q̇ − g),

which can be linearized as q̈ = a, by taking

a = q̈d −Kv
˙̃q −Kpq̃,

where ˙̃q = q̇− q̇d, q̃ = q−qd. However, in order to apply an

adaptive control algorithm, we assume that p
y
1
= −py

2
= py ,

due to the geometry of the box, and pz
1
= pz

2
= pz . Therefore,

by considering v1 = T
y
1
+T y

2
, v2 = T z

1
+T z

2
, and v3 = T z

1
−T z

2

in (4), we obtain

w =

⎡⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

−pz 0 py

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

⎡⎢⎢⎢⎢⎢⎣

v1
v2
v3

⎤⎥⎥⎥⎥⎥⎦
±

V

. (10)

Now we compute premultiply both sides of (3) by N−1 to

obtain M̂q̈ + ĝ = v, where M̂ = N−1M, ĝ = N−1g. We

define an equivalent system as

M̂(q)q̈ + ĝ(q) =Y(q, q̇, q̈)γ,

where Y(q, q̇, q̈) contains all parameters we know from the

system and γ is the vector with the parameters to be adapted

using the method described in [27]. Let us define x = [eb, ėb]
and compute the error dynamics,

ẋ =Ax +BΦγ̃,

where

A = [
03×3 I3×3
−Kp −Kv

] ,

contains controller parameters,

B = [
03×3

I3×3
] ,

the regressor matrix Φ is given by

Φ = M̂−1(q)Y(q, q̇, q̈),

and γ̃ = γ̂ − γ is the error of the unknown parameters. Let

us define the following Lyapunov function

V(x, γ̃) = x⊺Px + γ̃⊺Γ−1γ̃, (11)

where P = P⊺ > 0 is the unique symmetric positive definite

solution of the linear Lyapunov equation A⊺P +PA = −Q,

and Γ = Γ⊺ > 0 therefore, (11) is positive. By checking if the

Fig. 4: Side view of a catenary robot controlling the lowest

point in the cable to define a desired contact point in the

box.
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Fig. 5: Control diagram.

time derivative of the Lyapunov function is negative we can

verify that the error of the system is asymptotically stable

V̇(x, γ̃) = ẋ⊺Px + x⊺Pẋ + 2γ̃⊺Γ−1 ˙̃γ,

= −x⊺Qx + 2γ̃⊺(B⊺Φ⊺Px +Γ−1 ˙̃γ).
(12)

Assuming ˙̂γ = 0, then we can define the adaptation law as

˙̃γ = −ΓΦ⊺B⊺Px, (13)

then plugging in (12). The time derivative of Lyapunov

function becomes

V̇(x, γ̃) = −x⊺Qx ≤ 0, (14)

since Q = Q⊺ > 0. However, V̇(x, γ̃) is negative semidefi-

nite. Since for x = 0, V̇(x, γ̃) = 0 then by taking the second

time derivative, we can show that V̈(x, γ̃) is bounded.

By applying Barbalat’s Lemma [30], we can conclude that

V̇(x, γ̃) is uniformly continuous and therefore x converges

asymptotically to zero and γ̃ is bounded.

V. CATENARY QUADROTOR CONTROLLER

Once we find the desired tension in the cables to be applied

in the box to track a desired trajectory, we can then find the

thrust so that the quadrotors generate the desired tensions.

Also, note that due to the system constraints

ri = rb +
ℓ −w
2

ηi, η =
wRbTi

∥wRbTi∥
,

the following condition holds

r̈di = r̈
d
b +

ℓ −w
2

η̈i. (15)

By defining the quadrotor position and velocity errors as

ei = rdi − ri, and ėi = ṙdi − ṙi, then thrust controller becomes

fi = (wR⊺bTi +mgez +Kpi
ei +Kvi ė + r̈

d
i ) ⋅ ez, (16)

where Kpi
and Kvi

are well-defined positive definite matri-

ces. In the same way, we need to know the desired angles

for each quadrotor since, in the previous step, we just found

the magnitudes of the thrusts

θdi = arctan2 (T
y
i , T

z
i ). (17)

We can define angle position and velocity errors as eθi =
θdi −θi, and ėθi = θ̇i

d
− θ̇i, then the torque controller is given

by

τi = Jxx(kτeθi + kdτ ėθi), (18)

where kτ and kdτ are positive constants.

VI. SIMULATION AND RESULTS

To validate the controller, we perform five different simu-

lation cases. The parameter we use are mb = 0.1kg, Jb =
0.1kg/m2, width of the box w = 1m, height of the box

h = 1.5m, cable length ℓ = 2.5m, gravity g = 9.8m/s2,

desired trajectory ydb = cos (t), z
d
b = sin (t), p1 = [0.5,0.9]⊺,

p2 = [−0.5,0.9]⊺, Kp = 4 ⋅ I, Kv = 2 ⋅ I, kθ = 1, kω = 0.1.

In all simulations, we plot the coordinates of the y and

z-axis, and the angle in the world frame regarding time. The

Blue dashed line is the desired trajectory for the box, the

solid red line is the actual trajectory of the box, the solid

yellow line is the evolution of catenary robot 1, and the solid

purple line is the response of catenary robot 2. Finally, at the

bottom, a simple animation of two red boxes representing the

quadrotors, one light brown box representing the box, and

black lines are the cables.

A. Experiment 1: Tracking Trajectory without Constraints

In the first experiment, we compute the pseudo-inverse of

matrix D in (4) in order to get the tension values. As it can

be seen in Fig. 6, the pseudo-inverse finds a solution to drive

the position errors to zero, and the box can reach the location

while oscillating in a sinusoidal form. However, this solution

considers tensions in any direction, which is a more realistic

scenario that will not be possible. Since friction between the

cables and the box is lacking, the contact points will slide

or lose contact with the box entirely. However, in order to

show that the system is able to track trajectories, we show

how the box can perfectly track a circular trajectory in Fig.

7. For both cases, we consider we know all of the parameters

of the box needed for the simulation.

B. Experiment 2: Tracking a Trajectory with Angle Con-

straints

Here we get closer to solve the problem where the

cables have angle constraints, meaning the forces cannot be

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 15,2022 at 06:00:53 UTC from IEEE Xplore.  Restrictions apply. 



-1

0

1

0

2

4

0 1 2 3 4
-0.2

0

0.2

-3 -2 -1 0 1 2 3
0

2

4

6

0

2

4

Fig. 6: Box transported by two catenary robots to a fixed

location with variations in angle without considering angles

constraints in the cables.

generated in an arbitrary direction. Since the force direction

is opposite the box, the cable will slip and lose contact with

it. Here θ1,min = 115
○, θ1,max = 165

○, θ2,min = 25
○, and

θ2,max = 75○. In Fig. 8, we can see how the cables remain

pointing to the opposite direction of the contact point while

maintaining the desired cable angle enough to have friction

between the cable and the box. Note that for keeping the

cable in a constant orientation, one force must compensate

the other for canceling out torques.
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Fig. 7: Box transported by two catenary robots tracking a

circular trajectory with static angle in the box and without

considering angle constraints in the cables.

C. Experiment 3: Tracking a Trajectory with Unknown Pa-

rameters: Adaptive Case

In the third experiment, we consider the case where the

location of the contact points pi, with i ∈ {1,2}, the mass

of the box mb, and the inertia matrix Jb are unknown. Then,

by using the procedure outlined in Section IV, the box can

track a circular trajectory with tracking errors equal to zero

and considering the angle constraints in the cables as shown

in Fig. 9.
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Fig. 8: Box transported by two catenary robots tracking a

circular trajectory with angle angle constraints in the cables.

D. Experiment 4: Varying box mass in Experiment 1 and

Experiment 3

Finally, the last experiment shows the comparison of the

traditional controller discussed in Section III and the adaptive

controller presented in Section IV when varying the mass of

the box. Fig. 10a it is shown how the traditional controller

is unable to track the desired trajectory from t = 5 s onwards

due to the addition of mass in the box. On the contrary,

Fig. 10b illustrates how the adaptive controller, despite the

change of mass at t = 5 s, is still able to track the desired

trajectory.
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Fig. 9: Box transported by two catenary robots tracking

a circular trajectory considering angle constraints in the

cables and mb, Jb, p1, and p2 unknown parameters in the

simulation.

VII. CONCLUSION

In this work, we use two catenary robots to transport a

box; first, we consider the case where the cables can apply

tensions in any direction. This is the standard case where the

cables are attached to the box. Second, by converting to the

problem in an optimization framework, we can consider the

cable’s angle constraints so that the system does not lose

friction while allowing us to manipulate the box without

previous human intervention and track the desired trajectory.

Finally, we show an adaptive controller that overcomes

the challenges of unknown parameters in the box as the
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(a) Varying box mass using unconstrained controller.
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(b) Varying box mass using adaptive controller.

Fig. 10: Varying box mass.

mass, inertia tensor, and contact points. At the same time,

still asymptotically track the desired trajectory, making the

position error zero and the estimated parameters bounded.
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