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Abstract

Motivated by the sliding mode control approach, a stochastic controller design
methodology is developed for discrete-time, vector-state linear systems with addi-
tive Cauchy-distributed noises, scalar control inputs, and scalar measurements. The
control law exploits the recently derived characteristic function of the conditional
probability density function of the system state given the measurements. This result is
used to derive the characteristic function of the conditional probability density function
of the sliding variable, utilized in the design of the stochastic controller. The incentive
for the proposed approach is mainly the high numerical complexity of the currently
available method for such systems, that is based on the optimal predictive control
paradigm. The performance of the proposed controller is evaluated numerically and
compared to the alternative Cauchy controller and a controller based on the Gaussian
assumption. A fundamental difference between controllers based on the Cauchy and
Gaussian assumptions is the superior response of Cauchy controllers to noise outliers.
The newly proposed Cauchy controller exhibits similar performance to the optimal
predictive controller, while requiring significantly lower computational effort.

Keywords Stochastic control - Optimal controller synthesis for systems with
uncertainties - Heavy tailed distributions

Mathematics Subject Classification 93E20

B Moshe Idan
moshe.idan @technion.ac.il

Nati Twito
nati0605 @ gmail.com

Jason L. Speyer
speyer@g.ucla.edu

Technion - Israel Institute of Technology, Haifa, Israel

Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-020-01735-5&domain=pdf
http://orcid.org/0000-0002-4825-3811

394 Journal of Optimization Theory and Applications (2021) 191:393-414

1 Introduction

The majority of stochastic control methodologies assume that the dynamical system is
driven by additive Gaussian process and measurement noises [1,2]. Many solutions to
the control problem for linear systems with Gaussian noise distributions can be readily
found in the literature, e.g., the commonly used Linear Quadratic Gaussian (LQG),
Linear Exponential Gaussian (LEG), H> and H o, and more [ 1-3]. However, the Gaus-
sian assumption is incompatible with systems forced by heavy-tail distributed noises
exhibiting significant measurement and process noise outliers caused by, e.g., radar
and sonar sensors, atmospheric disturbances and air turbulence, and more [4,5]. Using
light-tailed Gaussian approximations for such cases showed significant performance
degradation in the presence of outliers [6,7].

Recent studies showed that the heavy-tailed Cauchy distribution is an attractive
candidate, since it better represents process and measurement noise outliers in both
estimation and control design [6—10]. In those studies, the heavy-tailed Cauchy densi-
ties were directly employed in the design process. Although no physical phenomenon
is explicitly Cauchy distributed, since its tails over bound other realistic densities,
estimators and controllers that are based on the Cauchy probability density function
(pdf) are hypothesized to be robust to unknown realistic physical densities. We refer
to robustness in the statistical sense [11], meaning that the estimator achieves ade-
quate performance when faced with outliers or unexplained events, and where these
events may arise either as large measurement errors, large process deviations, or due
to misspecification of the dynamic model.

The Cauchy distribution is challenging, because its unconditional first moment
is not well defined and its unconditional higher moments are infinite. However, for
estimation, it was shown that the conditional pdf of the state given the measurement
history has finite conditional first and second moments, yielding the conditional min-
imum variance Cauchy estimator [8—10].

Because of the undefined second moments of the noise signals, when posing the
control problem for such systems, commonly used cost criteria (e.g., the quadratic cost
of LQG) are not properly defined, i.e., their unconditional expectation is not finite. A
cost criterion, whose functional form is similar to that of the Cauchy pdf, is properly
defined. Moreover, the conditional expectation of this cost criterion can be obtained
in closed-form and used in the controller design. In [8§—10], it was shown that the time
propagated conditional pdf of the system state given the measurement history is a
nonlinear function of the measurement sequence. This, clearly, complicates the control
design task, since the controller becomes a nonlinear function of the measurements.
Nonetheless, the conditional pdf was incorporated in an optimal predictive control
(OPC') design setting that uses the above mentioned computable cost criterion, which
is both well defined and finite [6,7]. The main drawback of those predictive controllers
is their high complexity and computational load. This is caused by the complex form
of the cost and the solution to the nonlinear, non-convex optimization required to
determine numerically the optimal control sequence. The goal of the current work is

I'In [71, this methodology was referred to as Cauchy-MPC.
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to suggest a controller, that significantly reduces the computational burden without
affecting its performance.

The controller design presented in the current study is motivated by the sliding
mode control (SMC) method [12,13]. In SMC, the desired closed-loop dynamic char-
acteristics of the system are specified by defining a sliding variable. Nullifying the
sliding variable, thus driving the system into a sliding mode, guarantees the desired
performance. The control method ensures that a system with bounded disturbances
will attain the sliding mode in a finite time. However, when addressing systems with
unbounded or stochastic disturbances, sliding mode behavior cannot be obtained even
when the time frame is not limited. As an alternative, it was proposed regulating
the sliding variable to within a predefined bound around the sliding mode [14-16].
This method was successfully applied for systems with Gaussian noises. Design of
this stochastic controller relies on the second moment of the controlled-system state.
Since those moments are not finite in the Cauchy noise case, the method proposed in
[15] is modified and expanded to address the heavy-tailed noise case considered here.

This methodology applied to scalar-state systems with Cauchy noises was presented
in [17]. The controller design is based on the conditional pdf of the state given the
measurement history that is available only for the scalar case [8] and hence cannot be
extended to the vector-state case. Still, the scalar-state case provides important insights.
Therefore, those results are presented here for completeness. The scalar-state results
are generalized to address vector-state, single-input single-output linear systems. This
generalization accounts for the fact that the cost criterion must be constructed from
the characteristic function (cf) of the conditional pdf rather than directly from the
conditional pdf, which is unavailable for the vector case [10]. The results can be
readily extended to multi-output systems, affecting only the computation of the cf of
the conditional pdf which can be performed using the algorithm presented in [10].

This paper is organized as follows. The control problem, addressed in this study, is
formulated in Sect. 2, followed by the solution concept in Sect. 3. A detailed derivation
of the proposed control method is then presented in Sect. 4, first for a scalar-state and
then for a vector-state linear system. The resulting controller is evaluated through
numerical simulations and contrasted to alternative solutions in Sect. 5. The paper is
concluded in Sect. 6.

2 Problem Formulation
We consider a linear, discrete-time stochastic system

Xp+1 = Pxp + Auyp + INwy, (1a)
7k = Hxp + vy, (1b)

where x; € R” is the system state, uy is a scalar control signal used to regulate x, zx
is a scalar linear measurement, and k is the time index. The matrices @, H, A and I
with appropriate dimensions are assumed to be known. The scalar process noise wy
and measurement noise vy are assumed to be white, independent of each other and the
initial state x1, Cauchy-distributed random processes with pdf-s given by
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fu (i) = % B0, @)
fu 6 = ﬁ y >0, (2b)
Their characteristic functions are given by
$w, () = e PP, (3a)
v, () =, (3b)

where v is the scalar spectral variable. The initial condition is also chosen to be Cauchy-
distributed, consisting of n random variables that are assumed to be independent of
each other. Hence, the joint pdf of the initial conditions is given by

n

faan =] i/ o >0, @

) =8 OP + o}

where x1 (i) are elements of x; and x (i) are elements of the vector x; of medians. Its
characteristic function is given by

n
¢x, (v) = [ [e Mm@ o > 0, )
i=1

where v € R" is the vector-valued spectral variable with v; being an element of v.

The goal is to design an output feedback controller, i.e., uy, being a function of the
measurement history yx = {z1, ..., zx}, to regulate the state x;. The tracking problem
can be addressed using a similar method.

3 Stochastic Control Design Concept

The challenge in addressing the control design problem of linear systems with Cauchy-
distributed noises stems from the fact that notions like certainty equivalence do not
hold in this case. Specifically, it was shown in [8—10] that the minimum conditional
variance estimator of such systems is nonlinear in the measurement history. Moreover,
the unconditional moments of the system state are either not defined or infinite. Thus,
the commonly used control design criteria have to be modified when addressing such
system, as was suggested in [6,7]. The resulting controller was shown to be a highly
nonlinear function of the measurement history, entailing high computational load. In
order to address the computational challenge of the known solutions [6,7], this study
suggests a design methodology that is motivated by the SMC method that addresses
mainly systems with bounded uncertainties and noises [12,13], and is extended to
stochastic systems [14—16]. We first briefly review those results.
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Consider the linear multivariate discrete-time system defined in (1). First, assuming
full state information and bounded disturbance wy, for all &, the task is to regulate xj.
In SMC, we define a sliding variable

Sk = CXg, (6)

where for a scalar control input uy, s; : R” — R, and ¢ € RI%jga design parameter
such that cA # 0. The sliding surface is defined as

S = {xi| sk = cxp =0} . @)

When S is attained, the system is said to be in a sliding mode. ¢ is chosen such
that when the system is in the sliding mode, it complies with the desired closed-loop
dynamics requirements (see [12,13] for details.) Specifically, when wy = 0, choosing
the control signal to be

ug = — (cA)~ ' cdxy (8)

yields
Sk+1 = CXk41 = cPxp + cAug = 0. 9

Hence, the sliding mode is reached in one step, and its closed-loop dynamics is given
by
X1 = Pxg + Aug = (@ — A(CA)_ICGD> Xp = quk- (10)

The vector c is chosen such that the closed-loop transition matrix ® is Schur, i.e., its
eigenvalues are inside the unit circle and provide the desired closed-loop dynamic char-
acteristics. Controllability of the pair (@, A) and observability of (¢, @) are sufficient
conditions to comply with those design requirements. There are additional methods
for choosing the vector c, e.g., embedding optimal control tools and more, that can be
found in the literature [12].

In the presence of bounded noises and uncertainties, the discrete sliding mode
control signal is set to be

Uk = U(disy, + Uegy, = —p sign(sy) — (€)™ cPxy. (11)

U (dis), is adiscontinuous control signal designed to drive the system into a sliding mode
in a finite time, while u(.,), ensures that the system remains on S. The parameter p
depends on the bound of the disturbance and regulates the finite time required for
the system to reach the sliding mode. SMC solutions are available also for the output
feedback setting, where only the measurement z; is available [12].

When addressing stochastic systems with unbounded noises, it is not feasible to
drive the system into a sliding mode or maintain it over time: the stochastic signal
will continuously divert the system from the sliding surface. Hence, to apply the SMC
ideas for such systems, concepts like the sliding surface and finite time convergence
have to be modified to yield a stochastic version of the SMC approach. Such ideas
were proposed in [14—16], where the disturbances were assumed to be Gaussian white
noises.
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The main idea in these studies is to construct an output feedback control law uy,
such that the system (1) is driven to a vicinity of the sliding surface S of (7) with a
given probability and is kept in this region over time. Specifically, for a bound L > 0
and 0 < ¢ < 1, the goal is to attain

P(sgl<L)=1—¢ as. Yk >N (12)

for some integer N. In [15], it is shown that for the Gaussian case, by incorporat-
ing a Kalman filter estimator, a stochastic controller can be designed to ensure (12),
where, for a given &, the bound L can be determined analytically as a function of the
measurement-independent second moment of the state estimation error.

This is not the case for systems with Cauchy-distributed noises, for which the
conditional estimator and the estimation error variance are highly nonlinear functions
of the measurement history [8—10]. Moreover, due to the heavy-tail characteristics of
the process noise, the time propagated conditional pdf does not have a well-defined
first moment, i.e., there is no time propagated estimate of the state, and has an infinite
second moment needed to apply the methodology in [15]. Hence, a modified approach
is proposed here to address systems with Cauchy-distributed noises.

Therefore, instead of designing a controller for a prescribed probability (1 — €) in
(12) and computing the bound L for it as suggested in [15], for the Cauchy case it
is proposed to set the bound L a priori and determine the control signal u; such that
the a priori conditional probability of the sliding variable si4 to be in the band ==L
around zero is maximized, i.e.,

up = argmax,, P (Isg+1l < Llyk). (13)

The above probability is computed using the conditional pdf of the sliding variable
Sk+1 given the measurement history that can be determined from the conditional pdf
of the state xi41 at time step k + 1 given i, fx,.,|v, (Xk+1/Yk), or its characteristic
function. Fortunately, this pdf or its characteristic functions were derived analytically
when addressing the Cauchy estimation problem and hence can be readily used to
compute u; in (13). This proposed controller will be referred to as the maximum-
conditional-probability-controller (MCPC).

For scalar-state systems, fx, v, (xXk+1]yk) is computed analytically in closed form
in [8] and is used to design the MCPC. In the vector-state case, only the characteristic
function of fx,. |y, (xk+1|yx) could be computed analytically [10]. Consequently,
the MCPC for vector-state systems will be derived while using those characteristic
functions, as is detailed in the next section.

4 Maximum Conditional Probability Controller

As discussed in the previous section, the control synthesis relies on the conditional pdf
of the state x;1 given the measurement history yi. For scalar-state systems described
in (1) with n = 1, this pdf is expressed as a recursive and analytic function of the
measurement history and system parameters [8], and can be used to derive the MCPC

@ Springer



Journal of Optimization Theory and Applications (2021) 191:393-414 399

in the most natural way, as is presented in the first subsection below. For vector-state
systems, only the characteristic function of this conditional pdf, also expressed as a
recursive and analytic function of the measurement history and the system parameters,
is derived in [10]. Therefore, the optimization in (13) will have to be first re-cast in the
characteristic function formulation before being solved for the vector-state case. In
this section, for clarity and completeness of the presentation, we recap first the scalar-
state case that was originally presented in [17]. Then, we will address the vector-state
case, presented in the last subsection below.

4.1 Scalar-State MCPC

In this subsection, we address the scalar-state case. Since the state is scalar, without
loss of generality, we set A = I" = 1 in (la) and choose the sliding variable of (6)
to be equal to the system state, i.e., c = 1. Moreover, we first present the controller
derivation while using the pdf of the time propagated state x| given the measurement
history y, followed by an alternative derivation that utilized the characteristic function
of that pdf. The latter is presented as the background for the vector-state case, where
only the characteristic function is known in closed analytical form.

4.1.1 Pdf Derivation

In [8], it was shown that fx, v, (xk+1]yx) can be expressed in a closed analytical
form as

k+1

ka+1|Yk (xk+1 |yk) = Z

i=1

a;j (k + 11k)xpp1 + b (k + 1]k)
(k1 — 07k + 11k)* + @0? (k + 1]k)

(14)

In the above, the (k + 1|k) notation implies that the respective parameters appear in
the conditional pdf of the state at time step k + 1 given the measurement history up
to time step k. Similar notation will be used in the remainder of the text. Recursive,
closed-form expressions for all the parameters in (14), that are nonlinear functions of
the system parameters and the measurement history, can be found in reference [8].
Following the rationale presented in the previous section and expressed implicitly in
Eq. (13), the optimal control signal u; is determined by maximizing the cost function

L

J];k ZHL?X/ ka+1|Yk(xk+1|)7k)dxk+17 (15)
—L

where the pdf fx,. |y, (Xk+11yx) is a nonlinear function of the control signal uy, i.e.,
the parameters o; (k + 1]k) in (14) are affine in uy [8]. Due to the affine relation of x|
on the input #; in (1a), a variation in uy shifts fx, v, (xx+1|yx) along the xjy-axis
by the value of u; compared to fx,. v, (Xk+1|yx) computed when uy = 0. Therefore,
the cost function in (15) can be expressed alternatively as
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L—uy

=0
11?‘=H}fklx / Ixt v Gt [0 dxir (16)

where f;i:o\Yk (Xk+11yx) is the time-propagated pdf of x;; given the measurement
history yx when assuming that u; = 0. Its analytical form is identical to that given in
(14) with appropriate changes in pdf parameters o; (k 4+ 1|k). The advantage of using
the cost in (16) is that f;ﬁ:ﬂyk (xx+1!yx) has to be computed only for u; = 0 and not
repeatedly for every candidate u; when solving the maximization problem of (15).
Hence, the form in (16) will be used in the sequel to determine numerically the optimal
cost J;* to yield the optimal control signal given by

L—uy

* ug=0

U = argmax,, f Ixpo v Gk 1) dxier. (7
—L—uy

Using the explicit form of f’ ;i:o‘yk (xk+11yr) givenin (14), the integral of the control

performance cost in (16) can be solved analytically [18] to yield

L—uy

k1 2, 2
=0 ai . (L —ux —0i)" + o

Je(up) = / oy Okt 1) dxegr = —In -
ka+1\Yk + |y + Z 2 (—L —up — o,i)Z + wIZ

I i=1

aiai+bi|: <L—uk—o,~) <—L—uk—ai>i“
+——actan| —— | —arctan{ ——— .
wj wj wj

(18)

In the above, for simplicity, the time indices (k + 1|k) were removed from the pdf
parameters.

The cost in (18) is a highly nonlinear function of the optimization parameter u.
Moreover, it was observed empirically that it is not convex and may have several local
maxima. Consequently, a global maximum of Ji(#;) cannot be determined analyti-
cally. Therefore, the maximization of Ji (1) is performed using standard numerical
optimization tools available, e.g., in MATLAB. The gradient of (18) with respect to uy
can be easily computed as the difference between the values of the integrand given
in (14) evaluated at the integration limits. However, using a gradient-search method,
computing the gradient from its closed-form expression is numerically expensive and
leads to longer optimization times compared to non-gradient-based methods. Hence,
we use a MATLAB function that implements the Nelder—Mead simplex algorithm:
an enormously popular direct search (derivative-free) method for multidimensional
unconstrained maximization [19].

Since the numerical search normally finds only a local extremum, its result depends
on the initial guess provided by the user. We have observed that in most cases the
integrand f;’;:olyk (xk+1]yk) in (18) has at most two distinct peaks: one around zero,
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*  —up =219
o —ui £l

08\ ;=09

(a) f;‘(jfl (z2]y1), J; of (16) and uj. (b) fx,|v, (w2ly1) and J} of (15).

; =0
Fig. 1 fdy, (2ly) fxopyy (2lyn), I and uf

and one around a scaled value of an outlier measurement, i.e., z(k)®/H 2 Normally,
the local maxima will be found in the vicinity of those peaks. Hence, the numerical
search is performed twice, starting from initial guesses of zero and z(k)®/H, and
uy is chosen as the one that yields a higher value of Ji (u}). This uj is used as an
input to the system and to compute the actual time propagated fx,, v, (Xx+1|y%). In
the cases that (18) has more than two peaks, a phenomenon that is both rare and
does not normally persists for more than one step, the search will converge to a
temporary local maximum, and will revert to the global maximum once the third
peak diminishes.

To demonstrate the shifting relation between the two time-propagated pdf-s men-
tioned above together with the maximization process, we consider a sample system
with parameters @ = 09, H = 1,x; = 2,0 = 0.02,8 = 0.2, and y = 0.1. At
time k = 1, the initial state was drawn from its Cauchy distribution to be x; = 2.014,
while the measurement at this initial time instant was drawn to be z; = 3.1. The
time propagated f;;lzy? (x2]y1) computed for #; = O is depicted in Fig. 1a. Choosing
L = 1.5 and solving (16), it was determined numerically that J|* = 0.9. It is depicted
in Fig. la by the gray area. This optimal cost was obtained for u} = —2.19, whose
negative values are also shown in this figure. Finally, fx,|y, (x2|y1) computed with the
optimal control signal is depicted in Fig. 1b. Since u} = —2.19 is negative, it clearly
shows that the latter pdf is shifted by 2.19 to the left compared to f;;lzy? (x2]y1) in
Fig. 1a. This example also demonstrated the two-peak occurrence discussed in the
previous paragraph.

2 Tt was shown in [8] that during a measurement update at time step k, a new term is generated in the sum of
(14) thatis centered at oy 1 (k|k) = z(k)/H . The center of this terms is moved to oy 41 (k+1|k) = z(k)® /H
when propagated to time step k + 1. Hence, if z(k)®/H is large, it will produce a secondary peak in

up=0
ka+1|Yk (xk+l |)’k)-
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4.1.2 Characteristic Function Implementation

An alternative approach for the optimal control strategy discussed in this work is to
utilize the characteristic function of the un-normalized conditional pdf> (cf-ucpdf) of
the state x;41 given the measurement history y; derived analytically for the Cauchy
noise case in [9]. This approach will be in particular useful when addressing, in the next
subsection, vector-state systems, for which an analytical expression of the conditional
pdf is not known [10]. The time-propagated cf-ucpdf mentioned above is expressed
as

k+1
Pxpn v (V) = Y (ci(k + 1|k) + jdi (k + 1]k) sign(v))
i=1

s~ @i kTR joi (k1R (19)

where j is the pure imaginary number. Recursive, closed-form expressions for all
the parameters in (19), that are nonlinear functions of the system parameters and
the measurement history, can be found in reference [9]. To obtain the characteristic
function of the normalized conditional pdf, the above characteristic function has to be
divided by

k+1
Fro0) = $xn O],_p = > ik + k), (20)
i=1
to yield B
¢Xk+1|Yk (v)
= 21
¢Xk+1|Yk (V) fYk (yk) ( )

The control performance criterion of (16) can be expressed directly using the char-
acteristic function of the associated pdf [20], i.e.,

L—uy

* ug=0
e = max / Ixpn v Gh1156) dxis
—L—uy

oo

1 sin(Lv) 5.\ =0
n}t%X; / Te]uk ¢Xk+l|Yk(U)dv’ (22)

—00

where ¢§’; j)l Ye (v) is the characteristic function of f' )I;l]i:()‘yk (xk+11yk)- It should be noted
that since those normalization in (21) involves a real and positive parameter fy, (yk),
an equivalent cost function can be defined using the un-normalized characteristic
function, i.e.,

3 From Bayes’ rule, the un-normalized conditional pdf is the joint pdf of the state and the measurement
history, where the normalization factor is the pdf of the measurement history. The propagation of the
un-normalized conditional pdf yields an analytic, recursive scheme.
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o0

_ 1 sin(Lv) -,.—

Tl = — / Ry Ty, W), (23)
—00

the maximization of which with respect to u; will yield the same optimal uz asin (22).

The integral in (23) can be solved analytically using the factored form of ¢_>';(kk iol Ye )
given in (19). It is expressed as [18]

k+1 2 2

- 1 d; L —ur—o0i) + w;
Je(ug) = — E —1In ( k ')2 L
T 2 (=L —ur—0)” + o;

L —up —o; —L —uy — o
+c; |arctan| ——— | —arctan | — .24
w; wj

For simplicity, in (24) the time indices (k 4 1|k) were removed from the parameters
of the characteristic function. Since addressing the same problem, as expected, this
result matches the one obtained in (18) with the appropriate relations between the
coefficients a; and b; in (14) and the coefficients ¢; and d; in (19). Similarly to (18),
the optimal control signal that maximizes the cost in (24) is determined numerically
using the same method discussed in Sect. 4.1.1. Then, it is used to both drive the
system and to determine the time propagated ¢x,, v, (V).

4.2 Vector-State MCPC

The proposed controller design scheme involves the sliding variable defined in (6)
and the performance criterion in (13), that is determined by solving the maximization
problem

L
Ji =H}3X/fsk+1|yk(Sk+1|yk)dSk+1~ (25)
—L

The conditional pdf of the sliding variable, fs,. |y, (Sk+1]yx), can be related to
Ixi1ve G+ 11yx) [2]. However, only the characteristic function of

X117 G+ 11yx) can be obtained in closed form for the multivariate Cauchy case
[10]. Therefore, the controller derivation will be performed using the characteristic
functions of the random variables. Specifically, as in (22), the integral in (25) can be
expressed using the cf of fg, . v, (Skr11Y6), @spp1v, (), as [20]

o
1 sin(Ln)
Jy=— / 1 G811y, (mdn, (26)
T n
—00

where 7 is the scalar spectral variable.

Evaluating (26) requires the characteristic function ¢g, , v, (n). However, in [10] it
is shown only how to determine the characteristic function of the conditional pdf of
the state vector, i.e., ¢x, |y, (v), for the vector-state linear system with Cauchy noise
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and a vector-valued spectral variable v. The characteristic function ¢s, , v, (1) can be
constructed from ¢x, |y, (v) by using Theorem 1.1.7 in [21], expressed as

D5 () = dxm (ne”) @7)

The relation in (27) is valid for any distribution of the state. For the Cauchy case
addressed in [10], the characteristic function of the un-normalized pdf of the state was

k+1lk

shown to be a sum of n; terms expressed by

LIk

B 0 = 3 & (A ) e (557 1)), (8)

i=1

The superscript notation k 4- 1|k indicates that the respective parameters express the cf
at time step k + 1 given the measurement history up to time step k. The cf-unpdf was
considered because it yielded recursive, closed-form expressions for all the functions
in (28). (/3 Xi11Y; () is a function of the systems parameters, measurement history, and

k+1]k

the spectral vector variable v. In particular, the function y,,;

k+1|k

(v) is a weighted sum of
absolute values and linear terms involving v, Yoi (v) is a vector whose components
are a weighted sum of the sign function involving v, and ngIk ( k1l (v)) is a

complex rational function involving y gi +llk (v). See [10] for details. The cf ¢x, ||y, (V)
of the normalizated pdf of the state is determmed by

AL
Bxp v (V) = =kt (29)
xi1ve W],
Substituting v = nc’ into (28), the cf-unpdf of s; | is determined as
klk
ny
RN AGES Z (ci(k + 11k) + jd; (k + 1|k) sign(n))

i=1

Xe—wi(k+l|k)|7l|+j0'i(k+1|k)77’ (30)
where

cik + k) = Real{g"“"‘ (yfg‘f”k( T))} (la)
ik + 11k = Im {1 (5 ) . (31b)
wi(k + 1]k) = —Real {yff”"(c )}, Gle)
oi(k + 1]k) = Im{ f“"‘(cT)} (31d)
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The cf of the normalized conditional pdf of sx1 is given by

¢Sk+1|Yk (77)
_— 32
¢Sk+1\Yk(77) ¢Sk+l‘yk(0) ( )
where
bk
G817 0) = fro () = Y _ ci(k + 1]k) (33)

i=1

is a positive constant [9]. Since the normalization in (32) involves a real and positive
value fy, (yx), an equivalent cost function can be defined using the un-normalized
characteristic function of (30), i.e.,

j _ 1 sm(Ln)
k(up) = p . —— 5 v (M, (34)

—00

the maximization of which with respect to u; will yield the same optimal uj as in (26).
Due to the affine relation of x4 on the input uy in (1a), the cf (]SX,{ 117 (v) can be
decomposed as [22]

X1 (0) = Gy ) - eI (35)

where qS?(’; i.ol y, (V) is computed assuming u; = 0 and has the same functional form as
(28), except its parameters are not a function of ug, as presented in [10]. Substituting
(35) into the un-normalized form of (27), ¢s, v, (1) is expressed as

GSe1 v (1) = Pxp v (ﬁCT>

— :0 . T.T - :0 o
= @Y=0y () eI = Gu=0, () eJehmn (36

Here, o
By ) = @y (neh). 37)

It has the same functional form as (30) and does not depend on u: the dependence of
®5;411¥, () on uy is conveniently gathered in the exponential term of (36). Substituting
(36) into (34) yields

- 1 sin(Ln) -, — ;
Tt = — / FU=0, () - eleOmngy (38)

—00
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Similarly to (24), the integral in (38) is solved analytically using the factored form

of &g;:‘l)yk (1), given in (30), to yield [18]

K|k

_ 1 di (L= (cMug — 1) + o
Jewe) = — > [ In

|2 (-L—(cAu— ) + o}

[ (L—(cA)uk—ai> (—L—(cA)uk—o,->]}
+ ¢; | arctan | ———————— ] — arctan ,
w; wj

(39)

which is the generalized form of (24) for the vector-state case. For simplicity, in (39)
the time indices (k + 1|k) were removed from the parameters of the characteristic
function.

The cost in (39) is a highly nonlinear function of the optimization parameter uy,
and hence is determined using the numerical procedure outlined in Sect. 4.1. Once
the optimal uj is determined, it is used as an input to the system and to compute the
actual time propagated ¢y, RNAGE

The controller computation steps and its closed-loop implementation is summarized
as a flowchart presented in Fig. 2. At any time step k, after obtaining the measurement
2, first we calculate the measurement updated cf-unpdf ¢ X, |, (V) using the analytical
relations given in [10]. Note that, using the same method, a multi-output system can
be handled by processing each component of a vector-valued z; sequentially. Setting
up =0, q_ﬁxk| v, (v) is used to compute the time-propagated cf (]3;’;:?‘ y, (V) The time-

propagation equations are detailed in [10]. é?fk j?l Ye (v) is thenused in (37) to determine

q_ﬁgf:(l)yk(n) in the functional form given in (30) and (31). The MCPC control signal,
uy, is calculated by maximizing (39). It is applied to the system as well as used to
determine the time-propagated cf ¢y, 117, (v) through the relations given in [10]. The
procedure is repeated when a new measurement is obtained.

In the next section, the proposed MCPC controller is evaluated using a numerical
example of a first- and second-order system and its performance is compared to the

OPC controller and a Gaussian approximation.

5 Numerical Simulation Results

In this section, the performance of the proposed controller is evaluated using a numer-
ical simulation and compared to the performance of an alternative OPC method* and
a Gaussian approximation, LEG, both fully discussed in [6] and [7]. First, in Sect. 5.1,
the control signal at the first time step is evaluated as a function of the first measure-
ment for a scalar-state system with different parameters. This reveals some important
characteristics of the proposed control method. Then, the time response characteris-
tics of a two-state system regulated by the three evaluated controllers are compared in

4 In [7] this controller is referred to as Cauchy MPC.
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4’[ Measurement ]

2k MCPC Controller

‘ Measurement Update ‘47

[oxm )

System
Dynamics:
k—k+1

Time Propagation: u; = 0
Tup=0
lqﬁ)(klﬁdlyk v)

| b = éx (ne?)

[ 95 )
MCPC

*

Ug

: - " ¢Xk+1\yk(l/)
Time Propagation: uj = uj, }7

Fig. 2 Flowchart of the controlled system: rounded blocks represent the system; in the MCPC controller,
the newly introduced components are marked in grey

Sect. 5.2. Both stable and unstable open loops dynamics are examined here. In these
comparisons, for the OPC and LEG controllers we used the same methods, codes and
data as in [7].

5.1 First Time Step Control

To better understand the underlying characteristics of the proposed controller, we
explore first the optimal control value u] as a function of the first measurement z; for
a scalar-state system. We consider a system with parameters ® = 0.9, H = 1,x; =0,
a =0.1,8 =0.02,and y = 0.5, and control design parameter L = 1.5. In each of the
following case studies, we vary one of the scaling parameters y, 8 or « around their
nominal values. Variations in these parameters change the shape of the associated pdfs
and, hence, the shape of the time propagated fx,|z, (x2|z1). Consequently, they affect
the optimal uT. However, variation in L of £50% had a minor effect on the numerical
results.

Figure 3a depicts the optimal control signal u} versus z; for fixed @ = 0.1 and
B = 0.02, and different values of y. Not surprisingly, the plot is antisymmetric around
z1 = 0. Moreover, it clearly shows the nonlinearity of u} as a function of z;, except
for a nearly linear relation for small |z;| values. As expected, the slope of the curves
around the origin is larger for smaller values of y, which correctly corresponds to
(approximately) higher controller gain for noises with a smaller scaling parameter.
Interestingly, for large values of |z1| the optimal control signal tends to zero. This
demonstrates the desirable notion that, since for heavy-tail distributed measurement
noises, measurement outliers are more likely (than, e.g., for a Gaussian distribution),
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Fig.3 MCPC control signal u}
versus z1 for different y, 8 and
« values. Solid line represents

1.5

the nominal case
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a large valued measurement may imply a significant noise component and not a state
deviation. Consequently, the control signal u} should be restrained in such cases, as
is shown in Fig. 3a.

In Fig. 3b, the optimal control signal u} versus z; is shown for fixed « = 0.1
and y = 0.5, and different scaling parameters . This plot demonstrates a similar
nonlinearity of the control signal as mentioned in the previous paragraph, including
the roll-off for high values of |z |. Here, the control signal is larger for small values of
B, indicating that the expected small process noise values will not affect the state at the
next time step and, hence, the control action should weigh the current measurement
more.

Finally, Fig. 3c presents u} versus z; for fixed = 0.02 and y = 0.5, considering
different values of «, the scaling parameter of the pdf of the single initial state x1. The
nonlinear profiles are preserved here for cases that « < y. However, when o > y
the value of u’f is not rolled-off for large |z1]|, and the relation between them becomes
nearly linear for large «. In those cases, due to the high uncertainty in the initial
conditions relative to the measurement uncertainty, the control action relies highly,
nearly linearly, on the measurement.

Very similar results of u} versus z; were reported for the OPC solution in [6]. This
shows the similarity between that and the proposed MCPC approach, which will be
further explored in the next subsection addressing the time response characteristics of
the various controllers.

5.2 Time Response

The performance of MCPC is compared next against the OPC and LEG controllers
derived and discussed in [7]. Here we evaluate the controllers for two second-order
systems for which a fixed window approximation for the needed cfs is readily available
[23], thus further reducing the simulation run time. Nonetheless, it is important to state
that the proposed method is valid for any state dimension.

In this analysis, we evaluate the performance of the three controllers in two cases,
characterized by the stability of the controlled system. The first case addresses a stable
open loop system given by

(]
—t—
0.27 0.76 0.5 0.5
Xk+1=[_076132]xk+|:1:|uk+|:1 ]wk» (40a)
Ze=[1 1]xg+ w, (40b)

with noise parameters oy = ap = 0.8, 8 = 0.02 and y = 0.1. The eigenvalues of
@ are A1 2 = 0.8 £ 0.55. Their size is |)»1,2| = 0.97, i.e., @ is Schur. The sliding

variable is chosen such that the closed loop eigenvalues in (10) are A (é) = 0and

A2 (qS) —0.5toyielde = [1 2.3 ]. The MCPC controller bound was setto L = 1.5.
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The second case examined here assumes an unstable system described by

)
——
—0.16 0.81 0.5 0.5
Xk+1=[_197186]xk+|:1}uk+|:l]wk, (41a)
Ze=1[1 1]xx+ vk, (41b)

with the same noise parameters. The eigenvalues of @ in this case are Aj 2 = 0.85 £
0.76. Their size is ’M,z‘ = 1.13, i.e., the system in (41) is unstable. As in the first
case, the sliding variable is chosen such that the closed loop eigenvalues in (10) are
Al (qS) — 0and A (qS) — 0.5. This is obtained by setting ¢ = [1 0.4 ]. The MCPC
controller bound was set also to L = 1.5.

The simulations results are presented in Figs. 4 and 5. The variables presented are
the two states x; and x;, the control signal u, the sliding variable s, and the process
and measurement noises w and v.

The first simulation is for a stable open-loop system, presented in Fig. 4. When the
process and the measurement noises are relatively small, for example around k& = 40,
MCPC, OPC and LEG controllers behave approximately the same, properly regulating
the states around zero. Differences between the three evaluated control schemes can
be observed when the system faces large process or measurement noises. Specifically,
when a large process noise pulse occurs, for example at k = 14, the states deviate
from their regulated zero values and the controllers respond, in order to drive them
back to regulation. The LEG controller yields a much slower recovery compared to
the faster responses when using the MCPC and OPC controllers. Although MCPC is
slightly slower in reducing x| and slightly faster for x», it behaves similarly to OPC.

The difference between the controllers is dramatic when a significant measurement
noise is encountered, for example at k = 53 in Fig. 4. Being a linear controller, LEG
responds immediately, even though the states did not deviate from the zero vicinity, thus
unnecessarily exiting the system with corresponding transient error. Surprisingly, the
MCPC and OPC controllers correctly ignore the large measurement with a significant
noise, therefore maintaining the states near their regulated values.

Very similar performance characteristics are observed also when the open loop
system is unstable, as presented in Fig. 5. Again, at k = 53 the MCPC and OPC
controllers ignore the large measurement with significant noise, whereas the linear
LEG controller has even a larger transient error compared to the stable case presented
in Fig. 4.

In both stable and unstable cases, it was observed that changing the value of L by
up to +30% has only a minor effect of the performance of the MCPC. This implies
that the conditional pdf of the sliding variable is nearly symmetric, and hence L has
only a small effect on the optimization in (25).

These results demonstrate clearly that the two controllers designed specifically for
Cauchy-distributed process and measurement noises, i.e., OPC and the new MCPC,
outperform their Gaussian approximation LEG controller, duplicating the earlier result
in [7]. Moreover, examining the time responses, there is no substantial difference
between the MCPC and OPC solutions. This demonstrates that in this heavy-tailed
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Fig.4 Regulation performance of the MCPC, OPC, and LEG controllers: stable open loop system

noise environment, at least in the two-state system case examined here, accounting
for future systems behavior, as is suggested in OPC, does not enhance performance: a
single-step-ahead approach of MCPC yields similar performance with a computation-
ally simpler algorithm. Consequently, the fundamental difference between MCPC and
OPC is their computer implementation run time. When tested on the same personal
computer and the same software environment (MATLAB), the run time of MCPC was
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MCPC OPC —-—-— LEG

Fig.5 Regulation performance of the MCPC, OPC, and LEG controllers: unstable open loop system

found to be less than 4% of the time needed to run the OPC. This is of a major impor-
tance when considering real-time implementation. The conclusion above should be
re-evaluated for higher-order systems. These cases were not addressed in this study
because the Cauchy estimator and hence controller implementations suffer from high
numerical complexity, which are now being resolved.
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6 Conclusions

A new control strategy has been developed for discrete-time, vector-state linear sys-
tems driven by Cauchy-distributed process and measurement noises. The motivation
for addressing this type of problems is that controllers based on the commonly used
light-tailed Gaussian distribution assumption cannot properly capture the dynamic
behavior of systems facing extreme process noise inputs and measurement noise out-
liers. The heavy-tailed Cauchy distribution was found to better represent such system
noises. The challenge, when addressing Cauchy distributions, results from the fact
that they have an undefined first moment, and infinite higher moments. Consequently,
commonly used control and estimation methods cannot be applied in this case. The
proposed control strategy was derived using the principles of the deterministic slid-
ing mode control methodology. Since our system is stochastic and thus continuously
forced by unbounded noise input, a sliding mode cannot be attained. Alternatively,
in this work we propose a control method that at each time step maximizes the con-
ditional probability of the sliding variable being in a pre-defined bound around the
sliding manifold. The performance of the proposed controller was tested numerically
and compared to a recently derived optimal predictive controller (OPC) and a Gaussian
approximation (LEG). The proposed controller has demonstrated similar performance
compared to OPC, while both outperformed the LEG controller. The main advantage
of the proposed MCPC solution compared to OPC is the significantly lower compu-
tational burden of MCPC, enhancing real-time implementation.
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