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Abstract: Emerging trends of resilient and reliable water infrastructure advocate for the development of efficient state estimation (SE) tech-
niques in water distribution systems (WDSs). SE refers to estimating the flows and heads in the WDS at unmonitored locations based on
measurements collected from limited monitoring locations. Current physics-based SE methods typically require more exhaustive than readily
available information about the WDS and are computationally demanding to attain real-time SE fully. Using neural networks for SE is a prom-
ising avenue because neural networks are more adaptable to the availability of sensory data and can shift most of the computation efforts to the
offline training phase. Once trained, the inference is more computationally efficient compared to the physics-based SE methods. This work
proposes a graph neural network (GNN) model for SE inWDSs. Unlike traditional neural networks, GNNs are more suitable for the SE problem
for two main reasons: (1) given a limited number of monitoring locations, the SE problem inherently requires a semisupervised learning method,
and (2) GNNs enable learning from the graph structure of a WDS, thus providing a mechanism to incorporate the functional relationships
between the monitored and unmonitored locations and incorporate the physical laws during the training process. To evaluate the performance
of GNNs for SE, we tested supervised and semisupervised approaches, investigated the impact of GNN architecture choices on its performance,
and examined model performance under different levels of noise in the training data. The results demonstrate that GNNs are promising for SE for
their ability to learn from graph structure with a limited amount of information while exhibiting robustness to noise. This study contributes
toward advancing real-time GNN-based SE in WDSs. Future research is needed to incorporate various hydraulic devices and investigate the
scalability of GNNs to large-scale WDSs. DOI: 10.1061/(ASCE)WR.1943-5452.0001550. © 2022 American Society of Civil Engineers.

Introduction

Advances in sensing technology have made it possible to deploy
various sensors, including pressure and flow, to measure and mon-
itor the state of water distribution systems (WDSs). However, con-
sidering the size and complexity of WDSs, as well as budget and
resource constraints of water utilities, it is practically impossible to
monitor every location in the system. Assimilating sensory data
provides a promising avenue to complement physics-based models
with data-driven components, such that the limited sensory data can
be utilized to infer the hydraulic states in the entire system. State
estimation (SE) is defined as inferring the states at all locations
given measurements at a limited number of locations (Kang and
Lansey 2010). In the context of WDSs, system states include the
collection of heads at junctions and flows along pipes. The field
measurements in a WDS typically include flow in pipes and pumps,
pressure heads at junctions and storage tanks, and consumer
demands (Tshehla et al. 2017; Wang et al. 2022).

SE has been traditionally formulated as an inverse optimization
problem, in which the objective is to find the best match between

the model predictions and measurements, as constrained by the net-
work hydraulics, i.e., mass balance and energy conservations
(Tshehla et al. 2017). Previous works differ in the choice of cost
functions, formulation of constraints, and the choice of optimiza-
tion algorithms (Andersen and Powell 2000; Andersen et al. 2001;
Nagar and Powell 2002; Kumar et al. 2008; Preis et al. 2011; Díaz
et al. 2016). However, the inverse optimization formulation typi-
cally requires more exhaustive than readily available information
to improve solution quality and uniqueness. Additionally, the in-
verse optimization formulation results in complex nonlinear and
sometimes nonconvex systems of equations, which require exces-
sive computational resources to solve (Kumar et al. 2008; Wang
et al. 2022).

Speeding up SE using neural networks (NNs), which are more
flexible to data availability, is a promising avenue, especially for
real-time estimation because most of the computational effort can
be accomplished during the offline training stage. Once the models
are trained, the SE task is reduced to a series of matrix-vector multi-
plications, which can be achieved very efficiently. In the context
of WDSs, different NN architectures have been proposed and
applied to various problems. For example, fully connected NNs
were proposed to detect and identify pipe bursts from transient
pressure waves (Mounce and Machell 2006; Bohorquez et al.
2021); convolutional neural network (CNN) models were trained
as time-series classifiers to distinguish leak from normal signals
collected by piezoelectric accelerometers (Kang et al. 2018; Guo
et al. 2021); a temporal graph convolutional network was applied
to perform head and flow time-series predictions at key facilities
to detect cyber-physical attacks (Tsiami and Makropoulos 2021);
and seven different NNs were applied to estimate missing pipe
information, i.e., materials and diameters, in wastewater networks
(Belghaddar et al. 2021).
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However, most of these methods were designed for anomaly
detection and have not been investigated for SE purposes. We iden-
tify three main challenges associated with applying traditional NNs
to the SE problem:
• The majority of the previous works rely on the supervised learn-

ing approach, which requires labeled data for all samples; how-
ever, for the SE problem, data is expected to be available only at
a limited number of locations, indicating that SE inherently re-
quires a semisupervised learning approach.

• The supervised learning formulation is purely data-driven and
typically ignores the basic physical laws that govern the hy-
draulics in WDSs, thus failing to satisfy the underlying physics
and potentially yielding inconsistent solutions.

• The traditional NNs can only operate on Euclidean data, typi-
cally denoted as Rn, where n stands for the dimension, such as
time-series (R2) and images (R3).
Nevertheless, information in WDSs, which includes network

topology as well as attributes of nodes and pipes, inherently persist
in graph domains, which are non-Euclidean and cannot be mapped
neatly into Rn. The complexity of graph-structured data poses
significant challenges to the traditional NNs defined in Euclidean
domains, including input representation of non-Euclidean data, the
interdependency of nodes connected by edges, and the definition of
information aggregation, i.e., convolution and pooling operators, in
CNN models.

Recently, graph neural networks (GNNs), the generalization of
traditional NNs from the Euclidean domain to the graph domain,
have received increasing attention (Zhou et al. 2020). In this
study, the GNN is identified as a promising approach for SE
for two reasons. First, unlike traditional NNs, GNNs can not only
learn from node attributes but also from the connectivity between
the nodes, as represented by the network topology, thus making
GNNs more appropriate for learning tasks in WDSs. Second, the
topology information, as embedded in the graph-structured data,
provides a mechanism for incorporating the functional relation-
ships between the monitored and unmonitored locations. The lat-
ter is an essential input to formulate the loss that directly penalizes
a violation of physical laws. Therefore, we will expect better pre-
dictions at the unmonitored locations for which measurements are
not provided.

The concept of GNNs was first developed to extend existing NNs
for processing the data represented in graph domains (Scarselli et al.
2009). Various GNN structures have been proposed that differ in
how information is exchanged and aggregated (Battaglia et al. 2018;
Zhou et al. 2020). The commonality of the different information ex-
change mechanisms can be abstracted as a forward path containing
two phases: a message-passing phase, which updates the latent node
states based on messages/information from neighbor nodes, and a
readout phase, which decodes the latent states to the output feature
space (Gilmer et al. 2017; Isufi et al. 2020). Popular GNN variants
include gated graph neural networks (Li et al. 2015), graph convolu-
tional networks (Zhang et al. 2019b), graph attention networks
(Veličković et al. 2017), and graph recurrent neural networks
(Hajiramezanali et al. 2019). Due to their ability to learn on graphs,
which can be used to denote different systems, GNNs have been
widely applied to various fields, including social network prediction
(Fan et al. 2019), recommender systems (Ying et al. 2018; Yin et al.
2019), traffic flow prediction (Wang et al. 2020), particle-based sim-
ulation (Sanchez-Gonzalez et al. 2020), and power grid modeling
(Donon et al. 2020a, b; Liao et al. 2021).

In addition to innovations in GNN architectures, advanced train-
ing methods have also been developed to improve the performance
and capabilities of NNs. Traditionally, data-driven approaches were
adopted to train a surrogate model in a supervised manner, such that

the trained model can imitate solutions provided by some simula-
tors (Bolz et al. 2019). However, this traditional data-driven super-
vised learning approach ignores valuable domain knowledge, thus
failing to satisfy the underlying physical laws and potentially yield-
ing inconsistent solutions. Therefore, there is a pressing need for
integrating physical laws and domain knowledge in the model
training process, which can, in turn, provide physically consistent
solutions and avoid overfitting (Karniadakis et al. 2021). To this
end, physics-informed machine learning has been proposed to in-
corporate domain knowledge into the training process by custom-
izing the loss function to minimize the violation of the governing
differential equations (Raissi et al. 2019). This new learning para-
digm has been further developed and applied to provide simulator-
free solutions in various fields, including modeling and prediction
of a power grid flow (Donon et al. 2020a, b), surface fracture
(Goswami et al. 2020; Shukla et al. 2020), turbulence (Wu et al.
2018; Wang et al. 2017), and climate (Kashinath et al. 2021).
Taking advantage of these advances, we design the GNN loss func-
tion to penalize discrepancies between measurements and model
predictions and the violation of the governing hydraulic equations.

Motivated by the need for real-time SE, the limited availability
of measurements, and graph-structured data, the objectives of this
study are as follows: (1) present a GNN model for SE in WDSs,
(2) investigate the impact of the model architecture and noisy mea-
surements on prediction quality, and (3) encourage reproducibility
and usability of the research. Specifically, this paper is organized as
follows. We first present the GNN architecture and formulate two
learning approaches: (1) a supervised scheme that is trained using
complete information provided by a hydraulic solver using many
simulations of different network topologies and demands, and (2) a
semisupervised approach that receives only a limited amount of
measurements at given locations and simultaneously integrates
the physical laws of mass and energy conservation. We then de-
scribe in detail the formulation of the loss function and the training,
testing, and evaluation processes. The supervised learning ap-
proach is used as a benchmark to test the GNN architecture, while
the main goal is to explore the new semisupervised approach. The
performance of the two learning methods is then evaluated using
several quantitative and qualitative metrics against the results ob-
tained from a hydraulic solver, EPANET (Rossman et al. 2020).
The results demonstrate that the proposed GNN architecture can
learn to estimate the hydraulic state and that the semisupervised
learning approach enables learning with fewer measurements while
improving the performance of the trained model. Furthermore, we
investigate the impact of various architecture choices on model per-
formance and test the robustness of the model to measurement
noise. We conclude the paper and propose several potential future
extensions to overcome some of the current limitations. Finally, to
encourage research reproducibility, we make all data, codes, and
models available in the GitHub repository (Xing and Sela 2021).

Methodology

The objective of this work is to solve the SE problem, which is
defined as estimating the heads at all nodes and flows in all pipes
in the WDS given information about network layout, pipe charac-
teristics, nodal demands, water levels at the reservoirs, and head
measurements at limited locations. In this section, we introduce
a novel GNN model to estimate states in WDSs, i.e., flow (Q)
in each pipe and head (H) at each junction, and explain the main
steps required to set up the GNN model. The main steps include the
following: (1) defining inputs and outputs of the GNN model,
(2) setting up the GNN architecture by defining the encoder,
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processor, and decoder, (3) formulating the supervised and semi-
supervised loss functions that are used to train the model, and
(4) testing model performance. Additionally, we evaluated the im-
pact of various key architecture choices on the GNN performance
and tested the robustness of the model to different levels of noise in
training data.

Problem Formulation

Consider a WDS with n nodes and m pipes; let N ¼ f1; : : : ; ng
and M ¼ f1; : : : ;mg denote the node set and the pipe set, respec-
tively. Within the n nodes, nd nodes are junctions, i.e., pipe con-
nections or users, denoted as Nd, and ns nodes are source nodes,
i.e., reservoirs or tanks, denoted as Ns, such that N ¼ Nd ∪ Ns.
Each pipe p can then be represented by its start node i and end
node j, i.e., p ¼ ði; jÞ. The following settings of the WDS are given
as inputs:
• Topology of the network as represented by the network adja-

cency matrix An×n ¼ ðaijÞi;j∈N , where aij ¼ 1 if nodes i and
j are connected, and 0 otherwise.

• Demands at all junctions, i.e., qi, ∀ i ∈ Nd.
• Heads at reservoirs and tanks, i.e., H�

i , ∀ i ∈ Ns.
• Loss coefficients at all pipes, i.e., cp, ∀ p ∈ M, which can be

calculated

cp ¼ 10.67 × lengthp
r1.852HW;p × diameter4.871p

ð1Þ

where rHW;p, diameterp, and lengthp = dimensionless Hazen-
William coefficient, diameter, and length of pipe p in metric
units, respectively.

• Head measurements at some junctions, i.e., H�
i , ∀ i ∈ Nm,

where Nm denotes the junctions where head measurements
are available.
Given all the inputs listed previously, the goal of this work is

to design and train GNN models to estimate the states in a WDS,
i.e., flow (Q) in each pipe and head (H) at each junction. The GNN
model is a functional map from the inputs, i.e., network character-
istics, topology, and measurements at limited locations, to the
outputs, i.e., H at all nodes and Q along all pipes. To formulate
the problem mathematically, we first present some notations and

definitions that will be used throughout the paper. Input interaction
graph, denoted as GI ¼ ðV;EÞ, embeds all inputs regarding the
WDS settings, including node related inputs V ¼ ðViÞi∈N ;Vi ∈
RdV and pipe related inputs E ¼ ðEpÞp∈M;Ep ∈ RdE , where dV
and dE are the dimension of node and pipe inputs, respectively.
The output interaction graph GO ¼ ðH;QÞ represents the states of
the interaction graph, whereH ¼ ðHiÞi∈N stands for the heads at all
nodes, and Q ¼ ðQpÞp∈M represents the flows in all pipes. In this
paper, we only include nodal head (H) as the state of the graph
because pipe flows (Q) can be uniquely determined once all heads
are known. The GNN model, Mθ∶GI → GO, is then defined as
a parameterized function approximator, whose parameters θ can
be optimized for some training objectives, i.e., loss function
LðGI;GOÞ. The goal is thus to learn a GNN model Mθ that best
approximates the mapping GI → GO.

GNN Architecture

The proposed GNN model approximates the hydraulics by interac-
tions among the neighboring junctions, which can be viewed as
passing and aggregating information between nodes in the GNN.
The overall workflow of the GNN model is described in Fig. 1. It
consists of three major steps: (1) the encoder transforms input
space to an abstract vector space, taking into account the WDS top-
ology; (2) in the processor step, the latent state of each node is
iteratively updated by passing and aggregating information from
their neighbors; and (3) the decoder transforms the results back into
the output space. The following subsections elaborate the structure
in each step.

Encoder
To translate the WDS settings into a format that can be processed
by the GNN model, we first encode all inputs into the input inter-
action graph GI ¼ ðV;EÞ, where nodes represent junctions and
reservoirs, and edges represent pipes in WDSs. The node inputs
are embedded in V ¼ ðViÞi∈M;Vi ∈ R4. For node i, the node inputs
are represented as Vi ¼ ½Idi ; qi; Imi ;H�

i �, where Idi is the junction
indicator, such that Idi ¼ 1 if i ∈ Nd and 0 otherwise; qi is the de-
mand at node i if i ∈ Nd and 0 otherwise; Imi is the measurement
indicator, such that Imi ¼ 1 if i ∈ Nm and 0 otherwise; andH�

i is the
head at node i if the head is known and 0 otherwise. Additionally,

Fig. 1. The overall architecture of the GNN model.
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E ¼ ðEpÞp∈M;Ep ∈ R3 represents pipe inputs, including the start
and end nodes, and characteristics of the pipes. For example, for a
pipe p whose start and end nodes are i and j, respectively, the pipe
input is Ep ¼ ½i; j; cp�.

In the input interaction graph, pipe and node inputs have differ-
ent physical meanings and therefore can exhibit different orders of
magnitude. For example, the nodal demands can range from 0 to
10−2 m3=s, while nodal heads are normally 2–4 orders of magni-
tudes greater. It is critical to scale the input data to improve the
training performance of the GNN. We thus create the normalized
version of the data, i.e., v ¼ ðviÞi∈N and e ¼ ðepÞp∈M, where p ¼
ði; jÞ is the pipe with start node i and end node j, as follows

vi ¼
Vi − μV

σV

ep ¼ eði;jÞ ¼
Ep − μE

σE
ð2Þ

where μV , σV , μE, and σE = mean and standard deviation of pipe
and node inputs, respectively. Subsequently, the initial guesses on
the graph states, i.e., nodal heads, are embedded into latent states,
i.e., X ∈ RdX , where dX is a hyperparameter of the GNN model,
denoting the dimension of the latent states. All latent states X0

are initialized to a zero vector.

Processor
The processor iteratively updates the latent states at each node by
passing and aggregating information to and from neighboring
nodes using the input interaction graph. The directionality of
flows in the WDSs is accounted for in the GNN architecture by
learning different message-passing mappings for incoming and
outgoing flows. Specifically, in the kth update layer for each
node i, messages from incoming, outgoing, and self-loop pipes,
i.e., ϕk

in, ϕ
k
out, and ϕk

loop, are computed based on the latent state

at node i, Xk
i , the latent states at its incoming neighbors (N in;i ¼

fjjeði;jÞ ∈ Eg) and outgoing neighbors (N out;i ¼ fjjeðj;iÞ ∈ Eg),
and the normalized inputs of connecting pipes eði;jÞ, as shown
in Eq. (3). It should be noted that the latent variables are denoted
as X, which is different from the common notation H in GNN
literature (Zhou et al. 2020). This choice of notation was made
due to the fact that H is used to denote nodal heads following
the common practice in water distribution systems research

ϕk
in;i ¼

X
j∈N in;i

Φk
in;θðXk

i ; eði;jÞ;X
k
jÞ

ϕk
out;i ¼

X
j∈N out;i

Φk
out;θðXk

j ; eðj;iÞ;X
k
i Þ

ϕk
loop;i ¼ Φk

loop;θðXk
i ; eði;iÞÞ ð3Þ

where Φk
in;θ, Φ

k
in;θ, and Φk

loop;θ = trainable mappings, each of which
is modeled as a multilayer perception (MLP), which is a class of
feedforward artificial neural networks. The MLP consists of an in-
put layer, one or multiple hidden layer(s), and an output layer
(Friedman et al. 2001). Each layer transforms the values from the
previous layer with a nonlinear activation function and a weighted
linear summation, which is parameterized by a set of parameters θ,
including weights and intercepts. It should be noted that for each
node i, the same MLPs are used for message passing, assuming that
the interaction mechanism between different nodes is similar.

Subsequently, for each node i, the three messages ϕk
in, ϕ

k
out, and

ϕk
loop, and the normalized node inputs vi are aggregated using

another MLP mapping Ψk
��θ, as follows

ψk
i ¼ Ψk

θðXk
i ; vi;ϕ

k
in;i;ϕ

k
out;i;ϕ

k
loop;iÞ ð4Þ

The aggregated message is then utilized to update the latent
variable by adding the output of the previous layer directly to the
output of the current layer (He et al. 2016)

Xkþ1
i ¼ Xk

i þ αψk
i ð5Þ

where α = hyperparameter in the model. Choosing a sufficiently
low value of α helps to keep the successive updates at a reasonably
low order of magnitude. The update mechanism adds the latent var-
iable from a previous layer to the current latent, which ensures that
the higher layer will perform at least as good as the previous layer.
At this point, the latent leap from Xk to Xkþ1 has been achieved.
This process will then be iterated for k̂ number of updates, where k̂
is another hyperparameter denoting the number of correction up-
date layers in the model.

Decoder
After each processor update, latent state Xkþ1 is decoded into the
meaningful output state, i.e., nodal heads Hkþ1

Hkþ1
i ¼ Dk

θðXkþ1
i Þ ð6Þ

where Dθ = MLP mapping parametrized by θ. The same decoder is
applied to each node. The output state at the last update layer Hk̂ is
the final output of the model.

Loss Computation

At each update layer k, the loss function lkðGI;GOðHkÞÞ is evalu-
ated. Two different formulations of loss functions are considered in
this work: supervised and semisupervised loss. Supervised loss, ls,
defined in Eq. (7), measures the sum of squared errors between the
current state computed by the GNN model Hk and th e reference
values H�, e.g., measurements

lks ¼ kHk −H�k2 ð7Þ

The supervised approach trains the GNN by learning only from
reference values. On the other hand, the semisupervised approach
trains the GNN model by minimizing the violation of physical laws
and simultaneously assimilating the reference values, i.e., measure-
ments or simulation results. The semisupervised loss, lu, can then
be decomposed into two parts

lku ¼ βlkm þ ð1 − βÞlkv ð8Þ
where lkm ¼ ImkHk −H�k2 represents the loss related to the sum of
squared errors between model outputs and measurements at the
limited location; Im ¼ ½Im1 ; Im2 ; : : : ; Imn � is the vector of measure-
ment indicators; lkv = unsupervised loss that represents the violation
of physical laws; and β = weighting factor that allows one to pri-
oritize one loss over the other.

In this study, we measure the unsupervised loss as the flow im-
balance at the nodes and the head imbalance at the sources. To de-
fine the unsupervised loss, we first revisit the system of equations
that governs the steady-state hydraulics in WDSs (Larock et al.
1999). With the Hazen-Williams model, the head loss for a pipe p
that connects nodes i and j can be calculated by hp ¼ Hj −Hi ¼
cpbQpc1.852, which can then be transformed to a nodal head
equation

Qp ¼
�
1

cp
bHj −Hic

�
0.54

ð9Þ
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Substituting Eq. (9) into the mass conservation equation for
each node yields

X
j∈N i

�
1

cp

�
Hj −Hi

��0.54
¼ qi; ∀ i ∈ Nd ð10Þ

where the summation is over all pipes entering or leaving the
node i. The notation b·c is adopted from Boulos et al. (2006,
Chap. 5) and accounts for the flow direction. If Hi is greater than
Hj, then the flow is from node i to j, and the flow is from node j to
i otherwise. Additionally, the head boundary conditions at the
sources are specified

Hi ¼ Hs;i; ∀ i ∈ Ns ð11Þ

We can then obtain the unsupervised loss, lkv, which represents
the violation of physical laws, as the sum of squared residuals be-
tween model predictions and governing equations Eq. (10) and (11)

lkv ¼
X
i∈Nd

�X
j∈Ni

�
1

cij

�
Hk

j −Hk
i

��0.54 − qi

�
2

þ
X
i∈Ns

ðHk
i −Hs;iÞ2

ð12Þ

The first part of the unsupervised loss measures the flow imbal-
ance between inflows and outflows in each node, and the second
part measures the imbalance between the estimated and actual head
at the sources. In the training process, the loss function will be
minimized, which might be more challenging with nondifferentia-
ble functions. Notably, the flow imbalance term in the lkv is not
differentiable in the case of zero flows, i.e., when Hk

i ¼ Hk
j .

The ill-conditioning in the presence of zero flows is a known prob-
lem in hydraulic simulations in WDSs, which can be avoided by
replacing jHk

j −Hk
i j that is smaller than an arbitrarily small positive

number δ by the bound δ (Todini and Pilati 1988). Although other
solutions are possible, the bounding strategy is commonly imple-
mented in hydraulic solvers like EPANET (Rossman et al. 2020);
hence, this study adopted the same strategy. Additionally, nonlinear
optimization methods are sensitive to scaling issues. Hence, be-
cause flow imbalance at junctions and head imbalance at sources
have different units, scaling should be applied to improve perfor-
mance. In our case study, the two parts had similar magnitudes;
thus, scaling was not implemented.

Therefore, the complete form of semisupervised loss can then be
written

lku ¼ β
X
i∈Nm

ðHk
i −H�

i Þ2

þ ð1 − βÞ
X
i∈Nd

�X
j∈Ni

�
1

cij

�
Hk

j −Hk
i

��0.54 − qi

�
2

þ ð1 − βÞ
X
i∈Ns

ðHk
i −Hs;iÞ2 ð13Þ

where the first term accounts for the mismatch between model
predictions and measurements; the second term represents the flow
imbalance at junctions; and the third term accounts for the head
imbalance at sources.

To robustify the learning process, all intermediate losses, lks
or lku, are taken into account in the total training loss L through
a discounted sum

Ls=uðGI;GOðHk̂ÞÞ ¼
Xk̂
k¼1

γk̂−klks=u ð14Þ

where Ls=u = total discounted supervised or semisupervised loss
depending on the choice of learning approach; ls=u = supervised
or unsupervised loss at update layer k; and γ ∈ ½0; 1� = hyperpara-
meter that represents the discount factor, which is chosen empiri-
cally, such that more weight is assigned to the accuracy of the later
correction update layers, while still allowing gradients to flow to
the first few update layers. A lower value of γ means that losses
in previous layers are valued less in the total loss. If γ ¼ 0, the
GNN model is concerned only with minimizing loss at the final
update layer, and γ ¼ 1 means that losses in all layers are equally
accounted.

Model Training, Testing, and Evaluation

During the training process, a set of Tr different WDSs, defined by
Tr different input interaction graphs, is provided to the GNN
model. The GNN model performs the forward propagation to com-
pute the output states, i.e., nodal heads Hk, and evaluate the loss, as
defined in Eqs. (7)–(12), at all correction update layers k. Sub-
sequently, the total loss, as defined in Eq. (14), is computed by
taking the weighted sum of the losses evaluated at all update layers.
Then, the gradients of the total loss with respect to the parameters θ
in all MLP blocks, i.e., Φk

in;θ, Φ
k
in;θ, Φ

k
loop;θ, Ψ

k
θ in the processor, and

Dk
θ in the decoder, are estimated using the back propagation rules.

These gradients are then used to update the parameter θ iteratively,
such that all MLP blocks are trained simultaneously to obtain
the optimal parameter θ, which minimizes the training loss. Gra-
dient clipping, which involves capping the gradient values to a spe-
cific maximum value if the gradient exceeds an expected range, is
applied to avoid exploding gradient issues and improve stability
and convergence (Zhang et al. 2019a; Mai and Johansson 2021).
The training process is repeated on randomly sampled training
batches of input interaction graphs until the total loss converges,
i.e., no longer decreases.

Once the training process is accomplished, the trained model is
then tested using another set of Te different input interaction
graphs. The output states can be obtained through the forward
propagation, i.e., a series of matrix-vector multiplications, using
the trained set of parameters. Subsequently, the performance of the
trained model is evaluated using the test dataset using qualitative
and quantitative measures. The qualitative comparison included
plotting: (1) GNN predictions versus the reference values obtained
from EPANET, (2) the distributions of errors at different nodes to
identify nodes that exhibit greater prediction errors, and (3) inter-
mediate losses and predictions to illustrate the convergence pro-
cess. Quantitative analysis to assess model performance included
the following:
• The correlation with respect to heads and flows (CorrH and

CorrQ) between the GNN and EPANET results are evaluated
across all nodes and pipes in all test samples. For example,
the head correlation (CorrH) is computed as follows:

CorrH ¼
P

n
i¼1

PTe
l¼1 ðHk̂

i;j − H̄ÞðH�
i;j −H�ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1

PTe
l¼1 ðHk̂

i;j −Hk̂Þ2ðH�
i;j −H�Þ2

q ð15Þ

whereHi;j andH�
i;j = head at ith node in the jth sample obtained

by the GNN and EPANET models, respectively; and H̄ and
H� = overall mean of heads at all nodes across all samples ob-
tained by the GNN and EPANET models, respectively. A higher
CorrH represents a better overall match between GNN estima-
tions and EPANET results.

• The head and flow root mean squared error (RMSE) for each
of the test sample results is evaluated, e.g., head RMSE, by
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nÞPn

i¼1 ðHk̂
i −H�

i Þ2
q

, which yields a vector of RMSE of
length Te. The mean and standard deviation of the head and
flow RMSE vectors are then evaluated and denoted by
RMSEH, RMSEQ, σðRMSEHÞ, and σðRMSEQÞ, respectively.
The RMSE provides insights of the average inference perfor-
mance of the trained GNN model, while σðRMSEÞ shows how
uncertain the performance is. Better performance is character-
ized by lower value of RMSE and σðRMSEÞ.

• The 10th, 50th, and 90th percentile of the total supervised loss
for each sample, as defined in Eq. (7), are also reported to show
the magnitude of loss after convergence is achieved.

• We investigated the impact of GNN architecture choices on its
performance by systematically varying the different architec-
tural choices, including the dimension of the latent variables
(dX), number of correction update layers (k̂), number of hidden
layers in each MLP block, discount factor (γ), update coefficient
(α), and shared versus unshared decoders and processors for
different update layers.

• To test the model robustness against noise, we added different
levels of noise to the head reference values (H�) in the training
data and examined model performance.

Experiments and Results

This section details the experimental protocol used to validate the
proposed approach, including the process of dataset preparation
and the choice of hyperparameters. The results obtained from
supervised and semisupervised training approaches with different
numbers of monitoring locations, varying architecture choices, and
different levels of training noise are presented and compared.

Dataset Preparation

We evaluated the proposed model on a benchmark WDS, compris-
ing 51 junctions, 65 pipes, and 1 reservoir. Its topology is depicted
in Fig. 2, and the detailed information can be found in the study by
Alperovits and Shamir (1977). To create a more realistic scenario,
this WDS hydraulic model was modified to perform an extended
period simulation (EPS) of 1 week with a 1-h reporting time-step
(169 time steps). Each junction is assigned one of five demand
patterns that represent temporal and spatial demand variability in
the weekly simulation. We generate the training set based on this
single WDS but alter nodal demands and locally modify network
topology. Specifically, with changes in demands at each time-step,
which are encoded in V, the EPS model configuration yields 169
different input interaction graphs GI for a single topology. Addi-
tionally, in order to improve model training, we increased the di-
versity of network topology, which is encoded in E, by randomly

disconnecting two pipes while preserving the connectivity between
each node in the network and source. A total of 256 networks with
different topologies are then generated, each of which shares the
same demand pattern assignments among the junctions. Thus,
the dataset includes 256 × 169 samples, each of which is one net-
work with one set of demand loads. Subsequently, the dataset is
split 60%/20%/20% (25,958=8, 653=8, 653) for training, valida-
tion, and testing, respectively.

For supervised learning, reference nodal heads for all the
junctions are required. We use the steady-state hydraulic solver
EPANET (Rossman et al. 2020) to compute the nodal heads (given
the topology, pipe, and node characteristics). The EPANET simu-
lation results are used as the reference values (H�), which are
encoded in the node inputs V, where all measurement indicators
equal 1, i.e., Imi ¼ 1; ∀i.

In a more realistic scenario, we do not expect measurements at
all nodes to be available; instead, we can expect to have pressure
information at several key locations in the network. For semisuper-
vised learning, nodal heads at only a few junctions are required.
Thus, the EPANET simulation results at some chosen junctions
are supplied and encoded into the node inputs V as defined in the
methodology section.

Supervised Learning

The GNN model is first trained using the supervised approach. The
latent dimension was set to dX ¼ 20, and the number of correction
update layers was set to k̂ ¼ 20. Each MLP block, Φk

in;θ, Φ
k
in;θ,

Φk
loop;θ, Ψ

k
θ, and Dk

θ, exhibits one hidden layer and a leaky-ReLU
activation layer. Other hyperparameters were chosen as follows:
α ¼ 0.01 and γ ¼ 0.9. The Adam optimizer (Kingma and Ba 2014)
is adopted to minimize the supervised loss with the learning rate
lr ¼ 0.001. Training is completed within 70,000 iterations with
batch size 500, which took around 24 h on a Windows machine
with Intel(R) Core(TM) i7-7700 CPU@3.60GHz.

After the training, heads at all nodes are obtained, which are then

used to compute the pipe flow with Qp ¼ ðbHk̂
j −Hk̂

i c=cpÞ0.54,
where nodes i and j are the start and end node of pipe p. The per-
formance of the GNN model is then evaluated on the test dataset.
The inference time, i.e., the computational time for a single run with
a trained GNN, is 0.0067 s. The comparisons of the heads and flows
between the results obtained from the EPANET solver and the
supervised GNN model are shown in Figs. S1(a and b) of the Sup-
plemental Materials, respectively. The x-axis represents EPANET
results, and the y-axis shows supervised GNN results. The perfect
alignment between the two models is characterized by the diagonal
lines, while the EPANET-GNN result pairs are represented by the
markers. Fig. S1(a) shows that the head predictions from the super-
vised GNN model match well with the results obtained from
EPANET simulations. The correlation between the results from
the two models is approximately 99.98%. Similarly, the comparison
between flow results is presented in Fig. S1(b). Although the general
trend shows good agreement with a 97.31% correlation coefficient,
it can be noticed that misalignment is more significant when the
flows obtained from EPANET simulations are closer to zero. The
misalignment near zero flows can be explained by the fact that based
on Eq. (9), the derivative of the flow rate with respect to the head
difference is steep near zero flow; hence, small changes in the head
difference can lead to a relatively great difference in flows. Consid-
ering the stochastic nature of GNN training, small head differences
are inevitable, thus resulting in the more obvious misalignment near
zero flow. The first column of Table 1 summarizes additional met-
rics evaluating the performance of the supervised GNN model,

Fig. 2. Layout of the benchmark WDS and locations of measurement
nodes as represented by the circles.
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including correlation and the RMSE with respect to EPANET
results, as well as percentiles of the loss.

To further examine the supervised GNNmodel performance, we
then compare head and flow results obtained from the supervised
GNN model and EPANET solver at each node and pipe during the
one-week simulation, as presented in Figs. 3(a and b), respectively.
In Fig. 3(a), the x-axis represents the node number, and the y-axis
stands for the absolute head difference between the two models at a
specific node i, i.e., jHk̂

i −H�
i j. The absolute head difference at

each node is displayed by a boxplot, in which the two ends of the
box show the lower and upper quartile (Q1 and Q3), and the line

across the box characterizes the median. The upper whisker extends
to the last datum less than Q3þ 1.5ðQ3 − Q1Þ, and the lower
whisker extends to the first datum greater than Q1 − 1.5ðQ3−
Q1Þ. Beyond the whiskers, data are considered outliers and are
plotted as individual points. It can be observed that the head differ-
ences are evenly distributed across different nodes with the median
around 0.01 m. This is expected as the heads at all nodes resulting
from EPANET simulations are supplied for model training, and
the loss function minimizes the head mismatch between the GNN
predictions and the EPANET results at all nodes.

Similarly, Fig. 3(b) presents the flow difference at each pipe.
Unlike the head differences, the flow difference varies significantly
across different pipes. For example, the differences in Pipes 64 and
65 are much larger than those in other pipes. After closer investi-
gation, we notice that the EPANET flow results in these two pipes
are zero, e.g., dead-end pipes, or very close to zero. Thus, this ob-
servation reinforces that greater flow discrepancies are expected
when flows are zero, which can be explained by the fact that flows
are not directly involved in the supervised GNN training process;
instead, they are computed after the heads are predicted by the
training GNN model.

Fig. S2 in the Supplemental Materials illustrates the intermedi-
ate losses and the head predictions across the 20 correction update
steps, in which the center Fig. 6(a) shows the progress of super-
vised loss at each update step, and the side Figs. 6(b–g) show the
comparisons of head results between the EPANET and GNN
model. As expected, the loss decreases as the correction update pro-
gresses. Also, the head predictions from the GNN model gradually

Table 1. Performance comparison of the GNN models trained with
supervised or semisupervised approaches as evaluated using the test set

Model
Supervised

GNN

Semisupervised
GNN w/1

measurement

Semisupervised
GNN w/5

measurements

CorrH 99.98% 71.53% 99.96%
CorrQ 97.31% 90.0% 99.73%
RMSEH 2.06 × 10−2 3.08 × 10−1 1.14 × 10−2
σðRMSEHÞ 2.42 × 10−3 1.96 × 10−1 6.32 × 10−3

RMSEQ 1.08 × 10−2 1.92 × 10−1 3.63 × 10−3

σðRMSEQÞ 2.42 × 10−3 7.80 × 10−3 1.06 × 10−3
Loss 10th percentile 2.44 × 10−5 2.66 × 10−5 1.31 × 10−5
Loss 50th percentile 5.47 × 10−5 4.63 × 10−5 2.91 × 10−5
Loss 90th percentile 1.19 × 10−4 8.39 × 10−5 7.01 × 10−5

Note: Bold numbers represent the best performing metrics.

(a)

(b)

Fig. 3. The differences between the results from the EPANET solver and the supervised GNN model at each junction and pipe: (a) head differences;
and (b) flow differences.
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approach the EPANET results and achieve good alignment at the
final update step.

Semisupervised Learning with One Measurement
Location

In this experiment, the GNN model is trained in a semisupervised
fashion. In this study, we assume that only one sensor is available in
the network, i.e., jNmj ¼ 1, at which the nodal head can be esti-
mated. We chose junction 5, represented by the circle in Fig. 2,
as the measurement location, i.e., Im5 ¼ 1. The head results from
EPANET at junction 5 are encoded in the node input V and are
supplied to the GNN model in the input interaction graph GI, while
the EPANET results at all other junctions are invisible to the GNN
model. The same hyperparameters and optimizer are used as in the
supervised model to enable comparison between the two training
approaches.

The performance of the semisupervised GNN model, as evalu-
ated by correlation and RMSE with respect to EPANET results, as
well as loss percentiles, is displayed in the third column in Table 1.
Compared with the supervised learning approach, as shown in the
first column, the performance of this model is considerably worse.
For example, the correlations with EPANET results are only
71.53% for heads and 90.0% for flows. Notably, unlike the super-
vised approach, the flow correlation is better than that of heads.
This is because the semisupervised loss as defined in Eq. (13) ac-
counts for the nodal flow imbalance; thus, flows are more directly
trained than the heads.

Subsequently, Figs. 4(a and b) compare head and flow results
obtained from EPANET solver and the semisupervised GNNmodel
with one head measurement at junction 5 at each node and pipe.
It can be noticed from Fig. 4(a) that the head differences vary sig-
nificantly across different nodes. For example, at junction 5, where
head measurements are assumed, the head differences are close
to zero, indicating a good match between the EPANET and GNN
model. A good match is expected because the mismatch between
the measurements and GNN prediction enters directly into the loss
function in term lkm. Moreover, some nodes other than the measure-
ment node itself, e.g., 1, 2, 3, 6, and 13, also agree well with the
EPANET results. However, the head differences at some other
nodes, e.g., 24, 34, and 42, get as large as 1.0 m.

To investigate why the head differences between the two models
are larger at some nodes while smaller at others, we hypothesized
that the error in model predictions increases as we move away from
the location where measurements are available. Intuitively, the
measurements provide reference head values to compensate for
the flow imbalance loss, which essentially regulates the relative re-
lations between nodal heads in the form of bHj −Hic. Without the
measurements, GNN needs to build and learn along a long-distance
message passing path from each node to the source nodes, in which
the known heads provide a reference. If measurements are avail-
able, it is then enough to build the message passing path from un-
monitored nodes to the nearby monitored nodes. The learning of
message passing on a shorter path is easier as it involves fewer
function approximations. Thus, more measurements can help im-
prove the GNN training. To validate the hypothesis, we computed

(a)

(b)

Fig. 4. The differences between the results from the EPANET solver and the semisupervised GNN model trained with one measurement at each
junction and pipe: (a) head differences; and (b) flow differences.

© ASCE 04022018-8 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2022, 148(5): 04022018 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f T
ex

as
 a

t A
us

tin
 o

n 
07

/2
0/

22
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



the shortest path from each node to the measurement node,
i.e., junction 5, using Dijkstra’s algorithm (Johnson 1973). We then
plotted the relation between head differences and the number of
pipes on the shortest path, as illustrated in Fig. S3 in the Supple-
mental Materials, in which each data point represents a node in the
network. The corresponding x value is the number of pipes on the
shortest pipe from this node to junction-5. The corresponding y
value is the averaged head difference between the GNN and EPA-
NET results on this node across all test samples. Noticeably, the
mean head difference increases as the number of pipes on the short-
est path increases, i.e., the node gets further away from the meas-
urement node. This implies that one measurement is not enough for
the GNN model to be trained properly with the semisupervised ap-
proach, and more measurements are required such that all nodes in
the network are relatively close to one of the measurement nodes.
For example, if 0.2 m in head difference is tolerable, as indicated by
the dashed horizontal lines, all nodes should be within a 4-pipe dis-
tance from the nearest measurement node, as indicated by the
dashed vertical line. Therefore, in the next section, we investigate
the performance of the semisupervised GNN model with more
measurement locations.

Semisupervised Learning with Five Measurement
Locations

In this section, five nodes 5, 11, 32, 37, and 44, as represented by
the markers in Fig. 2, are chosen to be the measurement nodes in
which the nodal heads are available, i.e., jNmj ¼ 5. These nodes
were selected such that every node in the network is within a 4-pipe
distance from the nearest measurement node. The head measure-
ments at the five chosen nodes are then embedded into the input
interaction graph and included in the GNN training dataset. The
same hyperparameters and optimizers are used as in the previous
two experiments to enable comparison between the different train-
ing approaches.

The last column in Table 1 summarizes the performance of the
semisupervised GNN model trained with five measurement nodes.
For both flows and heads, correlations between results from the
trained GNN model and EPANET are above 99%, which validates
this semisupervised training approach. The agreement between the
semisupervised GNN model and EPANET can also be observed in
Fig. S4(a)in the Supplemental Materials, in which the EPANET-
GNN result pairs reside close to the diagonal line characterizing
a perfect match. The head correlation of the semisupervised
approach is slightly worse than that of the supervised training ap-
proach, which can be explained by the fact that the semisupervised
training minimizes the violation of node flow balance, while the
supervised approach minimizes the mismatch between nodal heads.
However, the quality of flow prediction is superior in the semisu-
pervised approach, as evidenced by the higher correlation, the
lower RMSE, the smaller losses in all reported percentiles, and the
better alignment shown in Fig. S4(b)in the Supplemental Materials,
as compared with the results from the supervised approach. Addi-
tionally, the flow misalignment near zero is improved compared
with the results obtained from the supervised learning approach.
The improvement can be explained by the inclusion of flow imbal-
ance in the semisupervised loss, which penalizes the flow misalign-
ment in all pipes, including where flows are zero.

Subsequently, the comparison of results at each node and pipe is
presented in Fig. 5. The median head differences at all nodes are
below 0.02 m, indicating a reliable and consistent performance in
terms of head predictions. Moreover, in the majority of pipes, the
median flow difference is below 0.005 m3=s. As an exception, the
mismatches in Pipes 18, 63, 64, and 65 are considerably larger than

other pipes. A closer examination into the network topology reveals
that, as previously noted, these pipes are directly connected or
adjacent to dead-ends, suggesting that further study should be per-
formed to improve the performance of GNN models at near dead-
end pipes.

Finally, Fig. 6 illustrates the intermediate semisupervised losses
and the head predictions across the 20 correction update layers,
in which the center Fig. 6(a) shows the progress of semisuper-
vised loss at each update, in which the black line shows the median
of losses computed on all test samples, and the shaded area
represents the 10th to 90th percentile of the losses. The side of
Figs. 6(b–g) show the comparison of the head results between
the EPANET and GNN model for one test sample as an example.
The vertical dotted lines represent the nodes where measurements
are available. As expected, the loss decreases as the correction up-
date progresses. It can also be observed that the disparities between
the heads predicted by GNN and EPANET at measurement nodes
are reduced during the first few updates, as shown in Figs. 6(b–d).
The heads at other nodes then follow as the messages pass through
the network topology, and the head predictions from the GNN
model gradually approach the EPANET results. At the final update
layer, a satisfactory agreement is achieved between the head results
predicted by the GNN model and EPANET.

Overall, the presented results demonstrate that incorporating
physical laws into the training process of the GNN model can im-
prove the performance of the trained model. Additionally, the semi-
supervised learning approach only requires measurements at a
limited number of locations, i.e., five, in this case, thus enabling
solving the practical problem of SE with only a few available
sensors.

Investigating GNN Architectural Choices

To investigate how different design choices influence the perfor-
mance of the trained GNN model, we trained GNNs with different
architectural choices, including the dimension of the latent varia-
bles (dX), number of correction update layers (k̂), number of hidden
layers in each MLP block, discount factor (γ), update coefficient
(α), and shared versus unshared decoders for different update
layers.

The test was carried out using the semisupervised learning ap-
proach assuming five measurement locations. We varied these ar-
chitecture choices systematically for each dimension while fixing
all other dimensions with the default architecture choices. For a fair
comparison, we performed 180,000 training iterations for each hy-
perparameter setting, which ensured convergence for all settings,
although the training process converged much earlier for some in-
stances. The impact of the hyperparameters on model performance
is evaluated based on head and flow RMSE for the test dataset and
is reported in Fig. 7.

Figs. 7(a and b) represent the impact of the latent dimension
(dX) on model performance. Both head and flow RMSEs decrease
as the latent dimension increases. The RMSE for head and flow are
especially high when the message is exchanged directly on 1-D
head vectors, i.e., dX ¼ 1, without encoding into higher dimension
latent variables. Intuitively, the higher latent dimension embeds
more information and allows proper propagation of information
contained in the node and edge inputs, thus enabling better learning.
We also empirically observed that a higher latent dimension enables
faster training convergence. However, the inference complexity,
i.e., the computational time for a single run with a trained GNN,
scales quadratically with dX , which presents a trade-off between
accuracy and computation efficiency. Figs. 7(c and d) show that
a greater number of message-passing steps, i.e., update layers (k̂),
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yields improved performance in both head and flow accuracy.
This is likely because increasing k̂ allows computing more com-
plex interactions among nodes. On the other hand, the inference
computation time scales linearly with k̂; therefore, a smaller k̂ is
beneficial in terms of computation efficiency. Figs. 7(e and f)
demonstrate that model performance improves when the depth
of MLP blocks increases from zero (linear layer) to one hidden
layer. However, the performance remains similar with two hidden
layers. This indicates that one hidden layer is sufficient to model the
interaction between the nodes for this dataset. Figs. 7(g and h)
illustrate that the model performance is generally robust against
the choice of discount factor (γ). However, worse performance
is observed when γ ¼ 0, i.e., only the loss at the final update layer
is minimized. Intuitively, when γ > 0, the losses at all update layers
are taken into consideration through the discount factor, so penal-
izing risky moves in the earlier update layers. More specifically,
as the latent variables at the final update layers depend upon
all the previous ones through the update function, i.e., Xkþ1

i ¼
Xk
i þ αψk

i , the discounted loss can robustify the learning process
by regularizing the processors and decoders for all update layers.
Figs. 7(i and j) show the RMSE w.r.t. changing the update coeffi-
cient (α). Results show that model performance does not change
significantly and has mixed trends for heads and flows using differ-
ent update coefficients. Furthermore, we tested the model when the
decoder and processor have shared parameters for all update layers
and reported the results in Figs. 7(k–n), respectively. It can be ob-
served that a model with shared parameters, assuming functions in
Eqs. (3) and (4) will be the same for all k, yields worse performance.

The underlying intuition is that shared parameters impose a strong
inductive bias that the nature of information exchange is the same
for all update layers and make the GNN analogous to a recurrent
model. On the other hand, unshared parameters are more analogous
to a deep architecture, which incurs k̂ times more parameters and
thus allows more flexibility in the training process.

Testing GNN Robustness to Noisy Measurements

In this section, we investigated the impact of noisy measurements
on the performance of the proposed GNN model in the semisuper-
vised learning approach with five measurement locations. Specifi-
cally, we added noises following normal distribution (Nð0; σnÞ)
to the head measurements in the training datasets. Two levels of
noise were investigated: σn ¼ 0.1m and σn ¼ 1m. In this study,
the reference values obtained from EPANET are all in the range
of 396.6–399 m, with an average of 397.8 m and a standard
deviation of 0.46 m. Therefore, the measurement noise following
Nð0; 1mÞ can be considered as a high level of noise. The perfor-
mance on the test datasets, as evaluated by the correlation and
RMSE with respect to EPANET results as well as loss percentiles,
is reported in the last column of Table 2.

Table 2 shows that even with the high level of noise (σn ¼ 1m),
GNN can still achieve satisfactory correlation with the reference
values, i.e., 99.55% and 92.96% with EPANET head and flow
results, respectively. This performance indicates that under the
semisupervised framework, GNN can learn noisy measurements
well, which are inevitable in real-life applications. It should be

(a)

(b)

Fig. 5. The differences in the graph state between the results from the EPANET solver and the semisupervised GNN model trained with five
measurements: (a) head differences; and (b) flow differences.
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mentioned that all performance metrics decrease as the noise level
increases. This is because the noises added to the measurements in
the training set conceal some of the higher-order relations in the
mapping from input to output interaction graph. For the same rea-
son, we empirically observed early convergence with the presence
of measurement noise.

Conclusions and Future Works

This research proposed a GNN model for hydraulic modeling
and SE in WDSs. GNNs not only learn from the node attributes
but also from the network topology, thus making them more appro-
priate for the task of SE with limited measurements. Two training

(a) (c) (e) (g) (i) (k) (m)

(b) (d) (f) (h) (j) (l) (n)

Fig. 7. Effect of different architecture choices compared to the default model on the (a, c, e, g, i, k, and m) head RMSE; and (b, d, f, h, j, l, and n)
the flow RMSE.

Fig. 6. Intermediate semisupervised losses and head predictions: (a) the semisupervised loss at each update step (the dotted line shows the median of
losses computed on all test samples, and the shaded area represents the 10th to 90th percentile of the losses); and (b–g) the nodal head results from
EPANET and the GNN model for one test sample as an example.

© ASCE 04022018-11 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2022, 148(5): 04022018 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f T
ex

as
 a

t A
us

tin
 o

n 
07

/2
0/

22
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



approaches, i.e., supervised and semisupervised training, were pre-
sented. The more traditional supervised approach was tested and
demonstrated promising results; however, the supervised approach
is not realistic for practical SE applications because it requires
knowing the heads at all nodes of the WDSs during the training
process, which is a limiting assumption. To overcome this limita-
tion, a semisupervised approach was proposed to minimize the
violation of physical laws directly and simultaneously assimilate
measurement results at a limited number of locations. The semisu-
pervised training approach provides a novel modeling paradigm in
which physical laws and measurement data can be incorporated to
improve the training of GNN models in more realistic settings.
Although not without limitations, the results demonstrate that semi-
supervised learning is a promising avenue for data assimilation and
SE in WDSs. The incorporation of the physical process enables
training with significantly fewer reference values, i.e., measure-
ments or simulation results, and also improves the performance
of the trained model. Additionally, our empirical results show that
the GNN model is robust to the choice of various hyperparameters
and different levels of noise.

Future works should focus on overcoming some of the current
limitations by improving the architecture of the GNN models and
the training process to obtain models with better performance. To
begin with, the current model adopted the least square error metric
as the loss function; however, experiments show that the conver-
gence of the training losses is slow and not consistent. Thus, other
loss functions, such as least absolute errors and weighted least
squared errors, should be investigated (Tshehla et al. 2017). More-
over, more experiments are needed to test the performance of the
trained models, especially on larger networks with more compli-
cated components, such as valves and pumps. Additionally, the
current models are limited to homogeneous sensors, while at the
same time, advances in technologies provide a wide range of data
from different types of sensors, such as pressure, flow, and demand
meters (Shafiee et al. 2020; Sela and Abbas 2020). Future works
should explore the SE problem with heterogeneous information
that can enable the integration of information from different sour-
ces. Furthermore, future research should investigate the perfor-
mance of GNNs compared to other data-driven approaches for
semisupervised learning on graphs, such as gated graph neural net-
works (Li et al. 2015), graph convolutional networks (Zhang et al.
2019b), graph attention networks (Veličković et al. 2017), graph
recurrent neural networks (Hajiramezanali et al. 2019), and graph
signal processing (Ortega et al. 2018). Finally, with the growing
rollout of advanced metering and digital twins (Smart Energy
International 2018; Shafiee et al. 2018), it is imperative that the
performance and limitations of data-driven methods should be

compared with model-driven methods, such as those discussed
by Tshehla et al. (2017) and Wang et al. (2022).
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