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A B S T R A C T

Urban water systems are seeing an uptake in using advanced sensing technology. Incorporating sensors for
monitoring water distribution systems (WDSs) provides promising benefits to water utilities by enabling a
shift from reactive to proactive pipe failure detection and from delayed water loss management to automatic
sense-and-respond capabilities. Despite the opportunities that new sensing technologies create, a budget-
constrained utility is challenged with identifying sensing locations in the WDS that will maximize information
gain. To address this gap, this paper studies the problem of optimal placement of high-frequency pressure
sensors in WDSs for pipe burst identification. This paper proposes a sensor placement strategy to address the
challenges of data and modeling uncertainty by incorporating robust representation and tolerance analysis into
an optimization framework with the objective of achieving the best detection and identification of burst events.
Transient simulations are first used to predict system’s response to burst events, demonstrating the importance
of modeling accuracy over approximation methods. A robust event representation approach is then presented to
summarize system response to pipe bursts using signature matrices. Subsequently, the identification problem is
cast as a minimum test cover problem when the number of available sensors is unlimited, and as the maximum
covering test problem when the number of available sensors is limited. The optimization problems are then
formulated and solved using mixed integer linear programming. Four complementary metrics are suggested to
evaluate the performance of the sensor placement designs. Multiple criteria decision analysis is then applied
to select the placement design while balancing information gain and cost. The results show that incorporating
more information can improve event identification, but sufficient accuracy of the extracted information is
required to accrue the benefits.
1. Introduction

Water distribution systems (WDSs) are complex lifeline infrastruc-
tures, essential for providing safe and reliable drinking water to the
growing urban population. As pipelines in WDSs age, the decreasing
structural integrity and transmission capacity result in increasing oc-
currences of pipe failures, which disrupt water supply and waste a
significant amount of treated water [1]. WDSs have been reported
to waste approximately 20% to 30% of the treated water through
pipe failures [2]. In addition to water loss, pipe failures create unin-
tended opportunities for contamination intrusion and potentially dis-
turb the operation of other infrastructures [3,4]. Monitoring WDSs
nd integrating the data collected from distributed sensing devices
as been identified as one of the prominent strategies to detect and
dentify pipe failures, thus minimizing water losses and service inter-
uptions. Various pipe failure detection and identification techniques
ave been developed, including visual inspection [5,6], acoustic-based
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methods [7–10], ground penetrating radar [11,12], thermography [13],
as well as methods based on steady state hydraulic modeling [14–17]
and transient-based methods [18–25].

Pipe failures are commonly categorized into background leaks and
bursts [26]. Background leaks refer to preexisting and persistent water
losses, often through pipe joints and cross connections at low flow
rates, whereas pipe bursts refer to sudden pipe rupture and break
events [23]. In this paper, pipe bursts are the primary events of interests
(EoIs). Pipe bursts can introduce sudden and rapid disturbances to
the flow conditions, which propagate through the system as pressure
waves, i.e., pressure transients, with very high velocity in the range of
600–1500 m/s [27]. Transient-based methods have received increasing
attention in the past two decades because a considerable amount
of information about the WDS can be revealed within a very short
period of time as the transient wave propagates through the network
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[27–29]. Thus, by monitoring for transient pressure at various locations
of the WDS, these transient pressure waves can be detected and the ori-
gin of the pipe burst can be identified. Monitoring for transient pressure
can be enabled by high-resolution pressure sensors that are distributed
in WDSs [30,31]. Due to the fast evolving hydraulics, traditional meth-
ods such as supervisory control and data acquisition (SCADA) systems,
which collect data with 5–15 min resolution, are inadequate to capture
the rapidly changing transient system dynamics [23]. Flow meters
can additionally provide useful information for detecting pipe burst;
however, flow meters are expensive, require direct contact with the
pipe, and do not react instantaneously to changes in flow, and thus,
are not appropriate for high-resolution monitoring [28]. Other sensing
mechanisms, such as surface and inline sensing mentioned above, are
better suited for local inspection and are not suitable for continuous
operation.

Majority of the current transient-based methods are designed to de-
tect background leaks by manually inducing transient events through,
for example, manipulating valve operations, and investigating the im-
pact of existing leaks on the shape of the transient response of the
system [18,19,21,32]. However, these methods require meticulous de-
sign of the experiment procedure and are not suited for detecting abrupt
events in real time. Motivated by the growing needs for real-time burst
detection, recent studies proposed to investigate the pressure transients
generated by pipe bursts themselves [22,23,25,33–35]. These studies
have shown the potential of using pressure transients for timely pipe
burst detection. However, previous works are primarily limited to pipe
segments, small networks, or transmission mains, and were not im-
plemented in water networks comprising multiple pipes with complex
topology. Moreover, the accuracy of pipe burst detection method heav-
ily depends on the number and locations of pressure sensors; hence, it
is imperative to design a sensor network that maximizes information
gain. Although several studies for optimal sensor placement for leak
detection have been proposed, the majority of these studies consider the
placement of low temporal resolution sensors and model the leaks using
steady-state hydraulic models [33–37]. Other studies have relied on
distance-based approximation methods [38–41]. Thus, in the context
of sensor placement for burst detection, a gap remains in including a
better representation of the WDS dynamics under pipe burst events to
achieve a sensor placement that enables accurate, robust, and timely
detection of pipe bursts.

To address this gap, we simulate the adverse impacts of pipe bursts
using transient hydraulics, which represents the physical conditions in a
WDS more realistically, compared to distance-based or the steady-state
hydraulic models. Further, we consider event identification as the objec-
tive of the sensor placement problem, as opposed to the more common
event detection. The detection problem maximizes the number of EoIs
that can be detected, while the identification problem maximizes the
number of EoIs that can be uniquely identified [42,43]. Considering the
identification objective is beneficial because of the ability to pinpoint
the location of pipe bursts, which can significantly reduce the response
time and overall costs of recovery [40,44]. However, the ability to
uniquely identify events typically comes at the expense of relying on
more data, solving a more complex problem, and ultimately requir-
ing deploying a greater number of sensors augmented with advanced
techniques for data processing [45–47].

The combination of transient modeling coupled with event identi-
fication introduces new challenges in addressing modeling and data
uncertainty, which can significantly impact the sensor placement de-
sign. These uncertainties generally originate from two sources: (1) data
preparation and acquisition, i.e., the process of obtaining data either
from computational models during the design phase or sensor mea-
surements after deployment, and (2) information extraction, i.e., the
process of extracting information from the data to inform design and
decision-making. Firstly, during the design phase of the distributed
sensor systems, the acquisition of data typically relies on computational
2

models, which simulate the behavior of the physical system; however,
uncertainties associated with the computational models are inevitable
due to the inadequacies, such as model formulation and the incomplete
information of model parameters. Over-reliance on the data generated
by the computational models can potentially lead to inappropriate
choices regarding optimal sensor locations. Secondly, the accuracy of
the sensory data is restricted by the sensor precision (i.e., the de-
gree of reproducibility of a measurement), sensor resolution (i.e., the
smallest detectable change of the pressure signal), and calibration
accuracy [48]. To exacerbate the situation, sensors are error prone
and can give erroneous outputs due to degradations of sensor hard-
ware or software components. The limitation of sensor accuracy and
erroneous readings contribute to the data uncertainties, thus making it
unreasonable to rely on the raw sensory data to identify the EoIs.

We propose a two-fold method to address the challenges of model
and data uncertainty by incorporating robust signal representation and
tolerance analysis. Firstly, the data uncertainties are modeled by ro-
bustifying the data representation, such as extracting characteristic
features that are robust enough to account for the uncertainties, yet still
contain enough valuable information to inform design and decisions.
However, certain levels of data uncertainties still remain in the robust
representation and additional uncertainties are also introduced during
information extraction. Hence, in addition to the robust representation,
a tolerance analysis is introduced to take an agnostic view to account
for the fact that the extracted information and problem input are not
exact [49]. We then formulate the robust sensor placement problem
as mixed integer linear programming (MILP), which can explicitly ad-
dress the challenges imposed by data and model uncertainties through
robust representation and tolerance analysis and can achieve solutions
with high performance guarantees. Multiple criteria decision analysis
(MCDA) is then applied that incorporates decision-maker preferences
for balancing information gain and cost and can facilitate in selecting
the best sensor design [50].

The rest of the paper is organized as follows: in Section 2, we
provide a brief literature review on sensor placement for pipe failure
detection and identification in WDSs. In Section 3, we define the
problem of event identification and give an illustrative example. In
Section 4, we introduce the hydraulic transient model for simulating
bursts and propose signature-based matrices to represent the EoIs.
Subsequently, we discuss the difference between detection and iden-
tification problems, and then formulate the identification problem as
the minimum test cover (MTC) problem when the number of available
sensors is unlimited and as the maximum covering test (MCT), where
the number of available sensors is limited [51]. We propose four
metrics to evaluate the performance of the sensor placement design. Ad-
ditionally, we introduce the Preference Ranking Organization METHod
for Enrichment Evaluation (PROMETHEE) method [50] to determine
the best number of sensors. In Section 5, we apply the proposed scheme
to pipe burst identification in a WDS and demonstrate the benefits of
enriching the signature matrix with more information and the influence
of uncertainties on the identification performance. Finally, Section 6
concludes the paper and proposes several potential future extensions.

2. Literature review

Various methodologies have been previously proposed for sensor
placement in WDSs for the detection and identification of pipe failures,
where majority previous works cast the sensor placement problem
using a simulation–optimization framework with the objective to op-
timize different performance measures [14,33,34,34–37,40,52–55]. In
the simulation–optimization framework, hydraulic models, typically
steady-state solvers such as EPANET [56], are first utilized to simulate
the impacts of the EoIs. In the second stage, the problem of optimal
sensor design is formulated and solved based on system responses sim-
ulated in the first stage. Ultimately, previous works differ in the choice
of simulation models, optimization objectives, event representation,

and optimization algorithms. We briefly review previous studies in
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terms of modeling event dynamics, event representation methods, and
optimization algorithms.

Modeling event dynamics. Pressure waves induced by pipe bursts
propagate rapidly in the network, thus implying that steady-state anal-
ysis of system hydraulics is not adequate to capture system response
to burst events and that transient system dynamics should be con-
sidered [23]. However, due to the modeling complexity of transient
hydraulics, the majority of previous works have relied on steady-
state analysis to estimate system response to leak events, e.g., by
modeling pressure driven discharge using emitters at leak locations
and using EPANET simulations to estimate changes in nodal pressures
in response to leak events [33–35]. Acknowledging the limitation of
steady-state models, Deshpande et al. [38], Abbas et al. [39], Sela
Perelman et al. [40] and Sela and Amin [57] proposed to simulate the
network dynamics using transient wave propagation models. However,
due to the lack of open-source and application programming interface
for transient modeling, these studies adopted a simple distance-based
model to approximate the dissipation of the pressure signal in the
network. The major assumption of the distance-based models is that
the disturbance caused by bursts will dissipate as it travels in the
network, such that the disturbance in pressure can be sensed within
a specified distance from the location of the burst, i.e., any sensors
deployed within a certain distance from the origin of the burst can
detect that burst, while sensors located farther away cannot detect the
burst. However, this approximate model is inadequate for modeling
the complex dynamics of pressure wave reflection, transmission, and
propagation in the network. To illustrate the necessity of using transient
simulation for modeling pipe bursts, we performed simulations using
the steady-state hydraulic model as proposed in [14,15], distance-based
approximation as in [39,40,57], and the newly developed open-source
transient simulation package, TSNet [58]. The comparison and further
discussion are presented in Section 5.1.

Event representation. The essence of sensor placement for event
identification is to select sensors that are most informative for the task
of distinguishing the impacts of different EoIs [59]. If different EoIs
have different impacts on the system, these EoIs can be distinguished
and identified. Thus, an essential step is to summarize the impact of
EoIs using an efficient and robust representation. The common practice
is to encode the impacts of EoIs into a boolean representation {0, 1},
based on whether or not the EoI has a visible change on the system
as compared with its normal status [60]. For example, in [14], the
impacts of leaks were summarized using the leak sensitivity matrix,
which represented the difference between the measurements and their
estimates using the steady-state hydraulic models; it follows, then, that
the leak sensitivity matrix was binarized by comparing the estimates
with a chosen threshold. In [39,40], the impacts of EoIs were repre-
sented using binary values indicating whether a sensor can detect a pipe
burst depending on its distance from the location of the burst. In [41],
categorical values were extracted to represent the different events,
assuming that the outputs produced by the sensors are discrete. On
one hand, these simplified representations conceal some of the uncer-
tainties in the raw sensory data, and thus unintentionally enhance the
robustness of the sensor placement design. On the other hand, valuable
information is also lost through this simplification. The boolean repre-
sentation only answers whether or not an EoI has a visible impact, but
gives no additional information about its occurrence, e.g., magnitude
of the impact. This choice of representation can be partially attributed
to the previous limitations in sensing and modeling techniques. As an
improvement on Pérez et al. [14], Casillas et al. [36] proposed a non-
boolean leak sensitivity matrix and the projection-based leak isolation
approach; however, the proposed representation approach resulted in
a non-linear optimization problem, which is challenging to solve. Thus,
an improved but parsimony event representation that does not impair
problem complexity is imperative in order to realize full benefits of the
3

high quality data collected by advanced sensors.
Optimization algorithms. Various optimization methods have been
proposed for solving the sensor placement problem, with most promi-
nent including the greedy approximation [37,40,52], mixed integer lin-
ear programming (MILP) [33,38,57], and evolutionary algorithms [34,
36,55]. Evolutionary algorithms, such as genetic algorithms, simulated
annealing, and tabu search, are widely adopted due to their flexi-
bility of dealing with nonlinear problems. However, these heuristic
approaches cannot guarantee convergence to the global optimal and are
computationally expensive [61]. The advantages of MILP formulations
are clear: mixed integer formulations coupled with modern solvers
can guarantee solution optimality and are computationally efficient
even for large scale problems. When modeling complexity or prob-
lem size hinders MILP formulation, other optimization approaches,
such as greedy approximation or evolutionary algorithms, should be
pursued [57,62].

3. Problem definition

In this work, we formulate the optimization problem as to find the
sensor locations that achieve the best identification of pipe burst events
with limited or unlimited budget, where event identification refers to
the ability to distinguish between different EoIs. Specifically, we define
a set of candidate sensors as 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑁𝑆

}, where 𝑁𝑆 is the
number of candidate sensors, and 𝑠𝑖 denotes the location of the 𝑖th
sensor. We also assume that the sensors are continuously monitoring
pressure (𝑝). Similarly, a set of possible EoIs, i.e., bursts, is denoted
as 𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑁𝐸

}, where 𝑁𝐸 is the number of potential EoIs,
and 𝑒𝑗 symbolizes the attributes of the 𝑗th EoIs, such as its location
and magnitude. The continuous pressure recording at sensor location
𝑠𝑖 given that event 𝑒𝑗 has occurred is represented as a time-series
with discrete timestamps, i.e., 𝒑(𝑠𝑖 ∣ 𝑒𝑗 ) = (𝑝1𝑖𝑗 , 𝑝

2
𝑖𝑗 ,… , 𝑝𝑛𝑡𝑖𝑗 ), where the

subscripts represent the location where the pressure is measured and
the location where the event has occurred, respectively, the superscripts
stand for the time when the pressure is measured, and 𝑛𝑡 is the total
number of time stamps.

It is assumed that EoIs induce changes in the pressure; thus, the
occurrence of EoIs can be recognized by monitoring the changes in pres-
sure, making burst detection feasible. Notably, precision and accuracy
limitations introduce uncertainties in the transient pressure. The main
idea behind event identification is to compare the changes recorded by
different sensors, such that combinations of changes recorded by sev-
eral sensors can uniquely pinpoint the occurred EoIs, while accounting
for the uncertainties.

3.1. Illustrative example

To illustrate the sensor placement problem for event identification
and challenges imposed by the uncertainties, consider a simple example
with two candidate sensors 𝑆 = {𝑠1, 𝑠2} and three potential events
𝐸 = {𝑒1, 𝑒2, 𝑒3}. The goal in this example problem is to choose
one sensor such that maximum number of events can be identified,
i.e., distinguished from each other, by analyzing the pressure measured
by the selected sensor. The normalized pressure measured by 𝑠1 in
the event of 𝑒1, 𝑒2, and 𝑒3 are denoted as 𝒑(𝑠1 ∣ 𝑒1), 𝒑(𝑠1 ∣ 𝑒2), and
𝒑(𝑠1 ∣ 𝑒3), respectively, and are depicted in Fig. 1(a). Fig. 1(b) illustrates
the normalized pressure observed by 𝑠2 under the occurrence of the
three events, i.e., 𝒑(𝑠2 ∣ 𝑒𝑗 ), 𝑗 = 1, 2, 3.

It can be observed that all the six normalized pressure time series,
i.e., 𝒑(𝑠𝑖 ∣ 𝑒𝑗 ), 𝑖 = 1, 2; 𝑗 = 1, 2, 3, are different from each other;
thus, ideally, both sensors can distinguish the three events. However,
further inspection of Fig. 1(a) reveals that 𝒑(𝑠1 ∣ 𝑒1) and 𝒑(𝑠1 ∣ 𝑒2) are
fairly similar to each other. Intuitively, this similarity indicates that
if uncertainties in sensor measurements, information extraction, and
modeling, are taken into account, it is likely that the changes induced
by events 𝑒1 and 𝑒2 will be indistinguishable by sensor 𝑠1. In other
words, it is possible that the difference between 𝒑(𝑠 ∣ 𝑒 ) and 𝒑(𝑠 ∣ 𝑒 )
1 1 1 2
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Fig. 1. An illustrative example for robust representation and sensor placement: (a) normalized pressure at 𝑠1 under the occurrence of 𝑒1, 𝑒2, and 𝑒3; (b) normalized pressure at 𝑠2
under the occurrence of 𝑒1, 𝑒2, and 𝑒3; (c) boolean signature matrix; (d) signature matrix with amplitude of the first change as the characteristic feature; and (e) signature matrix
with duration of the first change as the characteristic feature.
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is not significant enough to overcome the uncertainties, thus suggesting
that 𝑠1 alone cannot distinguish between events 𝑒1 an 𝑒2. The rather
apparent difference between 𝒑(𝑠1 ∣ 𝑒1) and 𝒑(𝑠1 ∣ 𝑒3) implies that 𝑒1 and
𝑒3 should be distinguishable by analyzing the pressure observed by 𝑠1.
On the other hand, the time series recorded by 𝑠2, 𝒑(𝑠2 ∣ 𝑒𝑗 ) for the three
events 𝑗 = 1, 2, 3, appears to be different from each other as shown in
(b), which suggests that 𝑠2 can distinguish between all three events.
Thus, this qualitative analysis indicates that 𝑠2 should be chosen as the
best one-sensor design.

This simple example qualitatively illustrates that the existence of
uncertainties discourages the practice of determining whether two pres-
sure time series are distinguishable by a naive point-wise comparison.
However, the challenge remains on quantifying and incorporating these
uncertainties. In the next section, we propose a parsimony representa-
tion of the time series that is robust against uncertainties and, at the
same time, preserves the key features of the full signal.

4. Methodology

In this section, we propose a novel methodology for sensor place-
ment problem to achieve optimal event identification performance
under model and data uncertainties. The proposed approach consists of
four main steps. First, pipe burst events are simulated using transient
hydraulics. Second, characteristic features that represent system’s re-
sponse to the EoIs are extracted from the transient pressure signals and
are represented using signature-based matrices. Third, a tolerance level
for which the system is assumed to produce equal response is specified,
and two optimization problems are formulated and solved: specifically,
finding the minimum number of sensors such that all events can be
identified, and selecting a subset of sensors with limited budget such
that maximum number of events can be identified. Then, the sensor
placement design is evaluated using four complementary performance
metrics. Finally, multiple criteria are systematically accounted for to
determine the optimal sensor placement.

4.1. Modeling transient hydraulics

WDS response to burst events can be modeled using hydraulic tran-
sient flow, which, for a single pipeline, can be described using a system
of partial differential equations characterizing mass and momentum
conservation [63], as follows:
𝜕𝐻 + 𝑎2 𝜕𝑉 − 𝑉 sin 𝛼 = 0 (1)
4

𝜕𝑡 𝑔 𝜕𝑥
𝜕𝑉
𝜕𝑡

+ 𝑔 𝜕𝐻
𝜕𝑥

+ ℎ𝑓 (𝑓, 𝑉 ) = 0 (2)

here 𝐻 is the hydraulic head, 𝑉 is the flow velocity in the pipe, 𝑡 is
ime, 𝑎 is the wave speed, 𝑔 is the gravity acceleration, 𝑓 is the pipe
riction coefficient, 𝛼 is the pipe slope, and ℎ𝑓 represents the head loss
odel, which is a function of flow velocity and friction coefficient.
For a networked system, Eqs. (1) and (2) are discretized in time

nd space and can be solved using the method of characteristics
MOC) [63]. The essence of MOC is to transform the set of partial differ-
ntial equations to an equivalent set of ordinary differential equations
ODEs) applicable along specific numerical grid lines, i.e., characteris-
ics lines, which represent the directions in which the disturbance in
pipe propagates. Once the MOC characteristic grid and numerical
cheme are established, the explicit time marching MOC involves
omputing the head and flow velocity, 𝐻 𝑖

𝑡 , 𝑉
𝑖
𝑡 , at new point in time and

pace given that the conditions at the previous time step are known. To
odel various boundary conditions, such as pipe connections, valves,
umps, reservoirs, as well as leaks and bursts, auxiliary equations, such
s continuity, work-energy principles, are supplemented to characterize
he flow and head behavior at the boundary [63].
In this work, a burst is modeled using the conservation of mass and
omentum equations coupled with the orifice equation [63], 𝑄𝑏(𝑡) =

𝑏(𝑡)
√

𝐻𝑝𝑏(𝑡), where 𝐻𝑝𝑏(𝑡) is the pressure head at the location of
the burst, 𝑄𝑏(𝑡) is the pressure-dependent burst discharge, and 𝑘𝑏(𝑡) is
the lumped burst coefficient, which aggregates the size of the burst,
units, and burst coefficients at time step 𝑡. Before burst occurs, 𝑘𝑏(𝑡)
equals zero and it increases with time as the burst develops. It should
be noted that a background leak can be modeled using the same
orifice equation. The difference is that 𝑘𝑏 is constant when modeling
preexisting leaks, while for bursts 𝑘𝑏(𝑡) is a time-dependent function.
In other words, the burst is the process of first occurrence of the pipe
failure, while the background leak is a preexisting condition [23]. We
utilize TSNet, the recently developed open-source python package for
transient simulations in water networks [58], to simulate changes in
pressures in response to pipe bursts at different location in a WDS. For
details on the numerical scheme of burst simulation in WDSs, the reader
is referred to Xing and Sela [58].

4.2. Event representation

As discussed in the previous section, transient simulations can be

performed to predict pressure at a sensing location, 𝑠𝑖, given that a
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Fig. 2. Event representation: (a) full signal tensor (FST), where element (𝑖, 𝑗, 𝑘) represents the signal observed at sensor 𝑠𝑗 at time 𝑡𝑘 under the occurrence of event 𝑒𝑖; (b) boolean
ignature matrix (𝑆𝑀𝐵), where element (𝑖, 𝑗) represents the boolean signature at sensor 𝑠𝑗 under the occurrence of the event 𝑒𝑖 (black pixel 𝑓 𝑏(𝑠𝑗 ∣ 𝑒𝑖) = 1, white pixel 𝑓 𝑏(𝑠𝑗 ∣ 𝑒𝑖) = 0)
c) single feature signature matrix (𝑆𝑀), where element (𝑖, 𝑗) represents the signature at sensor 𝑠𝑗 under the occurrence of the event 𝑒𝑖 (different colors represent different signature
alues), and (d) combined signature matrix with two features, 𝑓1 and 𝑓2 (different colors and fill patterns represent different signature values). (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
urst occurs at junction 𝑗, i.e., 𝒑(𝑠𝑖 ∣ 𝑒𝑗 ). The simulation results contain
nformation about systems response to the EoIs, as recorded by the
ensors. The question follows is how to represent this information in
n adequate, efficient, and robust manner. In this section, we first elab-
rate the necessity of transforming the full time series representation
o lower-dimension robust representation. Subsequently, we propose a
obust event representation method based on extracting characteristic
eatures.

.2.1. Full signal representation
To begin with, the most intuitive way to represent the impact of

ll possible bursts on the WDSs is to store the pressure signals at all
andidate sensor locations under the occurrence of each possible burst.
hus, by enumerating over all the potential events (𝑒𝑗 ∈ 𝐸) and sensor
ocations (𝑠𝑖 ∈ 𝑆) during a given period of time (𝑛𝑡 simulation time
teps), a full signal tensor (FST) of 𝑁𝐸 × 𝑁𝑆 × 𝑛𝑡 dimension can be
ssembled where 𝐹𝑆𝑇 (𝑖, 𝑗, 𝑘) = 𝒑(𝑠𝑗 , 𝑡𝑘 ∣ 𝑒𝑖), 𝑘 = 0, 1, 2,… , 𝑛𝑡. The

𝐹𝑆𝑇 encompasses the expected observations of all candidate sensors
during the occurrence of all potential events. The structure of 𝐹𝑆𝑇 can
be illustrated as a 3-dimensional array, as shown in Fig. 2(a), where
each element is defined by three indices: sensor, event, and time index.
For example, the shaded element can be accessed as the 𝐹𝑆𝑇 (1, 1, 0),
representing the pressure recorded by sensor 𝑠1 at time 𝑡0 given that
event 𝑒1 occurred.

Although the 𝐹𝑆𝑇 contains all the information about response of
the entire system to the potential EoIs, it is not the ideal input to
the sensor placement problem for several reasons. Firstly, to capture
the rapidly changing hydraulic transients, high temporal resolution
in the magnitude of 0.001–0.1 s is required in transient simulations,
which results in a large number of simulation time steps, 𝑛𝑡. Addi-
tionally, the number of potential EoIs, 𝑁𝐸 , and sensor candidates,
𝑁𝑆 , is typically large in real-life systems. Thus, the dimension of
𝐹𝑆𝑇𝑁𝐸×𝑁𝑆×𝑛𝑡 can easily get impractical. For example, consider a WDS
with 1000 possible burst locations and 1000 sensor candidates with
a sampling frequency of 64 Hz. To represent a ten-minute window of
data, the 𝐹𝑆𝑇 1000×1000×38,400 requires around 307 GB of RAM when
stored as a full array. Secondly, uncertainties in model parameters
and inadequacies of the numerical models can lead to discrepancies
between model estimations and actual observations, which indicates
that two sensors, exhibiting small differences in model estimations,
may not have distinguishably different readings in practice. Thirdly,
due to the complicated nature of the sensing, telecommunication, and
power in a sensing unit, erroneous data is inevitable [64], and thus,
we cannot rely on the sensors to record perfect data at all times.
Hence, with the presence of model and measurement uncertainties,
robust signal representation should be used instead of the full time-
series. The intuition behind robust signal representation is that the
pressure signals should be represented in a way such that the impacts of
5

EoIs can be characterized and preserved without overemphasizing the
details, which can be unreliable due to model and data uncertainties.
This is illustrated in the above example, where the differences between
𝒑(𝑠1 ∣ 𝑒1) and 𝒑(𝑠1 ∣ 𝑒2) may not be significant enough to overcome the
model and measurement uncertainties (Fig. 1(a)).

4.2.2. Reduced signal representation
Instead of the full representation, we propose to extract the rep-

resentative features of the transients, such as the amplitude and du-
ration, which characterize the transients and can be extracted using
various detection algorithms [65]. If 𝜂 features are to be extracted,
i.e., 𝑓1, 𝑓2,… , 𝑓𝜂 , the observed quantity within a certain time window
can then be reduced from a time-series to a discrete representation
using the extracted features, [𝑓1, 𝑓2,… , 𝑓𝜂], where 𝜂 ≪ 𝑛𝑡.

The simplest feature is a boolean representation, where 𝑓 𝑏(𝑠𝑗 ∣ 𝑒𝑖) ∈
{0, 1} is equal to zero if no changes are detected at sensor 𝑠𝑗 when event
𝑒𝑖 occurs, and equal to 1 otherwise. This can be achieved by examining
whether the detected changes are significant enough as compared with
some expected or empirical values [14]. In the example shown in
Fig. 1(a), changes can be detected, for example using the cumulative
sum (CUSUM) algorithm [66] (as will be detailed in Section 5) in all
three signals, indicating that 𝑠1 can detect all the three events; thus,
the impact of the each event at sensing station 𝑠1 can be reduced from
𝒑(𝑠1 ∣ 𝑒𝑗 ), 𝑗 ∈ [1, 2, 3] to the boolean representation. Subsequently, the
boolean signature of event 𝑒𝑖 is defined as the boolean vector of the
outputs of sensors in the set 𝑆 under the occurrence of 𝑒𝑖, and denoted
as 𝒇 𝒃(𝑆 ∣ 𝑒𝑖) = [𝑓 𝑏(𝑠1 ∣ 𝑒𝑖), 𝑓 𝑏(𝑠2 ∣ 𝑒𝑖),… , 𝑓 𝑏(𝑠𝑁𝑆

∣ 𝑒𝑖)]. Consequently,
for a sensor set 𝑆 and the set of potential events 𝐸, we can instantiate
a boolean signature matrix of dimension 𝑁𝑆 × 𝑁𝐸 , denoted by 𝑆𝑀𝐵

that summarizes the impacts of all EoIs on the WDS. The structure
of 𝑆𝑀𝐵 is illustrated in Fig. 2(b). The 𝑖th row of 𝑆𝑀𝐵 comprises of
sensor 𝑠𝑖 responses to all potential events, and the 𝑗th column represent
the boolean signature of the event 𝑒𝑗 , i.e., 𝒇 𝒃(𝑆 ∣ 𝑒𝑗 ). Moreover,
𝑆𝑀𝐵(𝑖, 𝑗) = 1, shown as black pixels in Fig. 2(b), indicates that the
sensor 𝑠𝑖 detected the event 𝑒𝑗 , while 𝑆𝑀𝐵(𝑖, 𝑗) = 0, shown as white
pixels, suggests otherwise. However, valuable information contained
in the original signal is lost under the boolean representation. For
example, the 𝑆𝑀𝐵 for the illustrative example is a 2 × 3 matrix with all
elements equaling one (as shown in Fig. 1(c)), which is uninformative
for the task of distinguishing between the three EoIs.

To preserve more information, additional characteristics features,
𝒇 (𝑠𝑗 ∣ 𝑒𝑖) ∈ R𝜂 , of the changes in the time series can be extracted
and exploited. For example, two features (𝜂 = 2), the amplitude (𝑑𝑝)
and duration (𝑑𝑡) of the first change in the signal, can be extracted
from 𝒑(𝑠1 ∣ 𝑒𝑗 ), 𝑗 ∈ [1, 2, 3], such that the EoIs can be characterized
by the enriched two-element representation, i.e., [𝑑𝑝(𝑠1, 𝑗), 𝑑𝑡(𝑠1, 𝑗)], 𝑗 ∈
[1, 2, 3], where the two indices denote the sensor and event index,

respectively. Now, for the pressure signal recorded by a given sensor
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under a certain event, the original time series can be reduced to
the two-dimensional vector, transforming the representation from the
high-dimensional temporal space to the low-dimensional feature space.
The number of features that can be reliably extracted from the signal
depends on the expected data quality that will be collected by sensors,
where the higher the data quality, the more features can be extracted.
The extracted features can then enrich the signature matrix, which is
referred to as the signature matrix (𝑆𝑀). The structure of signature
matrix is shown in Fig. 2(c), where different colors and fill patterns
represent different values of 𝑓 . If no changes are detected by sensor
𝑠𝑗 at the occurrence of event 𝑒𝑖, we set 𝑓 (𝑠𝑗 ∣ 𝑒𝑖) = 0, as denoted by
the white pixels. For example, in the illustrative example in Fig. 1, the
amplitude of the change is extracted to formulate the signature matrix
(𝑆𝑀2×3) as shown in Fig. 1(d), where the element (𝑖, 𝑗) represents the
amplitude of the change as recorded by 𝑠𝑖 under the occurrence of 𝑒𝑗 .
Unlike the 𝑆𝑀𝐵 in Fig. 1(c), the elements of the 𝑆𝑀 shown in Fig. 1(d)
re all different each other, indicating that this 𝑆𝑀 is more informative
or the task of distinguishing between the EoIs. Moreover, multiple
eatures can be combined to enrich the representation, as shown in
ig. 2(d), where each element is represented by two features, [𝑓1, 𝑓2],
espectively.

.3. Robust event identification

Following the event representation methods, we define and for-
ulate the robust event identification problem. To begin with, it is
ecognized that even the continuous signature matrix may still not be
obust to modeling and measurement uncertainty. For example, rela-
ively small difference exits between 𝑆𝑀(1, 1) and 𝑆𝑀(1, 2) in Fig. 1(d).
ence, we would like to introduce tolerance analysis to further ro-
ustify the event identification problem. Intuitively, the idea for the
olerance analysis relies on examining whether the difference between
he values of pair-wise continuous features is significant enough in
erms of producing distinguishable system responses to the EoI. In other
ords, two signals cannot be distinguished if their characteristic fea-
ures are within a specified tolerance [49]. Specifically, if the signatures
f two events 𝑒𝑗 , 𝑒𝑘 at a given sensor 𝑠𝑖 are within the tolerance interval
s specified by the identification tolerance 𝛿, i.e., ∣ 𝑆𝑀(𝑖, 𝑗)−𝑆𝑀(𝑖, 𝑘) ∣≤
, then 𝑠𝑖 cannot distinguish between 𝑒𝑗 and 𝑒𝑘. The identification
olerance is preferred over categorization to avoid arbitrary groupings
hat eliminate coherent information [14,47,67,68]. In the context of
vent identification, the proposed representation makes sense, because
he main concern is related to how the response features compare with
ach other rather than focusing on the exact values of the characteristic
eatures. The identification tolerance indicates the overall uncertainty
evel, which is conditional on the confidence in the precision of sensory
ata, the adequacy of the simulation model, and the accuracy of the
etection method. As the uncertainty level decreases and confidence in
ensory data and modeling increases, the identification tolerance can be
educed accordingly, such that more signatures can be distinguished.
or example, if the precision (or typical noise level) of the pressure
ensor is ±3m then the comparison between two signals is only relevant
f the difference is greater than ±3 m, i.e., the tolerance is 𝛿𝑑𝑝 = 3
; however, if the precision is greater, e.g., ±1 m, then the tolerance
an be decreased, e.g., 𝛿𝑑𝑝 = 1 m, since we are more confident in our
easurements.
Recall the illustrative example, where the value of change am-

litude observed by 𝑠2 under the occurrence of 𝑒1, 𝑒2 and 𝑒3 was
(𝑠2 ∣ 𝑒1, 𝑒2, 𝑒3) = [−2.5,−1.01,−1.99]. If the identification tolerance
s specified at 𝛿 = 0.6, the tolerance analysis will indicate that 𝑒1
nd 𝑒3 are indistinguishable; while if the identification tolerance is
ecreased to 𝛿 = 0.5, all three EoIs can be distinguished. A greater
alue of 𝛿 will cause more EoIs to be deemed as indistinguishable, thus
ncreasing the robustness but sacrificing identification performance.
hus, with the trade-off between robustness and performance in mind,
6

should be chosen according to the expected accuracy of the model and p
bservations. We note that with boolean representation distinguishable
vents imply that 𝛿 = 1.
In this study, the robust tolerance analysis is applied on the sig-

natures of the EoIs to examine whether the pair-wise events can be
distinguished. Specifically, for the set of events 𝐸 and the set of sensors
𝑆, the set of all pair-wise events that can be distinguished by 𝑠𝑖 is
denoted as 𝐶𝐼

𝑖 and defined as:

𝐶𝐼
𝑖 = {(𝑒𝑗 , 𝑒𝑘) ∈ 𝐸 ∶ |𝑆𝑀(𝑖, 𝑗) − 𝑆𝑀(𝑖, 𝑘)| ≥ 𝛿} (3)

where 𝑆𝑀 represents either boolean or continuous signature ma-
trix, and 𝛿 is identification tolerance. If 𝐶𝐼 is a collection of all such

𝐼
𝑖 ’s, i.e., 𝐶

𝐼 = {𝐶𝐼
𝑖 ∣ ∀𝑖}, then for a given subset of sensors  ⊆ 𝑆,

we define 𝐶𝐼
 ⊆ 𝐶𝐼 as a set of subsets of distinguishable pair-wise EoIs,

where a subset corresponds to a sensor in  that identifies the pair-wise
EoIs in that subset, i.e., 𝐶𝐼

 = {𝐶𝐼
𝑖 ∣ 𝑠𝑖 ∈ }. Then, pair-wise events

re a distinguishable pair if (𝑒𝑗 , 𝑒𝑘) ∈ 𝐶𝐼
 . It follows that event 𝑒𝑖 is an

dentifiable event if it can be distinguished from all other events, i.e., all
air-wise events 𝑒𝑖, 𝑒𝑗 ,∀𝑗 ≠ 𝑖 are identifiable.
The set of all identifiable events is then denoted as identifiable set

𝐸𝐼 . Subsequently, we define the identification function, which gives the
number of distinguishable event pairs using the subset of sensors , 𝐼
as:

𝐼 () =
|

|

|

|

|

|

|

⋃

𝐶𝐼
𝑖 ∈𝐶

𝐼


𝐶𝐼
𝑖

|

|

|

|

|

|

|

(4)

Event identification is different from the well-studied event detec-
ion problem, in which the goal is simply to recognize that some EoIs
ave occurred. Only the boolean signature matrix is required for the
ask of event detection. We denote the events that can be detected by
ensor 𝑠𝑖 ∈ 𝑆 as 𝐶𝐷

𝑖 , where 𝐶
𝐷
𝑖 = {𝑒𝑗 ∈ 𝐸 ∣ 𝑆𝑀𝐵(𝑗, 𝑖) = 1}. A collection

f detection sets for all sensors given a sensor subsets  is then defined
s 𝐶𝐷

 = {𝐶𝐷
𝑖 ∣ 𝑠𝑖 ∈ }. The event (𝑒𝑖) is an detectable event, if there

xists at least one sensor in 𝑆 that can detect 𝑒𝑖, i.e, ∃𝑠𝑖 ∈ 𝑆 𝑒𝑖 ∈ 𝐶𝐷
𝑖 .

he set of all detectable events is then defined as detection set and
enoted as 𝐸𝐷 ⊆ 𝐸. The detection function, 𝐷(), yields the number
f EoIs that can be detected by the sensors in . It should be noted
hat any identifiable event is instinctively a detectable event, i.e., the
dentification set is subset of detection set, 𝐸𝐼 ⊆ 𝐸𝐷 [42].
Let us revisit the example shown in Fig. 1 and illustrate its detection

nd identification set. As presented in Fig. 1(c), both sensors can detect
ll three events; thus, 𝐶𝐷

1 = 𝐶𝐷
2 = {𝑒1, 𝑒2, 𝑒3}. Assuming we use the

ignature matrix with change amplitude shown in Fig. 1(d) and set
he identification tolerance 𝛿 = 0.5, the pair-wise events that can be
dentified by each sensor can be presented as 𝐶𝐼

1 = {(𝑒1, 𝑒3)}, 𝐶𝐼
2 =

(𝑒1, 𝑒2), (𝑒1, 𝑒3), (𝑒2, 𝑒3)}. If only sensor 𝑠1 is chosen, all events can be
etected, but only event 𝑒1 and 𝑒3 can be identified, i.e., 𝐷(𝑠1) = 3
hile 𝐼 (𝑠1) = 1. The detection function output is bounded such that
≤ |𝐷()| ≤ 𝑁𝐸 , where the lower bound corresponds to case where
o events can be detected, while the upper bound represents that all the
vents in 𝐸 can be detected by the subset of sensor (). On the other
hand, the identification function has a zero lower bound, indicating
that no pair-wise events can be identified, and an upper bound

(

|𝐸𝐷|

2

)

, in
which any two detectable events can be distinguished from each other.

4.4. Sensor placement for event identification

The underlying idea behind the sensor placement problem for event
identification (SP-EI) is to find a collection of sensors that results in a
collective output that is unique for a maximum number of EoIs. The
essence of SP-EI is to minimize the information loss in the transfor-
mation 𝐼 (𝑆) → 𝐼 (), where  ⊆ 𝑆. We consider two different
ormulations for the SP-EI problem. In the first formulation, the ob-
ective is to select the minimum number of sensors, such that every
istinguishable pairs can be uniquely distinguished. This formulation is
eferred to as SP-EI1, and can be formulated as the minimum test cover

roblem [40], which is defined as follows [51]:
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Definition 1. Minimum test cover (MTC): Consider a finite set 𝐸, of
hich all item pairs comprise the set 𝐸𝑃 = {(𝑒ℎ, 𝑒𝑗 ) ∣ ∀𝑒𝑖, 𝑒𝑗 ∈ 𝐸, ℎ ≠ 𝑗},

and a set of tests 𝑇 = {𝑇𝑖 ∣ 𝑇𝑖 ⊆ 𝐸𝑃 ,∀𝑖}. A test 𝑇𝑖 covers, or differentiates,
the item pair (𝑒ℎ, 𝑒𝑗 ) if (𝑒ℎ, 𝑒𝑗 ) ∈ 𝑇𝑖. The minimum test cover is to
find  ⊆ 𝑇 with the minimum cardinality such that each item pair
can be covered by at least one test in  , i.e., ⋂𝑇𝑖∈ 𝑇𝑖 = 𝐸𝑃 , where
|𝐸𝑃

| =
(

|𝐸|

2

)

.

In the context of event identification, the tests refer to the sen-
sors, and the item pairs covered by the tests refer to the pair-wise
events distinguished by the sensor, i.e., 𝑇 → 𝐶𝐼 . The objective of
SP-EI1 is to find a subset 𝐶𝐼

 ⊆ 𝐶𝐼 of minimum cardinality, or
equivalently the minimum number of sensors  ⊆ 𝑆, such that all
distinguishable pairs can be distinguished by at least one sensor in ,
i.e., argmin

(

|| ∣ 𝐼 () = 𝐼 (𝑆)
)

.
However, in pragmatic sensor placement design, due to budget

constraints, the number of available sensors is typically limited and
the number of sensors required to distinguish all events is impractical.
Thus, an alternative and more realistic objective is to maximize the
number of distinguishable event pairs with at most 𝛽 sensors, i.e., || ≤
𝛽. This formulation is denoted as SP-EI2, and it is equivalent to the
maximum covering test, which is defined as follows [69]:

Definition 2. Maximum test covering (MCT): Consider a finite set 𝐸, of
which all item pairs comprise the set 𝐸𝑃 = {(𝑒ℎ, 𝑒𝑗 ) ∣ ∀𝑒ℎ, 𝑒𝑗 ∈ 𝐸, ℎ ≠ 𝑗},
and a set of tests 𝑇 = {𝑇𝑖 ∣ 𝑇𝑖 ⊆ 𝐸𝑃 ,∀𝑖}. A test 𝑇𝑖 covers or differentiate
the item pair (𝑒ℎ, 𝑒𝑗 ) if (𝑒ℎ, 𝑒𝑗 ) ∈ 𝑇𝑖. Given the number 𝛽 > 0 of tests, the
maximum test covering is to find  ⊆ 𝑇 that maximized the number of
item pairs can be covered, subject to the constraints that | | ≤ 𝛽.

As previously, the tests refer to the sensors and the objective of
SP-EI2 is to maximize the number of distinguishable pairs with at
most 𝛽 sensors, i.e., argmax

(

𝐼 () ∣ || ≤ 𝛽
)

. The SP-EI1 and SP-
EI2, abstracted as the MTC and MCT, respectively, are then cast as
MILP problems, as described in the following subsections. In Section 5,
the solution and the performance of the solution, when considering
different event representations, i.e., boolean, one and two features, are
demonstrated.

4.4.1. Robust sensor placement with unlimited number of sensors
We formulate the SP-EI1 as a MILP problem, where the objective is

to minimize the number of sensors under the constraints that all pair-
wise events can be distinguished. Firstly, we introduce a binary decision
variable 𝑥𝑗 for each plausible sensor 𝑠𝑗 to indicate whether it is selected
in the subset, i.e., 𝑥𝑗 = 1 if 𝑠𝑗 ∈  and 𝑥𝑗 = 0 otherwise. Subsequently,
the optimization problem is formulated in Eq. (5). The objective of
the optimization problem is to minimize the total cost of the selected
sensors ∑ 𝑐𝑗𝑥𝑗 , where 𝑐𝑗 represents the cost of selecting sensor 𝑠𝑗 . For
each set of pair-wise events, the set of linear constraints guarantees that
any distinguishable event pair (𝑒𝑘, 𝑒𝑙) can be distinguished by at least
𝛼 selected sensors. Typically, 𝛼 is set to 1, indicating that the pair-wise
events can be distinguished if they have different signatures in at least
one selected sensor; however, for the purpose of improving robustness
(e.g., under data uncertainties, sensor failures), 𝛼 can be set to a greater
value. The coefficients in the linear constraints are determined using
Eq. (3), which is controlled by the identification tolerance 𝛿.

min
𝑥𝑗

𝑁𝑆
∑

𝑗=1
𝑐𝑗𝑥𝑗

s.t.
𝑁𝑆
∑

𝑗=1,(𝑒𝑘 ,𝑒𝑙 )∈𝐶𝐼
𝑗

𝑥𝑗 ≥ 𝛼 ∀𝑘, 𝑙 = 1, 2,… , 𝑁𝐸 , 𝑘 ≠ 𝑙

𝑥𝑗 ∈ {0, 1} ∀𝑗 = 1, 2,… , 𝑁𝑆

(5)

The model in Eq. (5) can be solved using any modern MILP solver,
7

e.g., [70–72]. w
4.4.2. Robust sensor placement with limited number of sensors
In this section, we examine the more practical problem, in which

given a limited budget the objective is to maximize the number of
identified events. We first define a binary decision variable 𝑦𝑘𝑙 for each
set of pair-wise events, where 𝑦𝑘𝑙 = 1 indicates that the two events,
𝑒𝑘 and 𝑒𝑙, are distinguishable based on the signature matrix and a
given tolerance level 𝛿, and 𝑦𝑘𝑙 = 0 otherwise. The objective is then
to maximize the number of pair-wise events that can be identified by
the subset of sensors, subject to two types of constraints. The first set of
constraint indicates whether pair-wise events (𝑒𝑘, 𝑒𝑙) are distinguishable
(i.e., have different event features), and the second constraint limits
the available budget to be at most 𝐼𝑐𝑜𝑠𝑡. Combining the objective and
constraints, the maximum coverage test problem can be formulated as:

max
𝑥𝑗 ,𝑦𝑘𝑙

∑

𝑒𝑘 ,𝑒𝑙∈𝐸
𝑦𝑘𝑙

s.t.
𝑁𝑆
∑

𝑗=1,(𝑒𝑘 ,𝑒𝑙 )∈𝐶𝐼
𝑗

𝑥𝑗 ≥ 𝑦𝑘𝑙 ∀𝑘, 𝑙 = 1, 2,… , 𝑁𝐸 , 𝑘 ≠ 𝑙

𝑁𝑆
∑

𝑗=1
𝑐𝑗𝑥𝑗 ≤ 𝐼𝑐𝑜𝑠𝑡

0 ≤ 𝑦𝑘𝑙 ≤ 1 ∀𝑘, 𝑙 = 1, 2,… , 𝑁𝐸 , 𝑘 ≠ 𝑙

𝑥𝑗 ∈ {0, 1} ∀𝑗 = 1, 2,… , 𝑁𝑆

(6)

4.5. Performance evaluation metrics

We define four metrics to evaluate the performance of the sen-
sor placement: detection, distinction, identification, and homogene-
ity scores. These four metrics provide evaluation from different and
complementary perspectives, and are defined as follows:

Detection score represents the likelihood of detecting the EoIs,
which is evaluated as the number of events that can be detected by
the subset of sensors  normalized by the total number of events, and
is defined as:

𝐼𝐷𝑒() =
𝐷()
𝑁𝐸

(7)

The detection score ranges between 0 and 1, where a higher detec-
tion score indicates that more EoIs are detected, and a lower detection
score indicates otherwise.

Distinction score measures the number of pair-wise events that can
be distinguished from each other, as defined in Eq. (3), normalized by
the total number of detectable event pairs.

𝐼𝐷𝑖() =
𝐼 ()
(

|𝐸𝐷|

2

)

(8)

The distinction score ranges between 0 and 1, where higher distinc-
tion score indicates that more pair-wise events can be distinguished by
the set of sensors .

Identification score is the number of identifiable events normal-
ized by the number of detectable events:

𝐼𝐼 () =
|𝐸𝐼 |

|𝐸𝐷|
(9)

Intuitively, identification score quantifies the number of events that
can be detected and result in a unique pressure signal, hence can be
uniquely identified. The identification score is a conservative metric
that represents only perfect event identification. As with detection and
distinction scores, the identification scores ranges between 0 and 1,
where an identification scores of 1 indicates that every detectable event
can be uniquely identified.

Homogeneity score represents the size of largest group of events
that cannot be distinguished from each other based on the sensor inputs
normalized by the number of detectable events. Let 𝐺𝑖 = {𝑒𝑗 , 𝑖 ≠ 𝑗 ∣
(𝑒𝑖, 𝑒𝑗 ) ∉ 𝐶𝐼

𝑘 , ∀𝑠𝑘 ∈ } be a subset of events for which the pair-
ise events (𝑒 , 𝑒 ) that cannot be distinguished by any sensor 𝑠 in
𝑖 𝑗 𝑘
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, i.e., the output of all chosen sensors for events 𝑒𝑗 ∈ 𝐺𝑖 is identical
to that for event 𝑒𝑖. 𝐺𝑖 is termed as the homogeneity group for event
𝑖. An event with larger homogeneity group indicates that more events
exhibit similar and indistinguishable impact on the WDS; thus, the
identification of the events is not possible by observing the extracted
features. We then define the size of the largest homogeneity group
normalized by the total number of events as the homogeneity score
(𝐼𝐻 ):

𝐼𝐻 () =
𝑚𝑎𝑥𝑖 ∣ 𝐺𝑖 ∣

|𝐸𝐷|
(10)

The homogeneity score ranges between 0 and 1, but unlike the
revious scores, 𝐼𝐻 = 0, implies a perfect one-to-one identification,
uch that all pairs of detectable events can be distinguished from each
ther.
Continuing the illustrative example with the change duration signa-

ure matrix shown in Fig. 1(e), for the two-sensor design  = {𝑠1, 𝑠2}
and identification tolerance 𝛿 = 0.3, all three events can be detected.
Moreover, 𝑒3 can be distinguished from 𝑒1 and 𝑒2, but 𝑒1 and 𝑒2 cannot
be distinguished from each other, because the difference between the
extracted features in the signature matrix are below the tolerance value.
For example, the change duration for 𝑒1 and 𝑒2 as recorded by 𝑠1
is identical (and equals to 2), and recorded by 𝑠2 is 1.90 and 1.70,
respectively, the difference between which is less than 𝛿 = 0.3. The
homogeneity groups for each event are 𝐺1 = {𝑒2}, 𝐺2 = {𝑒1}, and
𝐺3 = ∅. The corresponding group sizes are |𝐺1| = 1, |𝐺2| = 1, and
|𝐺3| = 0, indicating that 𝑒3 is an identifiable event, and the event pair
(𝑒1, 𝑒2) is not distinguishable. Thus, the detection score is 𝐼𝐷𝑒 = 1, the
distinction score is 𝐼𝐷𝑖 = 2∕3, the identification score is 𝐼𝐼 = 1∕3, and
the homogeneity score is 𝐼𝐻 = 1∕3.

4.6. Multiple criteria decision analysis

The goal of this step to choose the optimal sensor placement out
from various options obtained by using different event representation
scheme (𝑆𝑀𝐵 or 𝑆𝑀) and selecting different number of sensors (in
SP-EI2). It is important to systematically consider multiple criteria,
including the information gain, as quantified by the four performance
metrics, and the cost for installing and maintaining the sensors. To
achieve this goal, we implemented the PROMETHEE method for multi-
criteria decision making and selecting the best compromise between
different alternatives [50]. Intuitively, the PROMETHEE method in-
volves: (1) performing pair-wise comparisons between the alternatives,
(2) represent decision-makers preferences by weighting the different
criteria, and (3) aggregating the performance based on outranking and
outranked performance. This approach allows the decision maker to
include their preferences for the different performance metrics and
select a single best design option from the different alternatives. In our
approach, we explored the best selection of the number of sensor by
weighing the total information gain (as measured by the four perfor-
mance metrics) and cost of sensors, thus enabling a flexible decision
making framework.

A single ranking in PROMETHEE can be obtained following the pro-
cedure presented below. First, a partial preference function 𝑃𝑗 (1,2)
for each of the five criteria, i.e., 𝐼𝑗 ∈ [𝐼𝐷𝑒, 𝐼𝐷𝑖, 𝐼𝐼 , 𝐼𝐻 , 𝐼𝑐𝑜𝑠𝑡], is defined
as:

𝑃𝑗 (1,2) =

⎧

⎪

⎨

⎪

⎩

1 if 𝐼𝑗 (1) − 𝐼𝑗 (2) ≥ 𝑟𝑗
𝐼𝑗 (1)−𝐼𝑗 (2)−𝑞𝑗

𝑟𝑗−𝑞𝑗
if 𝑞𝑗 < 𝐼𝑗 (1) − 𝐼𝑗 (2) < 𝑟𝑗

0 if 𝐼𝑗 (1) − 𝐼𝑗 (2) ≤ 𝑞𝑗

(11)

where 1,2 represents two different sensor placement designs, 𝑟𝑗 is the
preference threshold representing the smallest performance deviation,
which is considered sufficient to generate a full preference of one
design over the other, and 𝑞𝑗 is the indifference threshold representing
the largest performance deviation that is considered negligible based
8

on criteria 𝐼𝑗 . Hence, 𝑃𝑗 (1,2) represents the degree of preference
between sensor design 1 and 2 on criteria 𝐼𝑗 , where higher value
of 𝑃𝑗 (1,2) indicates 1 is preferred over 2 based on criteria 𝐼𝑗 .

Second, a weight (𝑤𝑗) needs to be specified for each criteria 𝑗 to
reflect how the decision maker values each criteria. In this study, we
specify 𝑤𝑗 = 𝜔∕4 for all four performance metrics, which sum up to 𝜔 as
they collectively measure the information gain, and 𝑤𝑗 = 1−𝜔 for cost,
such that ∑𝑤𝑗 = 1. Here, 𝜔 is a parameter that represents the value
of information, where if information gain and cost are valued equally,
then 𝜔 = 0.5; if information gain is valued more than cost, then 𝜔 > 0.5;
otherwise, 𝜔 < 0.5.

Third, the comprehensive preference function 𝜋(1,2) that repre-
sents the degree of preference of design 1 over design 1 taking into
account all criteria simultaneously is calculated as:

𝜋(1,2) =
𝑛
∑

𝑗=1
𝑤𝑗𝑃𝑗 (1,2) (12)

Consequently, for each design 1 ∈ 𝐴, where 𝐴 is the set of all
design alternatives, the positive 𝜙+(1), negative 𝜙−(1), and net 𝜙(1)
outranking flows can be calculated:

𝜙+(1) =
1

|𝐴| − 1
∑

2∈𝐴,1≠2

𝜋(1,2) (13)

𝜙−(1) =
1

|𝐴| − 1
∑

2∈𝐴,1≠2

𝜋(2,1) (14)

𝜙(1) = 𝜙+(1) − 𝜙−(1) (15)

where 𝜙+(1) quantifies how much design 1 is outranking other
esigns (i.e., the power of 1), 𝜙−(1) measures how much design 1 is
utranked by others (i.e., the weakness of 1), and 𝜙(1) is the balance
etween 𝜙+(1) and 𝜙1(1), expressing the overall strength of design
1 with respect to the set of all alternative designs. Then the design
lternatives are ranked by the net outranking flows (𝜙), and the design
ith highest 𝜙 should be selected.

. Application and results

In this section, we test the proposed sensor placement approach to
dentify the location of bursts in a medium-size WDS. The example
etwork comprises 126 junctions, 1 reservoir, 2 tanks, 168 pipes, 2
umps, and 8 valves, and its topology is depicted in Figure 1(a) in the
upporting Information (SI). The complete information and hydraulic
odel can be found in Ostfeld et al. [73]. In this application, each
unction was considered as candidate location for sensor placement and
he cost of each sensors was assumed to be identical regardless of the
ocation. Also, 𝑁𝐸 = 106 representative burst events of same size were
imulated at each location in the network that is not directly connected
o a valve or pump. Hence, in the context of this case study, event
dentification refers to identifying the location of the burst.

.1. Event simulation

The transient simulations were carried out to model the impacts
f different burst events at all potential sensing locations in the WDS.
he bursts start at the beginning of the simulation and take 1s to fully
evelop to the final state, with lumped burst coefficient set to 0.002
3∕s∕(mH2O)1∕2, resulting in a final burst discharge of approximately
0 l∕s. Fig. 3 illustrates the pressure responses at Junction-2 and
unction-18 to the burst occurring at Junction-18. The pressure head
t the burst node (Junction-18) decreases as the burst develops from
to 1 s and then, recovers gradually to a pressure lower than the
riginal pressure. Subsequently, the pressure wave induced by the burst
rrives to Junction-2 at approximately 0.5 s, generating a pressure
rop of approximately 10 m, which is greater than the pressure drop
bserved at the burst node due to the complex topology of the network,
n which pressure waves are reflected, transmitted, and interacted.
unction-2 also experiences additional pressure fluctuations due to the
eflections of pressure waves in the network. After approximately 40 s,
he pressure at both stations stabilizes and reaches the new steady state.
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Fig. 3. Pressure responses at Junction-2 and Junction-18 to the burst occurring at
Junction-18.

5.1.1. Comparing transient, steady-state, and distance-based approximation
models

Fig. 4 shows the results comparing system response to a burst oc-
curring at Junction-18 using transient, steady-state, and distance-based
approximation models. To illustrate the limitation of using steady-
state analysis for modeling pipe bursts, we performed simulations using
EPANET (following the modeling approach suggested in [14,36]) and
TSNet (as proposed in this work). Fig. 4(a) presents the comparison
of simulation results in response to a burst occurring at Junction-18
using the transient model — TSNet [58], and the steady-state model —
EPANET [56]. The 𝑥-axis represents the steady-state pressure difference
at the different nodes in the network induced by a burst occurring
at Junction-18 modeled in EPANET using an emitter with the coef-
ficient set to 0.002 m3∕s∕(mH2O)1∕2. The 𝑦-axis shows the amplitude
of pressure changes at the different nodes in the network induced
by the same burst event modeled in TSNet using the same emitter
coefficient, as discussed in Sections Section 4.1. The black circles show
the magnitude of the pressure changes at different junctions in the
network that can be detected by CUSUM with 5 m threshold (as
described in Section 5.2), while the red crosses represent the locations
in the network at which the burst cannot be detected. Noticeably,
the steady state nodal pressure differences are one magnitude smaller
than the transient amplitude. Additionally, the impact of the burst is
more distinguishable based on the results of the transient model, with
pressure amplitudes changing between 5 and 12 m, while the majority
of junctions experience a pressure drop of approximately 0.4 m, based
on the results of the steady state model. The difference in pressure
changes in the transient and steady state models can be explained by
observing the pressure signals in Fig. 3. Immediately following the
ccurrence of the burst event the pressure drops significantly, which
hen fluctuates until reaching a new steady state. The differences in
ressure head between the initial and the new steady states, which are
aptured by steady state simulations, are much smaller than amplitude
f the pressure transient, which is captured by the transient dynamics.
Furthermore, Fig. 4(b) illustrates the amplitude of the first transient

ave simulated using TSNet as a function of the distance on the fastest
ath from the origin of the burst to each node. Although after the
istance from the burst origin exceeds approximately 1500 m, most of
he junctions cannot sense the impact of the burst (as suggested by Sela
erelman et al. [40]), it can be noticed that the change in transient
ressure does not necessarily decreases as the distance from the burst
rigin increases. This limitation of the distance-based models can also
e observed from the transient pressure signals shown in Fig. 3. For
xample, the amplitude of the first transient wave at the burst origin
9

(green marker in Fig. 4(b) and solid line in Fig. 3) is smaller than that
at Junction-2 (blue marker in Fig. 4(b) and dashed line in Fig. 3), which
is approximately 629 m away from the burst origin.

5.2. Feature extraction

The magnitude and duration of the pressure changes are key fea-
tures of the pressure transients that can help distinguish between the
different burst events. Various techniques have been developed to
detect changes in time series signals, such as CUSUM [66], discrete
wavelet transformation (DWT) [74], and singular spectrum transfor-
mation (SST) [75]. In this paper, a modified CUSUM algorithm, which
was previously applied for pressure transient detection in a real WDS,
is adopted as the change detection technique due to its efficiency, inter-
pretability and generalizability [31]. The CUSUM algorithm, originally
proposed by Page [66] as two repeated uses of sequential probability
tests, tracks the characteristics of the changes, i.e., rate and magnitude,
and compares these characteristics with control limits. The modified
CUSUM detects the start 𝑡𝑠 and end time 𝑡𝑒 of all the changes oc-
curred during the period of interest and the characteristic features of
the changes, such as the amplitude 𝑑𝑝 and duration 𝑑𝑡 of the first
ave front, can be extracted from the signal to characterize additional
eatures of EoIs as 𝑑𝑡 = 𝑡𝑒 − 𝑡𝑠, 𝑑𝑝 = 𝑝(𝑠𝑗 , 𝑡𝑒 ∣ 𝑒𝑖) − 𝑝(𝑠𝑗 , 𝑡𝑠 ∣ 𝑒𝑖).
The modified CUSUM algorithm is applied to all pressure time-

series to detect the pressure changes originated from the burst events.
The following results are demonstrated for setting the threshold in
the CUSUM algorithm to 5 m, i.e, only pressure changes of amplitude
greater than 5 m can be detected, resulting in 90 detectable events out
of the 106 possible events. The characteristics of the detected changes,
i.e., amplitude 𝑑𝑝 and duration 𝑑𝑡, are then recorded to formulate the
signature matrices.

5.3. Signature matrix

Based on the transient simulations and change detection algorithm,
four signature matrices are constructed: (1) boolean, (2) change du-
ration, (3) change amplitude, and (4) joint change duration and am-
plitude. As an example, the signature matrix with continuous change
amplitude (𝑑𝑝) of the first change as the single feature is shown in
Figure 2 in the SI. In this matrix, pixel (𝑖, 𝑗) denotes the amplitude of the
first detectable wave front in the pressure response at junction 𝑗 to a
burst event 𝑒𝑖. A positive change represents pressure rise (red), while a
negative change represent pressure drop (green). It can be noticed that
the dark green elements are mostly located on or near main diagonal,
revealing that the amplitude of the pressure change at the burst node
is generally greater than that at other nodes. Nevertheless, this is not
always the case, as illustrated previously in Fig. 3. Moreover, according
to energy conservation, a pipe burst typically results in a pressure drop;
however, positive pressure changes are also observed in Figure 2 in
the SI. It is plausible that the magnitude of the first front of the wave
is smaller than the threshold, and hence, undetectable; however, the
following cycle of the wave exhibits a greater pressure rise than the
threshold and, thus, be detected by the algorithm and counted as the
first detected pressure change.

5.4. Sensor placement with unlimited number of sensors

In this section, we solve the sensor placement problem with unlim-
ited number of sensors, i.e., the SP-EP1 problem, to find the smallest
subset of sensors that can identify all identifiable events. Our objective
is to explore the sensitivity of the performance of the sensor placement
designs to: (1) increasing level of information, and (2) different levels of
robustness to data and model uncertainty. To address the first scenario,
four different levels of information (i.e., extracted features) are tested.
We expect that with increasing level of information the performance of
the sensor placement strategies will improve, however at the expense
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Fig. 4. Results comparison between different simulation models with the burst occurring at Junction-18: (a) the transient model versus the steady state model (crosses represent
locations where the burst is undetectable, while dots represent locations where the burst is detectable), and (b) the transient model versus the distance-based model, where the
green dot represents Junction-18 and blue dot represents Junction-2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
of needing more complex and reliable modeling and change detection
techniques. Another interesting aspect to explore is which feature,
i.e., amplitude or duration, contributes the most unique information.
To address the second question, we vary the level of robustness by
resolving the sensor placement problem for different values of 𝛿. In all
the results reported next, the number of sensors required to distinguish
two events is set to be one, i.e., 𝛼 = 1. IBM-CPLEX 12.9 commercial
MILP solver is used to solve the optimization problems [71], each of
which can be solved within 2–3 s on a 2.9 GHz Dual-Core Intel Core i5
processor.

5.4.1. Testing the sensitivity to incorporating more information
To begin with, four optimization problems, as formulated in Eq. (5),

are solved with the different signature matrices mentioned above. The
identification tolerance, as defined in Eq. (3), for change duration and
amplitude set to be 1 s and 3.5 m, respectively, i.e., 𝛿𝑑𝑝 = 3.5 m
and 𝛿𝑑𝑡 = 1 s, which is the expected accuracy from the transient
simulations and CUSUM change detection algorithm. The solutions of
the four optimization problems with different inputs were evaluated
based on the three performance metrics described in Section 4.5: dis-
tinction, identification, and homogeneity scores. In the MTC problem,
all detectable events have to be detected by the selected sensors, as
enforced by the constraints, hence, all solutions detect all the events.

Fig. 5 shows the performance metrics for each case, where darker
color represent better results. The first column of Fig. 5 reports the
performance of the sensor placement based on only boolean infor-
mation. Out of the 106 burst events that were generated, 90 events
are detectable, and 45 unique signatures are observed. The solution
of the optimization problem suggests that 29 sensors are needed to
capture all the possible unique signatures, which enable to distinguish
3847 out of the

(90
2

)

= 4005 pair-wise detectable events, i.e., the
distinction score equals 0.96, and uniquely identify 28 burst events,
i.e., the identification score equals 28∕90 ≈ 0.31. For the remaining
events, the largest homogeneity group contains 12 burst events sharing
the same signature, i.e., with homogeneity score of 12∕90 ≈ 0.13.
When additional information, either event amplitude or duration, is
incorporated in the signature matrix, the performance improves. Using
the event amplitude signature matrix, the number of required sensors
decreases from 29 to 27, and the distinction and identification scores
increase from 0.96 to 0.98, and 0.31 to 0.41, respectively. Even better
performance is achieved when the event duration is utilized to enrich
the information in signature matrix: the distinction and identification
10
Fig. 5. Performance evaluation using different extracted information.

scores further increase to 0.98 and 0.51 respectively, although the
number of sensors required increases to 31. This observation indicates
that in this WDS, duration signature matrix with 𝛿𝑑𝑡 = 1𝑠 can provide
more information for event identification compared to the amplitude
signature matrix with 𝛿𝑑𝑝 = 3.5 m, and more sensors are required to
reveal the additional information.

Furthermore, using signature matrix with combined features,
i.e., coupling duration and amplitude, best performance across all
metrics is achieved: with 28 sensors, 3951 out of the 4005 pair-
wise detectable events can be distinguished from each other, i.e., the
distinction score increases to 0.99, and 51 out of the 90 events can
be uniquely identified, i.e., the identification score increases to 0.57.
Additionally, the size of the largest homogeneity group decreases to
7, i.e., homogeneity score reduces to 0.08. Ultimately, the results in
Fig. 5 demonstrate that the inclusion of more information can improve
the performance of the sensor placement and provide more accurate
event identification.

In the context of WDSs, the homogeneity score has practical impli-
cations for identifying the location of the bursts and informing more
localized inspection efforts. Figure 1(b) in the SI shows an example
of different homogeneity groups using signature matrices containing
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ifferent levels of information for burst event generated at Junction-
9 (black circle node). With only boolean information, the size of the
omogeneity group is 12, indicating that 12 burst events, as depicted
y all the square markers in Figure 1(b) in the SI, result in the same
ignature as the burst at Junction-79 and thus cannot be distinguished
ithin the group. Adding information about change amplitudes, the
omogeneity group reduced to contain 9 burst events, as shown using
quare markers with dotted and striped filling. Using signature matrix
ith combined information about change duration and amplitude, the
ize of the homogeneity group further shrinks to 7 events, shown as the
arkers with striped filling. The decreasing homogeneity group reveals
hat as more information is included in the optimization problem, the
umber of bursts that cannot be distinguished decreases.

.4.2. Testing the sensitivity to tolerance threshold
Next, the sensitivity of performance of the sensor placement to

ifferent values of duration and amplitude identification tolerance
s tested, by resolving the MTC problem and evaluating the differ-
nt performance scores. Fig. 6 shows the number of sensors and the
erformance scores, including the distinction, identification, homo-
eneity scores, as functions of duration identification tolerance (𝛿𝑑𝑡).
s a benchmark, the red horizontal lines show the performance with
oolean signature matrix. A solution that includes the duration of the
vent outperforms a solution with only boolean information, if the
erformance for the former (black lines) is above the performance
f the latter (red lines) for the distinction and identification scores,
nd otherwise for the homogeneity score. It can be observed that all
he performance metrics degrade as 𝛿𝑑𝑡 increases: more sensors are
equired, smaller number of pair-wise bursts can be distinguished from
ach other, less bursts can be uniquely defined, and number of bursts
haring the same signature increases. Additionally, when 𝛿𝑑𝑡 exceeds
pproximately 1.4 s, the benefits of incorporating the change duration
nformation are overshadowed by the uncertainties represented by
he identification tolerance. This observation indicates that sufficient
emporal precision is required to make the inclusion of change duration
nformation meaningful. Furthermore, we observe that the number
f required sensors does not increase considerably after 𝛿𝑑𝑡 exceeds
pproximately 0.7 s. This is because 𝛿𝑑𝑡 essentially affects the total
mount of information about the EoIs that can be extracted; hence,
he increasing level of uncertainty as represented by increasing 𝛿𝑑𝑡 in-
erently reduces the amount of information, which cannot be regained
ven with increasing amount of sensors.
Similarly, the sensitivity of the solutions to the amplitude tolerance

𝛿𝑑𝑝) is tested, as shown in Figure 3 in the SI. Similar results are
bserved when using the change amplitude as the characteristic feature
f the burst events. When 𝛿𝑑𝑝 exceeds 5 m, the performance of using
mplitude signature matrix is again worse than that of using only
oolean signature matrix, which emphasizes the importance of ensuring
dequate accuracy of the information incorporated in the signature
atrices. For this WDS, we demonstrated that it is essential to guaran-
ee that the uncertainties associated with duration and amplitude are
ess than 1.4 s and 5 m, respectively. Otherwise, the incorporation of
his information can potentially degrade the performance of the sensor
lacement design.
11
.5. Sensor placement with limited number of sensors

In this section, we solve the more realistic MCT problem as formu-
ated in Eq. (6), in which the number of sensors is limited. We test
he sensitivity of the solution to an increasing number of sensors and
o an increasing level of information. The identification tolerance for
uration and amplitude are set to be 𝛿𝑑𝑡 = 1 s and 𝛿𝑑𝑝 = 3.5 m for
he following results. Fig. 7 compares the performance metrics using
ifferent signature matrices as functions of the number of sensors. As
xpected, all performance scores improve as the number of available
ensors increases and more information is incorporated in the opti-
ization problem. It should be emphasized that only distinction score,
s shown in Fig. 7(b), is the objective function in the optimization
roblem, and the rest of the performance metrics are evaluated after
olving the optimization problem. Hence, with increasing number of
ensors, only improved distinction score is guaranteed, while for the
est of the metrics the general trend is increasing but not guaranteed
t every solution point. Additionally, we observe from Fig. 7(a) that
imilar detection scores are obtained with all four different signature
atrices, because only boolean information is needed for detection.
ig. 7(b) indicates that boolean signature matrix yields lower dis-
inction score compared with the other three matrices, which behave
imilarly compared to each other. Moreover, detection and distinction
cores exhibit a diminishing return trend with the number of available
ensors, i.e., the scores increase steeply when the number sensors
ncreases from 2 to 9, but result in only marginal improvement as
ore sensors are added. Additionally, only 15 sensors are sufficient
o achieve the near optimal performance in terms of detection and
istinction. However, the identification score increases steadily as the
umber of sensors increases from 2 to 25, as shown in Fig. 7(c). In
act, a closer look at Fig. 7(c) reveals that the benefit of adding more
ensors only become apparent after more than 5 sensors are already
ncluded, and 15 sensors are apparently not enough for the purpose of
niquely identifying the bursts. Furthermore, with the same number
f sensors, better identification performance can be achieved when
ore information is contained in the signature matrix: the combina-
ion signature matrix contains the most information and thus yields
he highest identification score, followed by duration, amplitude, and
oolean signature matrices. The difference is magnified as the number
f sensors increases. Finally, the homogeneity scores are presented
n Fig. 7(d), where again the combination signature matrix gives the
est results, i.e., lowest homogeneity scores, and the overall trend of
iminishing return as with detection and distinction scores is observed.
We applied the PROMETHEE method to determine the number of

ensors that should be deployed based on the information gain from
he four performance metrics (𝐼𝐷𝑒, 𝐼𝐷𝑖, 𝐼𝐼 , 𝐼𝐻 ) and cost of the sensors
𝐼𝑐𝑜𝑠𝑡). We show results for sensor design based on the combination
ignature matrix. The parameters used in PROMETHEE are summarized
n Table 1 in SI.
Fig. 8(a) shows the net outranking flows (𝜙) considering only in-

ormation gain (i.e., 𝜔 = 1, green squares), only cost (i.e., 𝜔 = 0,
ed triangles), and combined performance with equal weight assign
o information gain and cost (i.e., 𝜔 = 0.5, black circles). Observing
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Fig. 7. Performance evaluation using different extracted information and increasing number of sensors.
he outranking flows of information gain, the general increasing trend
ndicates that more sensors are preferred if a decision maker is only
oncerned about information gain. However, it should be noted that
here is only a marginal increase in 𝜙 when the number of sensors
xceeds 20. On the other hand, 𝜙 for sensor costs, as represented by the
ed line, decreases monotonically as the number of sensors increases,
ndicating that, as expected, a design with fewer sensors is preferred
f only cost is considered. Furthermore, when information gain and
ensor cost are valued equally maximum 𝜙 is achieved at 9 sensors,
ndicating that the optimal sensor placement design is with 9 sensors.
e further investigated the number of optimal sensors as a function of
he weight that a decision-maker assigns to information gain (𝜔) and
cost (1−𝜔), as shown in Fig. 8(b). It can be observed that when the cost
s valued more than information gain (i.e., 𝜔 < 0.5), designs with fewer
sensors are preferred, thus reflecting budget-constrained water utilities
preferences. On the other hand, when information gain is valued more
than cost (i.e., 𝜔 > 0.5), a water utility will benefit from installing more
sensors to obtain a better burst identification performance. This ap-
proach enables incorporating decision makers preferences for balancing
information gain and cost and can facilitate in selecting the number of
sensors.

6. Conclusions and future work

In this work, the sensor placement problem for event identification
under model and measurement uncertainties was investigated. The
main contributions of this paper include: (1) we rely on transient hy-
draulics to model pipe burst events and demonstrate that the surrogates
may not provide a good approximation for transient system response,
(2) we propose a reduced representation of the continuous system re-
sponse combined with tolerance analysis that is more robust to data and
12
modeling uncertainties, and (3) we demonstrate the sensitivity of the
performance to different levels and accuracy of extracted information.
Ultimately, the results show that using transient modeling and incor-
porating more information in the signature matrix can improve the
performance of burst identification. However, the analysis also suggests
that if information is uncertain, including more information in signal
representation can be suboptimal to parsimony signal representation.
Thus, sufficient accuracy of the extracted information is required to
accrue the benefits of incorporating the additional information for
event identification.

To increase the usability of the proposed approach, further research
is required to address some of the limitations that were not included
in the scope of the current work. The proposed method requires a
hydraulic model that accurately represents the WDS; however, build-
ing such hydraulic model typically require more exhaust than readily
available information. The exact network topology, hydraulic connec-
tivity, and user demands in a WDS are usually difficult to obtain, thus
introducing additional uncertainties in the sensor placement process.
Hence, this work emphasizes the need for hydraulic models to improve
decision-making for system monitoring and burst detection. Addition-
ally, constrained by the network size limitations of TSNet, the proposed
method was tested on a mid-size WDS. Future work should investigate
the performance of the proposed method on large-scale WDSs using
more advance modeling frameworks for speeding up transient simu-
lations using parallel computing [76]. Moreover, the sensitivity of the
proposed approach should be tested using more advanced techniques
for extracting features from transient pressure signals [77]. Finally, this
paper investigated sensor placement for detecting pipe bursts before
these develop into persistent leaks. The approach is based on analyzing
the transient pressure signals that are induced by bursts, while leaks
are preexisting condition and do not induce transients. While the data
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Fig. 8. PROMETHEE results to determine the optimal number of sensors: (a) Net outranking flow (𝜙) for information gain (green), sensor costs (red), and combined performance
ith equal weights (black) of designs with different number of sensors; and (b) number of optimal sensors as a function of the weight that a decision-maker assigns to information
ain (𝜔) and cost (1 − 𝜔).
ollected from the pressure sensors that we consider in this paper can
e used for leak detection, it is not the objective of the optimization
roblem that we consider, since system dynamics for steady-state and
ransient hydraulics are different. Despite these limitations, the current
tudy demonstrated the potential of incorporating transient modeling
or the sensor placement problem for pipe burst detection.
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