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ABSTRACT

Distributed deep learning (DL) plays a critical role in many
wireless Internet of Things (IoT) applications including re-
mote camera deployment. This work addresses three practical
challenges in cyber-deployment of distributed DL over band-
limited channels. Specifically, many IoT systems consist
of sensor nodes for raw data collection and encoding, and
servers for learning and inference tasks. Adaptation of DL
over band-limited network data links has only been scantly
addressed. A second challenge is the need for pre-deployed
encoders being compatible with flexible decoders that can
be upgraded or retrained. The third challenge is the robust-
ness against erroneous training labels. Addressing these three
challenges, we develop a hierarchical learning strategy to im-
prove image classification accuracy over band-limited links
between sensor nodes and servers. Experimental results show
that our hierarchically-trained models can improve link spec-
trum efficiency without performance loss, reduce storage and
computational complexity, and achieve robustness against
training label corruption.

Index Terms— Hierarchical training, image compression
and classification, auto-encoders, information theory.

1. INTRODUCTION

Deep learning (DL) has become an increasingly important
tool for multimedia processing particularly in IoT systems.
Within such networked/distributed learning framework, low-
cost encoders are deployed to compress and transmit data on
low-power sensing devices to cloud/server nodes to carry out
major learning tasks. Images can be efficiently compressed to
lower-dimensional latent representations using auto-encoders
(AEs) [1, 2, 3, 4], where an encoder at sensor nodes and a
decoder/classifier at servers are optimized in an end-to-end
(E2E) manner. In networked learning, bandwidth efficiency
can be just as important as the overall accuracy. It is therefore
vital to lower the coding rate of latent representations without
severely compromising the task accuracy. Moreover, after de-
ployment of encoders on source devices, the server nodes may
directly channel the data obtained by encoders to separately-
trained decoders [5, 6, 7]. Consequently, the encoders that

are jointly optimized with one decoder may exhibit degraded
performance with another reconfigured decoder. Hence, the
reconfiguration flexibility with decoders is an essential char-
acteristic of these encoders embedded on source devices. An-
other major issue in supervised learning is its reliance on la-
beled training data. In practice, however, errors in data an-
notation, inaccuracy in automatic label extraction process, or
data poisoning attacks [8, 9] are commonplace that can lead
to erroneous data labels [10]. For this reason, achieving ro-
bustness to certain level of corrupted training labels is critical
to reliable supervised learning models.

In training DL models for image classification, cross-
entropy (CE) loss function has been particularly effective.
Despite its successes, CE-based training does not over-
come the three obstacles above. In this work, we address
these aforementioned practical considerations by integrating
a newly-proposed information-theoretic learning principle of
Maximal Coding Rate Reduction (MCR?) [11] in training.
Importantly, the principle of MCR? is capable of project-
ing input data to latent representations in low-dimensional
subspaces that are inter-class discriminative and in-class
compressive. In addition to offering better interpretability,
MCR?2-trained classifiers have demonstrated stronger robust-
ness against label noise. The lower-dimensional latent repre-
sentations of MCR? can potentially provide valuable insight
on deriving DL models subject to bandwidth constraints.

To this end, we present an MCR?2-guided AE architecture
for cloud-based image classification. Leveraging the MCR?
principle, we introduce a novel multi-phase hierarchical train-
ing (DuPHiL) strategy via a side channel. Moving beyond
the traditional E2E training based on loss function superposi-
tion, we guide the encoder training with MCR? loss function
from an auxiliary path, to acquire diverse and discriminant la-
tent representations. Meanwhile, we train the decoder with
CE loss function. This DuPHIL strategy separates encoder
and decoder training, achieves the dual objectives of efficient
compression and accurate classification, and gains stronger
robustness to label corruption as well as better decoder recon-
figurability.
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Fig. 1: Architecture of proposed wavelet-domain auto-encoder. “M” is short for “module”. In Phase 1 of proposed DuPHiL
strategy, green blocks are guided by MCR? loss; in Phase 2, blue blocks are guided by CE loss.

2. DISTRIBUTED LEARNING IN IOT

We consider a deployment scenario involving distributed en-
coder/classifier, where a source device is responsible for en-
coding image data for transmission whereas an edge server
is responsible for decoding and classification. As standard-
ized commercial image compression algorithm, such as JPEG
2000 [12], which is based on multi-level 2-dimensional Dis-
crete Wavelet Transform (2D DWT), is commonly embed-
ded on source nodes, bypassing reconstruction when process-
ing JPEG-2000-encoded images on source device can save
the decoding computation [13] and improve inference speed.
Therefore, we adopt the modified ResNet proposed in [14] as
the backbone for DWT-domain image classification, as shown
in Fig. 1. The term “ResNet module” refers to two or more
stacked ResNet blocks with same numbers of filters, each
containing two convolutional layers and a shortcut.

At the source node, we incorporate a latent encoder con-
sisting of a pooling layer and two dense layers for compres-
sion of the intermediate feature f. At the edge server, the
receiver begins with a latent decoder consisting of three trans-
posed convolutional layers for latent recovery. The latent rep-
resentations y are mapped (via rounding) to codeword ¥ be-
fore transmission to the receiver node over a communication
data link. During training, as the rounding quantizer has zero
derivative almost everywhere, we adopt the method proposed
in [15] to solve the zero gradient problem by adding a random
uniform noise in (—1, 1) to y as a rounding relaxation. Af-
ter performing DuPHIiL, this cloud-based classification model
can be distributively deployed as an Encoder on remote source
node and a Decoder on the edge server.

3. PROPOSED HIERARCHICAL LEARNING
3.1. DuPHiL: Hierarchical Training

In the basic classification problem, consider a set of N sam-
ples X = {x1,@s,...,xy} € RP=*N and their class la-
bels {c1,...,cn} € [K], where Dy, is the input data (image)
size, N is number of samples in the dataset, and K is the num-
ber of classes. According to experience and empirical tests, a
deep classifier is typically trained for a direct mapping from
an input = € RP to its class label c.

Based on information theoretic foundation, the recent
work of [11] suggested the MCR? loss that drives a DL model
to extract more diverse and discriminant lower-dimensional
latent representations z € RP=, with D, < D,,, from input

before classification. Define the coding-rate-reduction loss
Lycre = —AR(Z)= - R(Z) + R.(Z,1I) (1)

where, according to [16],

R(Z) = 1logdet (I—i—
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is the average number of bits required to encode a learned
representation z; from Z = {zy, zs,...,2zx}+ € RP=*N up
to an precision bound of e. When a known partition IT =
{II;} that groups samples into classes, we can write the
“group-wise average bit rate” of z; as
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bits per sample. II; is a diagonal matrix with entries “1” for
samples that belong to the j-th class and “0” otherwise.

Our goal is to train the proposed model according to two
loss functions: the MCR? loss LyjcRro to regularize the latent
encoding rate and the CE loss Lcg to minimize the classifi-
cation discrepancy between the Decoder output ¢ and the true
label c. A traditional training approach would be to superim-
pose the two losses to generate a sum loss function Lop +
ALyicre using a regularization variable A. Such a naive joint
loss function, however, requires the encoder and decoder to
be trained jointly in an E2E manner, which is less practical
when encoders are already pre-deployed but the learning
tasks are reconfigured. Furthermore, traditional preset reg-
ularization requires careful tuning of the hyper-parameter A
to avoid local minimum that neither minimizes classification
error, nor reduces the encoding rate. Instead, we propose a
novel Dual-Phase Hierarchical Learning (DuPHiL) strategy
to integrate the two loss functions beyond regularization. In
each epoch of DuPHiL method:

Phase 1: To acquire diverse and discriminant features from
inputs, the Encoder modules and the side branch are
jointly updated to minimize £ ;¢ ro;

Phase 2: For accurate classification, the Decoder modules are
jointly updated to minimize Lo g, while Encoder
modules are frozen after phase 1.

Because of the feature-preserving characteristics of MCR?,
Phase 1 shall retain the key features necessary for accurate



classification. This DuPHIL strategy leverages the strength of
MCR? and induces models to be more robust to potential label
corruptions and more flexible for integration with different
classifier modules.

3.2. Discriminative Power Analysis

To better interpret the classification models, we adopt the con-
cept of “discriminative power” [17] of neurons/filters in each
layer. According to Fisher’s linear discriminative analysis
(LDA) [18], the within-class scatter matrix is defined as:

K
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The between-class scatter matrix is:

K
Sy = an(m—mj)(m—mj)T. 4

j=1
where m; is the class-wise sample mean of II;, n; is the
number of samples in II; and m is the global sample mean
of the dataset. We then define the discriminative power of
each neuron/filter as [17] as D = trace(S})/trace(S,,). The
neuron/filter with the highest score in a layer is the “best”
neuron/filter of that layer.

In order to vary the encoding rate in response to different
link rate constraints, we further prune neurons from the bot-
tleneck layer in latent encoder, which is equivalent to nullify-
ing entries in the latent representation §. We adopt the same
neuron screening strategy in [17]: using training dataset, we
evaluate the discriminative power D of each neuron in the
bottleneck layer and prune those with lowest scores.

4. EXPERIMENTAL RESULTS

We train our proposed model on the popular CIFAR-10 and
CIFAR-100 datasets [19]. We utilize a modified ResNet-18
backbone for CIFAR-10 and a modified ResNet-34 backbone
for CIFAR-100. With side channel disabled, we first pre-train
the AE from E2E using CE loss for 200 epochs to obtain the
benchmark “CE-trained” model. Next, we optimize the pre-
trained benchmark model using the proposed DuPHiL strat-
egy for 100 extra epochs.

We adopt a simple arithmetic encoder to convert the quan-
tized latent vector ¢ into bitstreams for bit rate measurement.
We obtain the approximated cumulative distribution functions
based on the histogram of ¢ of the training set.

4.1. Rate-Accuracy Performance
It is important to note that our MCR?-guided architecture and
DuPHIL strategy allow practical deployment of pre-trained
encoders in distributed learning environment. However, it is
important to examine whether this flexible re-training and re-
configurability of decoders enabled by our proposed learning
strategy may lead to some performance loss.

The rate-accuracy trade-off results are illustrated in Fig. 2,
where the suffixes “-10” and “-100” refer to CIFAR-10 and

CIFAR-100 results, respectively. It is clear that, for classi-
fication, the input image can be compressed to a bit rate of
around 0.3 bits-per-pixel (bpp) for CIFAR-10 and approxi-
mately 0.35 bpp for CIFAR-100 by using either DuPHiL or
E2E CE training without accuracy loss. In comparison with
the CE-trained baseline, our proposed DuPHiL strategy can
achieve similar rate-accuracy performance on CIFAR-10 and
consistently provide up to 1% higher accuracy at the same en-
coding rate on CIFAR-100 without any additional hardware
cost. The ability to deploy pre-trained encoders and the re-
configurability of learning tasks using retrained decoders did
not cause noticeable classification performance loss.
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Fig. 2: Rate-accuracy performance comparison on CIFAR-10
and CIFAR-100 of MCR?- and CE-guided AEs.

We observe that during Phase 1 training, both the overall
rate R and group-wise rate R. would grow, implying that the
MCR2-guided encoder tends to encode latent representations
into more bits, while ensuring the in-class compactness and
between-class discrimination of latent vectors.

4.2. Robustness against Corrupted Labels
The authors of [11] have demonstrated that deep models un-
der MCR? can learn well despite some fractions of corrupted
labels during training. To also test our proposed model’s
robustness against label corruption, we pre-train the AE
with corrupted labels firstly with CE loss in an E2E manner,
which are used as the baseline models. We then enhance the
pre-trained model with the proposed DuPHiL method. For
evaluation, we use the correct ground truth labels. Our exper-
iments include label corruption ratio (CR) of 10%, 20% and
30% on CIFAR-10 and CR of 5% and 10% on CIFAR-100.
We present the layer-wise discriminant power scores in Fig. 3.
From both plots, it is evident that MCR2-guided models ex-
hibit higher discriminative power than CE-trained models
subject to the same level of label corruption. In addition, we
can observe a fluctuation of discriminative power in a period
of 2 layers, as the shortcut connections in ResNet modules
directly add outputs of previous layers to latter layers, which
lowers the discriminative power of latter layers.

From Fig. 4, we can observe that on CIFAR-10 dataset,
with 10% training labels corrupted, the MCR2-guided model
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Fig. 3: Layer-wise discriminative power of proposed dis-
tributed AE, computed on test set.

can deliver up to 1% higher test accuracy than the CE-trained
model at the same encoding data rate. Meanwhile, the MCR?2-
guided model achieves robust learning even under 20% label
corruption and clearly delivers higher accuracy at the same
data rate than the corresponding benchmark CE model. Even
with 30% random label corruption, our proposed learning
model still yields a comparable rate-accuracy performance to
the benchmark CE model with 20% label corruption. Sim-
ilarly, on CIFAR-100 dataset, with 5% training labels cor-
rupted, our MCR2-guided model can achieve up to 2% higher
test accuracy at the same rate. However, under 10% label
corruption, the improvement becomes negligible, indicating
the useful information remaining in the corrupted dataset is
not sufficient for our proposed method to demonstrate benefit.

These results demonstrate the robustness of the proposed
DuPHiL method against noisy training data.

4.3. Compatibility with Decoder Re-Training

To illustrate the general compatibility of our Encoders, we
freeze the Encoders after CE or MCR?-guided training, but
train two new Decoders/classifiers from scratch, including:
(1) a Decoder of the same architecture as in Fig. 1 but op-
timized with Kullback-Leibler Divergence (KL-D) [20] loss
and (2) a linear support vector machine (SVM) [21]. We
present the obtained results in Table 1. The results show
that the encoder modules from DuPHIL continue to deliver
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Fig. 4: Accuracy vs. bpp performance of proposed AEs with
label corruption on CIFAR-10 & CIFAR-100.

Table 1: Accuracy performance of various classifiers based
on fixed pre-trained Encoders.

Training Strategy

Dataset Classifier Model E2E DuPHiL
(Baseline) | (Proposed)

As in Fig. 1 (CE loss) 92.64% 92.77%

CIFAR-10 | AsinFig. I (KL-D loss) 92.63% 92.75%

Linear SVM 92.1% 92.37%

As in Fig. 1 (CE loss) 68.54% 69.83%

CIFAR-100 | AsinFig. 1 (KL-D loss) 68.45% 69.79 %

Linear SVM 64.69% 65.37 %

robust performance. Using a linear SVM and the proposed
decoder architecture trained by KL-D loss, we in fact observe
up to 0.27% and 1.34% classification accuracy improvement
on CIFAR-10 and CIFAR-100 datasets, respectively, over en-
coders from E2E training. Our results demonstrate the pro-
posed MCR?-guided Encoders are more flexible with various
subsequent classifiers in comparison with E2E training.

5. CONCLUSIONS

We propose a hierarchical learning (DuPHiL) strategy to
tackle the dual objectives of efficient discriminant feature ex-
traction and accurate classification. Applying the information
theoretic principle of MCR? in distributed DL configuration,
our DuPHil training strategy consists of two phases. Phase
one optimizes the encoding ResNet modules for efficient fea-
ture extraction. Phase two optimizes the decoding modules
for learning tasks such as classification. Instead of naively
summing loss functions of the two objectives, our DuPHiL
strategy leverages the MCR? loss to guide encoder mod-
ules to acquire in-class-compact and between-class-separable
features before minimizing the CE loss to optimize decoder
modules. Results show that the proposed hierarchical learn-
ing not only achieves as good accuracy but also provides
robustness to errors in training labels and flexible learning re-
configurability and applies directly to any existing AE-based
approach.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

6. REFERENCES

Mark A Kramer, “Nonlinear principal component analy-
sis using autoassociative neural networks,” AIChE jour-
nal, vol. 37, no. 2, pp. 233-243, 1991.

Mikolaj Jankowski, Deniz Giindiiz, and Krystian Miko-
lajczyk, “Joint device-edge inference over wireless links
with pruning,” in IEEE 21st Intl. Workshop on Signal
Processing Advances in Wireless Comm., 2020, pp. 1-5.

S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and
T. Abdelzaher, “Deep compressive offloading: Speed-
ing up neural network inference by trading edge com-
putation for network latency,” in Proc. 18th Conf. on
Embedded Networked Sensor Systems, 2020, pp. 476—
488.

J. Shao and J. Zhang, ‘“Bottlenet++: An end-to-end
approach for feature compression in device-edge co-
inference systems,” in IEEE Intl. Conf. on Communi-
cations Workshops. IEEE, 2020, pp. 1-6.

Fuzhen Zhuang, Xiaohu Cheng, Ping Luo, Sinno Jialin
Pan, and Qing He, “Supervised representation learn-
ing with double encoding-layer autoencoder for transfer
learning,” ACM Trans. Intelligent Systems and Technol-
ogy, vol. 9, no. 2, pp. 1-17, 2017.

Karren D Yang and Caroline Uhler, ‘“Multi-domain
translation by learning uncoupled autoencoders,” arXiv
preprint arXiv:1902.03515, 2019.

Hui-huang Zhao and Han Liu, “Multiple classifiers fu-
sion and cnn feature extraction for handwritten digits

recognition,” Granular Computing, vol. 5, no. 3, pp.
411-418, 2020.

Jacob Steinhardt, Pang Wei Koh, and Percy Liang, “Cer-
tified defenses for data poisoning attacks,” in Proc. 31st

International Conf. on Neural Information Processing
Systems, 2017, pp. 3520-3532.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song, “Targeted backdoor attacks on deep learn-
ing systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

Dan Hendrycks, Mantas Mazeika, Duncan Wilson, and
Kevin Gimpel, “Using trusted data to train deep net-
works on labels corrupted by severe noise,” arXiv
preprint arXiv:1802.05300, 2018.

Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaob-
ing Song, and Yi Ma, “Learning diverse and discrimina-
tive representations via the principle of maximal coding
rate reduction,” Advances in Neural Information Pro-
cessing Systems, vol. 33, 2020.

Athanassios Skodras, Charilaos Christopoulos, and
Touradj Ebrahimi, “The jpeg 2000 still image compres-

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

sion standard,” IEEE Signal processing magazine, vol.
18, no. 5, pp. 36-58, 2001.

Akshara Preethy Byju, Gencer Sumbul, Beglim Demir,
and Lorenzo Bruzzone, “Remote-sensing image scene
classification with deep neural networks in JPEG 2000
compressed domain,” IEEE Trans. on Geoscience and
Remote Sensing, vol. 59, no. 4, pp. 3458-3472, 2020.

L. D. Chamain and Z. Ding, “Improving deep learn-
ing classification of JPEG2000 images over bandlim-
ited networks,” in Proc. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing, 2020, pp. 4062—4066.

Johannes Ballé, Valero Laparra, and Eero P. Simoncelli,
“End-to-end optimized image compression,” 2017, Sth
International Conference on Learning Representations,
ICLR 2017.

Yi Ma, Harm Derksen, Wei Hong, and John Wright,
“Segmentation of multivariate mixed data via lossy data
coding and compression,” IEEE Trans. on Pattern anal-
ysis and Machine Intelligence, vol. 29, no. 9, pp. 1546—
1562, 2007.

Junhua Zou, Ting Rui, You Zhou, Chengsong Yang, and
Sai Zhang, ‘“Convolutional neural network simplifica-
tion via feature map pruning,” Computers & Electrical
Engineering, vol. 70, pp. 950-958, 2018.

Ronald A Fisher, “The use of multiple measurements in
taxonomic problems,” Annals of eugenics, vol. 7, no. 2,
pp. 179-188, 1936.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hin-
ton, “CIFAR-10 (Canadian Institute for Advanced Re-
search),” 2009.

Solomon Kullback and Richard A Leibler, “On infor-
mation and sufficiency,” The annals of mathematical
statistics, vol. 22, no. 1, pp. 79-86, 1951.

Corinna Cortes and Vladimir Vapnik, “Support-vector

networks,” Machine learning, vol. 20, no. 3, pp. 273—
297, 1995.



