
2021 IEEE 11th Symposium on Large Data Analysis and Visualization (LDA V)

Portable and Composable Flow Graphs for In Situ Analytics

Sergei Shudler' Steve Petruzzat Valerio Pascucci!
Lawrence Livermore National Laboratory Utah State University University of Utah

Peer-Timo Bremer§

Lawrence Livermore National Laboratory

ABSTRACT

Existing data analysis and visualization algorithms are used in a wide
range of simulations that strive to support an increasing number of
runtime systems. The BabelFlow framework has been designed to
address this situation by providing users with a simple interface to
implement analysis algorithms as dataflow graphs portable across
different runtimes. The limitation in BabelFlow, however, is that
the graphs are not easily reusable. Plugging them into existing in
situ workflows and constructing more complex graphs is difficult.
In this paper, we introduce LegoFlow, an extension to BabelFlow
that addresses these challenges. Specifically, we integrate LegoFlow
into Ascent, a flyweight framework for large scale in situ analytics,
and provide a graph composability mechanism. Tbis mechanism is
an intuitive approach to link an arbitrary number of graphs together
to create more complex patterns, as well as avoid costly reimple­
mentations for minor modifications. Without sacrificing portability,
LegoFlow introduces complete flexibility that maximizes the produc­
tivity of in situ analytics workflows. Furthermore, we demonstrate
a complete LULESH simulation with LegoFlow-based in situ vi­
sualization running on top of Charm++. It is a novel approach for
in situ analytics, whereby the asynchronous tasking runtime allows
routines for computation and analysis to overlap. Finally, we evalu­
ate a number of LegoFlow-based filters and extracts in Ascent, as
well as the scaling behavior of a LegoFlow graph for Radix-k based
image compositing.

Index Terms: Software and its engineering-Data flow
architectures-; Human-centered computing-Visualization­
Scientific visualization

1 INTRODUCTION

Most high-performance computing systems already made the transi­
tion into heterogeneous architectures. This trend is set to increase
even more as we approach the limits of the Moore's law. Existing
and upcoming diverse hardware architectures lead to a significant
challenge of code and performance portability. As a result, develop­
ers of simulation codes will typically choose a platform and a family
of accelerators to focus on and then spend their efforts to write and
tune the code for this chosen set of architectures.

Data and visualization analytics is an integral part of any scientific
simulation workflow. Traditionally, the process of analyzing and
visualizing the data, with the help of tools such as Paraview [3] and
Visit [7], occurs post-mortem, that is after the simulation has finished
running and writing all the data to storage. In such case, analysis
routines often run on dedicated systems with fairly standard software
stacks. Even if simulation codes run on different architectures and

*e-mail: shudlerl@llnl.gov
t e-mail: steve.petruzza@usu.edu
:l:e-mail: pascucci@sci.utah.edu
§e-mail: bremer5@llnl.gov

978-1-6654-3283-2/21/$31.00 ©2021 IEEE

DOI 10.1109/LDAV53230.2021.00014

63

on different runtimes, the post-mortem setting allows analysis code
to be optimized for just one architecture.

Post-mortem analysis, however, has a major drawback that stems
from the imbalance between compute capacity and 1/0 bandwidth.
An imbalance that is exacerbated by the emergence of extreme
scale HPC systems. Performing either partial or full analysis of the
simulation data in situ, that is during the computation phase, has the
potential to mitigate this problem. In recent years, in situ analysis
has been gaining increased focus [10, 11, 14, 36] and was shown to
be effective in providing insight into simulations whilst drastically
reducing the amount of data that needs to be stored.

With in situ processing, analysis routines become an integral part
of the simulation code stack. Unlike simulation code, however, anal­
ysis routines are general enough to be applicable to a wide range of
domains and problems. If different simulation codes run on different
architectures or runtimes, we are faced with the problem of con­
stantly tailoring analysis code to each specific hardware. This incurs
significant costs over time as we need to maintain an increasing
number of different implementations of the same algorithms. Intro­
ducing new features or fixing bugs becomes an ordeal since it has
to be replicated for each target runtime and hardware. As a result,
most existing tools go down the simulation code route and focus
on a single runtime (e.g., MPI). Even libraries designed to simplify
the development of new analysis also target eventually a specific
runtime. One example is the DIY and DIY2 libraries [27, 30], both
of which are based on MPI.

BabelFlow [31] was designed to address these challenges by
providing developers with a simple dataflow-based interface to im­
plement parallel algorithms. Essentially, BabelFlow describes task
graphs that explicitly identify parallel execution sections of the algo­
rithm and the relations between them. The biggest strength is that it
isolates the description of the algorithm from the implementation.
In this way, BabelFlow abstracts all aspects of communication from
the users, thereby enabling them to focus fully on algorithm de­
sign. Most importantly, however, it transparently maps the dataflow
graph onto various runtimes to provide a native execution of the
corresponding algorithm.

One of the main drawbacks of BabelFlow is that it lacks integra­
tion with existing in situ analytics platforms. Another one is that
there is no ability to easily combine existing dataflows together. The
second aspect is strongly related to the first since in situ analytics
requires flexible analysis routines that can handle changing data
between iterations. In BabelFlow, users are required to reimplement
common patterns for even minor additions, such as attaching an
additional file 1/0 step to the end of an algorithm or adding a pre­
processing step before an existing dataflow. Although it might be
possible to mitigate some of these challenges through the use of
more complex software constructs such as templates or hierarchical
design patterns, BabelFlow provides no such tools and their use
would also run counter to the desired simplicity for non-experts.

In this work, we introduce Lego Flow, an extension to BabelFlow
that integrates with Ascent [22], a flyweight in situ analysis frame­
work, and provides a simple and intuitive interface to compose
an arbitrary number of dataflow graphs to create more complex
patterns. LegoFlow enables developers to implement a library of

Authorized licensed use limited to: The University of Utah. Downloaded on August 19,2022 at 21 :06:03 UTC from IEEE Xplore. Restrictions apply.

	Portable_and_Composable_Flow_Graphs_for_In_Situ_Analytics_Page_01
	Portable_and_Composable_Flow_Graphs_for_In_Situ_Analytics_Page_02
	Portable_and_Composable_Flow_Graphs_for_In_Situ_Analytics_Page_03
	Portable_and_Composable_Flow_Graphs_for_In_Situ_Analytics_Page_04
	Portable_and_Composable_Flow_Graphs_for_In_Situ_Analytics_Page_05
	Portable_and_Composable_Flow_Graphs_for_In_Situ_Analytics_Page_06
	Portable_and_Composable_Flow_Graphs_for_In_Situ_Analytics_Page_07
	Portable_and_Composable_Flow_Graphs_for_In_Situ_Analytics_Page_08
	Portable_and_Composable_Flow_Graphs_for_In_Situ_Analytics_Page_09
	Portable_and_Composable_Flow_Graphs_for_In_Situ_Analytics_Page_10

