2022 IEEE Custom Integrated Circuits Conference (CICC) | 978-1-6654-0756-4/22/$31.00 ©2022 IEEE | DOI: 10.1109/CICC53496.2022.9772832

1 IEEE CICC 2022

StreamGCN: Accelerating Graph Convolutional Networks
with Streaming Processing

Atefeh Sohrabizadeh, Yuze Chi, and Jason Cong
Computer Science Department, UCLA

Los Angeles, USA

{atefehsz, chiyuze, cong} @cs.ucla.edu

Abstract—While there have been many studies on hardware
acceleration for deep learning on images, there has been a
rather limited focus on accelerating deep learning applications
involving graphs. The unique characteristics of graphs, such as
the irregular memory access and dynamic parallelism, impose
several challenges when the algorithm is mapped to a CPU or
GPU. To address these challenges while exploiting all the
available sparsity, we propose a flexible architecture called
StreamGCN for accelerating Graph Convolutional Networks
(GCN), the core computation unit in deep learning algorithms
on graphs. The architecture is specialized for streaming
processing of many small graphs for graph search and
similarity computation. The experimental results demonstrate
that StreamGCN can deliver a high speedup compared to a
multi-core CPU and a GPU implementation, showing the
efficiency of our design.

I. INTRODUCTION

Graphs are the core data structure used in datacenters and have a
wide application in different domains such as recommender
systems, social networks, and the World Wide Web. Although they
are widely used, they are mainly unstructured and have a high
dimensionality, making them computationally expensive to process.
This problem has motivated researchers to apply deep learning on
graphs with the goal of extracting structured, low-dimensional
features from it. In this context, Graph Convolutional Networks
(GCN) [14] are widely used to assign feature vectors, called node
embeddings, to nodes of the graph. They consist of multiple layers
in which the features of the nodes are propagated within them until
a rich information of the input graph is derived. GCNs have shown to
be successful in many domains including molecular footprint
calculation [7], logic optimization for EDA tools [10], etc.

While some graph data tend to scale rapidly, there are also many
graph data that are naturally limited in size, for example, chemical
compounds and molecules [3], [4], [19], [28] that have a wide
application in different domains including drug development,
quantum mechanics, physical chemistry, biophysics, etc [4], [32]; the
GREC database consisting of graphs representing symbols from
architectural and electronic drawings [6], etc [22], [32]. The average
number of nodes for the graphs of these databases ranges from 5 to
50.

Because of the vast application of small graphs, numerous
algorithms have been proposed to obtain their information [1], [13],
[16], [18], [21]. In particular, SIMGNN [1] proposed a GCN-based
approach to learn a similarity score for such graphs. SimGNN targets
graphs from real-world graph databases, such as AIDS [19], LINUX
[29], and IMDB [35]. The target graphs are relatively small, with 10
nodes on average, but the database contains millions of graph pairs,
creating many graph matching queries. Although the CPU
implementation can finish each SImMGNN query in milliseconds,
processing millions of queries can take several hours; hence, it
requires customized acceleration. Such a workload of graph
searching/mining is increasing in importance. For example,
searching for antivirus chemical compounds is an important step in
drug repurposing for COVID-19.

Despite the popularity and effectiveness of graph neural
networks (GNN) approaches, there has been limited research on
developing an accelerator for them (e.g. [9], [34], [37]) as GNN
imposes the following challenges in designing one:

978-1-6654-0756-4/22/$31.00 ©2022 IEEE

- Irregular memory access and low data reuse: As opposed to
images, the neighbors of a node in a graph may be stored in any
location in memory. This will result in many irregular memory
accesses to all levels of the memory hierarchy. Furthermore,
GNNs have much lower data reuse compared to Convolutional
Neural Networks (CNN). As such, the countless CNN
accelerators proposed in the literature (e.g., [24], [25], [31], [39])
are incompatible here. Compared to the traditional graph
algorithms such as breadth first search (BFS), the nodes have
long feature vectors instead of a single scalar value. Therefore,
not only is the access pattern different, but we can also exploit
new kinds of parallelism and data reuse, making most graph-
based accelerators (e.g., [5], [11], [30], [36]) ill-suited for GNNs.

. Computation pattern disparity: Different steps of the GCN
algorithm deal with different sparsity rates (see Section V).
Besides, a GNN may include other types of computation patterns,
such as neural tensor network in SImMGNN (see Section V) to
make an end-to-end application. Such variations call for a
customized processing unit for each step.

. Dynamic workload and parallelism: Since the number of
neighbors varies across different nodes, there will be a load-
imbalance between the graph’s nodes.

In addition to the challenges mentioned above, dealing with small
graphs requires special design considerations as we will explain in
Section IV. To solve these challenges, we present StreamGCN as
an efficient and flexible GCN accelerator for streaming small graphs
- from the different levels of memory and even through the network
- and exploiting all the available sparsity. Then, we apply it to
accelerate the entire pipeline of SimGNN as an end-to-end
application. Since we are facing a memory-bounded application, we
reduce the global memory transactions to the least amount. To deal
with the irregular memory access, we utilize a scratchpad memory
to store the matrices that need random access. Because of the
computation pattern disparity, we analyze the requirements of all
the steps of the computation pipeline and, accordingly, develop a
dedicated architecture for each of them. We further propose an
efficient workload distribution mechanism to alleviate the load-
imbalance problem.

Concisely, we fuse all the stages together and employ a very deep
pipeline with three different levels of nested customizable
parallelization as listed in Table |I. While we use SimGNN for
illustrating our approach, the same optimizations can be applied to
other GCN-based networks dealing with small graphs such as [2],
[13], [21] as well. We implement StreamGCN on three different
FPGAs showing its flexibility and adaptivity to different platforms with
different global memory bandwidth.

In summary, the key contributions of this paper are:

. We design and develop StreamGCN, a flexible architecture for
accelerating GCN specialized for streaming processing of small
graphs and exploiting all the available sparsity.

. We adopt StreamGCN to accelerate SImGNN as an end-to-end
application, resulting in an efficient architecture with a very deep
pipeline and three levels of parallelization.

- We demonstrate the flexibility of our architecture by mapping and
customizing it to three different FPGAs with different capacities
and memory systems.

- Experimental results suggest that our accelerator can outperform
multi-core CPU by 18.2x and GPU by 26.9x, demonstrating the
efficiency of our design.

Il. BACKGROUND

A. Graph Convolutional Network (GCN)

Layer [of a GCN [14] takes an undirected graph G(V,E, H') as the
input, where V (E) denotes the nodes (edges) of the graph. H' €
RIVIxf1is the matrix of the input node embeddings for this layer, with
each row containing the embedding of one of the nodes where f;
indicates the number of features of each node at layer [. The core
computation of a GCN layer to produce the output node embeddings
is as follows:

Authorized licensed use limited to: UCLA Library. Downloaded on August 19,2022 at 21:04:14 UTC from IEEE Xplore. Restrictions apply.

IEEE CICC 2022 2

TABLE I: Our approach compared to state-of-the-art GCN accelerators.

Work Graph Layer Sparse Engine for On-the-fly Read Each Parallelization
Size Customization Feature Sparsity Element — Feature-level Node-level
Transformation Pruning Only Once Mlexiaycr (Sparse Part) (Sparse Part)
HyGCN [34] Large X X X X X v 7
GraphACT [37] Small X X X X X v X
BoostGCN [38] Large X v X X X v v
AWB-GCN [9] Large v v v X v X v
Ours (StreamGCN) Small v v v v v v v
A=At Iy IV. STREAMGCN ARCHITECTURE

Dy = ZA”’ We can compute Eq. 1 either as (4’ x HY) x W' or A’ x (H' x W*).

I We have chosen the latter since it results in a fewer number of

A = l~)_§./i.5_§ 1) operations. Intuitively, this is because both matrices A’ and H' are

HY = 6, (A HL WY
H*1 g RIVIXfi41

where g,.:(.) is an activation function which typically is a ReLU and
Wt e Rf*finr is a layer-specific trainable weight matrix. A" is the
normalized adjacency matrix with added self-connections that is
calculated using 4 and Iy which are the adjacency and the identity
matrix, respectively. D is a diagonal matrix where D;; is the degree of
node i plus one.

As Eq. 1 suggests, the first step in the computation (A’.H")
gathers the neighbors’ information for each of the nodes. As A’ is a
normalized matrix, the computation here is a weighted aggregation.
After the Aggregation step, the node embeddings are transformed by
applying a pre-trained set of weights and finally passed through a
ReLU unit. The time complexity of Layer [can be seen to be
O(|E|fifi+1) » where |E| denotes the number of edges including the
self-connection ones [14].

lll. PREVIOUS GCN ACCELERATORS

Because of the popularity of GCN, there is a growing interest in
developing an accelerator for it [9], [17], [34], [37], [38]. As
summarized in Table |, HYyGCN [34], GraphACT [37], and
BoostGCN [38] develop a fixed hardware for all the layers of GCN
and process them sequentially. This is an undesirable feature
particularly when we target small graphs. In fact, in this paper, we
first develop a baseline architecture that has the same design
principles as these works. Particularly, we reuse the same
architecture for all the GCN layers, exploit only the sparsity of the
Aggregation step, treat the Feature Transformation step as a
regular matrix multiplication, and employ a 2D computation unit for
it. Our experimental results in Section VI-C (Table IV) show that not
only should we execute the GCN layers in a pipelined fashion, but
we should also exploit the sparsity of the node embeddings to
enhance both area and performance. In fact, these optimizations
bring in 2.27x speedup in the performance and an overall
improvement of 3.88x in both performance and computation units’
area. While BoostGCN considers the sparsity of node embeddings,
it proposes the hardware support only when dealing with ultra-
sparsity (more than 90% sparsity). Furthermore, it needs the input
to be in the COO format which adds extra overheads. However,
StreamGCN handles the sparsity by pruning the zeros on-the-fly
while they are being generated.

AWB-GCN [9] proposes an architecture that supports inter-layer
pipelining and considerations for sparsity of the node embeddings
for accelerating GCN. However, partitioning the computation by the
nodes in their approach complicates the design of the task
distributor since the node embeddings are sparse and special
consideration is needed to prevent PEs from doing unnecessary
operations on the zero elements. On the other hand, feature-level
parallelization deals better with workload imbalance as we shall
discuss in Section IV. In addition, AWB-GCN is developed for large
graphs and adapts the inner-product matrix multiplication (MM),
whereas, as we will explain in Section IV-B, the outer-product MM
is preferred here. These design decisions distinguish StreamGCN
from the previous GCN accelerators as summarized in Table I.

sparse, but their multiplication creates a dense matrix. As a result,
in the former, we end up doing a dense-dense multiplication for the
second multiplication. However, if we go with the latter, both
multiplications are sparse-dense that as shown in AWB-GCN [9], it
reduces the number of operations. Fig. 2 illustrates the high-level
view of GCN architecture in StreamGCN. In this section, we employ
a bottom-up approach to highlight the optimization opportunities
when GCN is applied to small graphs and how we used them to
build the GCN accelerator as demonstrated in Fig. 2.

A. StreamGCN Design Principles

StreamGCN is designed:

. To exploit all the available sparsity.

- To reduce the number of times we access the global memory to
the least amount possible. In our final architecture, each input
element is read only once and there is no need to store any of the
intermediate results in the global memory.

. To employ a deep pipeline with varying levels and degrees of
parallelization for matching the workload of different stages and
maximizing the overall performance.

. To efficiently handle and stream small graphs.

B. Baseline Architecture

In this section, we describe the basic optimizations that can be
applied for processing GCNs. Although these optimizations are
necessary, they are not enough when dealing with many small
graphs. Hence, we propose to apply further optimizations in the
subsequent sections.

1) Feature Transformation (FT):

In this step, one must multiply matrices H! € RIV*finand W' e
RSin*fout where f;,, and f,,, denote the number of input and output
features, respectively. Here, adopting an inner-product-based matrix
multiplication results in updating the same output feature in the
consecutive iterations which introduces read-after-write (RAW)
dependency between them. As a result, our pipeline cannot achieve
an initiation interval (1) of one meaning that we cannot schedule new
operations in each clock cycle which degrades the efficiency of our
design.

fin I four |
v
Il 37 I

& &

4 8

H' W'

b
Fig. 1: The overall computation order for FT step. English
numbers show the cycle numbers, and the Roman numbers
denote the high-level order of the computation.

Optimized Scheduling: Read the Weight Matrix Row-wise;
Stream the Embeddings Matrix Column-wise. To alleviate the RAW
dependency problem, we perform Cartesian product as in [20].

Authorized licensed use limited to: UCLA Library. Downloaded on August 19,2022 at 21:04:14 UTC from IEEE Xplore. Restrictions apply.

3 IEEE CICC 2022

! i
i MULT Module ACG Module MULT Module
! Multiplication in FT step) Accumulation in FT step + Aggregation ¥ (Multiplication in FT step) Pipeline as
{2 (= — -—]
-l Buffer | Buffer Buffer Buffer many
£ l f [layers as |
E) A 'y = A . needed to i
2 o 4O . ,g.lI[IE§ g’.mgg v o O paizaniey
| i 0! i | i \ i
“ |l Arbit |2 ! =] | Z! a B =] ‘ Lol Arbit |z ! a giobaf
I | £ o e of vy B ‘o || v § ¢ e o sk o 4l s
R - T R -
i | ‘r ?eatures s F‘eatures as I?eatures 8 =] ?eatures & access
! $ [3 + 3 i latency
!] ¥
; it | | edge | |]
? i
]
i
Host Hardware
| (cPU) | (FPGA) |

[] ComputationUnit [__| On-chip Buffer

— Data Transfer to/from Global Memory

— On-chip Data Transfer — Control Path

Fig. 2: High-level overview of the GCN accelerator architecture in StreamGCN

Meaning that we design a processing element (PE) consisting of
SIMD multiplication and accumulation (MAC) units. At each cycle,
we update different output locations by taking an element from H'
(read as a stream) and broadcasting that to parallel MAC units while
each MAC unit reads different elements of the W' matrix. To read
each element only once and increase data reuse, for each fetched
element of H!, we schedule all the operations it is involved with
before its eviction. We add a second level of parallelization by
duplicating the SIMD PE by a duplication factor (DF) which
parallelizes the node dimension. To avoid RAW dependencies
between the PEs, we read H!in the column order. Note that if we

read it rather in row order, we update the same location every —S’:";;

. . . VI o foue . o
iterations instead of every % X ﬁ iterations. Reading in column

order also lets us cache and reuse the corresponding row of the
weight matrix. Fig. 1 illustrates the final execution order of this step.
The arrows denote the high-level ordering of traversing different
dimensions, and the numbers show the elements that are accessed
at their respective cycles. It is important to traverse the input feature
dimension (f;,,) last (arrow Ill) since it is the dimension causing the
dependencies.

2) Aggregation:

In this step, we must multiply matrices A’ € RV*IVland X! e
RIVIxfour where X! is the result of the FT step. Due to the highly
irregular access to the matrix X! to aggregate features of the
neighbors, we cache it in a scratchpad memory. Matrix 4’, is often
ultra sparse [9]. To reduce the number of both transferred elements
and operations, we prune this matrix and only pass its non-zero
elements, which represent edges, to the FPGA. Instead of
dedicating an on-chip memory for storing the edges, we read them
as a stream and update all the features of the destination node,
before retiring the edge. It helps us with freeing up the storage for
caching X! which is the same matrix that needs to be cached for
the FT step. We further re-arrange the edges, as a step of pre-
processing, before sending them to the FPGA, so that the ones with
the same destination node are at least L (the latency of the
functional unit causing the dependency) locations apart to make
sure there is not more than one update to the same node within the
window of L cycles. As edge-level parallelism can result in bank
conflicts since they update random nodes, we only make use of
feature-level parallelism to distribute the workload here.
Nevertheless, one can include that with adding another level of pre-
processing by further re-ordering the edges.

3) Intra-layer Pipelining:

To further boost the performance, we add intra-layer pipelining by
connecting the modules as a dataflow architecture. As a result, the
overall latency will be close to the latency of the slowest module. In

addition, we can avoid global memory accesses in between these
modules. The MULT module, depicted in Fig. 2, is responsible for
doing all the multiplications of the FT step. It has a local buffer to
store the weights and streams the elements of H'! from the input
FIFO. Each entry of this FIFO is a concatenation of DF elements.
Once the multiplication results are ready, they are packed and sent
in a FIFO to the ACG module (Fig. 2). In this module, we merge the
ACC unit of the FT step and the Aggregation step to save memory
resources since they share the matrix X!. After fetching the output
of the MULT module, the ACG module unpacks the data based on
the same DF, and dispatches SIMD elements to each SIMD ACC
Unit with the same SIMD factor. Once the additions are done, it will
store the partial results to the local buffer features buffer. After all
updates are committed to the features buffer, the matrix X'is
computed and the Aggregation step can start. The SIMD factor of
this step is higher than the one in FT step since we only exploit
feature-level parallelization here. After this step is finished, the
elements of the out features buffer are added with a bias, passed
through a ReLU unit (max(0,-)), and stored into the global memory.
Note that in the baseline architecture, we reuse the same modules
for all the GCN layers.

C. Extension 1: Multi-layer Support and Inter-layer Pipelining
As it is commonly practiced ([17], [34], [37]), in the baseline
architecture, we only exploit intra-layer pipelining and reuse the
modules for all the GCN layers. However, this is not sufficient when
we are dealing with small graphs. The off-chip communication is a
serious burden for this application since it deals with small-sized
inputs. To alleviate this problem, we intend to reduce the number
of accesses to the off-chip (global) memory as much as possible.
The baseline architecture is inefficient with this regard since, at the
end of each layer, the output should be stored to the global memory
and read back again for the next layer. To avoid these redundant
accesses, we extend the dataflow architecture described in Section
IV-B3 to all the layers of GCN. To realize this, we instantiate new
modules for each layer and connect them with FIFOs as depicted
in Fig. 2. Fusing the computation for all the layers by enabling
dataflow architecture has several benefits such as: 1) we can avoid
writing the intermediate results to the global memory by forwarding
them to the next layer through FIFOs. 2) The operations will be
dynamically scheduled since each module can perform its
operation whenever it has a data available. 3) Since we are
instantiating different modules for each layer, we can customize the
parallelization factors of each module based on the workload of
their respective GCN layer. 4) As the adjacency matrix of a graph
does not change across different layers, we can read the edges
from the global memory only once for the first layer and reuse them
for the subsequent ones by transferring them through the on-chip
FIFOs.

Authorized licensed use limited to: UCLA Library. Downloaded on August 19,2022 at 21:04:14 UTC from IEEE Xplore. Restrictions apply.

IEEE CICC 2022 4

D. Extension 2: In Situ Sparsity Support in FT Step

The input node embeddings to the first layer of GCN usually contain
many zero elements since they often adopt one-hot encoding for
assigning initial vectors to the nodes. Furthermore, since there is a
ReLU unit at the end of each GCN layer, the matrix generated by
each layer, which is the input to the next layer, is sparse. In fact, we
saw 52% and 47% sparsity on average for the input to the second
and the third layers of GCN in SimGNN for randomly drawn graphs
from our target dataset. Therefore, the FT step also needs to have
the support for sparse computation. To reduce the number of
operations, we prune the zero elements and only pass the non-zero
ones to the next layer. As a result, the updates to the output buffer
may come in random cycles; thus, it is necessary to store the buffer
containing the partial results on-chip to enable random access. For
the same reason, we pack the node features with their address which
includes their row and column ID. Packing the elements with their
address helps to make the dispatch unit simpler since each SIMD
PE is free to work with any data and knows which partial result
should be updated; hence, there is no need to take special
considerations to navigate the data to the correct PE. We only need
to make sure that at all the times, each SIMD PE is working with a
different memory bank. We employ an arbiter for this matter, as
explained below.

As mentioned in Section IV-B, to reduce the number of RAW
dependencies, we chose to stream the node embedding matrix and
broadcast the elements to different computation units (CU) which
read the weight matrix as a batch. Since the node embedding is a
sparse matrix, reading it as a stream facilitates the pruning
mechanism we employ and enables us to distribute the workload
more efficiently. Fig. 3 demonstrates a toy example illustrating this.
The colored squares show the non-zero elements of the node
embedding matrix. By mapping the weights, which are non-zero, to
the SIMD dimension, all the CUs in the PE would execute useful
operations and we can skip all the operations involving a zero node
embedding.

Wasteful Scheduling Wasted

weights‘

Fig. 3: The benefit of streaming the node embeddings and mapping
the weights to the SIMD dimension.

s8uIppagw3 apoN

Pruner +

Arbiter

When skipping the zero node embeddings, the dependency
distance for output elements may change dynamically since the
number of non-zero inputs between the updates to the same
location can be different. Even though the scheduling discussed in
Section IV-B increases the dependency distance as much as
possible by doing all the operations when a nonzero input is

encountered (each non-zero element would f|II f"‘” cycles of the

dependency window), there still may be some cases where the
dependency distance is less than L after this optimization. Instead
of setting the Il to L to ensure the correctness, we first insert L
registers to store the partial results of CU at the end of each of its
pipeline stages; hence, we can schedule a new set of operations at
each clock cycle (lI=1). There may be cases where the new
scheduled operations want to update a location whose old value is
still in the registers and have not updated the buffer. To ensure the
correctness, we add a control unit which keeps track of the last
cycle that each of the output locations was updated. If the number
of cycles between two updates to the same location is less than L,

the control unit will insert bubbles into the pipeline until the previous
update is committed.

We insert a unit for pruning zeros at the end of the ACG module.
As Fig. 4 demonstrates, at each cycle, we evaluate P elements of
the node embeddings and pass each to a FIFO if it is not zero. The
MULT module of the next layer takes the P FIFOs as the input and
uses an arbiter to fetch, at most, DF of them (DF <= P) for passing
to DF SIMD PEs. An arbiter keeps track of the FIFO whose turn it is
to be read first in the next cycle. It then uses a round-robin ordering
for dispatching the elements from the non-empty FIFOs. After
dispatching the inputs, it checks for the RAW dependency by
scanning the prev iter buffer which contains the last cycle when each
element was seen as the input. If the distance was less than L, it will
insert bubbles in the pipeline until the previous input has committed
its update. If there is no dependency, for each memory bank at most
one element from the dispatched inputs will be issued to a SIMD PE
and the current cycle number will be stored in prev iter buffer for that
input.

Dependency Cycle

| — L&
E Element Index
[— : Arbiter + —-->| |—> SIMD PE
P { : i Dispatcher f } DF
W LT sivp e

V; issuer

Next Turn
_—

Node lzero,
Embeddings . E
Added at theend |

of ACG module '

Added at the beginning
of MULT module

Fig. 4: Architecture support for sparse computation in Feature
Transformation step.

The StreamGCN architecture provides a flexibility in choosing the
parallelization factors. Table Il lists the parameters that can be tuned
for each GCN layer based on its workload. The SIMD factors
correspond to feature-level parallelization, while DF and P map to
node dimension.

TABLE II: Summary of the architecture parameters for the
accelerator of each GCN layer in StreamGCN.

Design Parameter Explanation

SIMD gy SIMD factor of the FT step

SIMD 4, SIMD factor of the Aggregation step
DF Duplication factor of the PEs in FT step
P Number of input FIFOs to the arbiter

FT: Feature Transformation

V. STREAMGCN APPLICATION TO GRAPH MATCHING

In Section IV, we proposed an architecture for GCN specialized for
small graphs. In this section, we extend our architecture to
accelerate an end-to-end application, SImMGNN, which introduces
new computation patterns beyond GCN.

A. SimGNN

Bai et al. [1] proposed a neural-network-based approach to assign a
similarity score to two graphs. Its computation pipeline consists of
four major stages. The first stage has three layers of GCN to extract
the node embeddings H € RIVI*F where F is the number of features
of the last layer. In the second stage, it uses a Global Context-Aware
Attention layer (Att) to combine the node embeddings and generate
a single embedding per graph h; € RF. For this matter, it adapts an
attention mechanism to find out the importance of each of the nodes.
The graph embedding, then, can be calculated by taking a weighted
sum of the node embeddings using the attention weights. The
following formula summarizes the computation in this stage:

h = EL o (hh tanh (S Wy B, 1)) B)

vl

Authorized licensed use limited to: UCLA Library. Downloaded on August 19,2022 at 21:04:14 UTC from IEEE Xplore. Restrictions apply.

5 IEEE CICC 2022

where o(-) denotes the sigmoid function to produce the attention
weights and W,,, € RF*F is a learnable weight. The time complexity
of this stage can be seen to be O(|V|F). The third stage is a Neural
Tensor Network (NTN) that calculates a vector of similarity scores
between the two graphs:
s(hg,, he,) = o(hE,W, LK th +V.concat(hg,, hg,) +b) (3)

Where WKl e RPxFXK e RKX2F and b € RX are learnable
weight tensor, weight matrix, and bias vector, respectively. K is a
hyper-parameter that controls the number of similarity scores. The
time complexity of this stage is 0(F2K). The last stage uses a fully
connected network (FCN) to gradually reduce the similarity vector
to only one score.

The non-GCN stages make use of exp and tanh functions which
are expensive to have on FPGA that can limit their parallelism rate.
On the other hand, the computation complexity of the different
stages shows that the GCN step is the most computation-intensive
one; hence, when pipelining all the stages together, the accelerator
will be bottlenecked by the GCN step. Therefore, we do not
aggressively parallelize the rest of the steps and rather focus on
reducing their resource utilization.

B. Att Architecture

The SIimGNN pipeline applies the GCN stage to two graphs for
each comparison query. Instead of duplicating the architecture in
Fig. 2, we process the graphs serially and reuse the GCN module
for the two input graphs in the query. Reusing the GCN module
enables us to map the design to small FPGAs as well. We improve
the performance of processing one query by overlapping the GCN
computation of one graph with the Att computation of the other one.
Thus, the total performance will be bottlenecked with the
performance of GCN, and we can focus on reducing the area and
reusing the resources for Att. In computing v = WMZ 1 hn, we
first must add h,, vectors and then do a matrix-vector multlpllcatlon
(MVM). Instead of instantiating separate adders for the first
additions and the ones in MVM, we rewrite the equation as follows
to reuse the adders:

v = Waee Zan=|1 hyp = ZInV=I1 Watthn = sum(H. Wy, 2) 4)

where sum(H. Wy, 2) denotes the reduction of the resulting matrix
across its second dimension (columns), meaning that all the
multiplications associated with a column of H should be added
together. Fig. 5 demonstrates an overview of the Aft module. As in
the GCN stage, we divide the MAC operations on the matrices to
two different modules, one responsible for multiplications and the
other for additions. Again, we use SIMD PEs to implement these
modules. However, the SIMD factor here can be set to a different
value compared to the GCN stage since they have different
computation complexities. The Repack module is responsible for
adjusting the output of GCN with the SIMD factor of this stage. For
tanh and exp functions, we adopt their implementation from the
Xilinx HLS Math library. Note that the last summation in Eq. 2 can
be seen as H” x a where a € R!"! contains the sigmoid results.
Hence, we use a matrix vector multiply (MVM) unit at the end.

T T T
GCN results

Repack module SIMD ACC Unit' Tanh Unit ‘

Dot Product Slgmcud MVM
MULT module Unit Unit Unit

SIMGNN - Att I\

I -
Att Weights

N
AttResults

Att Comp. module

Fig. 5: Architecture overview of the second stage of SimGNN in
StreamGCN: Att

C. NTN + Fully Connected Network (FCN) Architecture

The computation in the NTN stage is rather simple since it is a series
of fixed-size MVMs followed by a bias addition and an activation
function. Furthermore, the layers of the FCN in the last stage either
need an MVM unit or a reduction tree to lower a vector to a scalar.
Like the previous stages, we implement all the sub-modules of these
two stages in a dataflow-manner. Fig. 6 depicts the architecture of
these two steps.

SIMGNN —
NTN + FCN

T T
NTN + FCN Weight

Weight Loader

FCN1
(MVM Unit)

MVM Unit
(embedding 1)

MVM Unit ‘ Add blas +
embedding 2) RelLU

Fig. 6: Architecture overview of the last two stages of SImGNN in
StreamGCN: NTN and FCN.

‘ MVM Un|t|

T T
Att Results

DRAM

Output

buffer
e

D. Putting It All Together

The whole computation pipeline of SImGNN is implemented as a
three-level dataflow architecture. The first two levels resemble an
inter-stage pipelining while the last one is for intra-stage pipelining.
The first level enables a task-level parallelization by grouping the
graph-related steps, the GCN (Section IV) and Aft (Section V-B)
modules, and overlapping them with the rest, NTN_FCN module
(Section V-C). The second level of the dataflow architecture overlaps
the GCN stage with the Att. Finally, the last level applies dataflow
architecture to each of the GCN, Att, and NTN_FCN modules as
shown in Fig. 2, 5, and 6, respectively. We apply three optimizations
for reducing the off-chip communication latency: 1) each input buffer
can be mapped to a different DRAM bank or HBM channel to enable
parallel access to them, 2) the available global memory bandwidth is
fully utilized by applying memory coalescing. Memory burst is also
applied to amortize the initialization overhead, 3) the modules that
access the global memory are overlapped by the computation
modules by implementing the accelerator as a dataflow architecture.

VI. EXPERIMENTAL RESULTS

A. Benchmark

We consider a real-life graph dataset, AIDS [19], for benchmarking
our design. AIDS contains 42,687 antivirus chemical compounds
gathered by the Developmental Therapeutics Program at NCI/NIH.
The graphs in AIDS have 25.6 (27.6) nodes (edges) on average. We
randomly form 10,000 queries of them for testing. The kernel time
and end-to-end (E2E) time reported in this section are the average
of all queries.

B. Experimental Setup

The StreamGCN architecture is described using Vivado HLS C++
[33]. The design is synthesized and implemented using Xilinx Vitis
2019.2 on three different target platforms: Xilinx Alveo U50, Xilinx
Alveo U280, and Xilinx Kintex UltraScale+ KU15P. The first two are
equipped with HBM2 and, ideally, can achieve a bandwidth of 316
GB/s (460 GB/s) with a TDP of 75W (225W); while the last one
utiizes DDR4 as the global memory. Table Il compares the
hardware resources of these boards. For comparison to CPU and
GPU, the PyTorch-based implementation of SimGNN from [23] is
used that is built using the state-of-the art PyTorch Geometric (PyG)
library [8] which is commonly used as a baseline by previous works
[9], [17], [34]. For the Aggregation step, PyG exploits sparsity and
edge-level parallelism by adapting the PyTorch Scatter library. For
the Feature Transformation step, it uses Intel MKL [40] and NVIDIA
cuBLAS library [41] for CPU and GPU respectively, making it a
reasonable and optimized baseline. The target CPU in our
experiments is Intel(R) Xeon(R) CPU E5-2699 v4 running at 2.2
GHz. For testing on GPU, we use an AWS p3.2xlarge instance which
has an NVIDIA V100 GPU.

Authorized licensed use limited to: UCLA Library. Downloaded on August 19,2022 at 21:04:14 UTC from IEEE Xplore. Restrictions apply.

IEEE CICC 2022 6

TABLE IV: Impact of GCN architecture optimizations on U280. The meaning of design parameters is summarized in Table II. Baseline
design shows a single set of design parameters because it uses the same hardware for all the layers.

Architecture Design Parameters (L1/L2/L3) LUT/FF/DSP/ Freq. Kernel (ms) Kernel x
SIMDrr . SIMDpgg . DF | P BRAM / URAM (%) (MHz) DSP
Baseline 16 32 8 — 98/77/74/6.8/0 265 0.599 (1x) 4.46 (1%)
+Inter-Layer 32/16/16 = 32/32/16 | 8/8/8 — 14/12/18/3.6/2.5 271 0.383 (1.56x) 6.74 (0.66x%)
Pipeline
+Extended 32/32/16 | 32/32/116 | 2/1/1 | 8/2/]2 4.8/6.0/4.4/4.8/3.1 300 0.264 (2.27x) 1.15 (3.88x)
Sparsity

TABLE III: Properties of the FPGAs used in this paper.

Platform BRAM LUT FF | DSP A URAM Max BW
(Mb) (K) (K) (Mb) (GBl/s)
KU15P 34.6 523 | 1045 1968 36 19.2
us0 47.3 872 | 1743 | 5952 @ 180 316
U280 70.9 | 1304 | 2607 | 9024 @ 270 420

C. Impact of GCN Architecture Optimizations

1) Inter-Layer Pipelining:

Table IV shows the resource usage and performance of the
StreamGCN architecture when accelerating three GCN layers of
SIimMGNN on the U280 FPGA. The baseline uses the same
hardware for all the GCN layers. With inter-layer pipeline added, all
3 GCN layers run in parallel as a coarse-grained pipeline. Since
each layer utilizes different pieces of hardware, we can customize
the design parameters to match the throughput of each layer. As a
result, the 3 layers require 2.4x more DSPs compared with the
baseline. We distribute the storage units needed between BRAM,
URAM, and LUT to obtain a better frequency. The GCN kernel time
is reduced by 36% with inter-layer pipelining added to the baseline.
However, if we look at the latency-area product metric, i.e.,
KernelxDSP, we can see that the performance improvement does
not catch up with the computation units (DSP) increment,
suggesting the potential for further optimizations.

2) In Situ Sparsity for Feature Transformation Step:

Although using P queues (Section IV-D) helps the arbiter fetch non-
zero elements more frequently, it may still not be enough to
dispatch data to all the DF PEs. Furthermore, by increasing the DF,
we may need to insert more bubbles in the pipeline to avoid RAW
dependency since it reduces the number of cycles between the
updates to the same location. As a result, there is a trade-off in
choosing the right DF for each layer. The best parallelization factors
are summarized in Table IV. When DF is set to 1, we no longer
need to have separate banks in the row dimension of the buffers
which can lessen the number of needed memory blocks. This
makes it more efficient to use dense memory blocks (BRAM and
URAM) as opposed to LUTs for the buffers. As Table IV shows,
extending sparsity to Feature Transformation step over inter-layer
pipeline has further reduced the kernel time by 31%, while
decreasing the DSP usage by 4.09x. The results clearly suggest
that, since this is a memory-bounded application, throwing more
resources to the architecture is not helpful. Instead, the memory
access latency should be reduced, and the computation units shall
be used more efficiently. Since a large number of zero elements
and the required DSPs are excluded, there is a 2.27x speedup over
the baseline and the latency-area metric (KernelxDSP) is greatly
improved by 3.88x.

D. End-to-end Acceleration of SimGNN

1) Flexibility of Mapping to Different FPGAs:

We implement the whole pipeline of SimGNN on 2 HBM FPGAs and
KU15P that uses DDR memory. Fig. 7 compares the resource

breakdown of the modules at the top hierarchy of our design when
mapped to U280. We allocate most of the resources to the GCN
stage as it is the computation-intensive part of the network. Table V
shows the resource usage and performance for the three FPGA
platforms. We can see that the kernel runs faster on HBM FPGAs
compared to KU15P. This is mainly due to the fact that HBM FPGAs
can achieve a better frequency as they have more resources and the
Vitis tool has more freedom in placement and routing (PnR) to
optimize the timing. The fact that the multiplication and addition units
have different latencies on these boards further increases this
difference. In fact, the cycle count of the same kernel when it uses
different types and number of banks for global memory is almost the
same. This suggests that after our optimizations the bottleneck is no
longer at the memory level.

TABLE V: Performance and resource utilization of a StreamGCN
design accelerating SImGNN on different target FPGAs.

FPGA @ LUT/FF/DSP Freq. | Kernel E2E E2E
/IBRAM/ URAM | (MHz) (ms) (ms) (query
(%) Is)
KU15P | 34/29/35/30 201 0.786 | 1.135 881
/23
us0 17/16/12/16 279 0.423 | 0.538 1858
/4.7
U280 11/10/7.7/10 290 0.327 | 0.509 1965
/3.1
E2E: End-to-End
NTN + FCN W Att B GCN
100%
” BRAM DSP FF LUT URAM

Fig. 7: Resource breakdown of the SiImGNN accelerator on U280.

2) StreamGCN vs CPU and GPU:

We test the performance of the whole pipeline of SImGNN on the
CPU and GPU described in Section VI-B. In this section, we are
assuming that the inputs are already stored in the host memory,
and we want to offload the graph comparison queries to either of
the target platforms. The goal is to compare the performance of
these platforms for processing a graph matching query. Table VI
summarizes the average runtime per query. The queries are started
sequentially, and the end-to-end time of all the platforms is the time
interval between two consecutive queries are started. This contains
the runtime for any pre-processing steps as well. For FPGA and
GPU, it also includes the host-kernel communication via the PCle
link, writing data to FPGA/GPU’s global memory, reading the
results from that, and the overheads for using the APIs (OpenCL
for FPGA and PyTorch for CPU/GPU). We use the end-to-end time
for comparison since these overheads are inevitable and should be

Authorized licensed use limited to: UCLA Library. Downloaded on August 19,2022 at 21:04:14 UTC from IEEE Xplore. Restrictions apply.

7 IEEE CICC 2022

accounted for. The kernel time on CPU/GPU is measured with the
PyTorch profiler.

The results demonstrate that our FPGA solution can outperform
both CPU and GPU significantly. As discussed in Section I, this is
partly because of the dynamic load balance and the irregular
memory access of the graph structure. Furthermore, since we
target small graphs, it results in extreme underutilization of GPU. In
fact, the profiling results indicate that the GPU utilization does not
go higher than 6% and, for the most part, the PyG-GPU only uses
1 streaming multiprocessor (SM) since the matrices are small.
Because of this and the fact that GPU runs at a lower frequency
(1.3GHz) compared to CPU (2.2 GHz), the GPU version of this
application is even slower than the CPU. The nvprof profiling results
show that PyG-GPU runs 225 kernels for accelerating this
application that on average have 4.6 KFLOPs. With this low
computation intensity, the overhead of running the kernel (such as
cudalaunchKernel) is larger than the actual kernel runtime that
greatly impacts the GPU performance. Designing the GPU kernel
manually can alleviate some of these shortcomings, but the
underlying problem still exists due to the coarse-grained execution
model of GPU. In contrast, our FPGA solution suffers from the
kernel initialization overheads only once since we develop a deep
pipeline across all stages of the computation by fusing them in one
kernel. This pipelining has several other benefits as explained in
Section IV-C. Note that both FPGA and GPU have enough
resources left for batch processing, so it is meaningful to compare
their single query execution.

TABLE VI: Performance comparison of running SimGNN on
different hardware platforms.

Platform Max | Kernel E2E | Speedup | Speedup
BW (ms) (ms) (vs.CPU) (vs. GPU)
(GBIs)
KU15P 19.2 0.786 | 1.135 8.2 12.1
us0 316 0.423 | 0.538 17.2 25.5
U280 460 0.327 | 0.509 18.2 26.9
PyG-CPU 76.8 5.85 9.27 1 1.5
PyG-GPU 900 9.68 13.7 0.68 1

BW: Bandwidth, E2E: End-to-End

3) Discussion on Scalability:

Table V illustrates that the available resources allow us to instantiate
6 StreamGCN pipelines with U280 before hitting the 80% resource
usage upper-bound. 80% is an empirical threshold that beyond that
the Xilinx tool would have a hard time mapping the design to the
FPGA. Since U280 is equipped with HBM which makes use of
pseudo channels (PCs) that can be accessed independently, this
batch processing can be done completely in parallel. This does not
change the latency of each graph query, but it would increase the
throughput by 6x. In addition, although the graphs in our target
benchmark have 25.6 nodes on average and we designed our
accelerator for them, we can use the unused resources for
increasing the target graph size or processing more GCN layers.
Obviously, increasing either of the batch number, graph size, and
number of GCN layers limits the other values. If all the other options
are fixed, we can increase these three parameters by 6, 150, and
20, respectively, when targeting the U280 board for SimGNN.

VIl. OTHER RELATED WORKS

SpMM and SCNN Accelerators: We reviewed the related works
which propose an accelerator for GCN in Section Ill. Apart from the
works focusing on GCN, there has been a lot of research on sparse

! https://cdsc.ucla.edu/partners/

MM either for pruned CNNs or normal MM [12], [15], [20], [26], [27].
They all rely on the fact that the sparse matrix is known offline, and
they can pre-process it. For example, EIE [12] propose a sparse
matrix vector multiplier for the fully connected layers. It reorganizes
the sparse matrix in compressed sparse column (CSC) format and
pre-loads that into on-chip memory. As another example, Kung et al.
[15] pre-process the data by merging multiple sparse columns of the
weight matrix into one and pruning all the weights except for the
most-significant ones. resulting in some accuracy loss. These
approaches are not feasible for GCN in which the sparse matrix (i.e.,
the node embeddings) is generated while running the algorithm;
whereas we proposed a technique to prune the zeros on-the-fly.

VIil. CONCLUSION

In this paper, we analyzed and examined the optimization
opportunities when GCN is applied to small graphs. We presented
an efficient architecture, StreamGCN, and developed an accelerator
for SIMGNN based on that as an end-to-end application, which
demonstrated significant speedup over the CPU and GPU results.
StreamGCN is ideal for real-time or near real-time graph search and
similarity computation for many biological, chemical, or
pharmaceutical applications. The computation disparity existing in
the network calls for a customized accelerator. Besides, since the
GPU has coarse-grained execution, we cannot have improvement
beyond the optimizations applied for each phase since different
phases are executed separately. However, on the FPGA side, we
can exploit a deep pipeline across the phases by enabling a dataflow
architecture. Not only does it help us reduce the global memory
transactions, but we can also eliminate the overhead of running
different kernels. Furthermore, we showed that since this is a
memory-bounded application, instantiating many computation units
(as in GPU) is not beneficial. Due to these optimizations, the
experimental results demonstrate that StreamGCN can outperform
CPU and GPU by 18.2x and 26.9x, respectively.

ACKNOWLEDGMENTS

The majority of this work was conducted while the first author was
interning at Samsung Semiconductor Inc. It is also supported by the
CAPA award jointly funded by NSF (CCF1723773) and Intel
(36888881), the RTML award funded by NSF (CCF-1937599), and
CDSC industrial partners”.

REFERENCES

[1] Y.Baietal., “SimGNN: A neural network approach to fast graph
similarity computation,” in WSDM, 2019.

[21 Y. Bai et al, “Learning-based efficient graph similarity
computation via multi-scale convolutional set matching,” in
AAAI, 2020.

[3] E. E. Bolton et al., “PubChem: integrated platform of small
molecules and biological activities,” in Annual reports in
computational chemistry. Elsevier, 2008.

[4] G. Chen et al., “Alchemy: A quantum chemistry dataset for
benchmarking ai models,” arXiv preprint arXiv:1906.09427,
2019.

[5] G. Dai et al, “ForeGraph: Exploring large-scale graph
processing on multi-FPGA architecture,” in FPGA, 2017.

[6] P. Dosch et al., “Report on the second symbol recognition
contest,” in International Workshop on Graphics Recognition.
Springer, 2005.

[71 D. K. Duvenaud et al., “Convolutional networks on graphs for
learning molecular fingerprints,” in NeurlPS, 2015.

Authorized licensed use limited to: UCLA Library. Downloaded on August 19,2022 at 21:04:14 UTC from IEEE Xplore. Restrictions apply.

IEEE CICC 2022 8

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

M. Fey et al., “Fast graph representation learning with PyTorch

geometric,” arXiv preprint arXiv:1903.02428, 2019.

T. Geng et al., “AWB-GCN: A graph convolutional network

accelerator with runtime workload rebalancing,” in MICRO.

IEEE, 2020.

W. Haaswijk et al., “Deep learning for logic optimization

algorithms,” in ISCAS. IEEE, 2018.

T. J. Ham et al., “Graphicionado: A high-performance and

energy-efficient accelerator for graph analytics,” in MICRO,

2016.

S. Han et al., “EIE: Efficient inference engine on compressed

deep neural network,” ACM SIGARCH Computer Architecture

News, 2016.

S. Ishida et al., “Graph neural networks with multiple feature

extraction paths for chemical property estimation,” Molecules,

2021.

T. N. Kipf et al., “Semi-supervised classification with graph

convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

H. Kung et al., “Packing sparse convolutional neural networks

for efficient systolic array implementations: Column combining

under joint optimization,” in ASPLOS, 2019.

Y. Li et al., “Graph matching networks for learning the similarity

of graph structured objects,” in ICML, 2019.

S. Liang et al., “ENGN: A high-throughput and energy-efficient

accelerator for large graph neural networks,” IEEE TC, 2020.

H. Ma et al., “Multi-view graph neural networks for molecular

property prediction,” arXiv preprint arXiv:2005.13607, 2020.

NCI/NIH, “Aids antiviral screen data.” 2004. [Online]. Available:

https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Scr

een+Data

A. Parashar et al., “SCNN: An accelerator for compressed-

sparse convolutional neural networks,” ACM SIGARCH

Computer Architecture News, 2017.

Z. Qin et al, “GHashing: Semantic graph hashing for

approximate similarity search in graph databases,” in KDD,

2020.

K. Riesen et al., “IAM graph database repository for graph based

pattern recognition and machine learning,” in Joint SPR and

SSPR, 2008.

B. Rozemberczki,
2022. [Online].

https://github.com/benedekrozemberczki/SImGNN

Y. Shen et al., “Escher: A CNN accelerator with flexible buffering

to minimize off-chip transfer,” in FCCM, 2017.

“A PyTorch Implementation of SimGNN.”
Available:

[25]

[26]

[27]
[28]
[29]

[30]

[31]
[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

A. Sohrabizadeh et al., “End-to-end optimization of deep
learning applications,” in FPGA, 2020.

N. Srivastava et al, “MatRaptor: A sparse-sparse matrix
multiplication accelerator based on row-wise product,” in
MICRO, 2020.

N. Srivastava et al., “Tensaurus: A Versatile Accelerator for
Mixed Sparse-Dense Tensor Computations,” in HPCA, 2020.
T. Sterling et al., “Zinc 15-ligand discovery for everyone,”
Journal of chemical information and modeling, 2015.

X. Wang et al., “An efficient graph indexing method,” in ICDE,
2012.

Y. Wang et al., “Processor assisted worklist scheduling for
FPGA accelerated graph processing on a shared-memory
platform,” in FCCM, 2019.

X. Wei et al., “TGPA: tile-grained pipeline architecture for low
latency CNN inference,” in ICCAD, 2018.

Z. Wu et al., “MoleculeNet: a benchmark for molecular machine
learning,” Chemical science, 2018.

Xilinx, “Vivado design suite user guide: high-level synthesis,”
2021. [Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/xili
nx2020_1/ug902-vivado-high-level-synthesis.pdf

M. Yan et al, “HyGCN: A GCN accelerator with hybrid
architecture,” in HPCA. IEEE, 2020.

P. Yanardag et al., “Deep graph kernels,” in SIGKDD, 2015.

Y. Yang et al., “GraphABCD: Scaling Out Graph Analytics with
Asynchronous Block Coordinate Descent,” in ISCA, 2020.

H. Zeng et al., “GraphACT: Accelerating GCN training on CPU-
FPGA heterogeneous platforms,” in FPGA, 2020.

B. Zhang et al., “BoostGCN: A framework for optimizing GCN
inference on FPGA,” in 2021 IEEE International Symposium on
FCCM, 2021.

X.Zhang et al., “DnnBuilder: an automated tool for building high-
performance DNN hardware accelerators for FPGAs,” in
ICCAD, 2018.

Intel, “Intel MKL” 2022. [Online]. Available:
https://software.intel.com/en-us/mkl
NVIDIA, “NVIDIA cuBLAS” 2022. [Online]. Available:

https://developer.nvidia.com/cublas

Authorized licensed use limited to: UCLA Library. Downloaded on August 19,2022 at 21:04:14 UTC from IEEE Xplore. Restrictions apply.

